• Northumbria University Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • University of Leeds Featured Masters Courses
  • University of Edinburgh Featured Masters Courses

Postgrad LIVE! Study Fair

Birmingham | Bristol | Sheffield | Liverpool | Edinburgh

Kingston University Featured Masters Courses
Imperial College London Featured Masters Courses
Durham University Featured Masters Courses
FindA University Ltd Featured Masters Courses
Teesside University Featured Masters Courses
"spacecraft"×
0 miles

Masters Degrees (Spacecraft)

We have 29 Masters Degrees (Spacecraft)

  • "spacecraft" ×
  • clear all
Showing 1 to 15 of 29
Order by 
Our MSc in Space Systems Engineering draws extensively on the expert knowledge of the Astronautics group using content from the professional courses we run for the European Space Agency and spacecraft industry. Read more

Our MSc in Space Systems Engineering draws extensively on the expert knowledge of the Astronautics group using content from the professional courses we run for the European Space Agency and spacecraft industry. Led by the authors of the best-selling book "Spacecraft Systems Engineering", the course uses an integrated approach to the complete design of a total space system and shows how the various component subsystems function and interface with each other. The course is endorsed by the UK Space Agency (UKSA).

Introducing your degree

This postgraduate masters course emphasises the key aspects of spacecraft systems engineering, focusing on systems engineering, key spacecraft sub-systems, mission analysis and spacecraft design. It will suit graduates or similarly qualified individuals from engineering, scientific and mathematical backgrounds, with some experience of astronautics or aerospace engineering and who are aiming for further specialisation in spacecraft engineering.

Overview

This one-year advanced course draws on the international expertise of our Astronautics Research Groupand content from the courses we run for the European Space Agency. The course provides an integrated approach to the design of a total space system and describes how the various component subsystems function and interface with one another, giving you advanced knowledge of space systems engineering.

The year is divided into two semesters. Each semester, you will have the option to undertake specialist space engineering modules; including spacecraft structural and engineering design and propulsion.

You will work under the guidance of world-class experts in this area and benefit from our cutting edge facilities, including an autonomous systems testbed and shaker table. You will engage in experimental study and complete a critical research project. We offer a range of potential projects, from spacecraft self-healing structures to creating your own moon orbiter.

View the specification document for this course



Read less
Taught jointly by UCL’s Space & Climate Physics and UCL’s Electronic & Electrical Engineering Departments by expert researchers and engineers in… Read more

Taught jointly by UCL’s Space & Climate Physics and UCL’s Electronic & Electrical Engineering Departments by expert researchers and engineers in the field, this MSc programme aims to provide a broad understanding of the basic principles of space technology and satellite communications together with specialised training in research methods and transferable skills, directly applicable to a career in the public and private space sectors.

About this degree

The Space Technology pathway is focussed on the application of space technology in industrial settings, and therefore has as its main objective to provide a sound knowledge of the underlying principles which form a thorough basis for careers in space technology, satellite communications and related fields. Students develop a thorough understanding of the fundamentals of:

  • spacecraft, satellite communications, the space environment, space operations and space project management
  • the electromagnetics of optical and microwave transmission, and of communication systems modelling
  • a range of subjects relating to spacecraft technology and satellite communications.

Students undertake modules to the value of 180 credits.

The programme consists of three core modules (45 credits), four optional modules (60 credits), a Group Project (15 credits) and an Individual research Project (60 credits).

Core modules

  • Space Science, Environment and Satellite Missions
  • Space Systems Engineering
  • Communications Systems Modelling Type
  • Group Project

Optional modules

  • At least one module from the following:
  • Spacecraft Design – Electronic Sub-systems
  • Mechanical Design of Spacecraft
  • Antennas and Propagation
  • Radar Systems
  • Space-based Communication Systems

  • At least one module from:
  • Space Instrumentation and Applications
  • Space Plasma and Magnetospheric Physics
  • Principles and Practice of Remote Sensing
  • Global Monitoring and Security
  • Space Data Systems and Processing

Dissertation/report

All MSc students undertake an Individual research Project, which normally involves attachment to a research group, and culminates in a report of 10,000–12,000 words.

Teaching and learning

The programme is delivered through a combination of lectures, coursework problem tasks, team-based coursework exercises, presentations and tutorials. Student performance is assessed through unseen written examinations, coursework, and the individual and group projects.

Further information on modules and degree structure is available on the department website: Space Science and Engineering: Space Technology MSc

Funding

STFC and NERC studentships may be available.

For a comprehensive list of the funding opportunities available at UCL, including funding relevant to your nationality, please visit the Scholarships and Funding website.

Careers

The programme aims to prepare students for careers in space research or the space industry, or further research degrees.

Recent career destinations for this degree

  • Chief Executive Officer (CEO), Pushtribe
  • Signal Processing Engineer, Thales UK
  • Junior Consultant, BearingPoint
  • Satellite Communication Engineer, National Space Agency of Kazakhstan

Careers data is taken from the ‘Destinations of Leavers from Higher Education’ survey undertaken by HESA looking at the destinations of UK and EU students in the 2013–2015 graduating cohorts six months after graduation.

Why study this degree at UCL?

UCL Space & Climate Physics, located at the Mullard Space Science Laboratory, is a world-leading research organisation and is the largest university space science group in the UK.

It offers a unique environment at the forefront of space science research, where scientists and research students work alongside top engineers building and testing instruments for space as well as studying the data from these and other spaceborne and ground-based instruments.

The close contact that the laboratory enjoys with space agencies such as ESA and NASA and with industrial research teams encourages the development of transferable skills which enhance job prospects in industrial and research centres in the public and private space sectors.



Read less
Uniting emergency response, disaster risk reduction and space technology this programme is designed to prepare students to work in the fields of satellite technology and disaster response to explore the management of risk and disaster losses from a range of perspectives, focusing on emerging risks posed to modern technology by space weather and the monitoring of hazards on Earth from outer space. Read more

Uniting emergency response, disaster risk reduction and space technology this programme is designed to prepare students to work in the fields of satellite technology and disaster response to explore the management of risk and disaster losses from a range of perspectives, focusing on emerging risks posed to modern technology by space weather and the monitoring of hazards on Earth from outer space.

About this degree

Students will learn about a wide variety of natural hazards, how to prepare and plan for emergencies and disasters and how to respond. Students will also learn practical aspects of designing, building and operating satellites and spacecraft including the challenges and risks posed by the environment of outer space.

Students undertake modules to the value of 180 credits.

The programme consists of six core modules (90 credits), two optional modules (30 credits) and a dissertation (60 credits).

Core modules

  • Integrating Science into Risk and Disaster Reduction
  • Emergency and Crisis Management
  • Research Appraisal and Proposal
  • The Variable Sun: Space Weather Risks
  • Space Science, Environment and Satellite Missions
  • Space Systems Engineering

Optional modules

Students choose two 15-credit optional modules from the following:

  • Decision and Risk Statistics
  • Emergency and Crisis Planning
  • Global Monitoring and Security
  • Mechanical Design of Spacecraft
  • Natural and Anthropogenic Hazards and Vulnerability
  • Risk and Disaster Research Tools
  • Space-Based Communication Systems
  • Space Instrumentation and Applications
  • Spacecraft Design - Electronic Sub-systems

Optional modules are subject to availability of places.

Dissertation/report

All students undertake an independent project culminating in a report of between 10,000 and 12,000 words.

Teaching and learning

Teaching is delivered by lectures, seminars and interactive problem sessions. Assessment is by examination, poster, presentation and written essay coursework.

Funding

For a comprehensive list of the funding opportunities available at UCL, including funding relevant to your nationality, please visit the Scholarships and Funding website.

Careers

This programme aims to prepare students for careers in space research, space and defence industries as well as most industries with risk management requirements.

Why study this degree at UCL?

The unique selling point of the programme is the direct access to key government and business drivers in the field of space weather, with invited seminars and reserch projects supported by the UK Met Office, EDF, Atkins and other institutions interested in the hazards of space. 

The natural hazard of space weather is a "new" hazard which has only recently been identified as a significant risk to human society. As the first generation of researchers, practitioners and engineers in this field, students will be at the forefront of major new issues in an expanding sector of the economy. As disaster response comes to rely on more advanced technology aid, relief and disaster response agencies require experts trained in the technological infrastructure to innovate, explain, operate and understand the limitations of these novel systems and the help they can provide before, during and after disasters.

The programme will also provide students will advanced training in many transferable skills, such as computor programming, technical writing, oral and written presentation, the use of engineering design tools and graphic visualisation software.



Read less
Our Masters in Space Engineering programme is designed to give you the specialist multidisciplinary knowledge and skills required for a career working with space technology and its applications. Read more

Our Masters in Space Engineering programme is designed to give you the specialist multidisciplinary knowledge and skills required for a career working with space technology and its applications.

Surrey students have access to all aspects of the design and delivery of spacecraft and payloads, and as a result are very attractive to employers in space-related industries.

As we develop and execute complete space missions, from initial concept to hardware design, manufacturing and testing, to in orbit operations (controlled by our ground station at the Surrey Space Centre), you will have the chance to be involved in, and gain experience of, real space missions.

Programme structure

This programme is studied full-time over one academic year and part-time students must study at least two taught technical modules per academic year. It consists of eight taught modules and a project.

Example module listing

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Educational aims of the programme

Our philosophy is to integrate the acquisition of core engineering and scientific knowledge with the development of key practical skills (where relevant). To fulfil these objectives, the programme aims to:

  • Attract well-qualified entrants, with a background in Electronic Engineering, Physical Sciences, Mathematics, Computing & Communications, from the UK, Europe and overseas
  • Provide participants with advanced knowledge, practical skills and understanding applicable to the MSc degree
  • Develop participants' understanding of the underlying science, engineering, and technology, and enhance their ability to relate this to industrial practice
  • Develop participants' critical and analytical powers so that they can effectively plan and execute individual research/design/development projects
  • Provide a high level of flexibility in programme pattern and exit point
  • Provide students with an extensive choice of taught modules, in subjects for which the Department has an international and UK research reputation

Intended capabilities for MSc graduates:

  • Underpinning learning– know, understand and be able to apply the fundamental mathematical, scientific and engineering facts and principles that underpin space engineering.
  • Engineering problem solving - be able to analyse problems within the field of mobile and satellite communications and more broadly in electronic engineering and find solutions
  • Engineering tools - be able to use relevant workshop and laboratory tools and equipment, and have experience of using relevant task-specific software packages to perform engineering tasks
  • Technical expertise - know, understand and be able to use the basic mathematical, scientific and engineering facts and principles associated with the topics within space engineering.
  • Societal and environmental context - be aware of the societal and environmental context of his/her engineering activities
  • Employment context - be aware of commercial, industrial and employment-related practices and issues likely to affect his/her engineering activities
  • Research & development investigations - be able to carry out research-and- development investigations
  • Design - where relevant, be able to design electronic circuits and electronic/software products and systems

Technical characteristics of the pathway

This programme in Space Engineering aims to provide a high-level postgraduate qualification relating to the design of space missions using satellites. Study is taken to a high level, in both theory and practice, in the specialist areas of space physics, mechanics, orbits, and space-propulsion systems, as well as the system and electronic design of space vehicles.

This is a multi-disciplinary programme, and projects are often closely associated with ongoing space projects carried out by Surrey Satellite Technology, plc.

This is a large local company that builds satellites commercially and carries out industrially-sponsored research. Graduates from this programme are in demand in the UK and European Space Industries.

Global opportunities

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.



Read less
The MSc in Propulsion and Engine Systems Engineering is a broad based 1 year MSc course, that provides you the opportunity to specialise in the engineering sciences that are key to the design, monitoring and analysis of propulsion and engine systems. Read more

The MSc in Propulsion and Engine Systems Engineering is a broad based 1 year MSc course, that provides you the opportunity to specialise in the engineering sciences that are key to the design, monitoring and analysis of propulsion and engine systems. You will do compulsory modules on gas turbine, internal combustion, electrical and hybrid engines for a range of transport applications.

You will be able to further specialise by selecting optional modules in related technologies including condition monitoring, materials, engine tribology, noise control, environmental aspects, batteries, fuel cells and spacecraft propulsion. After completing the taught section (8 modules) you will complete the MSc course through an individual project. Projects will be available in a wide range of topics including engine materials, combustion modelling, electrical motors, engine noise control and engine tribology.

Introducing your degree

Do you love speed? Are you fascinated by the design and development of plane and car engines? Then choose MSc Propulsion and Engine Systems Engineering and see your career take flight. Propulsion and engine systems are the driving force of many life-defining technologies.

Overview

You will learn to confidently analyse and design advanced electrical systems. You will also study modules on gas turbines, internal combustion and electrical and hybrid engines for transport applications, including aircraft and automotive.

The year will be divided into two semesters. Each semester, you will study core modules as well as choosing specialist modules from Spacecraft Propulsion to Acoustics. You also have the option to specialise in topics relating to condition monitoring, materials, energy efficiency and engine tribology.

The final four months will focus on research. You will engage in experimental and practical study and complete a research project and dissertation. Projects cover a wide range of subjects including combustion modelling, electrical motors and engine noise control.

View the specification document for this course



Read less
The MSc in Astronautics and Space Engineering is suitable for graduates in engineering, physics or mathematics, and will prepare you for a career in this exciting field, from earth observation to planetary exploration, launch vehicles to spacecraft operations, and much more. Read more
The MSc in Astronautics and Space Engineering is suitable for graduates in engineering, physics or mathematics, and will prepare you for a career in this exciting field, from earth observation to planetary exploration, launch vehicles to spacecraft operations, and much more. This course was established in 1987 to meet the requirement of the space industry for high quality engineers with relevant skills. The course has evolved since then as needs have changed, and we are constantly working to ensure our curriculum continues to prepare our graduates for highly successful careers in the space sector.

Read less
The MSc in Aerospace Vehicle Design (AVD) aims to build knowledge on the design of flying vehicles such as aircraft, missiles, airships and spacecraft. Read more
The MSc in Aerospace Vehicle Design (AVD) aims to build knowledge on the design of flying vehicles such as aircraft, missiles, airships and spacecraft. This course provides a taught engineering programme with a focus on the technical, business and management aspects of aircraft design in the civil and military aerospace sectors.
One unique feature of the course is that we have four external examiners; two from industry who assess the group design project and two from academia who assess the individual research project. Students can take advantage of our impressive facilities at Cranfield, which include large aircraft flight simulator, a flying experience with our Bulldog aircraft, and the National Flying Laboratory Centre (NFLC) Jetstream aircraft in which on-board monitors give you first-hand experience of the theory from a pilot’s perspective.

Read less
This specialist course has been developed to equip graduate engineers with the skills required of a highly demanding aerospace industry. Read more

About the course

This specialist course has been developed to equip graduate engineers with the skills required of a highly demanding aerospace industry.

Taught modules are balanced with practical and challenging individual and group aerospace project work. You will learn about aircraft design aerodynamics, space mechanics, spacecraft design, propulsion systems and the role of flight simulation in aerospace at an
advanced level.

Practical projects typically include the design, build and testing of a scale aircraft, computational fluid dynamics and structural analysis modelling of a critical aerospace component and flight performance evaluation using a flight simulator.

MSc Aerospace Engineering is accredited by the Royal Aeronautical Society (RAeS) and the Institution of Mechanical Engineers (IMechE). This will provide a route to Chartered Engineer status in the UK.

Aims

Although the course has a distinct specialist and technical flavour, the MSc also seeks to provide graduates with a raft of non-technical skills to enable them to realise their professional potential to its fullest.

To this end, the course provides modules that cover topics in strategic management, enterprise, research and innovation, as well as exploring issues that are of special importance to the future of the aerospace industry, such as safety, security, and sustainability.

Course Content

The MSc Aerospace Engineering course consists of five taught modules, a group project, and an individual project and dissertation.

Compulsory Modules

Design and Analysis of Aerospace Vehicles
Advanced Aerodynamics, Propulsion Systems, and Space Mechanics
Current Topics in Aerospace
Strategic Management Innovation and Enterprise
Research Methodology and Sustainable Engineering
Group Project in Aerospace Engineering
Aircraft Structures, Loads and Aeroelasticity
Dissertation

Special Features

Highly rated by students

Mechanical Engineering at Brunel ranks highly in the Guardian league tables for UK universities, with a student satisfaction score of 86.4% in 2015. Postgraduate students can therefore expect to benefit from an experienced and supportive teaching base whilst having the opportunity to thrive in a dynamic and high-profile research environment.

Outstanding facilities

We have extensive and well-equipped laboratories, particular areas of strength being in fluid and biofluid mechanics, IC engines, vibrations, building service engineering, and structural testing. Our computing facilities are diverse and are readily available to all students. The University is fully networked with both Sun workstations and PCs. Advanced software is available for finite and boundary element modelling of structures, finite volume modelling of flows, and for the simulation of varied control systems, flow machines, combustion engines, suspensions, built environment, and other systems of interest to the research groups.

Strong links with industry

We regularly consult aerospace engineering experts to keep our programmes up to date with industry needs. Read more about how we integrated industrial expertise into an MEng Aerospace Engineering module.

Women in Engineering and Computing Programme

Brunel’s Women in Engineering and Computing mentoring scheme provides our female students with invaluable help and support from their industry mentors.

Accreditation

Aerospace Engineering is accredited by the Royal Aeronautical Society (RAeS) and the Institution of Mechanical Engineers (IMechE). This will provide a route to Chartered Engineer status in the UK.

Assessment

Modules are taught over eight months (from October to May) and are assessed by a balanced combination of examination and assignment.

Read less
Structural Design aims to provide an understanding of aircraft structures, airworthiness requirements, design standards, stress analysis, fatigue and fracture (damage tolerance) and fundamentals of aerodynamics and loading. Read more

Course Description

Structural Design aims to provide an understanding of aircraft structures, airworthiness requirements, design standards, stress analysis, fatigue and fracture (damage tolerance) and fundamentals of aerodynamics and loading. The suitable selection of materials, both metallic and composite is also covered. Manufacturers of modern aircraft are demanding more lightweight and more durable structures. Structural integrity is a major consideration of today’s aircraft fleet. For an aircraft to economically achieve its design specification and satisfy airworthiness regulations, a number of structural challenges must be overcome. This course trains engineers to meet these challenges, and prepares them for careers in civil and military aviation.

Overview

This course is suitable for students with a background in aeronautical or mechanical engineering or those with relevant industrial experience.

The Structural Design option consists of a taught component and an individual research project.

In addition to management, communication, team work and research skills, each student will attain at least the following outcomes from this degree course:
- To build upon knowledge to enable students to enter a wide range of aerospace and related activities concerned with the design of flying vehicles such as aircraft, missiles, airships and spacecraft
- To ensure that the student is of immediate use to their employer and has sufficient breadth of understanding of multi-discipline design to position them for accelerated career progression
- To provide teaching that integrates the range of disciplines required by modern aircraft design
- To provide the opportunity for students to be immersed in a 'Virtual Industrial Environment' giving them hands-on experience of interacting with and working on an aircraft design project.

English Language Requirements

If you are an international student you will need to provide evidence that you have achieved a satisfactory test result in an English qualification. The minimum standard expected from a number of accepted courses are as follows:

IELTS - 6.5
TOEFL - 92
Pearson PTE Academic - 65
Cambridge English Scale - 180
Cambridge English: Advanced - C
Cambridge English: Proficiency - C

In addition to these minimum scores you are also expected to achieve a balanced score across all elements of the test. We reserve the right to reject any test score if any one element of the test score is too low.

We can only accept tests taken within two years of your registration date (with the exception of Cambridge English tests which have no expiry date).

Core Modules

The taught programme for the Structural Design masters is generally delivered from October to March. After completion of the four compulsory taught modules, students have an extensive choice of optional modules to match specific interests.

Core:
- Fatigue Fracture Mechanics and Damage Tolerance
- Finite Element Analysis (including NASTRAN/PATRAN Workshops)
- Design and Analysis of Composite Structures
- Structural Stability

Optional:
- Loading Actions
- Computer Aided Design (CAD)
- Aircraft Aerodynamics
- Aircraft Stability and Control
- Aircraft Performance
- Detail Stressing
- Structural Dynamics
- Aeroelasticity
- Design for Manufacture and Operation
- Initial Aircraft Design (including Structural Layout)
- Airframe Systems
- Aircraft Accident Investigation
- Crashworthiness
- Aircraft Power Plant Installation
- Avionic System Design
- Flight Experimental Methods (Jetstream Flight Labs)
- Reliability, Safety Assessment and Certification
- Sustaining Design (Structural Durability)

Individual Project

The individual research project aims to provide the training necessary for you to apply knowledge from the taught element to research, and takes place from January to September.

Recent Individual Research Projects include:
- Review, Evaluation and Development of a Microlight Aircraft
- Investigation of the Fatigue Life of Hybrid Metal Composite Joints
- Design for Additive Layer Manufacture
- Rapid Prototyping for Wind Tunnel Model Manufacturing.

Group project

There is no group project for this option of the Aerospace Vehicle Design MSc.

Assessment

Taught modules (20%); Individual Research Project (80%)

Career opportunities

The AVD option in Structural Design is valued and respected by employers worldwide. The applied nature of this course ensures that our graduates are ready to be of immediate use to their future employer and has provided sufficient breadth of understanding of multi-discipline design to position them for accelerated career progression.

Graduates from the have gone onto pursue engineering careers in disciplines such as structural design, stress analysis or systems design. Many of our former graduates occupy very senior positions in their organisations, making valuable contributions to the international aerospace industry.

Many of our graduates occupy very senior positions in their organisations, making valuable contributions to the international aerospace industry. Typical student destinations include BAE Systems, Airbus, Dassault and Rolls-Royce.

For further information

On this course, please visit our course webpage - http://www.cranfield.ac.uk/Courses/Masters/AVD-Option-in-Structural-Design

Read less
This MSc is taught at the UK’s longest established centre for artificial intelligence, which remains one of the best in the world. Read more

This MSc is taught at the UK’s longest established centre for artificial intelligence, which remains one of the best in the world.

Our research draws on neuroscience, cognitive science, linguistics, computer science, mathematics, statistics and psychology to span knowledge representation and reasoning, the study of brain processes and artificial learning systems, computer vision, mobile and assembly robotics, music perception and visualisation. We aim to give you practical knowledge in the design and construction of intelligent systems so you can apply your skills in a variety of career settings.

Programme structure

You follow two taught semesters of lectures, tutorials, project work and written assignments, after which you will learn research methods before individual supervision for your project and dissertation.

Compulsory courses:

  • Informatics Research Review
  • Informatics Project Proposal
  • Introduction to Java Programming (for students who do not already meet the programming requirements for the taught masters)
  • Dissertation

You will choose a 'specialist area' within the programme, which will determine the choice of your optional courses:

  • Intelligent Robotics
  • Agents, Knowledge and Data
  • Machine Learning
  • Natural Language Processing

You can choose from a variety of optional courses including:

  • Advanced Vision
  • Algorithmic Game Theory and Its Applications
  • Machine Learning and Pattern Recognition
  • Natural Language Understanding
  • Robotics: Science and Systems
  • Human-Computer Interaction
  • Software Architecture, Process and Management
  • Text Technologies for Data Science
  • Computational Cognitive Neuroscience

Career opportunities

Our students are well prepared for both employment and academic research. The emphasis is on practical techniques for the design and construction of intelligent systems, preparing graduates to work in a variety of specialisms, from fraud detection software to spacecraft control.

Recent graduates are now working as software developers and engineers, programmers and data analysts for companies such as HarperCollins, J.P. Morgan, Nokia, IBM, Amazon, Soundcloud and the Bank of England.



Read less
Our Masters programme in Satellite Communications Engineering is designed to give you the specialist multidisciplinary skills required for careers in the satellite and space industries. Read more

Our Masters programme in Satellite Communications Engineering is designed to give you the specialist multidisciplinary skills required for careers in the satellite and space industries.

We have an exceptional concentration of academic staff experienced in the satellite area, in addition to well-established contacts with all the major satellite manufacturers, operators and service providers.

Industry participates in the MSc programme in both lecturing and projects, and facilitates excellent engagement for our students. Graduation from this programme will therefore make you very attractive to the relevant space-related industries that employ over 6,500 people in the UK alone.

Read about the experience of a previous student on this course, Thanat Varathon.

Programme structure

This programme is studied full-time over one academic year and part-time students must study at least two taught technical modules per academic year. It consists of eight taught modules and a project.

Example module listing

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Facilities, equipment and support

Through consistent investment, we have built up an impressive infrastructure to support our students and researchers. The University of Surrey hosts Surrey Space Centre – a unique facility comprising academics and engineers from our own spin-out company, Surrey Satellite Technology Ltd.

Our mission control centre was designed and developed by students to support international CubeSat operations as part of the GENSO network, and it also supports the development of the University’s own educational satellites.

Our teaching laboratories provide ‘hands-on’ experience of satellite design and construction through the use of EyasSAT nano-satellite kits. They also house meteorological satellite receiving stations for the live reception of satellite weather images.

Elsewhere, our fully equipped RF lab has network analyser, signal and satellite link simulators. The Rohde and Schwartz Satellite Networking Laboratory includes DVBS2-RCS generation and measurement equipment, and roof-mounted antennas to communicating live with satellites.

A security test-bed also exists for satellite security evaluation. We have a full range of software support for assignments and project work, including Matlab, and you will be able to access system simulators already built in-house.

Satellite Communications Engineering students can also make use of SatNEX, a European Network of Excellence in satellite communications supported by ESA; a satellite platform exists to link the 22 partners around Europe. This is used for virtual meetings and to participate in lectures and seminars delivered by partners.

Our own spin-out company, Surrey Satellite Technology Ltd, is situated close by on the Surrey Research Park and provides ready access to satellite production and industrial facilities. In addition, we have a strategic relationship with EADS Airbus Europe-wide and several other major communications companies.

Technical characteristics of the pathway

This programme in satellite communications engineering. provides detailed in-depth knowledge of theory and techniques applicable to radio frequency (RF) and microwave engineering.

The programme includes core modules in both RF and microwave covering all ranges of wireless frequencies and a number of application devices including radio frequency identification (RFID), broadcasting, satellite links, microwave ovens, printed and integrated microwave circuits.

Additional optional modules enable the student to apply the use of RF and microwave in subsystem design for either mobile communications, satellite communications, nanotechnology or for integration with optical communications.

The teaching material and projects are closely related to the research being carried out in the Department’s Advanced Technology Institute and the Institute for Communication Systems.

Global opportunities

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.



Read less
Shock physics focuses on the understanding of what happens to matter under extreme conditions. This research can be applied in many ways, including. Read more
Shock physics focuses on the understanding of what happens to matter under extreme conditions.

This research can be applied in many ways, including:

Analysing the effect of meteorite impacts on planets, spacecraft and satellites
Understanding how tsunamis are formed
Understanding the high pressure conditions that occur at the core of planets

This course explores the response of a wide range of materials, from rock to plasma, when subjected to rapid or high pressure loading.

This area is important for a number of applications, including:

Preventing impact damage to transportation vehicles
Petrochemical and other offshore platforms
Astrophysics and studies into the internal conditions of nuclear energy reactors

You will be trained in techniques that are of value to potential industrial employers, government agencies and other organisations.

Read less
This MSc effectively transfers to students the knowledge and expertise gained by UCL space scientists over more than four decades and is taught by world-recognised researchers in the field. Read more

This MSc effectively transfers to students the knowledge and expertise gained by UCL space scientists over more than four decades and is taught by world-recognised researchers in the field. The programme aims to provide a broad understanding of all aspects of space science together with specialised training in research methods, directly applicable to a career in academia, the public and private sectors.

About this degree

The Space Science pathway is focussed on scientific research applications of space technology; it aims to equip participants with a sound knowledge of the physical principles essential to sustain careers in space research and related fields. Students develop a thorough understanding of the fundamentals of:

  • a range of space science fields
  • spacecraft, space science instrumentation, the space environment, space operations and space project management

Students undertake modules to the value of 180 credits.

The programme consists of four core modules (60 credits), three optional modules (45 credits), a group project (15 credits), and a research project (60 credits).

Core modules

  • Space Data Systems and Processing
  • Space Instrumentation and Applications
  • Space Science, Environment and Satellite Missions
  • Space Systems Engineering
  • Group Project

Optional modules

  • Planetary Atmospheres
  • Solar Physics
  • High Energy Astrophysics
  • Space Plasma and Magnetospheric Physics
  • Principles and Practice of Remote Sensing
  • Global Monitoring and Security

Dissertation/report

All MSc students undertake an independent research project, which normally involves attachment to a research group, and culminates in a report of 10,000–12,000 words.

Teaching and learning

The programme is delivered through a combination of lectures, tutorials, team-based coursework exercises, presentations and tutorials. Student performance is assessed through unseen written examination, coursework, and the individual and group projects.

Further information on modules and degree structure is available on the department website: Space Science and Engineering: Space Science MSc

Funding

STFC and NERC studentships may be available.

For a comprehensive list of the funding opportunities available at UCL, including funding relevant to your nationality, please visit the Scholarships and Funding website.

Careers

The programme aims to prepare students for further research degrees and/or careers in space research or the space industry.

Why study this degree at UCL?

UCL’s Space & Climate Physics Department, located at the Mullard Space Science Laboratory, is a world-leading research organisation and is the largest university space science group in the UK.

It offers a unique environment at the forefront of space science research, where scientists and research students work alongside top engineers building and testing instruments for space, as well as studying the data from these and other spaceborne and ground-based instruments.

The close contact that the laboratory enjoys with space agencies such as ESA and NASA and with industrial research teams encourages the development of transferable skills which enhance job prospects in academic circles and beyond.



Read less
The Masters in Aerospace Engineering is a multi-disciplinary programme that covers all aspects of modern aircraft design. This involves developing essential knowledge and skills in advanced aerodynamics and aerospace systems. Read more

The Masters in Aerospace Engineering is a multi-disciplinary programme that covers all aspects of modern aircraft design. This involves developing essential knowledge and skills in advanced aerodynamics and aerospace systems. By choosing specific options in the second semester the degree programme can be tailored to provide specialisms in either Aeronautics or Systems.

Why this programme

  • The University of Glasgow has been the home of Aerospace Research for over 60 years. This long-standing activity has culminated in the Division of Aerospace Sciences having been internationally recognised expertise in all areas of Aeronautics and Aerospace Systems
  • The School of Engineering’s aeronautical engineering is consistently highly ranked among the top 10 in the UK and recently achieved 1st in Scotland (Complete University Guide 2017).

Programme structure

Modes of delivery of the MSc in Aerospace Engineering include lectures, seminars and tutorials and allow students the opportunity to take part in lab, project and team work. 

The summer period is dedicated to project work, with either academic or industrial placements providing the context for your project. 

Semester 1 core courses 

  • Aircraft flight dynamics 
  • Aerospace Control 1 
  • Navigation systems 
  • Simulation of aerospace systems 
  • Space flight dynamics 1 

Semester 2 optional courses

Select a team project from:

  • Aerospace Design Project M *
  • Aerospace Systems Team Design Project M 

Select five courses from the following:

  • Aeroelasticity 5 or Aircraft Vibration & Aeroelasticity 4 *
  • Autonomous vehicle guidance systems **
  • CFD 5 or CFD 4 *
  • Composite Airframe Structures *
  • Fault detection, isolation and reconfiguration **
  • High Speed Aerodynamics 4 *
  • Intro to Wind Engineering *
  • Radar and electro-optic systems **
  • Robust control 5 **
  • Rotorcraft Aeromechanics 5 *
  • Spacecraft Systems II **
  • Turbulent Flows 5 *
  • Aircraft Handling Qualities & Control 5 * (Enrolment on this course is subject to available numbers on flight test course and may require an additional charge)

* signifies courses that constitute the specialism in Aeronautics

** signifies courses that constitute the specialism in Systems



Read less
The Masters in Aerospace Engineering & Management introduces you to contemporary business and management issues while increasing your depth of knowledge in your chosen aerospace engineering speciality. Read more

The Masters in Aerospace Engineering & Management introduces you to contemporary business and management issues while increasing your depth of knowledge in your chosen aerospace engineering speciality.

Why this programme

  • The University of Glasgow has been the home of Aerospace Research for over 60 years. This long-standing activity has culminated in the Division of Aerospace Sciences having internationally recognised expertise in all areas of Aeronautics and Aerospace Systems.
  • You will be taught jointly by staff from the School of Engineering and the Adam Smith Business School. You will benefit from their combined resources and expertise and from an industry-focused curriculum.
  • The University of Glasgow is one of the few institutions in the UK, and the only University in Scotland, to offer an Aerospace System MSc.
  • Aeronautical engineering at the University of Glasgow is consistently highly ranked recently achieving 10th in the UK and 1st in Scotland (Complete University Guide 2017).
  • If you have an engineering background, but with little management experience and you are looking to broaden your knowledge of management while also furthering your knowledge of aerospace engineering, this programme is designed for you.
  • Students in this programme can benefit from access to our outstanding facilities: including several wind tunnels, a flight simulation lab, an autonomous unmanned vehicle (UAV) laboratory, helicopter test rig laboratories, structural testing apparatus and computer labs for modelling and simulation.
  • This programme has a September and January intake

Programme structure

There are two semesters of taught material and a summer session working on a project or dissertation. September entry students start with management courses and January entry students with engineering courses.

Semester 1

You will be based in the Adam Smith Business School, developing knowledge and skills in management principles and techniques. We offer an applied approach, with an emphasis on an informed critical evaluation of information, and the subsequent application of concepts and tools to the core areas of business and management.

Core courses

  • Contemporary issues in human resource management 
  • Managing creativity and innovation 
  • Managing innovative change 
  • Marketing management 
  • Operations management 
  • Project management.

Semester 2

You will study engineering courses, which aim to enhance your group working and project management capability at the same time as improving your depth of knowledge in chosen aerospace engineering subjects.

Core courses

  • Integrated systems design project.

Optional courses (four chosen)

  • Autonomous vehicle guidance systems
  • Composite airframe structures
  • Fault detection, isolation and reconfiguration
  • Introduction to aeroelasticity
  • Introduction to computational fluid dynamics
  • Introduction to wind engineering
  • Radar and electro-optic systems
  • Robust control 5
  • Spacecraft systems 2.

Project or dissertation

You will undertake an individual project or dissertation work in the summer period (May–August). This will give you an opportunity to apply and consolidate the course material and enhance your ability to do independent work, as well as present results in the most appropriate format. Project and dissertation options are closely linked to staff research interests. September entry students have a choice of management dissertation topics in addition to aerospace engineering projects, and January entry students have a choice of aerospace engineering projects. 

Career prospects

Career opportunities include positions in aerospace, defence, renewable energy, nuclear energy and management. You can also continue studying, for a research Masters or a PhD.



Read less

Show 10 15 30 per page



Cookie Policy    X