• Leeds Beckett University Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Regent’s University London Featured Masters Courses
  • Imperial College London Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of York Featured Masters Courses
University of Hertfordshire Featured Masters Courses
University of Hertfordshire Featured Masters Courses
Queen Margaret University, Edinburgh Featured Masters Courses
Cardiff University Featured Masters Courses
Coventry University Featured Masters Courses
"space" AND "systems"×
0 miles

Masters Degrees (Space Systems)

  • "space" AND "systems" ×
  • clear all
Showing 1 to 15 of 236
Order by 
This Postgraduate Certificate is designed for engineering professionals who are interested in developing their careers into systems engineering or project management roles in the space domain. Read more
This Postgraduate Certificate is designed for engineering professionals who are interested in developing their careers into systems engineering or project management roles in the space domain.

Degree information

Students will develop a powerful set of skills and knowledge about space systems and gain awareness and understanding of the economic and organisational context within which space sytems are developed including the limitations these can impose. Depending on the modules chosen, students may focus more on business, project management, reliability or design aspects.

Students undertake modules to the value of 60 credits.

The programme consists of four taught modules of 15 credits each.

Core modules
Students must take Space Systems (15 credits) and either three from the list below or two from the list below and one optional module.
- Business Environment
- Lifecycle Management
- Risk, Reliability and Resilience
- Systems Thinking and Engineering Management

Optional modules
- Delivering Complex Projects
- Project Management* (leading to Association for Project Management examination)
- Systems Design
- Technology Strategy
* Delivered in association with UCL School of Management

Teaching and learning
The programme consists of four taught modules, each of which is delivered as a five-day block week consisting of a blend of interactive lectures, small-group exercises and presentations, case studies and workshop activity. Formative feedback is given to students throughout the modules. Modules are formally assessed through coursework to be completed a few weeks after the module, and for some modules there is also a short test or a 1.5 hour written examination.

Further information on modules and degree structure is available on the department website: http://www.ucl.ac.uk/syseng/pg-taught/sem

[[Careers]

Students who have studied this subject have found employment in aerospace, defence, communications, rail, construction, engineering, IT, management consultancy and many other areas.

Employability
Systems engineering is a highly sought-after expertise, particularly in engineering and technology-based organisations.

The programme's industrial advisory board ensures that the subjects students learn about cover the key issues faced by industry.

Why study this degree at UCL?

The programme combines interactive lectures, group exercises and case studies to reinforce key points. Lecturers are experts in the field, many of whom have engaged in the practice of systems engineering in industry, and all of whom oversee research across a broad range of subjects relating to systems engineering, project management and technology management.

Students with this degree will gain the skills, knowledege and confidence to further their careers. They will be able to build their professional contacts with like-minded individuals from different organisations.

On completion of the 60-credit programme, students may choose to apply to transfer their credit towards a 120-credit Postgraduate Diploma or a 180-credit MSc in Systems Engineering Management.

Accreditation
The MSc in Systems Engineering Management (which students may choose to go on to study on successful completion of this Postgraduate Certificate) is accredited by the Institution of Engineering and Technology (IET) on behalf of the Engineering Council for the purposes of fully meeting the academic requirement for registration as a Chartered Engineer.

Read less
This UK Space Agency endorsed masters is suitable for physics and engineering graduates and focuses the key aspects of spacecraft systems engineering. Read more

Summary

This UK Space Agency endorsed masters is suitable for physics and engineering graduates and focuses the key aspects of spacecraft systems engineering. We are uniquely placed to offer this course, drawing extensively from the courses provided to the European Space Agency and spacecraft industry by the Astronautics group.

Modules

Compulsory modules: Spacecraft Systems and Design; Concurrent Engineering Design; Spacecraft Engineering Design; Spacecraft Instrumentation; Spacecraft Propulsion; Spacecraft Structural Design; Spacecraft Orbital Mechanics and Control; MSc Research Project

Optional modules: further module options are available

Visit our website for further information...



Read less
The Systems Engineering Management MSc has been specifically designed for the needs of engineering professionals working in the field of complex systems development. Read more
The Systems Engineering Management MSc has been specifically designed for the needs of engineering professionals working in the field of complex systems development. The programme encompasses not only the technical tools and approaches needed to build success in this area, but also the management dimension of the relevant processes.

Degree information

Students gain an integrated, interdisciplinary view of complex systems and an advanced understanding of the systems engineering process. They gain the ability to apply this process to a variety of real world situations and the management skills necessary to facilitate the development of complex systems on time and within budget.

Students undertake modules to the value of 180 credits.

The programme consists of four core taught modules (60 credits) two optional taught modules (30 credits) and three research modules (90 credits). Modules are generally taught as intensive five-day 'block weeks' to minimise time away from the office.

A Postgraduate Diploma (120 credits, full-time nine months, or flexible study up to five years) is offered. A Postgraduate Certificate (60 credits, full-time 12 weeks, or flexible study up to two years) is offered.

Core modules
-Systems Engineering Management
-Lifecycle Management
-Risk, Reliability, Resilience
-The Business Environment

Optional modules
-Defence Systems
-Environmental Systems*
-Project Management
-Rail Systems
-Spacecraft Systems
-Systems Design
-Systems, Society, Sustainability*

*These modules are delivered by UCL's Department of Civil, Environmental and Geomatic Engineering in ten half-day sessions over the course of a term instead of the usual intensive 'block week' format

Research modules - all MSc students undertake a structured research programme comprising the following mandatory modules:
-Systems Engineering in Practice (15 credits)
-Systems Engineering Project Concept (15 credits)
-Systems Engineering Research Project (60 credits)

Teaching and learning
The programme is delivered through a combination of lectures, discussion sessions, workshop activity, and project work. Each taught course will be separately assessed through a combination of course work and a written examination. The project will be assessed through written dissertation and subsequent oral examination.

Careers

Complex systems are commonplace in many branches of UK industry including rail, aerospace, defence, and manufacturing. The ability to create such systems effectively is crucial to the competitiveness of these industries and has a direct bearing on the wealth of the nation.

Recent graduates of the programme have the following careers:
-London Underground: Head of Railway Systems
-Accenture: Analyst
-Thales Aerospace: Design Authority Manager
-BAE Systems: Systems Design Authority
-Selex Sensors and Airborne Management: Engineering Lead
-Xerox: Engineering Manager
-QinetiQ: Marine Engineer
-BAE Systems: Senior Hardware Engineer
-British Aerospace: Software Engineer
-Orange: Principal Engineer
-Halcrow Group Limited: Design Manager

Top career destinations for this degree:
-Software Engineer, Bank of America Merrill Lynch
-Analyst, Accenture
-Proposals engineer, Invensys PLC
-Engineering Manager, BAE Systems
-Systems Engineer, BIG

Why study this degree at UCL?

This MSc combines academic rigour with the practical expertise exemplified by our collaborators in UK industry and government. The flexible programme enables participants to structure their studies to suit their own career goals, and is accredited by the IET as a programme of further learning for registration as a Chartered Engineer.

Lectures are presented by experts in the field, many of whom have engaged in the practice of systems engineering in industry.

Industry is operating in an environment where technology changes rapidly, and where global competition grows ever more intensive. The challenge to remain competitive means we must make the right thing at the right price. Our MSc equips graduates with the skills to meet this challenge.

Read less
Enterprise Systems Management is an innovative MSc degree course designed for those who want to pursue careers as managers and leaders in implementing technology-based information systems solutions to achieve business excellence. Read more
Enterprise Systems Management is an innovative MSc degree course designed for those who want to pursue careers as managers and leaders in implementing technology-based information systems solutions to achieve business excellence.

What's covered in the course?

To understand the design of Enterprise Systems and the benefits, you will firstly gain a broader understanding of systems thinking. Case studies and live project briefs underpin reinforcement of the learning and teaching.

The modules studied in this highly rigorous course are directly relevant to industry's current and expected future needs. You will be challenged to think outside the box, and apply knowledge and skills to provide robust and innovative solutions to a range of business problems.

You will study at our Enterprise Systems Centre at the City Centre Campus, where you will learn how modern management information systems are structured, how they are managed and the issues in integrating them to support effective management of robust business processes.

You will also be given access to SAP systems based on a virtual industry. This practical element of your programme provides an applied learning experience to develop knowledge in enterprise systems.

The Master's Project module will give you the opportunity to apply your skills and knowledge to practical problems and investigate an enterprise systems management research topic.

Why choose us?

-The course explores systems and activities within an enterprise that bring together processes, people and technology to help streamline operations to gain competitive advantages, improved performance and reduced operational costs, as well as implementing efficient business processes and improving real-time decision-making capabilities.
-Enterprise Systems Management students will have access to the University’s unique SAP Lab, providing an inspirational research and development space for you to use for creative thinking and design.
-You will participate in ERPsim to gain experience of enterprise systems, using virtual business scenarios to evaluate the impact of integration of processes on manufacturing and business analytics.
-The Faculty is a member of SAP University Alliance. This programme provides you with the opportunity to undertake SAP certification in a number of key areas including enterprise resources planning (ERP) and business warehouse (BW).

Course in depth

Our teaching philosophy revolves around you both ‘learning by doing’ and also transferring acquired knowledge to others. Activities will be conducted both individually and in teams, with tutors providing leadership and mentoring aimed at supporting your transition into independent learners. In this partnership, we will be encouraging you to become proactive, so that you can develop your confidence to undertake a range of progressively complex and challenging tasks.

We expect you to attend all teaching sessions, as well as to read and prepare before these sessions. Good preparation will enable you to get the most from your contact time and will help you become an autonomous learner. Advanced preparation is also a critical skill which you must develop if you wish to succeed in business or professional practice. Teaching sessions will include lectures and small group interactive seminars.

You will be assessed in a number of different ways, including coursework, patchwork assessment, examinations (seen and unseen, open and closed-book), presentations, practical assignments, vivas, online forums, podcasts and project work.

Semester One
-Enterprise Systems 20 credits
-Manufacturing Systems 20 credits
-Strategic Information Systems Planning 20 credits

Semester Two
-Technology Relationship Management 20 credits
-Business Intelligence and Technology Entrepreneurship 20 credits
-Principles of Project Management 20 credits

Semester Three
Postgraduate Project 60 credits

Accreditation

The Faculty is a member of SAP University Alliance. This programme provides you with the opportunity to undertake SAP Certification in a number of key areas, including enterprise resources planning (ERP) and business warehouse (BW).

Enterprise Systems Management students have access to the University’s unique SAP Lab, providing an inspirational research and development space for you to use for creative thinking and design.

Enhancing your employability skills

Birmingham City University programmes aim to provide graduates with a set of attributes which prepare them for their future careers. The BCU Graduate:
-Is professional and work-ready
-Is a creative problem solver
-Is enterprising
-Has a global outlook

The University has introduced the Birmingham City University Graduate+ programme, which is an extracurricular awards framework that is designed to augment the subject-based skills that you develop through your programme with broader employability skills, enhancing your employment options when you leave university.

The programme will help you with crafting your CV, personal statements, covering letters and presentations, and will also help you seek part-time work experience and voluntary placements.

Read less
Our flagship course blends theory and practice, giving you a strong grounding for a career in industry or research. This continually evolving course has been running for over 40 years and is well supported by the UK Engineering and Physical Sciences Research Council (EPSRC). Read more

About the course

Our flagship course blends theory and practice, giving you a strong grounding for a career in industry or research. This continually evolving course has been running for over 40 years and is well supported by the UK Engineering and Physical Sciences Research Council (EPSRC).

The core modules provide you with the basic skills you’ll need to become a control and systems engineer. You’ll take advanced modules in current areas of interest and complete a research-level dissertation project.

Push yourself further

We have cutting edge facilities and technology, including: advanced control
and systems software, modelling, simulation and controller design tools, robotics and a flexible manufacturing systems laboratory, evolutionary computing laboratory and clean facilities for the assembly of satellite instrumentation.

Make your mark

You could pursue a career with a large international organisation or government department. Our graduates work in sectors such as manufacturing, power generation and sustainable energy, with companies including British Airways, Jaguar Land Rover, NASA, IBM, Rolls-Royce and Unilever.

A masters from Sheffield is the mark of someone with the skills to apply their knowledge in industry, anywhere in the world. Our MSc in Advanced Control and Systems Engineering is accredited by the Engineering Council UK, IET and InstMC. These marks of assurance mean our degrees meet the high standards set by the engineering profession.

A Sheffield masters is a strong foundation for a career in industry or research.

Industry links

We have strong links with industrial partners such as Rolls-Royce and BAE Systems. Our industrial partners help us to design our courses, making sure you learn the right skills.

Rolls-Royce has a research and development centre here, using our expertise to explore today’s challenges. Our masters students often work side by side with researchers at these facilities.

A stimulating environment

The 2014 Research Excellence Framework (REF) rates us No 1 in the UK for research output, ahead of Oxford and Cambridge, and No 3 for overall research excellence. Our world-class reputation attracts highly motivated staff and students.

You’ll be taught by staff who work on real-world projects, developing new ideas – for submarines, robots, Formula One and even space exploration. Their approach to teaching is just as innovative: ideas like the award-winning take-home lab kit and e-puck mobile robotics activities help you develop the problem-solving skills you need for a trailblazing career.

Core modules

Foundations of Control Systems; State-Space, Optimal Control and Nonlinear Systems; Signal Processing and Estimation; Embedded Systems and Rapid Control Prototyping; Advanced Industrial Control; Control Systems Project and Dissertation.

Examples of optional modules

Intelligent and Vision Systems; Nonlinear and Hybrid Systems; Robotic and Autonomous Systems; Multisensor and Decision Systems.

Project work

You can use our award-winning take-home lab kits to explore core concepts at home. It supports our teaching, giving you the chance to learn by doing, when you want to, not just in classes. You’ll work on a major project of your own as part of your final assessment and there are chances to contribute to other projects throughout the course.

Teaching and assessment

You can expect a mix of lectures, tutorials, laboratory work and individual assignments. All the lectures and tutorials are for our systems and control students only. This helps you to bond with your fellow students, so you can learn from each other. You’re assessed on exams, coursework assignments and a project dissertation.

Read less
This new course will not only teach you about the fundamental and advanced concepts of modelling, simulation, control, optimisation and systems engineering, but also provides you with a range of management techniques, including. Read more

About the course

This new course will not only teach you about the fundamental and advanced concepts of modelling, simulation, control, optimisation and systems engineering, but also provides you with a range of management techniques, including: project management, risk management, professional skills and effective management of innovative development.

Our world-leading research and our partnerships with industry give you an advantage in a competitive careers market. You’ll learn about the very latest developments in systems, control, computational intelligence and robotics – effectively preparing you for a future in engineering.

[Push yourself further]]

We have cutting edge facilities and technology, including: advanced control and systems software, modelling, simulation and controller design tools, robotics and a flexible manufacturing systems laboratory, evolutionary computing laboratory and clean facilities for the assembly of satellite instrumentation.

Make your mark

You could pursue a career with a large international organisation or government department. Our graduates work in sectors such as manufacturing, power generation and sustainable energy, with companies including British Airways, Jaguar Land Rover, NASA, IBM, Rolls-Royce and Unilever.

A masters from Sheffield is the mark of someone with the skills to apply their knowledge in industry, anywhere in the world. Our MSc in Advanced Control and Systems Engineering is accredited by the Engineering Council UK, IET and InstMC. These marks of assurance mean our degrees meet the high standards set by the engineering profession.

A Sheffield masters is a strong foundation for a career in industry or research.

Industry links

We have strong links with industrial partners such as Rolls-Royce and BAE Systems. Our industrial partners help us to design our courses, making sure you learn the right skills.

Rolls-Royce has a research and development centre here, using our expertise to explore today’s challenges. Our masters students often work side by side with researchers at these facilities.

A stimulating environment

The 2014 Research Excellence Framework (REF) rates us No 1 in the UK for research output, ahead of Oxford and Cambridge, and No 3 for overall research excellence. Our world-class reputation attracts highly motivated staff and students.

You’ll be taught by staff who work on real-world projects, developing new ideas – for submarines, robots, Formula One and even space exploration. Their approach to teaching is just as innovative: ideas like the award-winning take-home lab kit and e-puck mobile robotics activities help you develop the problem-solving skills you need for a trailblazing career.

Core Modules

Foundations of Control Systems; State-Space, Optimal Control and Nonlinear Systems; Signal Processing and Estimation; Embedded Systems and Rapid Control Prototyping; Managing Engineering Projects and Risk; Design Innovation Toolbox; Professional Responsibilities of the Engineer; Control Systems Project and Dissertation.

Examples of optional modules

Advanced Industrial Control; Robotic and Autonomous Systems; Intelligent and Vision Systems; Multisensor and Decision Systems; Nonlinear and Hybrid Systems.

Teaching and Assessment

There are lectures, tutorials, laboratory work and individual assignments. You will be assessed on examinations, coursework assignments and a project dissertation.

Read less
This programme will not have a 2016 intake as the content is being extensively improved. A one-year course that will provide engineering and science graduates with a thorough knowledge of modern radio and mobile communication systems. Read more

NOTE

This programme will not have a 2016 intake as the content is being extensively improved.

A one-year course that will provide engineering and science graduates with a thorough knowledge of modern radio and mobile communication systems.

AIM OF COURSE

Mobile radio encompasses a diversity of communications requirements and technical solutions including cellular mobile radio and data systems (eg GSM, GPRS, 3G, 4G, WiMax) and Personal Mobile Radio as well as various indoor radio systems including Bluetooth, WIFI, Wireless Indoor Networks (WINs or LANs). In view of the huge size of the market for these enhanced systems providing flexible personal communications, it is important that industry equips itself to meet this challenge. This MSc course aims to provide industry with graduates who possess a thorough knowledge both of actual modern radio systems and of the fundamental principles and design constraints embodied in those systems.

COURSE STRUCTURE

The course spans 50 weeks of full-time study and is divided into teaching and project modules. The teaching block is based on 6 modular courses, each comprising approximately 40 hours of lectures (or lecture equivalents) with additional directed study and practical work. All of these modules are augmented by specific case studies, applications and tutorials.

COURSE HIGHLIGHTS

Radio Systems Engineering
A radio receiver design is analysed in detail so that design compromises may be understood. Topics include gain, selectivity, noise figure, dynamic range, intermodulation, spurious output, receiver structures, mixers, oscillators, PLL synthesis, filters and future design trends. This course also includes familiarisation with industry - standard design packages. Introduces key concepts in conventional and novel antenna design. It incovers the following topics: basic antenna structures (eg wire, reflector, patch and helical antennas); design considerations for fixed and mobile communication systems; phased array antennas; conformal and volume arrays; array factor and pattern multiplication; mutual coupling; isolated and embedded element patterns; active match; true time delay systems; pattern synthesis techniques; adaptive antennas; adaptive beamforming and nulling.

Mobile Radio Systems and Propagation
The aim of this module is to investigate the nature of radio propagation in mobile radio environments. This will be achieved through the examination of several modern mobile radio systems. The effects of the propagation environment will also be considered.

Spectrum Management and Utilization
The electromagnetic spectrum is a finite resource which has to be properly managed. This module will address issues related to spectrum management. Topics covered will include: spectrum as a resource; space, time and bandwidth; international regulation organisations and control methods; definitions of spectrum utilisation and spectrum utilisation efficiency; spectrum-consuming properties of radio systems; protection ratio; frequency dependent rejection and the F-D curve; spectrum management tools, models and databases; spectrally-efficient techniques; efficient use of the spectrum.

Electromagnetic Compatability (EMC)
This module provides an introduction to EMC. Topics include fundamental EM interactions and how these give rise to potential incompatibilities between systems; current EMC legislation; test environments and test facilities.

Communication Systems and Digital Signal Processing
Students are introduced to a range of concepts underpinning communications system design. DSP topics include the theory and applications of: real-time DSP concepts/devices; specialist filter applications; A/D and D/A interface technology; review of Fourier/digital filter applicable to DSP; modem design: modulation, demodulation, synchronisation, equalisation; signal analysis and synthesis in time and frequency domain; hands-on experience of DSP tools and DSP applications.

Low Power/Low Voltage Design and VHDL
This module introduces the low power and low voltage design requirements brought about by increasingly small scale sizes of circuit integration. The module also introduces students to VHDL, which is widely used in industry today.

Design Exercise (RF Engineering)
This self-contained exercise aims to introduce the student to aspects of RF engineering, system specification, design and implementation. A design, such as a 2GHz receiver, will be taken through to practical implementation.

Radio Frequency and Microwave Measurements
This covers the theory of EM waves, propagation and scattering. It introduces the student to methods and instruments to measure important EM wave properties such as power and reflection coeffcients.

Active RF and Microwave Circuits
This module provides the student with an appreciation of; noise in microwave systems (basic theory, sources of noise, noise power and temperature, noise figure and measurement of noise); detectors and mixers (diodes and rectification, PIN diodes, single ended mixers, balanced mixers, intermodulation products); microwave amplifiers and oscillators (microwave bipolar transistors and FETs, gain and stability, power gain, design of single stage transistor amlifier, conjugate matching, low noise amplifier design and transistor oscillator design).

PROJECT MODULE
Following a course on research skills and project planning, each student carries out one major project from Easter to September focusing on a real industrial problem. Some projects are carried out ‘on-site’ with our local and national industrial partners. The basics of project planning and structure are taught and supervision will be given whilst the student is writing a dissertation for submission at the end of the course.

Read less
This version of our flagship course includes a 12-month work placement. In the first year, you’ll take basic and advanced modules. Read more

About the course

This version of our flagship course includes a 12-month work placement. In the first year, you’ll take basic and advanced modules. In the second year, you’ll put your knowledge and skills to work.

We’ll give you training in research skills. You’ll carry out an extended research project with a dissertation. You’ll also write a report and give a presentation based on your work placement.

Push yourself further

We have cutting edge facilities and technology, including: advanced control
and systems software, modelling, simulation and controller design tools, robotics and a flexible manufacturing systems laboratory, evolutionary computing laboratory and clean facilities for the assembly of satellite instrumentation.

Make your mark

You could pursue a career with a large international organisation or government department. Our graduates work in sectors such as manufacturing, power generation and sustainable energy, with companies including British Airways, Jaguar Land Rover, NASA, IBM, Rolls-Royce and Unilever.

A masters from Sheffield is the mark of someone with the skills to apply their knowledge in industry, anywhere in the world. Our MSc in Advanced Control and Systems Engineering is accredited by the Engineering Council UK, IET and InstMC. These marks of assurance mean our degrees meet the high standards set by the engineering profession.

A Sheffield masters is a strong foundation for a career in industry or research.

Industry links

We have strong links with industrial partners such as Rolls-Royce and BAE Systems. Our industrial partners help us to design our courses, making sure you learn the right skills.

Rolls-Royce has a research and development centre here, using our expertise to explore today’s challenges. Our masters students often work side by side with researchers at these facilities.

A stimulating environment

The 2014 Research Excellence Framework (REF) rates us No 1 in the UK for research output, ahead of Oxford and Cambridge, and No 3 for overall research excellence. Our world-class reputation attracts highly motivated staff and students.

You’ll be taught by staff who work on real-world projects, developing new ideas – for submarines, robots, Formula One and even space exploration. Their approach to teaching is just as innovative: ideas like the award-winning take-home lab kit and e-puck mobile robotics activities help you develop the problem-solving skills you need for a trailblazing career.

Core Modules

Foundations of Control Systems; State-Space, Optimal Control and Nonlinear Systems; Signal Processing and Estimation; Embedded Systems and Rapid Control Prototyping; Managing Engineering Projects and Risk; Design Innovation Toolbox; Professional Responsibilities of the Engineer; Control Systems Project and Dissertation.

Examples of optional modules

Advanced Industrial Control; Robotic and Autonomous Systems; Intelligent and Vision Systems; Multisensor and Decision Systems; Nonlinear and Hybrid Systems.

Teaching and Assessment

There are lectures, tutorials, laboratory work and individual assignments. You will be assessed on examinations, coursework assignments and a project dissertation.

Read less
The objective of the Space Engineering MSc is to educate highly skilled professionals, qualified to develop and manage technical activities related to research and design in the space sector. Read more

Mission and goals

The objective of the Space Engineering MSc is to educate highly skilled professionals, qualified to develop and manage technical activities related to research and design in the space sector. Space Engineering graduates have all the competences to fully develop activities related to the design, technical analysis and verification of a space mission. Within these activities, in particular, graduates from Politecnico di Milano can develop specific skills in the areas of: mission analysis, thermal and structural design of space components, design of the space propulsion and power generation system, design of the orbit and attitude control systems, space systems integration and testing.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/space-engineering/

Professional opportunities

The knowledge gained through the degree in Space Engineering is suited to responsibility positions where working autonomy is required. As an example, positions offered by the space industry, research centres, private or public companies involved in the design, manufacturing and testing of space components. Furthermore, the skills and competences of the space engineer are well suited to companies involved in the design and manufacturing of products characterized by lightweight structures and autonomous operation capacity, and more in general where advanced design tools and technologies are adopted.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Space_Engineering_02.pdf
The Master of Science programme in Space Engineering aims at training professionals able to develop and manage technical activities related to research and design in the space sector. Within these activities, students can develop specific skills in the following areas: mission analysis, thermal and structural design of space components, design of the space propulsion and power generation system, design of the orbit and attitude control systems, and space systems integration/testing. Space engineers are suitable for positions offered by the space industry, research centres, private or public companies involved in the design, manufacturing and testing of space components, or generally in the design of advanced technologies. The programme is taught in English.

Subjects

- 1st year
Aerothermodynamics, Orbital Mechanics, Aerospace Structures, Dynamics and Control of Aerospace Structures with Fundamentals of Aeroelasticity, Fundamentals of Thermochemical Propulsion, Heat Transfer and Thermal Analysis, Communications Skills.

- 2nd year
Spacecraft Attitude Dynamics and Control, Space Propulsion and Power Systems, Space Physics, Numerical Modeling of Aerospace Systems, Experimental Techniques in Aerospace Engineering, Aerospace Technologies and Materials, Telecommunication Systems, Space Mission Analysis and Design, Graduation Thesis and Final Work.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/space-engineering/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/space-engineering/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
The Department of Aerospace Engineering and Mechanics offers a Master of Science in aerospace engineering and mechanics degree via an on-campus program and an off-campus (distance learning - http://bamabydistance.ua.edu/) program through the College of Continuing Studies (http://continuingstudies.ua.edu/). Read more
The Department of Aerospace Engineering and Mechanics offers a Master of Science in aerospace engineering and mechanics degree via an on-campus program and an off-campus (distance learning - http://bamabydistance.ua.edu/) program through the College of Continuing Studies (http://continuingstudies.ua.edu/).

An MSAEM can be earned by coursework only or by a combination of coursework and an approved thesis. Most distance learning students elect to complete the coursework only degree option. On-campus students supported by assistantships are expected to complete an approved thesis. Learn more about admission requirements (http://aem.eng.ua.edu/graduate/admissions-and-financial-assistance/).

Visit the website http://aem.eng.ua.edu/graduate/ms-program/

MSAEM – THESIS (PLAN I) OPTION

Credit Hours
A total of 30 semester credit hours is required for a masters of science in aerospace engineering and mechanics degree. For the MSAEM Plan I option, these credit hours consist of:

- 6 hours of Core coursework
- 6 hours of Mathematics coursework, including GES 554
- 12 hours of Elective coursework
- 6 hours of AEM 599 Thesis Research

Elective coursework must be approved by the student’s advisor. Of the 24 coursework credit hours, at least 18 must have an AEM designation.

- Core Course Requirements -

All students must complete a minimum of one (1) class from the Aerospace Core listing of classes and one (1) class from the Mechanics Core listing of classes.

Aerospace Core:
AEM 567 Orbital Mechanics
AEM 582 Space Systems
AEM 614 Airfoil and Wing Theory
AEM 668 Advanced Dynamics of Flight*

Mechanics Core:
AEM 500 Intermediate Fluid Mechanics
AEM 530 Continuum Mechanics
AEM 562 Intermediate Dynamics
AEM 637 Theory of Elasticity

* For those without a BSAE degree, this course has the pre-requisite of AEM 568.

- Mathematics Requirement -

A total of six credit hours of mathematics is required. GES 554 Partial Differential Equations, which is 3 credit hours, is required and counts toward the six-credit hour mathematics requirement. The remaining three credit hours of mathematics coursework must be approved by the advisor.

- Elective Coursework Requirement -

A student must complete at least 12 hours of elective coursework. These courses are typically AEM courses, but other approved courses are acceptable. The specific courses must be approved by the student’s advisor.

- Thesis Requirement -

The student is required to submit a written thesis and defend in front of a thesis committee for approval by the committee and the graduate school.

- Test Pilot School -

Students that seek credit for Test Pilot School completed through the United States Air Force may send official transcripts from the TPS to the UA Graduate School for transfer credit. The student must receive a grade of at least a B in TPS for the credit to transfer. Additionally, the transfer of credit from TPS is subject to the restrictions placed on the transfer of credit by the Graduate School and the AEM Department. A maximum of six hours may be transferred. For additional information, view the transfer credit policy at the UA Graduate School website (http://graduate.ua.edu/admin/policy/transfercredit.html).

- Transfer Credit -

With approval of the UA Graduate School, a maximum of 12 hours of graduate credit for coursework completed at another institution may be applied toward the 24 credit hour coursework requirement for the MSAEM Plan I degree. The maximum of 12 hours of graduate transfer credit includes the six hours of credit transferred from TPS, if applicable.

All credit toward the MSAEM degree, including transfer credit, must have been earned during the six years (18 fall, spring and summer semesters) immediately preceding the date on which the MSAEM degree is to be awarded. Students who have earned post-baccalaureate course credit are encouraged to explore transfer credit opportunities. For additional information, view the transfer credit policy at the UA Graduate School website (http://graduate.ua.edu/admin/policy/transfercredit.html).

MSAEM – NON-THESIS (PLAN II) OPTION

Credit Hours
A total of 30 semester credit hours is required for a Master of Science in aerospace engineering and mechanics degree. For the MSAEM Plan II option, these credit hours consist of:

- 6 hours of Core coursework
- 6 hours of Mathematics coursework (including GES 554)
- 18 hours of Elective coursework

Elective coursework must be approved by the student’s advisor. Of the 30 coursework credit hours, at least 18 must have an AEM designation.

- Core Course Requirements -

All students must complete a minimum of one (1) class from the Aerospace Core listing of classes and one (1) class from the Mechanics Core listing of classes.

Aerospace Core:
AEM 567 Orbital Mechanics
AEM 582 Space Systems
AEM 614 Airfoil and Wing Theory
AEM 668 Advanced Dynamics of Flight*

Mechanics Core:
AEM 500 Intermediate Fluid Mechanics
AEM 530 Continuum Mechanics
AEM 562 Intermediate Dynamics
AEM 637 Theory of Elasticity

* For those without a BSAE degree, this course has the pre-requisite of AEM 568.

- Mathematics Requirement -

A total of six credit hours of mathematics is required. GES 554 Partial Differential Equations, which is three credit hours, is required and counts toward the six-credit hour mathematics requirement. The remaining three credit hours of mathematics coursework must be approved by the advisor.

- Elective Coursework Requirement -

A student must complete a least 18 hours of elective coursework. These courses are typically AEM courses, but other approved courses are acceptable. The specific courses must be approved by student’s advisor.

- Comprehensive Examination or Culminating Experience -

Students pursuing the MSAEM Plan II degree option have the choice of completing one of the following options to satisfy the requirement of a comprehensive examination or culminating experience:

- Pass one of the Ph.D. qualifying examinations that serves as the comprehensive examination or

- Complete a culminating experience and receive faculty advisor approval for the written report detailing the culminating experience. MSAEM Plan II students may, but are not required to, enroll in AEM 594 Special Projects, three credit hours, complete the culminating experience, and submit the written report detailing the culminating experience as part of the AEM 594 course requirements.

The student must have completed at least 18 hours of coursework prior to submitting the written report for the culminating experience. The approved written report for the culminating experience must be submitted no later than the thesis deadline date during the semester in which the student intends to graduate. The comprehensive examination option may only be attempted twice.

- Test Pilot School -

Students that seek credit for Test Pilot School completed through the United States Air Force may send official transcripts from the TPS to the UA Graduate School for transfer credit. The student must receive a grade of at least a B in TPS for the credit to be transferable. Additionally, the transfer of credit from TPS is subject to the restrictions placed on the transfer of credit by the Graduate School and the AEM Department. A maximum of six hours can be transferred. For additional information, view the transfer credit policy at the UA Graduate School website (http://graduate.ua.edu/admin/policy/transfercredit.html).

- Transfer Credit -

With approval of the UA Graduate School, a maximum of 12 hours of graduate credit for coursework completed at another institution may be applied toward the 30 credit hour coursework requirement for the MSAEM Plan II degree. The maximum of 12 hours of graduate transfer credit includes the six hours of credit transferred from TPS, if applicable.

All credit toward the MSAEM degree, including transfer credit, must have been earned during the six years (18 fall, spring, and summer semesters) immediately preceding the date on which the MSAEM degree is to be awarded. Students who have earned post-baccalaureate course credit are encouraged to explore transfer credit opportunities. For additional information, view the transfer credit policy at the UA Graduate School website (http://graduate.ua.edu/admin/policy/transfercredit.html).

Find out how to apply here - http://graduate.ua.edu/prospects/application/

Read less
The Department of Aerospace Engineering and Mechanics offers a Master of Science in aerospace engineering and mechanics degree via an on-campus program and an off-campus (distance learning - http://bamabydistance.ua.edu/) program through the College of Continuing Studies (http://continuingstudies.ua.edu/). Read more
The Department of Aerospace Engineering and Mechanics offers a Master of Science in aerospace engineering and mechanics degree via an on-campus program and an off-campus (distance learning - http://bamabydistance.ua.edu/) program through the College of Continuing Studies (http://continuingstudies.ua.edu/).

An MSAEM can be earned by coursework only or by a combination of coursework and an approved thesis. Most distance learning students elect to complete the coursework only degree option. On-campus students supported by assistantships are expected to complete an approved thesis. Learn more about admission requirements (http://aem.eng.ua.edu/graduate/admissions-and-financial-assistance/).

Visit the website http://aem.eng.ua.edu/graduate/ms-program/

MSAEM – THESIS (PLAN I) OPTION

Credit Hours
A total of 30 semester credit hours is required for a masters of science in aerospace engineering and mechanics degree. For the MSAEM Plan I option, these credit hours consist of:

- 6 hours of Core coursework
- 6 hours of Mathematics coursework, including GES 554
- 12 hours of Elective coursework
- 6 hours of AEM 599 Thesis Research

Elective coursework must be approved by the student’s advisor. Of the 24 coursework credit hours, at least 18 must have an AEM designation.

- Core Course Requirements -

All students must complete a minimum of one (1) class from the Aerospace Core listing of classes and one (1) class from the Mechanics Core listing of classes.

Aerospace Core:
AEM 567 Orbital Mechanics
AEM 582 Space Systems
AEM 614 Airfoil and Wing Theory
AEM 668 Advanced Dynamics of Flight*

Mechanics Core:
AEM 500 Intermediate Fluid Mechanics
AEM 530 Continuum Mechanics
AEM 562 Intermediate Dynamics
AEM 637 Theory of Elasticity

* For those without a BSAE degree, this course has the pre-requisite of AEM 568.

- Mathematics Requirement -

A total of six credit hours of mathematics is required. GES 554 Partial Differential Equations, which is 3 credit hours, is required and counts toward the six-credit hour mathematics requirement. The remaining three credit hours of mathematics coursework must be approved by the advisor.

- Elective Coursework Requirement -

A student must complete at least 12 hours of elective coursework. These courses are typically AEM courses, but other approved courses are acceptable. The specific courses must be approved by the student’s advisor.

- Thesis Requirement -

The student is required to submit a written thesis and defend in front of a thesis committee for approval by the committee and the graduate school.

- Test Pilot School -

Students that seek credit for Test Pilot School completed through the United States Air Force may send official transcripts from the TPS to the UA Graduate School for transfer credit. The student must receive a grade of at least a B in TPS for the credit to transfer. Additionally, the transfer of credit from TPS is subject to the restrictions placed on the transfer of credit by the Graduate School and the AEM Department. A maximum of six hours may be transferred. For additional information, view the transfer credit policy at the UA Graduate School website (http://graduate.ua.edu/admin/policy/transfercredit.html).

- Transfer Credit -

With approval of the UA Graduate School, a maximum of 12 hours of graduate credit for coursework completed at another institution may be applied toward the 24 credit hour coursework requirement for the MSAEM Plan I degree. The maximum of 12 hours of graduate transfer credit includes the six hours of credit transferred from TPS, if applicable.

All credit toward the MSAEM degree, including transfer credit, must have been earned during the six years (18 fall, spring and summer semesters) immediately preceding the date on which the MSAEM degree is to be awarded. Students who have earned post-baccalaureate course credit are encouraged to explore transfer credit opportunities. For additional information, view the transfer credit policy at the UA Graduate School website (http://graduate.ua.edu/admin/policy/transfercredit.html).

MSAEM – NON-THESIS (PLAN II) OPTION

Credit Hours
A total of 30 semester credit hours is required for a Master of Science in aerospace engineering and mechanics degree. For the MSAEM Plan II option, these credit hours consist of:

- 6 hours of Core coursework
- 6 hours of Mathematics coursework (including GES 554)
- 18 hours of Elective coursework

Elective coursework must be approved by the student’s advisor. Of the 30 coursework credit hours, at least 18 must have an AEM designation.

- Core Course Requirements -

All students must complete a minimum of one (1) class from the Aerospace Core listing of classes and one (1) class from the Mechanics Core listing of classes.

Aerospace Core:
AEM 567 Orbital Mechanics
AEM 582 Space Systems
AEM 614 Airfoil and Wing Theory
AEM 668 Advanced Dynamics of Flight*

Mechanics Core:
AEM 500 Intermediate Fluid Mechanics
AEM 530 Continuum Mechanics
AEM 562 Intermediate Dynamics
AEM 637 Theory of Elasticity

* For those without a BSAE degree, this course has the pre-requisite of AEM 568.

- Mathematics Requirement -

A total of six credit hours of mathematics is required. GES 554 Partial Differential Equations, which is three credit hours, is required and counts toward the six-credit hour mathematics requirement. The remaining three credit hours of mathematics coursework must be approved by the advisor.

- Elective Coursework Requirement -

A student must complete a least 18 hours of elective coursework. These courses are typically AEM courses, but other approved courses are acceptable. The specific courses must be approved by student’s advisor.

- Comprehensive Examination or Culminating Experience -

Students pursuing the MSAEM Plan II degree option have the choice of completing one of the following options to satisfy the requirement of a comprehensive examination or culminating experience:

- Pass one of the Ph.D. qualifying examinations that serves as the comprehensive examination or

- Complete a culminating experience and receive faculty advisor approval for the written report detailing the culminating experience. MSAEM Plan II students may, but are not required to, enroll in AEM 594 Special Projects, three credit hours, complete the culminating experience, and submit the written report detailing the culminating experience as part of the AEM 594 course requirements.

The student must have completed at least 18 hours of coursework prior to submitting the written report for the culminating experience. The approved written report for the culminating experience must be submitted no later than the thesis deadline date during the semester in which the student intends to graduate. The comprehensive examination option may only be attempted twice.

- Test Pilot School -

Students that seek credit for Test Pilot School completed through the United States Air Force may send official transcripts from the TPS to the UA Graduate School for transfer credit. The student must receive a grade of at least a B in TPS for the credit to be transferable. Additionally, the transfer of credit from TPS is subject to the restrictions placed on the transfer of credit by the Graduate School and the AEM Department. A maximum of six hours can be transferred. For additional information, view the transfer credit policy at the UA Graduate School website (http://graduate.ua.edu/admin/policy/transfercredit.html).

- Transfer Credit -

With approval of the UA Graduate School, a maximum of 12 hours of graduate credit for coursework completed at another institution may be applied toward the 30 credit hour coursework requirement for the MSAEM Plan II degree. The maximum of 12 hours of graduate transfer credit includes the six hours of credit transferred from TPS, if applicable.

All credit toward the MSAEM degree, including transfer credit, must have been earned during the six years (18 fall, spring, and summer semesters) immediately preceding the date on which the MSAEM degree is to be awarded. Students who have earned post-baccalaureate course credit are encouraged to explore transfer credit opportunities. For additional information, view the transfer credit policy at the UA Graduate School website (http://graduate.ua.edu/admin/policy/transfercredit.html).

Find out how to apply here - http://graduate.ua.edu/prospects/application/

Read less
MSE (M.Sc. in Space Engineering) is an international full-time Master’s programme in space engineering that starts at Technische Universität Berlin in April each year. Read more
MSE (M.Sc. in Space Engineering) is an international full-time Master’s programme in space engineering that starts at Technische Universität Berlin in April each year. The aim of the programme is to educate systems engineers equipped to become leaders in the space industry.

At the Chair of Space Technology of TU Berlin

The course is offered by the Chair of Space Technology at Technische Universität Berlin and combines excellent teaching in space technology with project management and intercultural skills. The entire programme, over four semesters, is taught in English.

Highly project oriented Master’s programme

The Master’s programme is highly project oriented and designed to prepare students for the requirements of the global space industry. Students have the chance to be involved in challenging satellite projects, working within intercultural teams. Especially, they benefit from the worldwide leading expertise and network of TU Berlin in the field of small satellites. Interdisciplinary skills, such as project management, innovation marketing and business will complement the curriculum.

Internship experience in the European space industry

Furthermore, the opportunity to gain internship experience in the European space industry will be provided. After graduation, students will be equipped with skills, experience and a strong network to boost their space career either in Europe, in their home country or anywhere else.

Read less
This Postgraduate Certificate has been designed for engineering professionals who are interested in developing their careers into systems engineering or project management roles in the defence and security domains. Read more
This Postgraduate Certificate has been designed for engineering professionals who are interested in developing their careers into systems engineering or project management roles in the defence and security domains.

Degree information

Students will develop a powerful set of skills and knowledge about defence and security systems and gain awareness and understanding of the economic and organisational context within which defence and security systems are developed, including the limitations these can impose. Depending on the modules chosen, students may focus more on business, project management, reliability or design aspects.

Students undertake modules to the value of 60 credits.

The programme consists of four taught modules of 15 credits each.

Core modules
Students must take Defence and Security Systems (15 credits) and either three from the list below or two from the list below and one optional module.
- Business Environment
- Lifecycle Management
- Risk, Reliability and Resilience
- Systems Thinking and Engineering Management

Optional modules
- Delivering Complex Projects
- Project Management* (leading to Association for Project Management examination)
- Systems Design
- Technology Strategy
* Delivered in association with UCL School of Management

Teaching and learning
The programme consists of four taught modules, each of which is delivered as a five-day block week consisting of a blend of interactive lectures, small-group exercises and presentations, case studies and workshop activity. Formative feedback is given to students throughout the modules. Modules are formally assessed through coursework to be completed a few weeks after the module, and for some modules there is also a short test or a 1.5 hour written examination.

Further information on modules and degree structure is available on the department website: http://www.ucl.ac.uk/syseng/pg-taught/sem

Careers

Students who have studied this subject have found employment in defence, aerospace, rail, construction, cybersecurity, engineering, IT, management consultancy and many other areas.

Employability
Systems engineering is a highly sought-after expertise, particularly in engineering and technology-based organisations.

The programme's industrial advisory board ensures that the subjects students learn about cover the key issues faced by industry.

Why study this degree at UCL?

The programme combines interactive lectures, group exercises and case studies to reinforce key points. Lecturers are experts in the field, many of whom have engaged in the practice of systems engineering in industry, and all of whom oversee research across a broad range of subjects relating to systems engineering, project management and technology management.

Students with this degree will gain the skills, knowledege and confidence to further their careers. They will be able to build their professional contacts with like-minded individuals from different organisations.

On successful completion of the 60-credit programme, students may choose to apply to transfer their credit towards a 120-credit Postgraduate Diploma or a 180-credit MSc in Systems Engineering Management.

Accreditation
The MSc in Systems Engineering Management (which students may choose to go on to study on successful completion of this Postgraduate Certificate) is accredited by the Institution of Engineering and Technology (IET) on behalf of the Engineering Council for the purposes of fully meeting the academic requirement for registraton as a Chartered Engineer.

Read less
This Postgraduate Certificate is designed for engineering professionals who are interested in developing their careers into systems engineering or project management roles in the rail domain. Read more
This Postgraduate Certificate is designed for engineering professionals who are interested in developing their careers into systems engineering or project management roles in the rail domain.

Degree information

Students will develop a powerful set of skills and knowledge about rail systems and gain awareness and understanding of the economic and organisational context within which rail sytems are developed, including the limitations these can impose. Depending on the modules chosen, students may focus more on business, project management, reliability or design aspects.

Students undertake modules to the value of 60 credits.

The programme consists of four taught modules of 15 credits each.

Core modules
Students must take Rail Systems (15 credits) and either three from the list below or two from the list below and one optional module.
- Business Environment
- Lifecycle Management
- Risk, Reliability, Resilience
- Systems Thinking and Engineering Management

Optional modules
- Delivering Complex Projects
- Project Management* (leading to Association for Project Management examination)
- Systems Design
- Technology Strategy
* Delivered in association with UCL School of Management

Teaching and learning
The programme consists of four taught modules, each of which is delivered as a five-day block week consisting of a blend of interactive lectures, small-group exercises and presentations, case studies and workshop activity. Formative feedback is given to students throughout the modules. Modules are formally assessed through coursework to be completed a few weeks after the module, and for some modules there is also a short test or a 1.5 hour written examination.

Further information on modules and degree structure is available on the department website: http://www.ucl.ac.uk/syseng/pg-taught/sem

Careers

Students who have studied this subject have found employment as systems engineers, engineering managers, project managers and consultants in rail, construction, engineering, IT and many other areas.

Employability
Systems engineering is a highly sought-after expertise, particularly in engineering and technology-based organisations.

The programme's industrial advisory board ensures that the subjects students learn about cover the key issues faced by industry.

Why study this degree at UCL?

The programme combines interactive lectures, group exercises and case studies to reinforce key points. Lecturers are experts in the field, many of whom have engaged in the practice of systems engineering in industry, and all of whom oversee research across a broad range of subjects relating to systems engineering, project management and technology management.

Students with this degree will gain the skills, knowledege and confidence to further their careers. They will be able to build their professional contacts with like-minded individuals from different organisations.

On successful completion of the 60-credit programme, students may choose to apply to transfer their credit towards a 120-credit Postgraduate Diploma or a 180-credit MSc in Systems Engineering Management.

Accreditation
The MSc in Systems Engineering Management (which students may choose to go on to study on successful completion of the Postgraduate Certificate) is accredited by the Institution of Engineering and Technology (IET) on behalf of the Engineering Council for the purposes of fully meeting the academic requirement for registraton as a Chartered Engineer.

Read less
There is a great need for suitably qualified engineers to fulfill the existing and future needs of the global smart economy. This course addresses that need by providing an exciting range of topical modules and a state-of-the-art engineering facility. Read more

Overview

There is a great need for suitably qualified engineers to fulfill the existing and future needs of the global smart economy. This course addresses that need by providing an exciting range of topical modules and a state-of-the-art engineering facility. The programme also offers the student a chance to develop their research skills in a full-time three month project.

In the world of increasingly connected things and people, electronic engineers develop the technology that is the interface between the digital and the physical worlds. With the increasing pervasiveness of electronics enhanced things, and the need for ever-present wire-free communication, there is an increasing demand for engineers with experience in wireless communications systems and embedded computing systems.

The internet of things will lead to billions of wirelessly connected devices that will fundamentally change our approach to wireless systems and networks. To address this, there is a need for well qualified graduates who can design solutions based on solid understanding of the wireless environment and electronic hardware.
Similarly, as we continue to embed intelligence in everything from home appliances to cars and wearable sensors to robotic systems, there is growing need for engineers who understand the unique problems of real time application deadlines, resource constrained computing environments, and embedded intelligence.
The ME Electronic Engineering has been designed to provide two specialized module sets that introduce advanced techniques and topical content: one focusing on wireless communications and the other on embedded systems. These are supported by core modules which provide techniques that are widely applied and reusable across a range of engineering applications.
The programme has been designed to have a large project element to allow students to demonstrate their expertise in their chosen specialism. In addition students will be invited to present their work in an open day to invited local industry leaders. A small number of placements may be available for students graduating in 2016 (to be confirmed).

Course Structure

Note: As module availability may change year on year, applicants should check the Department web site for the most up to date list of modules available for 2016-2017, see web address below:

https://www.maynoothuniversity.ie/electronic-engineering/current-students

Career Options

Graduates will have enhanced qualifications and up to date knowledge of modern cutting-edge techniques and technology suitable for a range of electronic and ICT positions in the smart economy.

Graduates of this course are well qualified to work in wireless communications and embedded systems space. Both of these areas are seeing business growth and, despite the demand, both areas are experiencing a shortage of suitably skilled engineers. Therefore this programme will significantly enhance your job prospects in these fields.
The region around Maynooth and the Greater Dublin Region is host to one of the greatest concentrations of ICT companies – ranging from large multinational companies such as Intel, IBM and Google to a very active and strong ecosystem of specialist and start-up companies. Maynooth University is at the heart of this industry and this programme will provide opportunities for students to engage with the community.
As a result of the advanced techniques introduced and the substantial project, this programme also provides a suitable foundation for students who may be considering undertaking further research in the area of the internet of Things, embedded systems and wireless communication.
International students from outside the European Economic Area may also avail of the Third Level Graduate Scheme which allows graduates to remain in Ireland for up to 12 months after graduation to seek employment and if successful to apply for a Work Permit or Green Card Permit.

Find out how to apply here https://www.maynoothuniversity.ie/electronic-engineering/our-courses/meng-electronic-engineering#tabs-apply

Find information on Scholarships here https://www.maynoothuniversity.ie/study-maynooth/postgraduate-studies/fees-funding-scholarships

Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X