• New College of the Humanities Featured Masters Courses
  • St Mary’s University, Twickenham Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • University of Glasgow Featured Masters Courses
  • Coventry University Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
University of the West of England, Bristol Featured Masters Courses
Imperial College London Featured Masters Courses
University of Worcester Featured Masters Courses
FindA University Ltd Featured Masters Courses
Bath Spa University Featured Masters Courses
"steel"×
0 miles

Masters Degrees (Steel)

  • "steel" ×
  • clear all
Showing 1 to 15 of 81
Order by 
The majority of new buildings in the UK have steel structures, the use of steel in construction is growing in many other parts of the world. Read more

About the course

The majority of new buildings in the UK have steel structures, the use of steel in construction is growing in many other parts of the world.

This specialist course aims to prepare structural engineers for careers in the global construction industry by providing advanced knowledge of the properties and applications of steel.

There is an active steel structures group within the department whose research feeds directly into our MSc (Eng) in Steel Construction.

About us

We are one of the largest and most active civil engineering departments in the UK. All our masters courses are informed by our own world-leading research and industry needs. The 2014 Research Excellence Framework (REF) puts us in the UK top four.

Our structures-based courses are accredited by The Institution of Civil Engineers, Institution of Structural Engineers, Chartered Institution of Highways and Transportation, and Institute of Highway Engineers as satisfying part 2 academic base requirements for a Chartered Engineer under UK-SPEC.

Your career

Our graduates work for top UK and international consultancies, contractors, regulators, universities and other private and public sector organisations.

Many of them join engineering consultancies, in roles such as Structural Engineer, Building Services Engineer and Sustainability Consultant. Some join architecture practices. Employers include Arup, Buro Happold, Capita Symonds, Roger Preston and Partners, Cundall and Foster and Partners.

Core modules

Linear Systems and Structural Analysis
Structural Dynamics (Earthquakes and Vibration)
Computational Structural Analysis and Research Skills
Structural Design
Structural Design and Fire Resistance

Examples of optional modules

Innovations in Structural Concrete
Advanced Simulation of High Strain Rate Dynamics
Blast and Impact Effects on Structures
Design of Earthquake Resistant Structures
Geotechnical Design

Teaching and assessment

Lectures, design tutorials, computational tutorials, lab work and industrial seminars.

All courses use lectures by academic staff and industrial partners, laboratory work, site visits, design projects and dissertation. Assessment is by formal examinations, coursework assignments and a dissertation with oral examination.

September–June: taught modules and preparation for your dissertation.
June–August: complete your dissertation.

Your research dissertation gives you the opportunity to work with an academic on a piece of research in a subdiscipline. We’ll give you training in research skills.

Read less
Take advantage of one of our 100 Master’s Scholarships to study Steel Technology at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Read more
Take advantage of one of our 100 Master’s Scholarships to study Steel Technology at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Postgraduate loans are also available to English and Welsh domiciled students. For more information on fees and funding please visit our website.

We are a leader in developing new manufacturing processes and products, such as functional coated steel. Our research in this area is led by the SPECIFIC project, in collaboration with Tata Steel. Research into advanced, structural materials is undertaken in conjunction with the Rolls-Royce University Technology Centre (UTC) in Materials based at Swansea. These projects are funded by the EPSRC Strategic Partnership in Structural Metals for Gas Turbines.

Read less
MSc in Structural Steel Design. This course provides training in the analysis, design and assessment of steel and composite (steel/concrete) structures. Read more
MSc in Structural Steel Design

This course provides training in the analysis, design and assessment of steel and composite (steel/concrete) structures.

All of our MSc courses are career-orientated and cover both theoretical background and practical design considerations.

Lectures are given mainly by full-time staff but important contributions are made by visiting professors and guest lecturers who are eminent industrialists.

Many of our students continue their studies to undertake research towards a PhD.

Read less
Take advantage of one of our 100 Master’s Scholarships to study Materials Engineering at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Read more
Take advantage of one of our 100 Master’s Scholarships to study Materials Engineering at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Postgraduate loans are also available to English and Welsh domiciled students. For more information on fees and funding please visit our website.

This MRes degree includes modules covering a range of areas within the Materials discipline, which are linked to the College of Engineering’s main research strengths of aerospace materials, environmental materials and steel technology.

Key Features of MRes in Materials Engineering

Through this course in Materials Engineering, you will be provided with training and experience in a broad range of topic areas, including metallurgy and materials selection, aerospace materials, recycling techniques, and modern business management issues and techniques.

The Materials Engineering course will provide you with the depth of knowledge and breadth of abilities to meet the demands of the international materials industry.

Combination of taught modules (60 credits) and a research thesis, which presents the outcome of a significant research project (120 credits) over 12 months full-time study. An MRes (Master of Research) provides relevant training to acquire the knowledge, techniques and skills required for a career in industry or for further research.

Modules

Modules on the Materials Engineering programme can vary each year but you could expect to study:

Strategic Project Planning
Communication Skills for Research Engineers
Aerospace Materials Engineering
Materials Recycling Techniques
Environmental Analysis and Legislation
Physical Metallurgy of Steel
MSc Research Thesis

Accreditation

This degree is accredited by the Institute of Materials, Minerals and Mining (IOM3).

This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

Accreditation is a mark of assurance that the degree meets the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC). An accredited degree will provide you with some or all of the underpinning knowledge, understanding and skills for eventual registration as an Incorporated (IEng) or Chartered Engineer (CEng). Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.

Facilities

Our new home at the innovative Bay Campus provides some of the best university facilities in the UK, in an outstanding location.

Engineering at Swansea University provides state-of-the-art facilities specific to Materials Engineering.

- Comprehensive computer systems for specialist and general purposes.
- World-leading equipment for characterisation of the mechanical properties of metallic, ceramic, polymeric and composite materials.
- Extensive range of laboratories housing scanning electron microscopes with full microanalysis and electron backscatter diffraction capabilities.

Careers

Through this Materials Engineering scheme, you will be provided with the detailed technical knowledge and experience required for a successful career at a technical or management level within the modern steel industry.

At the end of the course, you will have a higher level qualification along with crucial experience of industry allowing you to more quickly enter into the world of work and contribute fully to this important sector.

Links with Industry

The internationally leading materials research conducted at Swansea is funded by prestigious organisations including:

Rolls-Royce
Airbus
Tata Steel

Rolls-Royce

The Institute of Structural Materials at Swansea is a core member of the Rolls-Royce University Technology Centre in Materials.

This venture supports a wide ranging research portfolio with a rolling value of £6.5 million per annum addressing longer term materials issues.

Airbus

Over £1m funding has been received from Airbus and the Welsh Government in the last three years to support structural composites research and development in the aerospace industry and to support composites activity across Wales.

Tata Steel

Funding of over £6 million to continue our very successful postgraduate programmes with Tata Steel.

Other companies sponsoring research projects include Akzo Nobel, Axion Recycling, BAE Systems, Bayer, Cognet, Ford, HBM nCode, Jaguar Land Rover, Novelis, QinetiQ, RWE Innogy, Timet, TWI (Wales), as well as many smaller companies across the UK.

These industrial research links provide excellent opportunities for great research and employment opportunities.

Research

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.

World-leading research

The REF shows that 94% of research produced by our academic staff is of World-Leading (4*) or Internationally Excellent (3*) quality. This has increased from 73% in the 2008 RAE.

Research pioneered at the College of Engineering harnesses the expertise of academic staff within the department. This ground-breaking multidisciplinary research informs our world-class teaching with several of our staff leaders in their fields.

Highlights of the Engineering results according to the General Engineering Unit of Assessment:

Research Environment at Swansea ranked 2nd in the UK
Research Impact ranked 10th in the UK
Research Power (3*/4* Equivalent staff) ranked 10th in the UK

Read less
Take advantage of one of our 100 Master’s Scholarships to study Materials Engineering at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Read more
Take advantage of one of our 100 Master’s Scholarships to study Materials Engineering at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Postgraduate loans are also available to English and Welsh domiciled students. For more information on fees and funding please visit our website.

With our main research strengths of aerospace materials, environmental materials and steel technology, Swansea University provides an excellent base for your research as a MSc by Research student in Materials Engineering.

Key Features of MSc by Research in Materials Engineering

Swansea is one of the UK’s leading centres for Materials Engineering in teaching and research. The internationally leading materials research conducted at Swansea is funded by prestigious organisations. These industrial research links provide excellent research opportunities.

Key research areas within Materials Engineering include:

Design against failure by creep, fatigue and environmental damage
Structural metals and ceramics for gas turbine applications
Grain boundary engineering
Recycling of polymers and composites
Corrosion mechanisms in new generation magnesium alloys
Development of novel strip steel grades (IF, HSLA, Dual Phase, TRIP)
Functional coatings for energy generation, storage and release

MSc by research in Materials Engineering typically lasts one year full-time, two to three years part-time. This is an individual research project written up in a thesis of 30,000 words.

Facilities

Our new home at the innovative Bay Campus provides some of the best university facilities in the UK, in an outstanding location.

Within Engineering at Swansea University there are state-of-the-art facilities specific to Materials Engineering.

- Comprehensive computer systems for specialist and general purposes.
- World-leading equipment for characterisation of the mechanical properties of metallic, ceramic, polymeric and composite materials.
- Extensive range of laboratories housing scanning electron microscopes with full microanalysis and electron backscatter diffraction capabilities.

Links with industry

The internationally leading materials research conducted at Swansea is funded by prestigious organisations including:

Rolls-Royce
Airbus
Tata Steel

Rolls-Royce

The Institute of Structural Materials at Swansea is a core member of the Rolls-Royce University Technology Centre in Materials.

This venture supports a wide ranging research portfolio with a rolling value of £6.5 million per annum addressing longer term materials issues.

Airbus

Over £1m funding has been received from Airbus and the Welsh Government in the last three years to support structural composites research and development in the aerospace industry and to support composites activity across Wales.

Tata Steel

Funding of over £6 million to continue our very successful postgraduate programmes with Tata Steel.

Other companies sponsoring research projects include Akzo Nobel, Axion Recycling, BAE Systems, Bayer, Cognet, Ford, HBM nCode, Jaguar Land Rover, Novelis, QinetiQ, RWE Innogy, Timet, TWI (Wales), as well as many smaller companies across the UK.

These industrial research links provide excellent opportunities for great research and employment opportunities.

Research

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.

World-leading research

The REF shows that 94% of research produced by our academic staff is of World-Leading (4*) or Internationally Excellent (3*) quality. This has increased from 73% in the 2008 RAE.

Research pioneered at the College of Engineering harnesses the expertise of academic staff within the department. This ground-breaking multidisciplinary research informs our world-class teaching with several of our staff leaders in their fields.

Highlights of the Engineering results according to the General Engineering Unit of Assessment:

Research Environment at Swansea ranked 2nd in the UK
Research Impact ranked 10th in the UK
Research Power (3*/4* Equivalent staff) ranked 10th in the UK

Read less
Take advantage of one of our 100 Master’s Scholarships to study Mechanical Engineering at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Read more
Take advantage of one of our 100 Master’s Scholarships to study Mechanical Engineering at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Postgraduate loans are also available to English and Welsh domiciled students. For more information on fees and funding please visit our website.

With our close interaction with large companies such as Tata Steel and Ford, as well as small and medium-sized enterprises, Swansea University provides an excellent base for your research as a MSc by Research student in Mechanical Engineering.

Key Features of MSc by Research in Mechanical Engineering

Across the UK and overseas in Mechanical Engineering, there is or has been recent work at Swansea University with companies such as:

Astra-Zeneca
British Aerospace
Qinetiq
GKN
Rolls-Royce
SKF
Freeport
One Steel
Barrick Gold

Research within Engineering at Swansea University is multidisciplinary in nature, incorporating our strengths in research areas across the Engineering disciplines including Mechanical Engineering.

Computational mechanics forms the basis for the majority of the MSc by Research projects within the Mechanical Engineering discipline.

Mechanical Engineering at Swansea University is recognised as one of the top 200 departments in the world (QS World Subject Rankings).

MSc by Research in Mechanical Engineering typically lasts one year full-time, two to three years part-time. This is an individual research project written up in a thesis of 30,000 words.

Facilities

Our new home at the innovative Bay Campus provides some of the best university facilities in the UK, in an outstanding location.

Mechanical Engineering at Swansea University has extensive laboratory and computing facilities for both teaching and research purposes.

In the mechanical laboratories are two large rotating rigs. One is used to study the dynamics of high speed machinery whilst the other is devoted to the analysis of heat transfer in turbine blade.

Hardware includes a 450 cpu Cluster, high-end graphics workstations and high-speed network links. Extensive software packages include both in-house developed and 'off-the-shelf' commercial.

Links with industry

Mechanical Engineering at Swansea University has a close interaction with large companies such as Tata Steel and Ford, as well as small and medium-sized enterprises. Across the UK and overseas, there is or has been recent work with companies such as:

Astra-Zeneca
British Aerospace
Qinetiq
GKN
Rolls-Royce
SKF
Freeport
One Steel
Barrick Gold

Research

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.

World-leading research

The REF shows that 94% of research produced by our academic staff is of World-Leading (4*) or Internationally Excellent (3*) quality. This has increased from 73% in the 2008 RAE.

Research pioneered at the College of Engineering harnesses the expertise of academic staff within the department. This ground-breaking multidisciplinary research informs our world-class teaching with several of our staff leaders in their fields.

Highlights of the Engineering results according to the General Engineering Unit of Assessment:

Research Environment at Swansea ranked 2nd in the UK
Research Impact ranked 10th in the UK
Research Power (3*/4* Equivalent staff) ranked 10th in the UK

Read less
Take advantage of one of our 100 Master’s Scholarships to study Materials Engineering at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Read more
Take advantage of one of our 100 Master’s Scholarships to study Materials Engineering at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Postgraduate loans are also available to English and Welsh domiciled students. For more information on fees and funding please visit our website.

Engineering at Swansea University has key research strengths in materials for aerospace applications and steel technology. As a student on the Master's course in Materials Engineering, you will be provided with the depth of knowledge and breadth of abilities to meet the demands of the international materials industry.

Key Features of MSc in Materials Engineering

Through the MSc Materials Engineering course you will be provided with training and experience in a broad range of topic areas, including metallurgy and materials selection, modern methods used for engineering design and analysis, the relationship between structure, processing and properties for a wide range of materials, materials and advanced composite materials, structural factors that control the mechanical properties of materials, and modern business management issues and techniques.

The MSc Materials Engineering course is an excellent route for those who have a first degree in any scientific or technical subject and would like to become qualified in this field of materials engineering.

MSc in Materials Engineering programme is modular in structure. Students must obtain a total of 180 credits to qualify for the degree. This is made up of 120 credits in the taught element (Part One) and a project (Part Two) that is worth 60 credits and culminates in a written dissertation. Students must successfully complete Part One before being allowed to progress to Part Two.

The part-time scheme is a version of the full-time equivalent MSc scheme, and as such it means lectures are spread right across each week and you may have lectures across every day. Due to this timetabling format, the College advises that the scheme is likely to suit individuals who are looking to combine this with other commitments (typically family/caring) and who are looking for a less than full-time study option.

Those candidates seeking to combine the part-time option with full-time work are unlikely to find the timetable suitable, unless their job is extremely flexible and local to the Bay Campus.

Modules

Modules on the MSc Materials Engineering course can vary each year but you could expect to study:

Composite Materials
Polymer Processing
Environmental Analysis and Legislation
Communication Skills for Research Engineers
Simulation Based Product Design
Aerospace Materials Engineering
Structural Integrity of Aerospace Metals
Ceramics
Environmental Analysis and Legislation
Physical Metallurgy of Steels

Accreditation

The MSc Materials Engineering course at Swansea University is accredited by the Institute of Materials, Minerals and Mining (IOM3).

This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

Accreditation is a mark of assurance that the degree meets the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC). An accredited degree will provide you with some or all of the underpinning knowledge, understanding and skills for eventual registration as an Incorporated (IEng) or Chartered Engineer (CEng). Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.

Facilities

Our new home at the innovative Bay Campus provides some of the best university facilities in the UK, in an outstanding location.

Within Engineering at Swansea University there are state-of-the-art facilities specific to Materials Engineering.

- Comprehensive computer systems for specialist and general purposes.
- World-leading equipment for characterisation of the mechanical properties of metallic, ceramic, polymeric and composite materials.
- Extensive range of laboratories housing scanning electron microscopes with full microanalysis and electron backscatter diffraction capabilities.

Careers

Materials engineering underpins almost all engineering applications and employment prospects are excellent.

Employment can be found in a very wide range of sectors, ranging from large-scale materials production through to R&D in highly specialised advanced materials in industries that include aerospace, automotive, manufacturing, sports, and energy generation, as well as consultancy and advanced research.

Materials engineering knowledge is vital in many fields and our graduates go on to successful careers in research and development, product design, production management, marketing, finance, teaching and the media, and entrepreneurship.

Links with Industry

The internationally leading materials research conducted at Swansea is funded by prestigious organisations including:

Rolls-Royce
Airbus
Tata Steel

Rolls-Royce

The Institute of Structural Materials at Swansea is a core member of the Rolls-Royce University Technology Centre in Materials.

This venture supports a wide ranging research portfolio with a rolling value of £6.5 million per annum addressing longer term materials issues.

Airbus

Over £1m funding has been received from Airbus and the Welsh Government in the last three years to support structural composites research and development in the aerospace industry and to support composites activity across Wales.

Tata Steel

Funding of over £6 million to continue our very successful postgraduate programmes with Tata Steel.

Other companies sponsoring research projects include Akzo Nobel, Axion Recycling, BAE Systems, Bayer, Cognet, Ford, HBM nCode, Jaguar Land Rover, Novelis, QinetiQ, RWE Innogy, Timet, TWI (Wales), as well as many smaller companies across the UK.

These industrial research links provide excellent opportunities for great research and employment opportunities.

Research

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.

The REF assesses the quality of research in the UK Higher Education sector, assuring us of the standards we strive for.

The REF shows that 94% of research produced by our academic staff is of World-Leading (4*) or Internationally Excellent (3*) quality. This has increased from 73% in the 2008 RAE.

Research pioneered at the College of Engineering harnesses the expertise of academic staff within the department. This ground-breaking multidisciplinary research informs our world-class teaching with several of our staff leaders in their fields.

Read less
Running for over 35 years, this fully accredited MSc programme builds advanced capabilities in specialist aspects of bridge engineering. Read more
Running for over 35 years, this fully accredited MSc programme builds advanced capabilities in specialist aspects of bridge engineering.

Successful completion of this programme will aid you in pursuing a career as a bridge engineer with a consultancy, a specialist contractor or a local authority.

PROGRAMME OVERVIEW

Graduate students will find the programme of substantial use in developing their knowledge and skills base for bridge analysis, design and management.

The programme also offers the opportunity for practising bridge engineers to update their knowledge of current design and assessment codes and guidelines, become familiar with developments in new techniques for the design, construction and management of bridges.

The Bridge Engineering programme encompasses a wide range of modules addressing the whole life-analysis of bridge structures from design to end-of-life.

Optional modules from some of our other study streams are also offered, covering structural engineering, geotechnical engineering, water engineering, construction management, and infrastructure engineering and management.

Graduates are highly employable and may progress to relevant specialist PhD or EngD research programmes in the field.

PROGRAMME STRUCTURE

This programme is studied over either one year (full-time) or between two and five years (part-time or distance learning). It consists of eight taught modules and a dissertation project.

This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Bridge Engineering Group Modules
-Bridge Deck Loading and Analysis
-Prestressed Concrete Bridge Design
-Durability of Bridges and Structures
-Steel and Composite Bridge Design
-Long-Span Bridges

Structural Engineering Group Modules
-Steel Building Design
-Space Structures
-Structural Mechanics and Finite Elements
-Subsea Engineering
-Concrete Building Design
-Structural Safety and Reliability
-Earthquake Engineering
-Design of Masonry Structures

Geotechnical Engineering Group Modules
-Advanced Soil Mechanics
-Energy Geotechnics
-Geotechnical Structures
-Soil-Structure Interaction
-Foundation Engineering

Construction Management Group Modules
-Construction Management and Law
-Construction Organisation
-Project and Risk Management

Infrastructure Engineering and Management Group Modules
-Infrastructure Investment and Financing
-Infrastructure Interdependencies and Resilience
-Infrastructure Asset Management
-Sustainability and Infrastructure

Water and Environmental Engineering Group Modules
-Environmental Health
-Water Treatment
-Wastewater Treatment
-Applied Chemistry and Microbiology
-Pollution Control
-Groundwater Control
-Regulation and Management
-Water Resources Management and Hydraulic Modelling
-Water Policy and Management
-Dissertation
-Dissertation Project

EDUCATIONAL AIMS OF THE PROGRAMME

The programme aims to provide graduates with:
-A comprehensive understanding of engineering mechanics for bridge analysis
-The ability to select and apply the most appropriate analysis methodology for problems in bridge engineering including advanced and new methods
-The ability to design bridge structures in a variety of construction materials
-A working knowledge of the key UK and European standards and codes of practice associated with the design, analysis and construction of bridge structures and the ability to interpret and apply these to both familiar and unfamiliar problems
-The necessary technical further learning towards fulfilling the educational base for the professional qualification of Chartered Engineer

PROGRAMME LEARNING OUTCOMES

The programme provides opportunities for students to develop and demonstrate knowledge and understanding, skills, qualities and other attributes in the following areas:

Knowledge and understanding
-A knowledge and understanding of the key UK and European standards and codes of practice relating to bridge engineering
-The ability to interpret and apply the appropriate UK and European standards and codes of practiceto bridge design for both familiar and unfamiliar situations
-A knowledge and understanding of the construction of different types of bridge structures using different types of materials (e.g. concrete and steel)
-A knowledge and understanding of the common and less common materials used in bridge engineering
-A comprehensive understanding of the principles of engineering mechanics underpinning bridge engineering
-The ability to critically evaluate bridge engineering concepts
-The ability to apply the appropriate analysis methodologies to common bridge engineering problems as well as unfamiliar problems
-The ability to understand the limitations of bridge analysis methods
-A knowledge and understanding to work with information that may be uncertain or incomplete
-A Knowledge and understanding of sustainable development related to bridges
-The awareness of the commercial, social and environmental impacts associated with bridges
-An awareness and ability to make general evaluations of risk associated with the design and construction of bridge structures including health and safety, environmental and commercial risk
-A critical awareness of new developments in the field of bridge engineering

Intellectual / cognitive skills
-The ability to tackle problems familiar or otherwise which have uncertain or incomplete data (A,B)
-The ability to generate innovative bridge designs (B)
-The ability to use theory or experimental research to improve design and/or analysis
-The ability to apply fundamental knowledge to investigate new and emerging technologies
-Synthesis and critical appraisal of the thoughts of others

Professional practical skills
-The awareness of professional and ethical conduct
-A Knowledge and understanding of bridge engineering in a commercial/business context
-Ability to use computer software to assist towards bridge analysis
-Ability to produce a high quality report
-Ability of carry out technical oral presentations

Key / transferable skills
-Communicate engineering design, concepts, analysis and data in a clear and effective manner
-Collect and analyse research data
-Time and resource management planning

Read less
This well-established and fully accredited MSc programme will develop the knowledge and skills acquired in your undergraduate programme. Read more
This well-established and fully accredited MSc programme will develop the knowledge and skills acquired in your undergraduate programme. It builds the advanced capabilities in analysis and codified design in specialised aspects of structural engineering that are required by industry.

PROGRAMME OVERVIEW

Our Structural Engineering postgraduate programme is delivered by the Faculty’s own staff, together with practising engineers from consultancies and local authorities.

For practising engineers engaged in the planning, design and construction of structural engineering works, this programme provides an opportunity to update their knowledge of current design practice and to become familiar with developments in codes and methods of analysis.

You will be able to choose from a rich and varied selection of specialist structural engineering subjects. The programme is offered in the standard full-time mode, in addition to part-time and distance learning options.

Graduates from the programme are highly employable and may progress to relevant specialist PhD or EngD research programmes in the field.

PROGRAMME STRUCTURE

This programme is studied full-time over one academic year and part-time or distance learning over two to five academic years. It consists of eight taught modules and a dissertation project.

This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng (Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree. The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Structural Engineering Group Modules
-Steel Building Design
-Space Structures
-Structural Mechanics and Finite Elements
-Subsea Engineering
-Concrete Building Design
-Structural Safety and Reliability
-Earthquake Engineering
-Design of Masonry Structures

Bridge Engineering Group Modules
-Bridge Deck Loading and Analysis
-Prestressed Concrete Bridge Design
-Durability of Bridges and Structures
-Bridge Management
-Steel and Composite Bridge Design
-Long-Span Bridges

Geotechnical Engineering Group Modules
-Advanced Soil Mechanics
-Energy Geotechnics
-Geotechnical Structures
-Soil-Structure Interaction
-Deep Foundations and Earth Retaining Structures

Construction Management Group Modules
-Construction Management and Law
-Construction Organisation
-Project and Risk Management

Infrastructure Engineering Group Modules
-Infrastructure Investment and Financing
-Infrastructure Interdependencies and Resilience
-Infrastructure Asset Management
-Sustainability and Infrastructure

Water and Environmental Engineering Group Modules
-Environmental Health
-Water Treatment
-Wastewater Treatment
-Applied Chemistry and Microbiology
-Pollution Control
-Groundwater Control
-Regulation and Management
-Water Resources

Dissertation
-Dissertation Project

Apart from the usual full-time mode, there are also part-time options. The majority of Bridge, Geotechnical and Structural Engineering modules can be studied by distance learning through the use of an interactive web-based e-learning platform (SurreyLearn). This programme can be studied via distance learning, which allows a high level of flexibility and enables you to study alongside other commitments you may have.

EDUCATIONAL AIMS OF THE PROGRAMME

The programme aims to provide graduates with:
-A comprehensive understanding of engineering mechanics for structural analysis
-The ability to select and apply the most appropriate analysis methodology for problems in structural engineering including advanced and new methods
-The ability to design structures in a variety of construction materials
-A working knowledge of the key UK and European standards and codes of practice associated with the design, analysis and construction of civil engineering structures and the ability to interpret and apply these to both familiar and unfamiliar problems
-The necessary technical further learning towards fulfilling the educational base for the professional qualification of Chartered Engineer

PROGRAMME LEARNING OUTCOMES

Knowledge and understanding
-A knowledge and understanding of the key UK and European standards and codes of practice relating to structural engineering
-The ability to interpret and apply the appropriate UK and European standards and codes of practice to structural design for both familiar and unfamiliar situations
-A knowledge and understanding of the construction of different types of structures using different types of materials (e.g. concrete and steel)
-A knowledge and understanding of the common and less common materials used in structural engineering
-A comprehensive understanding of the principles of engineering mechanics underpinning structural engineering
-The ability to critically evaluate structural engineering concepts
-The ability to apply the appropriate analysis methodologies to common structural engineering problems as well as unfamiliar problems
-The ability to understand the limitations of structural analysis methods
-A knowledge and understanding to work with information that may be uncertain or incomplete
-A Knowledge and understanding of sustainable development related to structures
-The awareness of the commercial, social and environmental impacts associated with structures
-An awareness and ability to make general evaluations of risk associated with the design and construction of structures including health and safety, environmental and commercial risk
-A critical awareness of new developments in the field of structural engineering

Intellectual / cognitive skills
-The ability to tackle problems familiar or otherwise which have uncertain or incomplete data
-The ability to generate innovative structural designs
-The ability to use theory or experimental research to improve design and/or analysis
-The ability to apply fundamental knowledge to investigate new and emerging technologies
-Produce sound designs to meet specified requirements such as Eurocodes, deploying commercial software packages as appropriate
-Synthesis and critical appraisal of the thoughts of others

Professional practical skills
-The awareness of professional and ethical conduct
-A Knowledge and understanding of structural engineering in a commercial/business context
-Ability to use computer software to assist towards structural analysis
-Ability to produce a high quality report
-Ability of carry out technical oral presentations

Key / transferable skills
-Communicate engineering design, concepts, analysis and data in a clear and effective manner
-Collect and analyse research data
-Time and resource management planning

GLOBAL OPPORTUNITIES

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.

Read less
Take advantage of one of our 100 Master’s Scholarships to study Engineering Leadership and Management at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Read more
Take advantage of one of our 100 Master’s Scholarships to study Engineering Leadership and Management at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Postgraduate loans are also available to English and Welsh domiciled students. For more information on fees and funding please visit our website.

It is a well-known fact that engineers and technical graduates have the potential to reach the very pinnacle of management and leadership within business and industry.

The MSc in Engineering Leadership and Management programme, through consultation with business and industry (both large and small), is set to establish the key graduate skills and attributes required to succeed in a management and/or leadership role in the engineering sector.

Key Features of MSc Engineering Leadership and Management

The content of this multidisciplinary engineering management course will be very much informed by industry. Key modules on the Engineering Leadership and Management programme will deliver a broad introduction to management, alongside detailed engineering specific modules on:

- Project Management
- Compliance
- Health & Safety
- Operations Management
- Asset Management
- Strategy
- Sustainability
- Innovation

The Engineering Leadership and Management programme will incorporate traditional classroom teaching, online learning, interactive workshops and seminars. Multidisciplinary group work will be a key component of the course, along with industry-focused projects. All of the modules on the Engineering Leadership and Management course will be delivered on an “intense” basis, i.e. in isolation over 2-week periods.

Accreditation for the MSc in Engineering Leadership and Management will be sought with key Engineering and other relevant professional bodies.

As a student on the Master’s course in Engineering and Leadership Management, you will gain and build upon the key skills and knowledge required for a management and/or leadership role in the engineering sector.

Facilities

The new home of the Engineering Leadership and Management programme is at the innovative Bay Campus provides some of the best university facilities in the UK, in an outstanding location.

Links with Industry

The internationally leading materials research conducted at Swansea is funded by prestigious organisations including:

Rolls-Royce
Airbus
Tata Steel

Rolls-Royce

The Institute of Structural Materials at Swansea is a core member of the Rolls-Royce University Technology Centre in Materials.

This venture supports a wide ranging research portfolio with a rolling value of £6.5 million per annum addressing longer term materials issues.

Airbus

Over £1m funding has been received from Airbus and the Welsh Government in the last three years to support structural composites research and development in the aerospace industry and to support composites activity across Wales.

Tata Steel

Funding of over £6 million to continue our very successful postgraduate programmes with Tata Steel.

Other companies sponsoring research projects include Akzo Nobel, Axion Recycling, BAE Systems, Bayer, Cognet, Ford, HBM nCode, Jaguar Land Rover, Novelis, QinetiQ, RWE Innogy, Timet, TWI (Wales), as well as many smaller companies across the UK.

These industrial research links provide excellent opportunities for great research and employment opportunities.

Research

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.

The REF assesses the quality of research in the UK Higher Education sector, assuring us of the standards we strive for.

World-Leading Research

The REF shows that 94% of research produced by our academic staff is of World-Leading (4*) or Internationally Excellent (3*) quality. This has increased from 73% in the 2008 RAE.

Research pioneered at the College of Engineering harnesses the expertise of academic staff within the department. This ground-breaking multidisciplinary research informs our world-class teaching with several of our staff leaders in their fields.

Read less
Our EngD projects are defined by our long standing industrial sponsors and address operational requirements identified by these companies. Read more
Our EngD projects are defined by our long standing industrial sponsors and address operational requirements identified by these companies. Projects are focused on our established areas of engineering expertise.

We are a leader in developing new manufacturing processes and products, such as functional coated steel. Our research in this area is led by the SPECIFIC project, in collaboration with Tata Steel.

Research into advanced, structural materials is undertaken in conjunction with the Rolls-Royce University Technology Centre (UTC) in Materials based at Swansea. These projects are funded by the EPSRC Strategic Partnership in Structural Metals for Gas Turbines.

We also offer EngD programmes in the research areas of functional coatings and advanced manufacturing. Please visit our website for more information.

Read less
We invite applications from well-qualified candidates whose research interests correspond to our areas of research expertise focused on Engineering. Read more
We invite applications from well-qualified candidates whose research interests correspond to our areas of research expertise focused on Engineering. Our EngD projects are defined by our long standing industrial sponsors and address operational requirements identified by these companies. Projects are focused on our established areas of engineering expertise.
We are a leader in developing new manufacturing processes and products, such as functional coated steel. Our research in this area is led by the SPECIFIC project, in collaboration with Tata Steel.

Research into advanced, structural materials is undertaken in conjunction with the Rolls-Royce University Technology Centre (UTC) in Materials based at Swansea. These projects are funded by the EPSRC Strategic Partnership in Structural Metals for Gas Turbines.

We also offer EngD programmes in the research areas of functional coatings and advanced manufacturing. Please visit our website for more information.

Read less
Our EngD projects are defined by our long standing industrial sponsors and address operational requirements identified by these companies. Read more
Our EngD projects are defined by our long standing industrial sponsors and address operational requirements identified by these companies. Projects are focused on our established areas of engineering expertise.

We are a leader in developing new manufacturing processes and products, such as functional coated steel. Our research in this area is led by the SPECIFIC project, in collaboration with Tata Steel.

Research into advanced, structural materials is undertaken in conjunction with the Rolls-Royce University Technology Centre (UTC) in Materials based at Swansea. These projects are funded by the EPSRC Strategic Partnership in Structural Metals for Gas Turbines.

We also offer EngD programmes in the research areas of functional coatings and advanced manufacturing. Please visit our website for more information.

Read less
Few universities offer MSc Infrastructure programmes, so we have created a Masters programme that will equip you with the knowledge and skills needed to support the continuing growth and prosperity of the UK through the National Infrastructure Plan. Read more
Few universities offer MSc Infrastructure programmes, so we have created a Masters programme that will equip you with the knowledge and skills needed to support the continuing growth and prosperity of the UK through the National Infrastructure Plan.

This fully accredited programme draws on our many years of experience in delivering advanced programmes in structures and bridges. It is delivered by university academics with a keen interest and track record in infrastructure issues together with industry and government professionals.

PROGRAMME OVERVIEW

This course covers the planning, design, analysis and management frameworks of infrastructure systems. In particular, you will develop expertise in the:
-Technical aspects of infrastructure engineering within a social, economic, environmental and political context
-Factors that affect and drive infrastructure planning and funding
-Interdependent nature of infrastructure across different sectors

You will qualify with a sound understanding of the whole life-cycle of infrastructure assets, the environmental impact of infrastructure projects, and formal asset-management techniques enabling you to maximise the benefits of infrastructure assets in the future.

Graduates from the programme are highly employable but have the potential to progress to relevant specialist PhD or EngD research programmes in the field.

PROGRAMME STRUCTURE

This programme is studied full-time over one academic year and part-time or distance learning for between two to five academic years. It consists of eight taught modules and a dissertation.

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.
-Infrastructure Investment and Financing
-Infrastructure Systems, Interdependencies and Resilience
-Infrastructure Asset Management
-Sustainability and Infrastructure

Structural Engineering Group Modules
-Steel Building Design
-Space Structures
-Structural Mechanics and Finite Elements
-Subsea Engineering
-Concrete Building Design
-Structural Safety and Reliability
-Earthquake Engineering
-Design of Masonry Structures

Bridge Engineering Group Modules
-Bridge Deck Loading and Analysis
-Prestressed Concrete Bridge Design
-Durability of Bridges and Structures
-Bridge Management
-Steel and Composite Bridge Design
-Long-Span Bridges

Geotechnical Engineering Group Modules
-Geotechnical Structures
-Energy Geotechnics
-Advanced Soil Mechanics
-Foundation Engineering
-Soil-Structure Interaction

Construction Management Group Modules
-Construction Management and Law
-Construction Organisation
-Project & Risk Management

Water and Environmental Engineering Group Modules
-Environmental Health
-Water Treatment
-Wastewater Treatment and Sewerage
-Applied Chemistry and Microbiology
-Pollution Control and Waste Management
-Regulation and Management
-Water Resources Management and Hydraulic Modelling
-Water Policy and Management

Wind Energy Group Modules
-Wind Engineering
-Wind Energy Technology
-Renewable Energy Technologies Dissertation

Dissertation
-Dissertation project

EDUCATIONAL AIMS OF THE PROGRAMME

The programme aims to provide graduates with:
-The state-of-the-art of infrastructure engineering and management that is required for the realisation of the complex delivery of new and management and of existing infrastructure.
-A holistic overview of infrastructure as a system of systems, viewed within the social, economic and environmental context, and the drivers for sustainable infrastructure development and change.
-A knowledge of the fundamental multi-disciplinary frameworks that can be adopted for the planning, design, management and operation of interconnected infrastructure systems.
-A specialisation in an infrastructure area of their choice (i.e. bridge, building, geotechnical, water, wind) providing them with detailed background for the analysis and solution of specific problems associated with individual infrastructure components.

GLOBAL OPPORTUNITIES

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.

Read less
Supported by the Royal Academy of Engineering, this MSc in Civil Engineering Structures (Nuclear Power Plants) is the only accredited course in the UK in this critical area. Read more
Supported by the Royal Academy of Engineering, this MSc in Civil Engineering Structures (Nuclear Power Plants) is the only accredited course in the UK in this critical area.

Who is it for?

This course is for students interested in the structural aspects of nuclear power plants and the broader field of nuclear energy.

Objectives

In this programme, you will study how to design, evaluate, and analyse structural systems, with a special focus on Nuclear Power Plants. You will learn all the principles used for the design of buildings, bridges, special structures and in particular nuclear containment structures.

The emphasis on nuclear structures is a response to the skill shortage reported by employers working in this sector. The UK has recently committed to a long-term nuclear new-build programme that is forecast to generate more than 40,000 jobs, yet no specialised training is available in this area. The programme will therefore provide you with a degree that distinguishes you in the market.

The programme is offered on a one-year full-time or two-year part time basis to allow you maximum flexibility.

Teaching and learning

The course is taught by staff from the School of Mathematics, Computer Science and Engineering with some contribution from industrial experts. Teaching is mainly in the form of lectures, but case studies and IT sessions and seminars are also used where appropriate. Modules are shared between two ten-week teaching terms running October-December and January-March. Although work for the MSc dissertation commences during the second term, most of the research work is carried out during the summer months.

The duration of full-time study is 12 months. A part-time route is also available, where students spend two years completing this programme, in which students attend lectures for up to two days each week

Assessment of theoretical modules is based on a combination of examinations and coursework. Examinations are shared between the January and April/May examination periods. Design-oriented modules are normally assessed by coursework only, where students work both in groups and individually on challenging projects that are varied each year. For the MSc dissertation, students are required to attend a viva following submission of the final report.

In order to pass your programme, you should complete successfully or be exempted from the relevant modules and assessments and will therefore acquire the required number of credits.

The pass mark for each module is 50%. You need to attain a 50% mark for all assessment components.

Modules

There are seven core modules to be taken, plus one elective module, in addition to the research skills module and the dissertation. The number and credits required to gain an award are identified below.

For the following modules: EPM717, EPM711, EPM712, EPM707, EPM720, EPM718, coursework assignments will require you to apply the theory you have learned to specialised problems relating to the field of nuclear power plants. You are required to answer these problems to satisfy the coursework assessment for these modules.

Core modules
-EPM790: Introduction to Nuclear Energy (10 credits)
-EPM717: Advanced Analysis and Stability of Structures (20 credits)
-EPM704: Dynamics of Structures (15 credits)
-EPM711: Design of Concrete Structures (15 credits)
-EPM712: Design of Steel and Composite Structures (15 credits)
-EPM791: Design of Nuclear Structures and Foundations (15 credits)
-EPM707: Finite Element Methods (15 credits)
-EPM697: Research Skills (15 credits)
-EPM698: Dissertation (45 credits)

Elective modules
-EPM720: Earthquake Analysis of Structures (15 credits)
-EPM718: Analysis of Steel and Concrete Structures for Blast and Fire Exposure (15 credits)

Career prospects

This programme is for students interested in the structural aspects of nuclear power plants. Your career will take you to the broader field of nuclear energy. The types of roles we would expect our graduates to achieve are: an on-site engineer or as a design office engineer, building designing or constructing new plants or evaluating and maintaining existing plants or decommissioning plants at the end of their life cycle. You could also go to the research arena conducting innovative research in the area of nuclear science at research labs or in academia.

Read less

Show 10 15 30 per page



Cookie Policy    X