• University of Southampton Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Anglia Ruskin University Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • Ross University School of Veterinary Medicine Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
Middlesex University Featured Masters Courses
Vlerick Business School Featured Masters Courses
Bocconi University Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
University of Glasgow Featured Masters Courses
"steel" AND "design"×
0 miles

Masters Degrees (Steel Design)

We have 51 Masters Degrees (Steel Design)

  • "steel" AND "design" ×
  • clear all
Showing 1 to 15 of 51
Order by 
MSc in Structural Steel Design. This course provides training in the analysis, design and assessment of steel and composite (steel/concrete) structures. Read more
MSc in Structural Steel Design

This course provides training in the analysis, design and assessment of steel and composite (steel/concrete) structures.

All of our MSc courses are career-orientated and cover both theoretical background and practical design considerations.

Lectures are given mainly by full-time staff but important contributions are made by visiting professors and guest lecturers who are eminent industrialists.

Many of our students continue their studies to undertake research towards a PhD.

Read less
This programme aims at providing a multidisciplinary background for architects, with a special focus on environmental sustainability and landscape design. Read more

Mission and Goals

This programme aims at providing a multidisciplinary background for architects, with a special focus on environmental sustainability and landscape design. The concept of sustainability is associated with a high quality transformation of landscape, from the macro-scale of urban planning, to the micro-scale of technical details, how the varied scales connect and interrelate with each other. This method is oriented to a physical, social and technical approach, passing over a close specialized theme vision. The international program involves also workshops, study trips, and summer schools.

The programme is taught in english.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/sustainable-architecture-and-landscape-design/

Career Opportunities

The programme trains architects with an expertise in sustainable architecture and landscape design, to follow a career in the private and public sector as covered by EU directives in: architecture, urban planning, urban design, and landscape architecture.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Architecture-Piacenza.pdf
The MSc Degree programme in Sustainable Architecture and Landscape Design offers the student the tools to become an Architect with a sound competence on theories, methods and applications of Architecture and of Landscape Design, highly skilled in the issues of contemporary territories: regeneration of productive landscapes; sustainable transformation of the architectural, urban and rural landscapes; transformation of the built environment and re-use of the existent soil; design of open spaces and infrastructures; protection of the territory; valorisation of the ecological and cultural resources; design strategies for new forms of sustainable inhabiting.
To this aim, this Degree Programme offers a complex view on the environment, dealing with all the landscape forms: from urban, to agricultural and to suburban areas, in line with the European Landscape Convention (2000) which “applies to the entire territory of
the Parties and covers natural, rural, urban and peri-urban areas”. More specifically, the landscape is seen as “represented”, “constructed” and “productive” landscape, with a specific attention to the aspects of sustainability (from a physical, economic and social point of view). The programme is taught in English.

Subjects

Theories of architecture, city and landscape; Steel, timber and reinforced concrete structures; History of architecture and landscape in the contemporary age; Urban and landscape Regeneration studio (environmental technology, landscape as heritage, general ecology); Architectural design studio 1 (sustainable architecture, technical environmental systems, multi-criteria analysis and project appraisal); Urban and environmental design studio (design of public spaces and infrastructures, agronomy and food sciences, sociology of the environment); Architectural design studio 2 (advanced architectural design, topography and cartography, landscape urbanism and land planning); Landscape design studio (advanced landscape design, physical geography and geo-morphology, techniques and tools for environmental design); Landscape representation and aesthetics.

Optional courses
- Italian territories and landscape tradition
- Open source architecture
- Arboriculture and agrobiotechnologies
- Architecture and creativity: cultural industries
- Special topics in landscape (workshop)
- Special topics in architecture(workshop)

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/sustainable-architecture-and-landscape-design/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/sustainable-architecture-and-landscape-design/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
This programme enables students to work effectively in an engineering design role, whether that role concerns the design of products, processes or systems, at an overall or detail level. Read more
This programme enables students to work effectively in an engineering design role, whether that role concerns the design of products, processes or systems, at an overall or detail level. A balance of theory and practice is applied to the solving of real engineering design problems. All projects meet the product design requirements of one of our many co-operating companies.

Core study areas include structural analysis, engineering management and business studies, computer aided engineering, product design and human factors, engineering design methods, sustainable product design, the innovation process and project management, sustainable development: the engineering context and a project.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/mechanical-manufacturing/engineering-design/

Programme modules

Compulsory Modules:
- Structural Analysis
- Engineering Management and Business Studies
- Computer Aided Engineering
- Product Design and Human Factors
- Engineering Design Methods
- Sustainable Product Design
- The Innovation Process and Project Management
- Sustainable Development: The Engineering Context
- Project

Careers and further study

Engineering design related jobs in product, process and system design environments, providing project management and communication skills and direct technical input. Graduates may also study for an MPhil or PhD with the School.

Why Choose Mechanical and Manufacturing Engineering at Loughborough?

The School of Mechanical and Manufacturing Engineering is a leader in technological research and innovation, with extensive national and international industrial links, and a long standing tradition of excellent teaching.

Our Industrial Advisory Committee, comprising of engineers at senior levels in the profession, ensures that our programmes contain the optimal balance of subjects and industrial relevance, with our programmes accredited by the Institution of Mechanical Engineers, Institution of Engineering and Technology and Institution of Engineering Designers.

- Facilities
The School has laboratories devoted to disciplines such as; dynamics and control, automation, fluid mechanics, healthcare engineering, internal combustion engines, materials, mechatronics, metrology, optical engineering, additive manufacturing, sports engineering, structural integrity and thermodynamics.

- Research
The School has a busy, multi-national community of well over 150 postgraduate research students who form an important part of our internationally recognised research activities.
We have seven key research centres (Electronics Manufacture, Intelligent Automation, Regenerative Medicine Embedded Intelligence, High Efficiency SCR for Low Emission Vehicles and High Value Manufacturing Catapult Centre) and we are a lead governing partner in the newly formed UK Manufacturing Technology Centre.

- Career prospects
90% of our graduates were in employment or further study within six months of graduating. Our graduates go on to work with companies such as Airbus, BAE Systems, Caterpillar, EDF Energy, Ford, IBM, Jaguar Land Rover, Millbrook Proving Ground, Rolls Royce and Tata Steel.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/mechanical-manufacturing/engineering-design/

Read less
Course description. If you are a highly motivated individual this course prepares you for a career working at the forefront of jewellery and metalwork. Read more

Course description

If you are a highly motivated individual this course prepares you for a career working at the forefront of jewellery and metalwork. You build upon existing craft traditions, extending them in response to the needs of our rapidly changing society both in terms of function and style.

Your work on the course is project led and studio based. You develop and apply advanced skills using traditional and new technologies in the field. You also carry out research through practical and theoretical investigation.

Your individual project work includes research and creative work which explores your study topic. This is supported by lectures and seminars dealing with professional practice issues and reviewing progress. You also take part in regular group and individual tutorials.

This culminates with your final project that demonstrates you can deal with difficult contemporary questions and take a leading role in your profession as a designer.

There are opportunities to participate in study trips and visits to design conferences and debates.

Excellent facilities and creative resources

You have access to a huge range of creative resources to experiment and engage with including • 3D printing for rapid prototyping • state-of-the-art hardware and software • photography studios • a creative media centre • a gallery • well-equipped workshops.

You also have access to our award-winning learning centre featuring a specialist art, design and media library and extensive online resources.

Research-led expertise

We are one of the oldest established art and design institutions in the UK, renowned for producing internationally recognised research. Your projects are supported by lecturers who are reknowned specialists in jewellery and metalwork.

You benefit from a strong relationship between the masters design programme and the University’s Art and Design Research Centre which has gained international recognition for its work in both practice-based and strategic research. This has led to an approach to postgraduate study in design which emphasises the role of research in professional practice.

Vibrant and supportive learning environment

During the course you regularly take part in constructive critical debates about your own work and that of your peers. You need to communicate your research, ideas and designs in ways that are appropriate to professional leadership.

You study alongside MA and MFA Design students for part of your course and benefit from a vibrant, international, collaborative and supportive postgraduate environment.

Sheffield: an international centre for excellence in metalwork

Sheffield is famous not only for its innovative steel and tool industries but also for being at the leading edge of the design and production of contemporary metalwork, silversmithing and tableware.

MA and MFA study

MA and MFA students complete the same modules during the course except that MFA students complete an extra project module. The MFA project encourages you to develop professional skills that help you to identify, instigate, and deliver projects with external partners, such as communities, galleries or businesses. You find a project partner, agree a brief and then deliver the project to a professional standard.

We are normally asked to shortlist applicants before recommending a small number to apply. If this happens, we consider your interview, portfolio of work, academic qualifications and learning aims. We aim to pick people whose abilities and aims are relevant for the company and who are most likely to be successful in a competitive interview.

This course is part of the Sheffield Institute of Arts (SIA), an amazing, diverse community of makers – where staff, students and partners work as equals to deliver real innovation and creativity. SIA opened in 1843 and is one of the UK's oldest Art and Design Schools. We have recently moved into the Head Post Office, a redesigned Grade II listed building. It includes state-of-the-art workshops which provide you with a unique studio-based learning environment in the heart of the creative community.

Course structure

FULL-TIME STRUCTURE

Semester one

• project 1 • theory supporting practice

Semester two

• project 2 • negotiated project

Semester three

• major project

Semester four – MFA students only

• MFA project

PART-TIME STRUCTURE

Semester one (year 1)

• theory supporting practice • negotiated project

Semester two (year 2)

• project 1 • project 2

Semester three (year 3)

• major project

Semester four – MFA students only (year 4)

• MFA project

Assessment

Assessment and feedback are vital parts of the learning process in creative disciplines. Most assessment is through individual project work which combines research and creative practice.

Employability

There are many opportunities for employment or self-employment. We encourage you to take an enterprising approach and to strengthen your ability to develop your own business practice.

An increasing number of our graduates undertake further advanced study through research degrees (PhD) in the University’s Art and Design Research Centre, which has a leading position in the advancement of creative practice in design. Some of our graduates find employment in the University.

Sheffield is home to the largest concentration of creative production in the region. Support for creative industries in the city has encouraged home grown talent as well as practitioners relocating here.



Read less
Graduate students will find the programme of substantial use in developing their knowledge and skills base for bridge analysis, design and management. Read more

Graduate students will find the programme of substantial use in developing their knowledge and skills base for bridge analysis, design and management.

The programme also offers the opportunity for practising bridge engineers to update their knowledge of current design and assessment codes and guidelines, become familiar with developments in new techniques for the design, construction and management of bridges.

The Bridge Engineering programme encompasses a wide range of modules addressing the whole life-analysis of bridge structures from design to end-of-life.

Optional modules from some of our other study streams are also offered, covering structural engineering, geotechnical engineering, water engineering, construction management, and infrastructure engineering and management.

Graduates are highly employable and may progress to relevant specialist PhD or EngD research programmes in the field.

Programme structure

This programme is studied over either one year (full-time) or between two and five years (part-time or distance learning). It consists of eight taught modules and a dissertation project.

This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

Example module listing

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Bridge Engineering Group Modules

Structural Engineering Group Modules

Geotechnical Engineering Group Modules

Construction Management Group Modules

Infrastructure Engineering and Management Group Modules

Water and Environmental Engineering Group Modules

Dissertation

Educational aims of the programme

The programme aims to provide graduates with:

  • A comprehensive understanding of engineering mechanics for bridge analysis
  • The ability to select and apply the most appropriate analysis methodology for problems in bridge engineering including advanced and new methods
  • The ability to design bridge structures in a variety of construction materials
  • A working knowledge of the key UK and European standards and codes of practice associated with the design, analysis and construction of bridge structures and the ability to interpret and apply these to both familiar and unfamiliar problems
  • The necessary technical further learning towards fulfilling the educational base for the professional qualification of Chartered Engineer

Programme learning outcomes

The programme provides opportunities for students to develop and demonstrate knowledge and understanding, skills, qualities and other attributes in the following areas:

Knowledge and understanding

  • A knowledge and understanding of the key UK and European standards and codes of practice relating to bridge engineering
  • The ability to interpret and apply the appropriate UK and European standards and codes of practiceto bridge design for both familiar and unfamiliar situations
  • A knowledge and understanding of the construction of different types of bridge structures using different types of materials (e.g. concrete and steel)
  • A knowledge and understanding of the common and less common materials used in bridge engineering
  • A comprehensive understanding of the principles of engineering mechanics underpinning bridge engineering
  • The ability to critically evaluate bridge engineering concepts
  • The ability to apply the appropriate analysis methodologies to common bridge engineering problems as well as unfamiliar problems
  • The ability to understand the limitations of bridge analysis methods
  • A knowledge and understanding to work with information that may be uncertain or incomplete
  • A Knowledge and understanding of sustainable development related to bridges
  • The awareness of the commercial, social and environmental impacts associated with bridges
  • An awareness and ability to make general evaluations of risk associated with the design and construction of bridge structures including health and safety, environmental and commercial risk
  • A critical awareness of new developments in the field of bridge engineering

Intellectual / cognitive skills

  • The ability to tackle problems familiar or otherwise which have uncertain or incomplete data (A,B)
  • The ability to generate innovative bridge designs (B)
  • The ability to use theory or experimental research to improve design and/or analysis
  • The ability to apply fundamental knowledge to investigate new and emerging technologies
  • Synthesis and critical appraisal of the thoughts of others;

Professional practical skills

  • The awareness of professional and ethical conduct
  • A Knowledge and understanding of bridge engineering in a commercial/business context
  • Ability to use computer software to assist towards bridge analysis
  • Ability to produce a high quality report
  • Ability of carry out technical oral presentations

Key / transferable skills

  • Communicate engineering design, concepts, analysis and data in a clear and effective manner
  • Collect and analyse research data
  • Time and resource management planning

Global opportunities

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.



Read less
The majority of new buildings in the UK have steel structures, the use of steel in construction is growing in many other parts of the world. Read more

About the course

The majority of new buildings in the UK have steel structures, the use of steel in construction is growing in many other parts of the world.

This specialist course aims to prepare structural engineers for careers in the global construction industry by providing advanced knowledge of the properties and applications of steel.

There is an active steel structures group within the department whose research feeds directly into our MSc (Eng) in Steel Construction.

About us

We are one of the largest and most active civil engineering departments in the UK. All our masters courses are informed by our own world-leading research and industry needs. The 2014 Research Excellence Framework (REF) puts us in the UK top four.

Our structures-based courses are accredited by The Institution of Civil Engineers, Institution of Structural Engineers, Chartered Institution of Highways and Transportation, and Institute of Highway Engineers as satisfying part 2 academic base requirements for a Chartered Engineer under UK-SPEC.

Your career

Our graduates work for top UK and international consultancies, contractors, regulators, universities and other private and public sector organisations.

Many of them join engineering consultancies, in roles such as Structural Engineer, Building Services Engineer and Sustainability Consultant. Some join architecture practices. Employers include Arup, Buro Happold, Capita Symonds, Roger Preston and Partners, Cundall and Foster and Partners.

Core modules

Linear Systems and Structural Analysis
Structural Dynamics (Earthquakes and Vibration)
Computational Structural Analysis and Research Skills
Structural Design
Structural Design and Fire Resistance

Examples of optional modules

Innovations in Structural Concrete
Advanced Simulation of High Strain Rate Dynamics
Blast and Impact Effects on Structures
Design of Earthquake Resistant Structures
Geotechnical Design

Teaching and assessment

Lectures, design tutorials, computational tutorials, lab work and industrial seminars.

All courses use lectures by academic staff and industrial partners, laboratory work, site visits, design projects and dissertation. Assessment is by formal examinations, coursework assignments and a dissertation with oral examination.

September–June: taught modules and preparation for your dissertation.
June–August: complete your dissertation.

Your research dissertation gives you the opportunity to work with an academic on a piece of research in a subdiscipline. We’ll give you training in research skills.

Read less
This industry-accredited course is tailored to civil and/or structural engineers wishing to become senior managers in both consulting engineering and contracting organisations, and is ideal for graduate engineers starting their career in the construction industry. Read more
This industry-accredited course is tailored to civil and/or structural engineers wishing to become senior managers in both consulting engineering and contracting organisations, and is ideal for graduate engineers starting their career in the construction industry. It successfully combines structural engineering with advanced construction management, which will enable you to perform at a managerial level for a consultant or contractor. The course is led by a fellow of both the Institution of Civil Engineers and the Institution of Structural Engineers with industrial and academic experience and expertise in advanced concrete design and seismic design.

Academic teaching is complemented by experts from leading civil/ structural engineering consultancies and construction companies, enabling you to develop a wider perspective and understanding of the worldwide issues facing the construction industry.

This degree is accredited by the Joint Board of Moderators, which includes the Institution of Civil Engineers and the Institution of Structural Engineers, under licence from the Engineering Council, as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired a Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc(Hons) undergraduate first degree.

Accreditation is a mark of assurance that the degree meets the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC). Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.

What will you study?

You will learn how to carry out the conceptual and detailed design of standard and innovative structures and substructures under normal and earthquake actions, to latest standards, using steel and concrete. You will also study the financial, legal and contractual problems associated with the construction process, and will learn how to apply your knowledge of management techniques and contract administration in the supervision of construction projects.

You will have the opportunity to carry out research and undertake industry-relevant dissertation projects.
The advanced concrete design module is assessed by coursework based on the national university competition organised by The Concrete Centre, the trade body representing the concrete industry in the UK.

Assessment

Coursework (including real-world case studies) and/or exams, practice-led research dissertation.

Work placement scheme

Kingston University has set up a scheme that allows postgraduate students in the Faculty of Science, Engineering and Computing to include a work placement element in their course starting from September 2017. The placement scheme is available for both international and home/EU students.

-The work placement, up to 12 months; is optional.
-The work placement takes place after postgraduate students have successfully completed the taught portion of their degree.
-The responsibility for finding the placement is with the student. We cannot guarantee the placement, just the opportunity to undertake it.
-As the work placement is an assessed part of the course for international students, this is covered by a student's tier 4 visa.

Details on how to apply will be confirmed shortly.

Course structure

Please note that this is an indicative list of modules and is not intended as a definitive list.

Modules
-Management of Project Risk, Quality and Safety
-Seismic Design of Structures and Substructure Design
-Structural Design in Concrete and Steel
-Estimating, Tendering and Procurement
-Dissertation

Read less
This course is aimed at creative graduates who want to develop the skills to work in the exciting area of games design. On this course you develop specialist skills to produce real-time game art with the latest 3D software used by industry. Read more

This course is aimed at creative graduates who want to develop the skills to work in the exciting area of games design. On this course you develop specialist skills to produce real-time game art with the latest 3D software used by industry. Areas include 3D modelling, asset design for props, environments and characters. The course is designed to allow you to specialise in the area of games design that is the most interest to you.

You focus on art and design fundamentals to underpin your 3D game designs as well as engaging with theory to develop your awareness of game mechanics and what makes games fun. These skills can be applied through game development projects undertaken in small teams with ‘Games Software Development’ students. You work in an ‘industry simulation’ style environment to produce game prototypes which could be released through our commercial studio ‘Steel Minions’. This gives you the opportunity to experience commercial team development practices in preparation for entering the industry.

Course structure

Modules

  • 3D fundamentals
  • Asset creation
  • Game development practice

Also • games design futures project • creative media research and development proposal • creative media professional practice project • creative media masters project

Assessment

  • coursework

Employability

Creative and skilled games artists and designers are in demand to meet the need for new and exciting products, as the industry relies on them to develop the next generation of games. Areas of work include • 2D and 3D art • animation • concept design • mobile, console and PC based platforms.



Read less
You can access six study streams on this Masters programme. Bridge Engineering. Construction Management. Geotechnical Engineering. Read more

You can access six study streams on this Masters programme:

  • Bridge Engineering
  • Construction Management
  • Geotechnical Engineering
  • Structural Engineering
  • Water Engineering and Environmental Engineering
  • Infrastructure Engineering and Management

As well as supporting the career development of Civil Engineering graduates, this programme provides the necessary further learning for engineers working in the construction industry who hold related first degrees such as engineering geology or construction management.

It is also designed to update the technical skills of practising engineers engaged in the planning, design, construction and operation of civil-engineering works.

Programme structure

This programme is studied full-time over one academic year and part-time / distance learning for between two to five academic years. It consists of eight taught modules and a dissertation.

This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

Example module listing

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Structural Engineering Group Modules

Bridge Engineering Group Modules

Geotechnical Engineering Group Modules

Construction Management Group Modules

Infrastructure Engineering Group Modules

Water and Environmental Engineering Group Modules

Dissertation

Educational aims of the programme

  • The Civil Engineering programme aims to provide graduate engineers with:
  • Advanced capabilities and in-depth knowledge in a range of specialised aspects of civil engineering
  • It is also designed to update the technical skills of practising engineers engaged in the planning, design, construction and operation of civil engineering works and to contribute to a personal professional development programme
  • A working knowledge of some of the UK and European standards and codes of practice associated with the design, analysis and construction of civil engineering structures and the ability to interpret and apply these to both familiar and unfamiliar problems
  • The necessary further learning towards fulfilling the educational base for the professional qualification of Chartered Engineer in both a technical or non-technical capacity dependent upon module selection

Programme learning outcomes

The programme provides opportunities for students to develop and demonstrate knowledge and understanding, skills, qualities and other attributes in the following areas:

Knowledge and understanding

  • The mathematical principles necessary to underpin their education in civil engineering and to enable them to apply mathematical methods, tools and notations proficiently in the analysis and solution of multi-disciplinary open ended engineering problems
  • The properties, behaviour and use of relevant materials
  • The management techniques which may be used to achieve civil engineering objectives within that context
  • Some of the roles of management techniques and codes of practice in design
  • The principles and implementation of some advanced design and management techniques specific to civil engineering
  • Mathematical and computer models relevant to civil engineering, and an appreciation of their limitations
  • The role of the professional engineer in society, including health, safety, environmental, sustainability, ethical issues and risk assessment within civil engineering
  • The wider multidisciplinary engineering context and its underlying principles
  • Developing technologies related to civil engineering and the ability to develop an ability to synthesize and critically appraise some of them
  • The framework of relevant requirements governing engineering activities, including personnel, health, safety, and risk issues (an awareness of)
  • The advanced design processes and methodologies and the ability to adapt them in open ended situations.

Intellectual / cognitive skills

  • Analyse and solve problems
  • Think strategically
  • Synthesis of complex sets of information
  • Understand the changing nature of knowledge and practice in the management of culturally diverse construction environments
  • Select and transfer knowledge and methods from other sectors to construction-based organisation
  • Produce sound designs to meet specified requirements such as Eurocodes, deploying commercial software packages as appropriate
  • Dynthesis and critical appraisal of the thoughts of others

Professional practical skills

  • Awareness of professional and ethical conduct
  • Extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools where appropriate
  • Evaluate and integrate information and processes in project work
  • Present information orally to others
  • Show a capability to act decisively in a coordinated way using theory, better practice and harness this to experience
  • Use concepts and theories to make engineering judgments in the absence of complete data
  • Observe, record and interpret data using appropriate statistical methods and to present results in appropriate forms for the civil engineering industry

Key / transferable skills

  • Communicate engineering design, concepts, analysis and data in a clear and effective manner 
  • Collect and analyse research data 
  • Time and resource management planning

Global opportunities

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.



Read less
Graduates in Civil Engineering work in the field of constructions and infrastructures. The subjects taught in the Master’s Degree Program aim at strengthening the basic preparation of the students, providing them, at the same time, with an adequately deepened knowledge of topics central to Civil Engineering. Read more

Mission and goals

Graduates in Civil Engineering work in the field of constructions and infrastructures. The subjects taught in the Master’s Degree Program aim at strengthening the basic preparation of the students, providing them, at the same time, with an adequately deepened knowledge of topics central to Civil Engineering. Students can choose their field of specialization in one of the following areas: Geotechnics, Hydraulics, Transportation infrastructures, Structures. Suggested study plans help students define their curriculum. Additionally, a General curriculum is also proposed, aimed at students preferring a wider spectrum formation in Civil Engineering.
The programme includes two tracks taught in English.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/civil-engineering/

Career opportunities

Engineers having obtained the Master’ degree can find career opportunities in the following areas:
1. companies involved in the design and maintainance of civil structures, plants and infrastructures;
2. universities and higher education research institutions;
3. public offices in charge of the design, planning, management and control of urban and land systems;
4. businesses, organizations, consortia and agencies responsible for managing and monitoring civil works and services;
5. service companies for studying the urban and land impact of infrastructures.

They can also work as self-employed professionals.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Civil_Engineering_02.pdf
Civil Engineers deal with structures (e.g. buildings, bridges, tunnels, dams) and infrastructures (such as roads, railways, airports, water supply systems, etc.). The two-year Master of Science in Civil Engineering provides students with a sound preparation on these topics, allowing them to choose a curriculum (or ‘track’) among the five available: General, Geotechnics, Hydraulics, Transport Infrastructures and Structures. The ‘General’ curriculum aims at training civil engineers with a broader range of expertise in the design, implementation and management of civil works of various kinds. ‘Geothecnics’ is devoted to the study of engineering problems involving geomaterials (i.e., soil and rock) and their interaction with civil structures (foundations, tunnels, retaining walls).
‘Hydraulics’ deals with problems concerning water storage, transportation and control (pipelines, sewers, river and coastal erosion control, reservoirs). ‘Transport Infrastructures’ covers various subjects of transportation engineering (road and railway design, airport and harbor design, modeling of transport fluxes). ‘Structures’ is devoted to the analysis and design of civil and industrial structures
(steel and concrete buildings, bridges, etc.). The tracks ‘Geotechnics’ and ‘Structures’ are taught in English.

Subjects

1st year subjects
- Common to the two curricula:
Numerical methods for Civil Engineering; Computational mechanics and Inelastic structural analysis; Theory of structures and Stability of structures; Dynamics of Structures; Advanced Structural design*; Reinforced and prestressed concrete structures*; Advanced computational mechanics*; Mechanics of materials and inelastic constitutive laws*; Fracture mechanics*

- Curriculum Geotechnics:
Groundwater Hydraulics; Engineering Seismology

- Curriculum Structures:
Steel structures*; Computational Structural Analysis*

2nd year subjects
- Common to the two curricula:
Foundations; Geotechnical Modelling and Design; Underground excavations; 1st year subjects marked by * may also be chosen;

- Curriculum Geotechnics:
Slope Stability

- Curriculum Structures:
Earthquake Resistant Design; Bridge Theory and Design; Structural rehabilitation; Precast structures; 1st year subjects marked by * may also be chosen

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/civil-engineering/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/civil-engineering/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
Our Structural Engineering postgraduate programme is delivered by the Faculty’s own staff, together with practising engineers from consultancies and local authorities. Read more

Our Structural Engineering postgraduate programme is delivered by the Faculty’s own staff, together with practising engineers from consultancies and local authorities.

For practising engineers engaged in the planning, design and construction of structural engineering works, this programme provides an opportunity to update their knowledge of current design practice and to become familiar with developments in codes and methods of analysis.

You will be able to choose from a rich and varied selection of specialist structural engineering subjects. The programme is offered in the standard full-time mode, in addition to part-time and distance learning options.

Graduates from the programme are highly employable and may progress to relevant specialist PhD or EngD research programmes in the field.

Programme structure

This programme is studied full-time over one academic year and part-time or distance learning over two to five academic years. It consists of eight taught modules and a dissertation project.

This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng (Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

Example module listing

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Structural Engineering Group Modules

Bridge Engineering Group Modules

Geotechnical Engineering Group Modules

Construction Management Group Modules

Infrastructure Engineering Group Modules

Water and Environmental Engineering Group Modules

Dissertation

Modes of study

Apart from the usual full-time mode, there are also part-time options. The majority of Bridge, Geotechnical and Structural Engineering modules can be studied by distance learning through the use of an interactive web-based e-learning platform (SurreyLearn).

Distance learning

This programme can be studied via distance learning, which allows a high level of flexibility and enables you to study alongside other commitments you may have. Get further information about the details of our distance learning programme.

Academic support, facilities and equipment

As part of your learning experience, you will have at your disposal a wide range of relevant software, including ANSYS, ABAQUS, DIANA, SAP 2000, Integer SuperSTRESS, LUSAS, CRISP, MATLAB, PertMaster DRACULA and VISSIM.

Educational aims of the programme

The programme aims to provide graduates with:

  • A comprehensive understanding of engineering mechanics for structural analysis
  • The ability to select and apply the most appropriate analysis methodology for problems in structural engineering including advanced and new methods
  • The ability to design structures in a variety of construction materials
  • A working knowledge of the key UK and European standards and codes of practice associated with the design, analysis and construction of civil engineering structures and the ability to interpret and apply these to both familiar and unfamiliar problems
  • The necessary technical further learning towards fulfilling the educational base for the professional qualification of Chartered Engineer.

Global opportunities

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.



Read less
This industry-accredited course is aimed at civil and/or structural engineers who aspire to become senior sustainability managers in both consulting engineering and contracting organisations. Read more
This industry-accredited course is aimed at civil and/or structural engineers who aspire to become senior sustainability managers in both consulting engineering and contracting organisations. It successfully balances sustainable structural engineering with advanced construction management, and is led by a fellow of the Institution of Civil Engineers and Institution of Structural Engineers. With sustainability being a key issue for the 21st century, this course offers specialised knowledge and skills that will enhance your employability potential.

Key features
-This programme builds on the research excellence in sustainable concrete construction at Kingston University and is fully compatible with the existing Government and Foresight Strategy on Sustainable Construction.
-Input from experts at leading civil engineering, construction and related companies complements the academic teaching. This enables you to develop a wider perspective and understanding of the worldwide sustainability issues facing the construction industry.

This degree is accredited by the Joint Board of Moderators, which includes the Institution of Civil Engineers and the Institution of Structural Engineers, under licence from the Engineering Council, as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired a Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc(Hons) undergraduate first degree.

Accreditation is a mark of assurance that the degree meets the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC). Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.

What will you study?

The hands-on course focuses on the challenges and opportunities for the concrete industry in meeting the demands of sustainability. It combines concrete technology, sustainable construction, earthquake engineering, fire assessment, geo-environmental engineering and construction management.

The advanced concrete design module is assessed by coursework based on the national university competition organised by The Concrete Centre, the trade body representing the concrete industry in the UK.

Assessment

Coursework (including real-world case studies) and/or exams, practice-led research dissertation.

Work placement scheme

Kingston University has set up a scheme that allows postgraduate students in the Faculty of Science, Engineering and Computing to include a work placement element in their course starting from September 2017. The placement scheme is available for both international and home/EU students.

-The work placement, up to 12 months; is optional.
-The work placement takes place after postgraduate students have successfully completed the taught portion of their degree.
-The responsibility for finding the placement is with the student. We cannot guarantee the placement, just the opportunity to undertake it.
-As the work placement is an assessed part of the course for international students, this is covered by a student's tier 4 visa.

Details on how to apply will be confirmed shortly.

Course structure

Please note that this is an indicative list of modules and is not intended as a definitive list.

Modules
-Management of Project Risk, Quality and Safety
-Sustainable Construction and Substructure Design
-Structural Design in Concrete and Steel
-Estimating, Tendering and Procurement
-Dissertation

Read less
Develop skills in the analysis and design of steel and concrete structures. You can tailor the course to your specific interests, so it’s ideal for practising structural engineers who want to enhance their skills or for anyone pursuing a career in this field. Read more

About the course

Develop skills in the analysis and design of steel and concrete structures. You can tailor the course to your specific interests, so it’s ideal for practising structural engineers who want to enhance their skills or for anyone pursuing a career in this field.

About us

We are one of the largest and most active civil engineering departments in the UK. All our masters courses are informed by our own world-leading research and industry needs. The 2014 Research Excellence Framework (REF) puts us in the UK top four.

Our structures-based courses are accredited by The Institution of Civil Engineers, Institution of Structural Engineers, Chartered Institution of Highways and Transportation, and Institute of Highway Engineers as satisfying part 2 academic base requirements for a Chartered Engineer under UK-SPEC.

Your career

Our graduates work for top UK and international consultancies, contractors, regulators, universities and other private and public sector organisations.

Many of them join engineering consultancies, in roles such as Structural Engineer, Building Services Engineer and Sustainability Consultant. Some join architecture practices. Employers include Arup, Buro Happold, Capita Symonds, Roger Preston and Partners, Cundall and Foster and Partners.

Core modules

Linear Systems and Structural Analysis; Structural Design; Computational Structural Analysis and Research Skills; Structural Dynamics and Applications to Earthquake Engineering and Vibration.

Examples of optional modules

Innovations in Structural Concrete; Advanced Concrete Design; Structural Design and Fire Resistance of Medium Rise Steel-framed Buildings; Advanced Simulation of High Strain Rate Dynamics; Blast and Impact Effects on Structures; Design of Earthquake Resistant Structures; Geotechnical Design; Sustainable Concrete Technology.

Teaching and assessment

Lectures, design tutorials, computational tutorials, lab work and industrial seminars.

All courses use lectures by academic staff and industrial partners, laboratory work, site visits, design projects and dissertation. Assessment is by formal examinations, coursework assignments and a dissertation with oral examination.

September–June: taught modules and preparation for your dissertation.
June–August: complete your dissertation.

Your research dissertation gives you the opportunity to work with an academic on a piece of research in a subdiscipline. We’ll give you training in research skills.

Read less
Develop skills in the analysis, design and assessment of engineering structures subject to normal, seismic and extreme loading and environmental conditions. Read more
Develop skills in the analysis, design and assessment of engineering structures subject to normal, seismic and extreme loading and environmental conditions.

Accredited by relevant professional bodies and designed to meet the needs of the modern construction industry, this course offers a wide range of structural engineering principles, as you learn about issues relating to steel and concrete structures and foundations.

Through this highly technical course, studied one year full-time or two years part-time, you will develop skills in numerical simulation using a variety of advanced software.

Part-time study is flexible. Normally students will take three years to complete the programme if they undertake one module per week but the length of the course can be reduced to two years, if two modules are taken each week. Many part-time students undertake projects in their place of work.

See the website http://www.napier.ac.uk/en/Courses/MScPGDipPGCert-Advanced-Structural-Engineering-Postgraduate-FullTime

What you'll learn

You will also learn failure analysis methods, the Eurocodes and the code of practice for the design of various construction materials, research skills and the legal issues surrounding construction.

The course is accredited by the Institution of Civil Engineers (ICE), the Institution of Structural Engineers (IStructE) and the Chartered Institution of Highways & Transportation (CIHT). Industry practitioners are regularly invited as guest speakers and lecturers.

Modules

• Advanced mechanics of materials and FEA
• Advanced structural concrete
• Advanced; structural steel design
• Forensic engineering;
• Foundation design to eurocode 7
• Structural; dynamics and earthquake design
• MSc thesis

Study modules mentioned above are indicative only. Some changes may occur between now and the time that you study.

Careers

As a qualified structural engineer with advanced training, you will be in demand in the construction industry worldwide. Alternatively, you may choose to use this course as the basis for further education or extensive research.

How to apply

http://www.napier.ac.uk/study-with-us/postgraduate/how-to-apply

SAAS Funding

Nothing should get in the way of furthering your education. Student Awards Agency Scotland (SAAS) awards funding for postgraduate courses, and could provide the help you need to continue your studies. Find out more: http://www.napier.ac.uk/study-with-us/postgraduate/fees-and-funding/saas-funded-courses

Read less
Structural engineers help to make, shape and maintain the built environment, from buildings and bridges to water supply systems, power plans and flood defences. Read more

Structural engineers help to make, shape and maintain the built environment, from buildings and bridges to water supply systems, power plans and flood defences. They are professionals who enjoy innovation, challenges, opportunities, responsibility and excitement in a varied and very satisfying career. As a profession, structural engineering provides a tremendous opportunity to make a real difference to peoples' lives and their environment.

This programme will equip you with the advanced knowledge and skills to succeed in this challenging industry. You’ll build your knowledge of a range of core topics such as concrete and steel design, structural analysis, design optimisation and how structures are designed and managed in earthquake zones. You’ll also develop your research skills and focus on a specific topic when you complete your own research project.

Taught by leading academics and practitioners, you’ll prepare to face some of the major challenges of the 21st century.

This programme has close links with local and regional industry as well as the Yorkshire branch of the Institution of Structural Engineers (IStructE) – and you’ll benefit from the expertise of our Institute for Resilient Infrastructure and the active research groups across the Faculty of Engineering.

You’ll also benefit from using our specialist facilities, such as bench-top testing facilities to look at the fundamental behaviour of material soils and testing rigs for full-scale structures. We have all the specialist software you’ll need for your programme, and you’ll have access to a dedicated study suite for Masters students.

Accreditation

This degree is accredited by the Joint Board of Moderators as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired a partial CEng accredited undergraduate first degree.

This course is also accredited by EUR-ACE, the European quality label for engineering degree programmes at Bachelor and Master level.

Course content

You’ll study a set of core modules that give you a firm foundation in the key elements of structural engineering. You’ll develop and expand your understanding of structural analysis and foundation engineering, and explore design issues related to key building materials like concrete, steel and composites. From there you’ll explore design optimisation and examine real-life examples.

We place a strong emphasis on applying your knowledge to real-world problems. Over the 2 semesters, you’ll work on your own design project, where you’ll develop, evaluate and recommend concept design solutions to a structural engineering problem and even put together an outline construction programme for the project.

During Semester 1 and 2 but particularly over the summer months, you’ll also develop and apply your research skills to a real-world problem when you complete an independent research project.

Want to find out more about your modules?

Take a look at the Structural Engineering module descriptions for more detail on what you will study.

Course structure

Compulsory modules

  • Design and Management of Structures in Earthquake Zones 15 credits
  • Advanced Structural Analysis (MSc/PGD) 15 credits
  • Design Optimisation - MSc 15 credits
  • Advanced Concrete Design (MSc) 15 credits
  • Structural Engineering Dissertation 60 credits
  • Foundation Engineering (MSc) 15 credits
  • Advanced Steel and Composite Design - (MSc) 15 credits
  • Structural Engineering Design Project 30 credits

For more information on typical modules, read Structural Engineering MSc(Eng) Full Time in the course catalogue

For more information on typical modules, read Structural Engineering MSc(Eng) Part Time in the course catalogue

Learning and teaching

Our groundbreaking research feeds directly into teaching, and you’ll have regular contact with staff who are at the forefront of their disciplines. You’ll have regular contact with them through lectures, seminars, tutorials, small group work and project meetings.

Independent study is also important to the programme, as you develop your problem-solving and research skills as well as your subject knowledge.

Assessment

You’ll be assessed using a range of techniques including case studies, technical reports, presentations, in-class tests, assignments and exams. Optional modules may also use alternative assessment methods.

Projects

The dissertation project is one of the most satisfying elements of this course. It allows you to apply what you’ve learned to a piece of research focusing on a real-world problem, and it can be used to explore and develop your specific interests.

Recent projects by MSc Structural Engineering students have included:

  • Dynamic shear resistance of collar jainted masonry panels
  • Performance of reinforced concrete tunnel linings in fire situations
  • A comparison of tensile and compressive creep in concrete
  • Review of the latest developments in the design and construction of plastic bridges

A proportion of projects are formally linked to industry, and can include spending time at the collaborator’s site over the summer.

Career opportunities

This programme greatly enhances your ability to obtain status as a Chartered Structural Engineer. As a result, you may expect to find employment in the major structural engineering consulting practices, while opportunities also exist with multidisciplinary consulting organisations.

Graduates have gone on to succeed in a range of careers around the world for organisations sucj as Arup, Delf Consulting Engineers (India), G2 Structural Ltd, JN Bentley Ltd, KA Tech Tips Ltd, SkyCon Design & Construction Co. Ltd and Sterling Engineering Consultancy Services among others.

If you are taking the course on a part-time basis, you will return to your existing jobs with enhanced potential for progression.

Careers support

You’ll have access to the wide range of engineering and computing careers resources held by our Employability team in our dedicated Employability Suite. You’ll have the chance to attend industry presentations book appointments with qualified careers consultants and take part in employability workshops. Our annual Engineering and Computing Careers Fairs provide further opportunities to explore your career options with some of the UK’s leading employers.

The University's Careers Centre also provide a range of help and advice to help you plan your career and make well-informed decisions along the way, even after you graduate. Find out more at the Careers website.



Read less

Show 10 15 30 per page



Cookie Policy    X