• University of Southampton Featured Masters Courses
  • University of Oxford Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
Cranfield University Featured Masters Courses
University of Manchester Featured Masters Courses
University of Reading Featured Masters Courses
Vlerick Business School Featured Masters Courses
University of Leeds Featured Masters Courses
"spectroscopy"×
0 miles

Masters Degrees (Spectroscopy)

We have 127 Masters Degrees (Spectroscopy)

  • "spectroscopy" ×
  • clear all
Showing 1 to 15 of 127
Order by 
The PCCP program aims to integrate Master students within academic and industrial fields of fundamental physical chemistry. Read more

The PCCP program aims to integrate Master students within academic and industrial fields of fundamental physical chemistry. Various aspects are concerned: study of matter and its transformations, analysis and control of physical and chemical processes, light-matter interactions and spectroscopy techniques, modelling of physical and chemical processes from molecular to macroscopic scale. Applications cover scientific fields ranging from nanotechnologies, photonics, optoelectronics and organic electronics, to environmental sensors and detection systems.

The PCCP Master is supported by high-level educational and research partners, represented by the consortium of universities engaged in the program. Students follow their courses within a challenging, international environment. Annual summer schools, organized by the consortium partners, complete the students’ training by offering a focus on several topics relative to PCCP.

Program structure

The first year of the Master degree is focused on the fundamental aspects of Physical Chemistry (thermodynamics, quantum chemistry, spectroscopy and numerical tools). International aspects of the program are introduced progressively during the first year, with some courses taught in English. A remote research project is also programmed to promote collaboration between students of the partner universities within the context of international scientific project management.

The second year is dedicated to specialized topics (advanced spectroscopy and imaging, photonics, computational chemistry, environmental sciences). All courses are taught in English and international mobility is mandatory (at least during the second semester for the Master thesis work), thus strengthening the international dimension of the degree. Numerous mutualized lectures are carried out featuring high-level, local research activity. Practical aspects are emphasized to favor the future integration of the student within the working world. 

Master students following the specific UBx-USFQ double degree program spend between five and nine months in Quito (Ecuador) to complete the Master thesis. During this period, assistant professor positions at the USFQ are available for Master students of the program. 

Year 1: Courses are in French, except when international students are attending.

  • Numerical methods (6 ECTS)
  • Thermodynamics (6 ECTS)
  • Quantum mechanics (6 ECTS)
  • Inorganic materials or structural analysis (6 ECTS)
  • Theory of chemical bond (6 ECTS)
  • Solid state physics (6 ECTS)
  • Analytical chemistry (6 ECTS)
  • Spectroscopy (6 ECTS)
  • Quantum Chemistry and molecular simulation (6 ECTS)
  • Remote research project/English (6 ECTS)

Year 2: Courses are in English.

  • Photonics, lasers and imaging (6 ECTS)
  • Dielectric and magnetic properties (6 ECTS)
  • Large scale facilities or auto-assembly, polymers and surfactants, or hybrid and nano-materials (6 ECTS)
  • Computational chemistry or energy, communication and information (6 ECTS)
  • Research project/English (6 ECTS)
  • Professional project (6 ECTS)
  • Master thesis/internship in one of the universities of the consortium (24 ECTS)

Strengths of this Master program

  • High-level educational and research environment, proposed by the partner institutions.
  • Master students acquire project management skills at an international level.
  • Mobility during the second year offers access to a wide range of courses and training.
  • International mobility facilitates integration within both academic and industrial domains.
  • Supported by the International Master program of the Bordeaux “Initiative of Excellence” program.

After this Master program?

After graduation, students are fully prepared to pursue doctoral studies and a career in research. They may also work as scientists or R&D engineers within the industrial field.

Associated business sectors:

  • Chemical analysis
  • Chemistry of the atmosphere and environmental science
  • Energy and photovoltaic technologies
  • Nanotechnologies
  • Aeronautics and space
  • Chemical industries, pharmaceutical technologies
  • Fine chemicals and cosmetics
  • Forensic science and artwork restoration
  • Molecular modeling and simulation

Academic research domains:

  • Spectroscopy/analytical chemistry
  • Astrochemistry
  • Properties of materials, solid state physics, reactivity at the interfaces
  • Nanotechnology
  • Imaging, bio-detection
  • Organic electronics, optoelectronics, and photonics
  • Theoretical chemistry, molecular modeling and simulation etc.

Other possible activities:

  • Teaching, education and dissemination of scientific knowledge
  • Linking public and private actors in research, development and marketing
  • Participating in the purchase and investment of scientific equipment


Read less
Pharmacy at Sunderland is ranked sixth in the country, according to The Guardian University Guide 2013. Read more
Pharmacy at Sunderland is ranked sixth in the country, according to The Guardian University Guide 2013.

Course overview

Do you want to contribute to the discovery and development of drugs that could potentially improve the health and well-being of millions of people? The UK has long been a leader in this complex technical area, in which each new drug requires around $1 billion of development work.

Our research-led teaching and state-of-the-art facilities make the University of Sunderland one of the UK's top locations for pharmaceutical science. Our strong links with the pharmaceutical industry ensure a flow of guest speakers and good contacts for your chosen Masters project/dissertation. Previous projects have involved collaborations with companies such as AstraZeneca, Pfizer and Helena Biosciences.

The course covers advanced pharmaceutics, pharmaceutical analysis, drug design, pharmacology, proteomics and pharmacogenomics. You will also cover regulatory processes for medicines, in line with ICH guidelines. The course is a direct response to employers’ search for postgraduates who have a mix of theoretical and practical skills and who will push boundaries in drug development.

With a Masters course, it’s important to consider the relevance of the research interests of tutors who will supervise your dissertation. At Sunderland, our interests include pharmaceutical analysis, process chemistry, various drug discovery programmes, and drug delivery systems, including those for large biological pharmaceuticals. Our academic team have produced some ‘world-leading’ research, according to the latest Research Excellence Framework (2014).

Course content

The course mixes taught elements with self-directed research. The topic of the project / dissertation is negotiated to fit both your personal interests and the expertise of Sunderland's supportive tutors. Modules on this course include:
Core modules
-Essential Research and Study Skills (20 Credits)
-Fundamentals for Pharmaceutical Science (20 Credits)
-The Pharmaceutical R&D Cycle and its Regulation (20 Credits)

Choose four out of the five following modules
-Advanced Pharmacology (15 Credits)
-Pharmacogenomics and Proteomics (15 Credits)
-Advanced Pharmaceutical Analysis (15 Credits)
-Advanced Drug Design (15 Credits)
-Advanced Pharmaceutics (15 Credits)

Choose one Masters option
-Double Project (60 Credits)
Or
-Double Dissertation (60 Credits)
Or
-Single Project (30 Credits) and Single Dissertation (30 Credits)

Teaching and assessment

We use a wide variety of teaching and learning methods which include lectures, seminars, open learning, laboratory work and group work.

The Masters project may involve collaboration with a pharmaceutical company. Previous projects have involved collaborations with companies such as AstraZeneca, Pfizer and Helena Biosciences.

Compared to an undergraduate course, you will find that this Masters requires a higher level of independent working and problem solving. Assessment methods include laboratory reports, oral presentations, case studies, critical reviews, examinations and the Masters project.

Facilities & location

This course is based in the Sciences Complex at our City Campus, which boasts multi-disciplinary laboratories and cutting-edge equipment thanks to multi-million pound investments.

Facilities for Pharmaceutics
We have pharmaceutical-related equipment for wet granulation, spray drying, capsule filling, tablet making, mixing inhalation, film coating and freeze drying. As well as standard pharmacopoeial test methods, such as dissolution testing, friability and disintegration, we also offer highly sophisticated test methods. These include rheometry, thermal analysis (differential scanning calorimetry and hot stage microscopy), tests for powder flow, laser diffraction, photon correlation spectroscopy, image analysis and laser confocal microscopy.

Facilities for Medicinal Chemistry
Our state-of-the-art spectroscopic facility allows us to confirm the structures of new molecules that could be potential pharmaceutical products and to investigate the structures of potential medicinal substances that have been isolated from plants. We are equipped with Liquid Chromatography-Nuclear Magnetic Resonance and Mass Spectroscopy (LC-NMR/MS) platforms; this is an exceptional facility for a university. We also have low and high resolution mass spectrometry, nuclear magnetic resonance and elemental analysis equipment. Our facilities allow you to gain hands-on experience of a wide range of analytical techniques such as atomic absorption spectroscopy and infra-red spectroscopy, which are of great importance in determining both ionic/metal content of pharmaceuticals and simple chemical structures respectively. You will also gain experience of revolutionary protein and DNA separation techniques, as well as Ultra High Performance Liquid Chromatography (x8) and Gas Chromatography for separating all kinds of samples of pharmaceutical or biomedical interest.

Facilities for Pharmacology
Our highly technical apparatus will give you first-hand experience of the principles of drug action and the effects of drugs on pharmacological and cellular models. As a result, you gain a better understanding of the effects of drugs on specific receptors located throughout the human body and related physiological effects.

University Library Services
We’ve got thousands of books and e-books on pharmaceutical and biomedical science, with many more titles available through the inter-library loan service. We also subscribe to a comprehensive range of print and electronic journals so you can access the most reliable and up-to-date academic and industry articles. Some of the most important sources for your studies include:
-Embase, which is a complex database covering drug research, pharmacology, pharmaceutics, toxicology, clinical and experimental human medicine, health policy and management, public health, occupational health, environmental health, drug dependence and abuse, psychiatry, forensic medicine and biomedical engineering/instrumentation
-PsycINF, which includes information about the psychological aspects of medicine, psychiatry, nursing, sociology, pharmacology and physiology
-PubMed, which contains life science journals, online books and abstracts that cover fields such as medicine, nursing, dentistry, veterinary medicine and health care
-Science Direct, which offers more than 18,000 full-text journals published by Elsevier
-Web of Science, which covers a broad range of science areas

Learning Environment
Sunderland Pharmacy School has a rich heritage in scientific studies and our degree courses are extremely well respected in the industry. We are fully plugged into relevant medical and pharmaceutical industry bodies, with strong links and an exchange of ideas and people. Your Masters project may involve collaboration with a pharmaceutical company, including working at their sites.

Employment & careers

Graduates from this course can pursue a variety of careers in the following areas; Drug Design, Pharmaceutical Analysis and Research, Pre-clinical Research in Experimental and Biological Studies, Formulation and Product Development, Pharmacogenomics and Proteomics, Clinical Research, Product Registration, Licensing and Regulatory Affairs.

Previous Sunderland graduates have been employed in companies such as GSK, Eisai, Reckitt Benckiser, Merck, Sharp & Dohme and Norbrook Laboratories.

Some students may apply for a PhD programme or those who already hold a Pharmacy degree can pursue MSc/PG Pharmaceutical Sciences for the Overseas Pharmacist Assessment Programme (OSPAP) and go through one-year pre-registration training.

Read less
Sunderland is the only university in the north of England to offer an Overseas Pharmacist Assessment Programme (OSPAP) that is accredited by the General Pharmaceutical Council. Read more
Sunderland is the only university in the north of England to offer an Overseas Pharmacist Assessment Programme (OSPAP) that is accredited by the General Pharmaceutical Council.

Course overview

Pharmaceutical Sciences for the Overseas Pharmacist Assessment Programme (OSPAP) is designed for those who are qualified pharmacists outside the European Economic Area and who are now looking to become registered pharmacists in the UK.

Our course is one of a small number of courses that are accredited by the General Pharmaceutical Council. Their accreditation is based on quality reviews that ensure Sunderland is meeting the required standards.

Completing the OSPAP postgraduate diploma allows for entry to the next stages of registering as a pharmacist in the UK: firstly, 52 weeks of supervised training in employment; secondly, a registration assessment.

Once all these stages are successfully completed, and assuming you have the necessary visa and work permit, you would be in a position to apply for roles as a practising pharmacist in the UK. There is virtually no unemployment of registered pharmacists in the UK.

You can also apply to undertake a Masters research project in addition to your postgraduate diploma. Pharmacy is a particular area of strength at the University of Sunderland and our Department has been teaching the subject since 1921.

Course content

The content of this course reflects the accreditation requirements of the General Pharmaceutical Council.

Modules on the course include:
-Pharmacy, Law, Ethics and Practice (60 Credits)
-Clinical Therapeutics (60 Credits)
-Research Methods for Pharmaceutical Practice and Masters Research Project (60 Credits)

Teaching and assessment

We use a wide variety of teaching and learning methods which include lectures, debate sessions, online learning packages, tutorials and seminars.

Compared to an undergraduate course, you will find that this Masters requires a higher level of independent working. Assessment methods include end-of-year examinations, practical assessments as well as assignments throughout the year.

Facilities & location

This course is based in the Sciences Complex at our City Campus, which boasts multi-disciplinary laboratories and cutting-edge equipment thanks to multi-million pound investments.

Facilities for Pharmaceutics
We have pharmaceutical-related equipment for wet granulation, spray drying, capsule filling, tablet making, mixing inhalation, film coating and freeze drying.

As well as standard pharmacopoeial test methods, such as dissolution testing, friability and disintegration, we also offer highly sophisticated test methods. These include rheometry, thermal analysis (differential scanning calorimetry and hot stage microscopy), tests for powder flow, laser diffraction, photon correlation spectroscopy, image analysis and laser confocal microscopy.

Facilities for Medicinal Chemistry
Our state-of-the-art spectroscopic facility allows us to confirm the structures of new molecules that could be potential pharmaceutical products and to investigate the structures of potential medicinal substances that have been isolated from plants.

We are equipped with Liquid Chromatography-Nuclear Magnetic Resonance and Mass Spectroscopy (LCNMR/MS) platforms; this is an exceptional facility for a university. We also have low and high resolution mass spectrometry, nuclear magnetic resonance and elemental analysis equipment.

Our facilities allow you to gain hands-on experience of a wide range of analytical techniques such as atomic absorption spectroscopy and infra-red spectroscopy, which are of great importance in determining both ionic/metal content of pharmaceuticals and simple chemical structures.

You will also gain experience of revolutionary protein and DNA separation techniques, as well as Ultra High Performance Liquid Chromatography and Gas Chromatography for separating unknown chemical mixtures.

Facilities for Pharmacology
Our highly technical apparatus will give you first-hand experience of the principles of drug action and the effects of drugs on pharmacological and cellular models. As a result, you gain a better understanding of the effects of drugs on specific receptors located throughout the human body and related physiological effects.

Simulation technology
You’ll have the opportunity to apply your training in a realistic setting with our two advanced simulation technology ‘SimMan’ models.
Each of our £57,000 SimMan mannequins has blood pressure, a pulse and other realistic physiological behaviour. The models can be pre-programmed with various medical scenarios, so you can demonstrate your pharmacological expertise in a realistic yet safe setting. Our academic team is also actively working with the SimMan manufacturers to develop new pharmacy simulations.

Pharmacy Practice
One of the most important skills of pharmacists is to communicate their expertise in a manner that the public can understand and accept.

The University has invested in a purpose-built model pharmacy complete with consultation suite. This allows you to develop skills in helping patients take the correct medicine in the right way, with optional video recording of your interaction with patients for the purposes of analysis and improvement.

In addition, we can accurately simulate hospital-based scenarios in a fully equipped ward environment where medical, nursing and pharmacy students can share learning.

University Library Services
We’ve got thousands of books and e-books on pharmaceutical and biomedical science, with many more titles available through the inter-library loan service. We also subscribe to a comprehensive range of print and electronic journals so you can access the most reliable and up-to-date academic and industry articles.

Some of the most important sources for your studies include:
-Embase, which is a complex database covering drug research, pharmacology, pharmaceutics, toxicology, clinical and experimental human medicine, health policy and management, public health, occupational health, environmental health, drug dependence and abuse, psychiatry, forensic medicine and biomedical engineering/instrumentation
-PubMed, which contains life science journals, online books and abstracts that cover fields such as medicine, nursing, dentistry, veterinary medicine and health care
-Science Direct, which offers more than 18,000 full-text journals published by Elsevier
-Web of Science, which covers a broad range of science areas

Learning Environment
Sunderland Pharmacy School has a rich heritage in scientific studies and our degree courses are extremely well respected in the industry. We are fully plugged into relevant medical and pharmaceutical industry bodies, with strong links and an exchange of ideas and people. Our vibrant learning environment helps ensure a steady stream of well-trained pharmacists whose most important concern is patient-centred pharmaceutical care.

Employment & careers

On completing this course you can register and practise in the UK as a qualified pharmacist. An entry-level pharmacist usually starts within Band 5 of the NHS pay rates (up to around £28,000). Advanced pharmacists, consultants, team managers and managers of pharmaceutical services are rated as Bands 8-9 and can earn up to £99,000. Currently there is virtually no unemployment of qualified pharmacists. Typical starting salaries for community pharmacists range from £21,000 to £35,000 depending on location, conditions of employment and experience.

Most pharmacists work in the following areas:
Community pharmacy: this involves working in pharmacies on high streets or in large stores. You will dispense prescriptions, deal with minor ailments, advise on the use of medicines and liaise with other health professionals.

Hospital pharmacy: this involves the purchasing, dispensing, quality testing and supply of medicines used in hospitals.

Primary care: this involves working in General Practice surgeries, either as an employee of the Practice or the Primary Care Trust. Roles include Medicines Management Pharmacists, who are responsible for prescribing budgets and the development of prescribing directives.

Secondary care: this involves working in hospitals to supply medicines, manage clinics, provide drug information and prescribe medicines.

Industrial pharmacists are involved in areas such as Research & Development, Quality Assurance and product registration.
Research degrees can be undertaken in many aspects of pharmacy. Sunderland Pharmacy School offers excellent facilities and a wide range of research expertise.

You can also work in areas of the pharmaceutical industry, medical writing and in education. By completing a Masters project in addition to your OSPAP postgraduate diploma it will enhance opportunities in academic roles or further study towards a PhD.

Read less
Sunderland is ranked sixth in the UK for pharmacy and pharmacology, according to The Guardian University Guide 2013. This Masters is one of the few in the UK that covers biopharmaceuticals as well as pharmaceuticals. Read more
Sunderland is ranked sixth in the UK for pharmacy and pharmacology, according to The Guardian University Guide 2013.

Course overview

This Masters is one of the few in the UK that covers biopharmaceuticals as well as pharmaceuticals. The course covers drug delivery systems for large molecules such as proteins, genes and anticancer drugs that offer innovative ways to improve the health and wellbeing of our society.

The course also covers advanced formulations and delivery of small drug molecules. There is a focus on nanotechnology, dosage forms, pharmacokinetics and statistical methods used in data analysis.

Our supportive tutors will guide the development of rigorous approaches to research including sound methodologies, good manufacturing practice, high laboratory standards and effective communication of results.

Your Masters research project will be supervised by an expert in the relevant field, possibly in collaboration with a pharmaceutical company or research institution.

This course is particularly relevant if you plan to undertake a PhD in the area of pharmaceutical sciences, biopharmaceuticals or drug delivery. It is also suitable if you are considering, or already involved in, a career in pharmaceutical-related industries, hospitals or research institutions.

Pharmacy is a particular area of strength at the University of Sunderland. We have worked with GlaxoSmithKline for over 20 years and Pfizer has funded research projects at Sunderland for over 10 years.

Course content

The course mixes taught elements with independent research and self-directed study. There is flexibility to pursue personal interests in considerable depth, with guidance and inspiration from Sunderland's supportive tutors. Modules on this course include:
-Dosage Forms and Pharmacokinetics (20 Credits)
-Delivering Gene and Therapeutic Proteins (20 Credits)
-Essential Research and Study Skills (20 Credits)
-Research Manipulation (20 Credits)
-Nanotechnology (20 Credits)
-Bioinformatics (20 Credits)
-Research Project (60 Credits)

Teaching and assessment

We use a wide variety of teaching and learning methods which include lectures, seminars, problem-based learning, laboratory work, group work and visits to relevant companies. We also welcome guest speakers from the pharmaceutical industry who deliver guest lectures and seminars.

Compared to an undergraduate course, you will find that this Masters requires a higher level of independent working. Assessment methods include written examinations, online tests and coursework, which includes oral and poster presentations.

Facilities & location

Sunderland's exceptional facilities include state-of-the-art equipment for pharmaceutics, synthetic, analytical and medicinal chemistry and pharmacology.

Facilities for Chemistry
We’ve recently spent £1 million on our new state-of-the-art analytical equipment. The analytical suite contains equipment which is industry-standard for modern clinical and pharmaceutical laboratories. Our state-of-the-art spectroscopic facility allows us to investigate the structures of new molecules and potential medicinal substances. We are equipped with Liquid Chromatography-Nuclear Magnetic Resonance and Mass Spectroscopy (LCNMR/MS) platforms; this is an exceptional facility for a university. We also have low and high-resolution mass spectrometry, nuclear magnetic resonance and elemental analysis equipment.

Our facilities allow you to gain hands-on experience of a wide range of analytical techniques such as atomic absorption spectroscopy and infra-red spectroscopy, which are of great importance in determining both ionic/metal content of pharmaceuticals and simple chemical structures. You will also gain experience of revolutionary protein and DNA separation techniques, as well as Ultra High Performance Liquid Chromatography and Gas Chromatography for separating unknown chemical mixtures.

Facilities for Pharmaceutics and Pharmacology
Our highly technical apparatus will help you gain a better understanding of the effects of drugs on specific receptors located throughout the human body and related physiological effects. In addition to equipment for standard pharmacopoeial tests, such as dissolution testing, friability and disintegration, we also have highly sophisticated test methods. These include rheometry, thermal analysis (differential scanning calorimetry and hot stage microscopy), tests for powder flow, laser diffraction, photon correlation spectroscopy, image analysis and laser confocal microscopy.

We also have equipment for wet granulation, spray drying, capsule filling, tablet making, powder mixing inhalation, film coating and freeze drying.

University Library Services
We’ve got thousands of books and e-books on pharmaceutical and biomedical sciences, with many more titles available through the inter-library loan service. We also subscribe to a comprehensive range of print and electronic journals so you can access the most reliable and up-to-date academic and industry articles. Some of the most important sources for your studies include:
-Embase, which is a complex database covering drug research, pharmacology, pharmaceutics, toxicology, clinical and experimental human medicine, health policy and management, public health, occupational health, environmental health, drug dependence and abuse, psychiatry, forensic medicine and biomedical engineering/instrumentation
-PsycINF, which includes information about the psychological aspects of medicine, psychiatry, nursing, sociology, pharmacology and physiology
-PubMed, which contains life science journals, online books and abstracts that cover fields such as medicine, nursing, dentistry, veterinary medicine and health care
-Science Direct, which offers more than 18,000 full-text journals published by Elsevier
-Web of Science, which covers a broad range of science areas

Employment & careers

On completing this course you will be equipped with the skills and understanding needed for Research & Development roles with employers such as:
-Pharmaceutical and biopharmaceutical companies
-Medical research institutes
-Hospitals

Salaries for senior pharmacologists range from £35,000 to around £80,000. Clinical laboratory scientists earn an average of £36,000. A Masters degree will also enhance opportunities in academic roles or further study towards a PhD.

Read less
This course gives you specialised knowledge of the analytical techniques used to detect, identify and quantitatively determine drugs and related substances. Read more

Why this course?

This course gives you specialised knowledge of the analytical techniques used to detect, identify and quantitatively determine drugs and related substances.

You’re introduced to techniques for evaluating analytical data and validating analytical methods. You’ll also examine strategies for analytical research and development.

You’ll gain practical experience in a wide range of modern instrumentation and techniques.

See the website https://www.strath.ac.uk/courses/postgraduatetaught/pharmaceuticalanalysis/

You’ll study

The course consists of four theory and two practical modules running between October and April followed by examinations.
If you pass all exams and wish to proceed to MSc then you’ll undertake a 10-week research project. This will be in the University or at an external company or organisation. You’ll submit a thesis at the end of August.

Facilities

The Strathclyde Institute of Pharmacy & Biomedical Sciences (SIPBS) offers an excellent environment for research and teaching. It’s located in a new building with several laboratories. All are fitted with the latest equipment.
The course has access to the full range of analytical spectroscopic and chromatographic instrumentation including:
- Nuclear Magnetic Resonance (NMR)
- Ultra-Violet (UV)
- Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR_FTIR)
- Mass Spectrometry (MS)
- High-Pressure Liquid Chromatography (HPLC)
- Gas Chromatography (GC)
- Liquid Chromatograph/Gas Chromatography Mass Spectrometry (LC/GC-MS)

Teaching staff

- Dr David Watson, Course Leader
Dr Watson’s general research interests include:
- mass spectrometry-based metabolomics
- mass spectrometry imaging
- chromatographic retention mechanisms
- chemical profile and biological properties of propolis

- Dr Darren Edwards
Dr Edwards teaches at both undergraduate and postgraduate level in analytical chemistry, specifically:
- spectroscopy (UV/visible, AA, ICP, FP)
- chromatography (HPLC/TLC)
- bioanalysis and use of pharmacopeias

- Dr Iain D H Oswald
Dr Oswald is part of the team that teaches spectroscopic methods such as IR, spectrofluorimetry and circular dichroism. His research focuses on materials at high pressure and he has a general interest in the solid-state and polymorphism/co-crystallisation of materials.

- Dr Christine Dufes
Dr Dufes teaches Binding Assays on the MSc course. Her research interests are:
- Design and development of novel tumour-targeted anti-cancer therapeutic systems
- Design and development of novel therapeutic systems able to reach the brain after systemic administration, with the ultimate aim to facilitate drug delivery to brain tumours and neurodegenerative disorders.

- Dr RuAngelie Edrada-Ebel
Dr Edrada-Ebel teaches NMR spectroscopy and Mass Spectrometry in Pharmaceutical Analysis. Her research focuses on natural products chemistry of macro-organisms and micro-organisms from both the marine and the terrestrial habitat.

English language requirements

English language minimum IELTS 6.5.
We offer a range of English Language course for students who wish to improve their English. Module 3 is free of charge to all applicants and we strongly recommend all international students to take advantage of this free course.
We also offer comprehensive English language pre-sessional and foundation courses for students whose IELTS scores are below 6.5.
For students with IELTS of 6.0, an offer can be made conditional on completing Modules 2 and 3 of Pre-sessional English.
For students with IELTS of 5.5, an offer can be made conditional on completing Modules 1, 2 and 3 of Pre-sessional English.

Pre-Masters preparation course

The Pre-Masters Programme is a preparation course for international students (non EU/UK) who do not meet the entry requirements for a Masters degree at University of Strathclyde. The Pre-Masters programme provides progression to a number of degree options.

To find out more about the courses and opportunities on offer visit isc.strath.ac.uk or call today on +44 (0) 1273 339333 and discuss your education future. You can also complete the online application form. To ask a question please fill in the enquiry form and talk to one of our multi-lingual Student Enrolment Advisers today.

Learning & teaching

The course is taught by experts based in SIPBS. There’s also specialised lectures from visiting professors and world-renowned scientists who are working in the pharmaceutical and analytical industries and legislative bodies, including the European Pharmacopoeia.
Teaching of theory and applications is through lectures, tutorials and web-based learning. The material is further reinforced with practical sessions which provide you with hands-on experience with a wide range of modern instrumental techniques.

Assessment

Assessment is through written and practical examinations and submission of a thesis (MSc students only).

Careers

Many of our graduates obtain positions in the pharmaceutical & chemical industries and some have continued into PhD research.

Previous graduates of the course include:
- a number of world-renowned academics
- the current Head of the United Nations Office on Drugs and Crime
- the previous Head of the European Pharmacopoeia Laboratory based in Strasbourg

Find information on Scholarships here http://www.strath.ac.uk/search/scholarships/index.jsp

Read less
This course is designed to give participants a thorough training in the theory and practice of modern analytical techniques, with special regard to solving problems such as arise in various areas of Irish industry. Read more
This course is designed to give participants a thorough training in the theory and practice of modern analytical techniques, with special regard to solving problems such as arise in various areas of Irish industry. Towards these ends the course will consist of (i) lectures, (ii) laboratory work on set experiments and (iii) a short analytical research/development project.

Visit the website: http://www.ucc.ie/en/ckp03/

Course Details

Among the topics covered in lectures are: Introduction, sampling, classical methods of analysis, instrumentation in spectroscopy, atomic and molecular spectroscopy, near infrared, nuclear magnetic resonance spectroscopy, mass spectrometry, separation methods (incl. gas-liquid and high-performance liquid chromatography, supercritical fluid extraction), ion exchangers, potentiometry, voltammetry, sensors, process analysis, thermal methods, materials analysis, statistical data handling and the use of computers in analytical chemistry.

Format

Lectures, chosen from the following topic areas, are provided in a dedicated lecture schedule and through attendance at appropriate modules.

Set experiments

Set experiments are selected from the topics listed above and will involve the whole analytical process from sampling to the assessment of results and reliability parameters.

Project

A short research/development project is completed during the summer by full-time candidates (for part-time students special arrangements will be made).

Further details on the content and modules are available on the Postgraduate College Calendar - http://www.ucc.ie/calendar/postgraduate/PGDiplomas/science/page03.html

Placement and study abroad

Opportunities exist for industrial placement both locally and through IAESTE and for exchange of staff and students with other European research laboratories through various EU-supported Socrates networks, linked to University College Cork.

How to apply: http://www.ucc.ie/en/study/postgrad/how/

Funding and Scholarships

Information regarding funding and available scholarships can be found here: https://www.ucc.ie/en/cblgradschool/current/fundingandfinance/fundingscholarships/

Read less
This course is specifically designed for applicants from a pharmacy or pharmaceutical sciences background and those without an in-depth coverage of organic chemistry and organic spectroscopy as part of their previous degree courses. Read more
This course is specifically designed for applicants from a pharmacy or pharmaceutical sciences background and those without an in-depth coverage of organic chemistry and organic spectroscopy as part of their previous degree courses.

It gives you the practical skills and knowledge to design and synthesise molecules that have therapeutic actions within the body.

The ultimate aim is to invent more selective and safer drugs to fight and cure disease. We also want to fully exploit the opportunities from identification of genes associated with a range of cancers, inherited disorders and agents of disease.

Specialist classes focus on:
-Disease targets
-Design of selectively-acting prototype drugs
-Synthetic and mimetic strategies in producing drug prototypes
-The refinement of activity when a promising compound is identified
Case studies of well-known drugs are used to illustrate the principles

You’ll study

The course consists of three theory and three practical modules running between October and April. These are followed by exams. If you pass all exams and want to proceed to MSc you’ll undertake a 10-week research project and submit a thesis at the end of August.

There is a six-week preliminary conversion course starting 1 August that covers basic and underpinning organic chemistry and organic spectroscopy. Successful completion and examination results in the conversion course will allow you to transfer to the MSc in Medicinal Chemistry.

Facilities

The Department of Pure & Applied Chemistry carries out world-leading research with modern state-of-the-art facilities. You’ll have access to the full range of analytical instrumentation used in the pharmaceutical industry:
-Nuclear Magnetic Resonance (NMR)
-Ultra-Violet (UV)
-Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR_FTIR)
-High Pressure Liquid Chromatography (HPLC)
-Gas Chromatography (GC)
-Liquid Chromatograph/Gas Chromatography Mass Spectrometry (LC/GC-MS)
-X-ray crystallography

Teaching staff

Course material is taught by experts based in the Department of Pure & Applied Chemistry and the Strathclyde Institute for Pharmacy & Biomedical Sciences.

There’s additional specialised lectures from visiting professors and world-renowned scientists who are working in the pharmaceutical industry.

Course content

-Conversion Course
-Advanced Organic Chemistry
-Chemical Biology
-Principles of Modern Medicinal Chemistry
-Advanced Biochemical Methods
-Project & Dissertation

Learning & teaching

Teaching of theory and applications is through lectures and tutorials. The material is further reinforced with practical sessions, which provide hands-on experience with a wide range of modern instrumental techniques.

Assessment

Assessment is through both written and practical exams and submission of a thesis.

Careers

Graduates from this course will be ideal for positions in the pharmaceutical and chemical industries or may continue their studies into PhD research.

Read less
This programme is designed for graduates in chemistry or closely related discipline who wish to contribute to drug development in the pharmaceutical industry. Read more
This programme is designed for graduates in chemistry or closely related discipline who wish to contribute to drug development in the pharmaceutical industry.

The programme provides training in pharmacokinetics, drug metabolism, drug synthesis, methods to identify potential drug targets and drug candidates, and methods to assess the biological activities of drug compounds.

Additional modules cover the key techniques in analytical chemistry used to support the pharmaceutical sciences.

Core study areas include research methods, pharmacokinetics and drug metabolism, drug targets, drug design and drug synthesis, spectroscopy and structural analysis, professional skills and dissertation and a research training project.

Optional study areas include separation techniques, mass spectrometry and associated techniques, innovations in analytical science and medicinal chemistry.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/chemistry/pharmaceutical-science-medicinal-chemistry/

Programme modules

Compulsory Modules
Semester 1:
- Research Methods
- Pharmacokinetics and Drug Metabolism
- Drug Targets, Drug Design and Drug Synthesis

Semester 2:
- Spectroscopy and Structural Analysis
- Professional Skills and Dissertation
- Research Training Project

Selected Optional Modules
Semester 1:
- Separation Techniques
- Mass Spectrometry and Associated Techniques

Semester 2:
- Innovations in Analytical Science
- Innovations in Medicinal Chemistry

Assessment

Examination and coursework.

Careers and further study

Careers in a variety of industries, particularly the pharmaceutical and related industries, including drug metabolism, medicinal chemistry (organic synthesis), drug screening (action / toxicity), patents and product registration; also as preliminary study for a PhD.

Scholarships and sponsorship

A number of bursaries and scholarships are available to UK and EU students towards tuition fees (excluding Environmental Studies MSc).
Departmental bursaries, in the form of fee reduction, are available to self-funded international students.
The programmes also benefit from industrial sponsorship which provides support in the form of equipment, materials, presenters and project placements.

Why choose chemistry at Loughborough?

The Department of Chemistry has about 350 students studying taught programmes, including around 50 on MSc courses, 10 postdoctoral research fellows, 50 research students (MPhil / PhD), and 25 academic staff, many of whom have strong links with industry.

In recent years, the Chemistry building has undergone extensive refurbishment and provides modern facilities and laboratories for the teaching and research needs of analytical, organic, inorganic and physical chemistry, as well as specialist laboratories for radiochemistry, environmental chemistry, microbiology and molecular pharmacology.

- Facilities
The Department has a number of specialist instruments and facilities, including: 2 x 400 MHz, 500 MHz and solid-state NMR spectrometers, single crystal and powder X-ray diffractometers, a high resolution inductively coupled plasma mass spectrometer, sector field organic MS, GC-MS and linear ion trap LC-mass spectrometers, ion mobility spectrometers and gas and liquid chromatographs.

- Research
The Department typically has well over 50 research students and a dozen postdoctoral researchers. In addition there are usually around 50 MSc students in the department. Many students come to study from abroad, and there are research students and visitors from all over the world currently studying and carrying out research in the department.
The Department is very well equipped to carry out research spanning all the traditional branches of chemistry (analytical, environmental, inorganic, organic and physical) and which contributes to four active research themes (Energy, Environment, Security and Health).

- Career Prospects
90% of our graduates were in employment and/or further study six months after graduating. Graduates can expect to develop their careers in the pharmaceutical and food industry, analytical and environmental laboratories, public and regulatory utilities, industrial laboratories, or go on to study for a PhD.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/chemistry/pharmaceutical-science-medicinal-chemistry/

Read less
Developed in response to the Engineering and Physical Sciences Research Council (EPSRC), and after extensive consultation with industry, this programme is designed for graduates in chemistry or closely related disciplines who wish to contribute to drug development and analysis, a process that requires multidisciplinary skills. Read more
Developed in response to the Engineering and Physical Sciences Research Council (EPSRC), and after extensive consultation with industry, this programme is designed for graduates in chemistry or closely related disciplines who wish to contribute to drug development and analysis, a process that requires multidisciplinary skills.

The programme comprises a broad range of modules covering the major aspects of analytical and pharmaceutical chemistry, complemented by studies in transferable and professional skills.

Core study areas include research methods, separation techniques, pharmacokinetics and drug metabolism, spectroscopy and structural analysis, professional skills and dissertation and a research training project.

Optional study areas include mass spectrometry and associated techniques, drug targets, drug design and drug synthesis, sensors, innovations in analytical science and medicinal chemistry.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/chemistry/analytical-pharmaceutical-science/

Programme modules

Compulsory Modules
Semester 1:
- Research Methods
- Separation Techniques
- Pharmacokinetics and Drug Metabolism

Semester 2:
- Spectroscopy and Structural Analysis
- Professional Skills and Dissertation
- Research Training Project

Selected Optional Modules
Semester 1:
- Mass Spectrometry and Associated Techniques
- Drug Targets, Drug Design and Drug Synthesis
- Sensors

Semester 2:
- Innovations in Analytical Science
- Innovations in Medicinal Chemistry

Assessment

Examination and coursework.

Careers and further study

The programme is for those who wish to extend their knowledge in a particular area or broaden their field in order to increase their career prospects.

Scholarships and sponsorship

A number of bursaries and scholarships are available to UK and EU students towards tuition fees (excluding Environmental Studies MSc).
Departmental bursaries, in the form of fee reduction, are available to self-funded international students.
The programmes also benefit from industrial sponsorship which provides support in the form of equipment, materials, presenters and project placements.

Why choose chemistry at Loughborough?

The Department of Chemistry has about 350 students studying taught programmes, including around 50 on MSc courses, 10 postdoctoral research fellows, 50 research students (MPhil / PhD), and 25 academic staff, many of whom have strong links with industry.

In recent years, the Chemistry building has undergone extensive refurbishment and provides modern facilities and laboratories for the teaching and research needs of analytical, organic, inorganic and physical chemistry, as well as specialist laboratories for radiochemistry, environmental chemistry, microbiology and molecular pharmacology.

- Facilities
The Department has a number of specialist instruments and facilities, including: 2 x 400 MHz, 500 MHz and solid-state NMR spectrometers, single crystal and powder X-ray diffractometers, a high resolution inductively coupled plasma mass spectrometer, sector field organic MS, GC-MS and linear ion trap LC-mass spectrometers, ion mobility spectrometers and gas and liquid chromatographs.

- Research
The Department typically has well over 50 research students and a dozen postdoctoral researchers. In addition there are usually around 50 MSc students in the department. Many students come to study from abroad, and there are research students and visitors from all over the world currently studying and carrying out research in the department.
The Department is very well equipped to carry out research spanning all the traditional branches of chemistry (analytical, environmental, inorganic, organic and physical) and which contributes to four active research themes (Energy, Environment, Security and Health).

- Career Prospects
90% of our graduates were in employment and/or further study six months after graduating. Graduates can expect to develop their careers in the pharmaceutical and food industry, analytical and environmental laboratories, public and regulatory utilities, industrial laboratories, or go on to study for a PhD.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/chemistry/analytical-pharmaceutical-science/

Read less
This programme is designed to provide comprehensive training in analytical chemistry and its implementation in a variety of fields including biomedical, pharmaceutical, food and environmental analysis. Read more
This programme is designed to provide comprehensive training in analytical chemistry and its implementation in a variety of fields including biomedical, pharmaceutical, food and environmental analysis.

The programme comprises a broad range of modules covering all the major analytical techniques, complemented by studies in transferable and professional skills, with the option to study aspects of medicinal and pharmaceutical chemistry if desired.

Core study areas include research methods, separation techniques, mass spectrometry and associated techniques, spectroscopy and structural analysis, professional skills and dissertation and a research training project.

Optional study areas include sensors, pharmacokinetics and drug metabolism, drug targets, drug design and drug synthesis and innovations in analytical science.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/chemistry/analytical-chemistry/

Programme modules

Compulsory Modules
Semester 1:
- Research Methods
- Separation Techniques
- Pharmacokinetics and Drug Metabolism

Semester 2:
- Spectroscopy and Structural Analysis
- Professional Skills and Dissertation
- Research Training Project

Selected Optional Modules
Semester 1:
- Mass Spectrometry and Associated Techniques
- Drug Targets, Drug Design and Drug Synthesis
- Sensors

Semester 2:
- Innovations in Analytical Science
- Innovations in Medicinal Chemistry

Assessment

Examination and coursework.

Careers and further study

Careers in a variety of industries including pharmaceuticals, chemicals, food, environmental management, contract analysis laboratories, public laboratories, regulatory authorities and instrument manufacturers in either technical or marketing functions or preliminary study for a PhD.

Scholarships and sponsorship

A number of bursaries and scholarships are available to UK and EU students towards tuition fees (excluding Environmental Studies MSc).
Departmental bursaries, in the form of fee reduction, are available to self-funded international students.
The programmes also benefit from industrial sponsorship which provides support in the form of equipment, materials, presenters and project placements.

Why choose chemistry at Loughborough?

The Department of Chemistry has about 350 students studying taught programmes, including around 50 on MSc courses, 10 postdoctoral research fellows, 50 research students (MPhil / PhD), and 25 academic staff, many of whom have strong links with industry.

In recent years, the Chemistry building has undergone extensive refurbishment and provides modern facilities and laboratories for the teaching and research needs of analytical, organic, inorganic and physical chemistry, as well as specialist laboratories for radiochemistry, environmental chemistry, microbiology and molecular pharmacology.

- Facilities
The Department has a number of specialist instruments and facilities, including: 2 x 400 MHz, 500 MHz and solid-state NMR spectrometers, single crystal and powder X-ray diffractometers, a high resolution inductively coupled plasma mass spectrometer, sector field organic MS, GC-MS and linear ion trap LC-mass spectrometers, ion mobility spectrometers and gas and liquid chromatographs.

- Research
The Department typically has well over 50 research students and a dozen postdoctoral researchers. In addition there are usually around 50 MSc students in the department. Many students come to study from abroad, and there are research students and visitors from all over the world currently studying and carrying out research in the department.
The Department is very well equipped to carry out research spanning all the traditional branches of chemistry (analytical, environmental, inorganic, organic and physical) and which contributes to four active research themes (Energy, Environment, Security and Health).

- Career Prospects
90% of our graduates were in employment and/or further study six months after graduating. Graduates can expect to develop their careers in the pharmaceutical and food industry, analytical and environmental laboratories, public and regulatory utilities, industrial laboratories, or go on to study for a PhD.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/chemistry/analytical-chemistry/

Read less
Our modular distance learning programme provides you with a grounding in the structure of proteins, and the main techniques that are used to study protein structure. Read more
Our modular distance learning programme provides you with a grounding in the structure of proteins, and the main techniques that are used to study protein structure.

Structural biology allows you to understand how macromolecules work at the atomic level of detail. This is important, particularly in designing drugs which act at the molecular level to affect macromolecules. Increasingly, research uses a range of complementary biophysical and structural techniques to study protein-protein interactions. This requires that researchers have some understanding of what all these techniques can achieve. This programme is designed to give the theoretical background required to use this range of methods.

Why study this course at Birkbeck?

Study by distance learning, wherever you are in the world, with our internet-based teaching.
Graduates are well placed to study for PhDs, start professional research careers, or change disciplines to encompass this important area of modern molecular biology.
Part of the Institute of Structural and Molecular Biology, a joint initiative with University College London.
Birkbeck houses state-of-the-art equipment for X-ray crystallography, cryo-electron microscopy and tomography and associated image processing. We have excellent facilities for UV and CD spectroscopy, calorimetry, fluorescence spectroscopy, ultracentrifugation, and protein expression and purification in the biochemical and molecular biology laboratories. We have a 158 processor cluster for intensive data processing. All areas have specialised computer equipment for data analysis, molecular graphics and molecular modelling and programming.

Read less
Chemical analysis plays a role in virtually all aspects of everyday life throughout the world. With analytical techniques and instrumentation becoming evermore sophisticated, there is an increasing demand for qualified analytical chemists. Read more
Chemical analysis plays a role in virtually all aspects of everyday life throughout the world. With analytical techniques and instrumentation becoming evermore sophisticated, there is an increasing demand for qualified analytical chemists. This industrially relevant course will provide you with a strong background in the theory of analytical techniques and give you the ability to apply these techniques to complex analytical problems. You can also choose to combine your studies with training in the fundamentals of management theory.

The Analytical Chemistry MSc (ie not including Management Studies) provides exemption from Part A of the Mastership in Chemical Analysis, the statutory qualification for a public analyst.

What will you study?

You will gain the key skills required in the specialised area of analytical chemistry, including good measurement and scientific practice, evaluation interpretation of data, and other professional and organisational skills. You will also study core analytical techniques and their applications.

You may also be offered a placement within industry (depending on your results and project availability), where you will carry out your independent research project.

You can choose to study Management Studies with this degree, setting your scientific knowledge in a vocational context.

Assessment

Exams, lab reports, assignments, case studies, oral and poster presentations, practical research project.

Work placement scheme

Kingston University has set up a scheme that allows postgraduate students in the Faculty of Science, Engineering and Computing to include a work placement element in their course starting from September 2017. The placement scheme is available for both international and home/EU students.

-The work placement, up to 12 months; is optional.
-The work placement takes place after postgraduate students have successfully completed the taught portion of their degree.
-The responsibility for finding the placement is with the student. We cannot guarantee the placement, just the opportunity to undertake it.
-As the work placement is an assessed part of the course for international students, this is covered by a student's tier 4 visa.

Details on how to apply will be confirmed shortly.

Course structure

Please note that this is an indicative list of modules and is not intended as a definitive list.

Modules
-Statistics and Quality Systems
-Molecular and Atomic Spectroscopy
-Separation Science
-Specialised Analytical Techniques
-Project

Management Studies pathway modules
-Statistics and Quality Systems
-Molecular and Atomic Spectroscopy
-Separation Science
-Business in Practice
-Project

Read less
This course is designed with industry in mind. We have also partnered with Engineering Materials and Physics to encompass the breadth of modern polymer science and technology. Read more

About the course

This course is designed with industry in mind. We have also partnered with Engineering Materials and Physics to encompass the breadth of modern polymer science and technology. You’ll become the kind of high-calibre polymer science graduate needed to develop new products and processes in a variety of industries.

Through a combination of theory and practice, we’ll teach you about polymer synthesis, physics, characterisation and the latest developments in polymer research. When you design and conduct your own extended research project, you can look in more detail at the areas you’re most interested in and learn how to communicate your science to the chemical community.

Your future

Our graduates are highly valued in the chemical and pharmaceutical sector. They work all over the world for companies including AkzoNobel, Amgen, AstraZeneca, Corus, Dow Chemicals, GSK, Smith and Nephew and Syngenta. Many move on to PhD study, then careers in research or teaching.

Chemistry is vital to the way we live. It helps power industry and drive economic growth. Polymer science contributes to advances in everything from biology to engineering and medicine. As a researcher in industry or academia you could be involved in work that improves lives and changes the way we see the world.

Learn from world-class research

Top-quality research directly informs our teaching. The 2014 Research Excellence Framework (REF) rates 98 per cent of our work world-class or internationally excellent. You’ll learn about the very latest developments from experts in theory and spectroscopy, synthesis, analytical science, chemical biology and materials.

Labs, equipment and training

We’ll train you to use our modern analytical instrumentation. We have NMR spectroscopy, mass spectrometry, x-ray crystallography, polymer characterisation methods and advanced microscopy. We also have a team of technicians to assist with spectroscopic services. There are labs for molecular biology, protein chemistry, polymer/colloid synthesis and materials characterisation.

Core modules

Fundamental Polymer Chemistry; The Physics of Polymers; Biopolymers and Biomaterials; Polymer Characterisation and Analysis; Research and Presentation Skills and Polymer Laboratory Skills; Extended Research Project.

Examples of optional modules

Smart Polymers and Polymeric Materials; Polymers with Controlled Structures; Design and Manufacture of Composites; Polymer Fibre Composite Materials; Macromolecules at Interfaces and Structured Organic Films; Electronics and Photonics.

Teaching and assessment

We use a mixture of lectures, practicals, workshops and individual research projects. The optional modules in the second semester enable you to specialise in two specific areas of polymer science. You can also tailor your research project to your particular interests.

For all taught modules, written exams contribute 75 per cent towards your final grade. The other 25 per cent comes from continuous assessment, which might include essays on specialised topics or assessed workshops. You also produce a 15,000-word dissertation based on your research project.

Your research project

This can be based in an academic group at the University, or in industry. If it’s industry- based, the topic is usually suggested by the company you’re working with. You may be expected to liaise closely with the company to organise your project.

Read less
Would you like to apply your arts or applied sciences background to the conservation of fine art?. Northumbria University’s MA Conservation of Fine Art course is the only Master of Arts course in the UK that specialises in the conservation of easel painting and works of art on paper. Read more
Would you like to apply your arts or applied sciences background to the conservation of fine art?

Northumbria University’s MA Conservation of Fine Art course is the only Master of Arts course in the UK that specialises in the conservation of easel painting and works of art on paper.

Integrating a mix of fine art, science and forensic techniques, you will study a range of subjects including studio and work-based practice, conservation theory, science, technical examination, -preventive conservation and research training skills.

In addition to the core modules studied, you will have the option to undertake a work placement during years one and two in the UK or abroad.

Learn From The Best

This course is taught by a team of specialist academics who have extensive experience in the field of conservation, science and the Fine Art sectors.

Applying their specialist knowledge to their day-to-day teaching, the members of our staff are actively involved in research and consultancy - activities which are helping to define this exciting and complex profession.

We also engage with the wider conservation sector to ensure that the content of this course is in-line with professional standards and employer expectations.

Throughout the duration of this course you will receive ongoing support from our teaching staff to ensure you leave equipped with - the necessary skills and knowledge to successfully pursue a career within conservation or a related discipline.

Teaching And Assessment

Offering the opportunity for you to specialise in either works of art on paper or easel paintings conservation, this course consists of modules that will explore a range of key areas including conservation theory and practice, conservation science, art history and preventive conservation

You will leave with the technical skills required to undertake examinations, cleaning, structural repairs and stabilisation of works of art, in addition to an in-depth understanding of the historic significance artistic practice and materials play-in understanding artworks.

Significant emphasis is also placed on ethics and developing your skills in research development.

This course is primarily delivered through practical workshops where you will develop a wide range of skills using especially prepared materials and case studies selected from our unique archive collection. These activities inform and run parallel with work conducted on project paintings and other challenging artefacts.

Assessment methods focus on you applying your practical skills, academic concepts and theories to your project documentation and the authentically constructed materials that mirror real life scenarios. You will also undertake a dissertation to further demonstrate your knowledge and understanding of this subject.

Learning Environment

When studying the MA Conservation of Fine Art course you will be housed in a Grade II listed building in the heart of Newcastle city centre. You will be able to utilise techniques such as x-ray, infra-red reflectography, and ultraviolet florescence and false colour infrared photography to examine materials and artworks spanning centuries, in addition to gaining access to intriguing archives and cutting edge technology.

You may also have access to other advanced technologies such as UV fluorescence microscopy, polarised light microscopy (PLM), UV/VIS spectrophotometry, fourier transform infrared (FTIR), gas chromatography-mass spectrometry (GC-MS), high performance liquid chromatography (HPLC), x-ray fluorescence (XRF) spectroscopy, x-ray diffraction (XRD) and scanning electron microscopy coupled with energy-dispersive x-ray spectroscopy (SEM/EDX).

You will also receive ongoing support through our innovative e-learning platform, Blackboard, which will allow you to access learning materials such as module handbooks, assessment information, online lectures, reading lists and virtual gallery tours.

Research-Rich Learning

Research-rich learning is embedded throughout all aspects of this course and our staff are continuously involved and informed by fast-moving emerging developments in conservation research and ethical debates.

All of our staff possess individual specialisms, in areas such as the development and evaluation of conservation treatments for paintings, characterisation of artists’ materials and techniques, studies in material deterioration and comprehensive documentation of works of art.

Our team also collaborate with national and international research organisations.

When studying this master’s degree, you are encouraged to develop your own individual research skills to ensure you graduate with confidence in your own practical and academic experience. These skills are further enhanced when you undertake your dissertation under the guidance of your assigned tutor.

Give Your Career An Edge

This course has been developed to reflect national guidelines and ensure that you graduate with the necessary skills and knowledge to kick-start your career within this profession. There are also many additional opportunities available to further enhance your career edge whilst you study.

Throughout the duration of this course you will create a professional portfolio, which will include examples of practical work and displays of your intellectual achievement to provide a demonstration of your skills and enhance your performance at interviews.

In addition to completing a placement to further enhance your development you will also have the opportunity to present research papers at an organised symposium.

We actively encourage you to engage with professional bodies and attend key conferences to allow you to network with professionals who are already working within the profession, and you may also have the opportunity to advantage of our partnership with Tyne and Wear Archives and Museums, whose collection supports a number of activities. Our long standing links with the National Trust, Tate Britain and the estate of Francis Bacon have created exciting projects for our MA and PhD students.

Your Future

This course will equip you with a deep understanding of both the skills and knowledge required to work effectively in fine art conservation laboratories or conservation jobs across the world.

You may choose to work in galleries or museums, or progress your research to PhD level.

Recent illustrious alumni list, include Virginia Lladó-Buisán Head of Conservation & Collection Care Bodleian Libraries, Britta New, Paintings Conservator at the National Gallery in London and Eleanor Hasler, Head of Paper Conservation at Kew Gardens.

As your professional development is in-line with the current postgraduate professional standards for the Conservation of Fine Art, your access to postgraduate professional jobs within the conservation sector is likely to be enhanced.

Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Laser Physics at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Laser Physics at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

The MSc by Research Laser Physics enables students to pursue a one year individual programme of research. The Laser Physics programme would normally terminate after a year. However, under appropriate circumstances, this first year of research can also be used in a progression to Year 2 of a PhD degree.

You will be fully integrated into one of our established research groups and participate in research activities such as seminars, workshops, laboratories, and field work.

Key Features

Swansea is a research led University to which the Physics department makes a significant contribution, meaning that as a postgraduate Physics student you will benefit from the knowledge and skills of internationally renowned academics.

The Department received top ratings of 4* and 3* in the 2008 RAE, which classified our research as World-leading or Internationally excellent in terms of its originality, significance and rigour.

The two main research groups within the Department of Physics currently focus on the following areas of research:

Atomic, Molecular and Quantum Physics Group

Fundamental Atomic Physics

Condensed Matter and Material Physics

Analytical Laser Spectroscopy

Particle Physics Theory Group

String theory, quantum gravity and the AdS/CFT correspondence

Lattice gauge theories, QCD

Supersymmetric field theory, perturbative gauge theory

Field Theory in curved spacetime

Physics beyond the standard model

Links with Industry

Our two research groups, Particle Physics Theory (PPT) and Atomic, Molecular and Quantum Physics (AMQP), deliver impact with commercial benefits both nationally and internationally, complemented by a public engagement programme with a global reach.

Economic impacts are realised by the Department’s Analytical Laser Spectroscopy Unit (ALSU) which, since 1993, has worked with companies developing products eventually sold to customers in the nuclear power industry and military, both in the UK and overseas, and in the global aerospace industry. Computational particle physics work performed by the PPT group has spun-off a computer benchmarking tool, BSMBench, used by several leading software outfits, and has led to the establishment of a start-up company.

The AMQP group’s work on trapping and investigating antihydrogen has generated great media interest and building on this we have developed a significant and on-going programme of public engagement. Activities include the development of a bespoke software simulator (Hands on Antihydrogen) of the antimatter experiment for school students.

Facilities

As a student of the Laser Physics programme in the Department of Physics you will have access to the following Specialist Facilities:

Low-energy positron beam with a high field superconducting magnet for the study of

positronium

CW and pulsed laser systems

Scanning tunnelling electron and nearfield optical microscopes

Raman microscope

CPU parallel cluster

Access to the IBM-built ‘Blue C’ Super computer at Swansea University and is part of the shared use of the teraflop QCDOC facility based in Edinburgh

Research

The Physics Department carries out world-leading research in experimental and theoretical physics.

The results of the Research Excellence Framework (REF) 2014 show that over 80% of the research outputs from both the experimental and theoretical groups were judged to be world-leading or internationally excellent.

Research groups include:

AMQP Group

The Atomic, Molecular and Quantum Physics Group comprises academic staff, postdoctoral officers and postgraduate research students. Its work is supported by grants from EPSRC, the EU, The Royal Society, the Higher Education Funding Council for Wales and various industrial and government sources. There are two main fields of research: Atomic, Molecular and Laser Physics and Nanoscale Physics.

PPT Group

The Particle Physics Theory Group has fourteen members of staff, in addition to postdoctoral officers and research students. It is the fourth largest particle physics theory group in the UK, and is supported mainly by STFC, but also has grants from EPSRC, the EU, Royal Society and Leverhulme Trust. The group recently expanded by hiring two theoretical cosmologists (Ivonne Zavala and Gianmassimo Tasinato). There are five main fields of research: Quantum Field Theory, Strings, Lattice Field Theory, Beyond the Standard Model Physics and Theoretical Cosmology.



Read less

Show 10 15 30 per page



Cookie Policy    X