• University of Southampton Featured Masters Courses
  • Anglia Ruskin University Featured Masters Courses
  • University of Cambridge Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Ross University School of Veterinary Medicine Featured Masters Courses
De Montfort University Featured Masters Courses
Cranfield University Featured Masters Courses
Imperial College London Featured Masters Courses
Institute for Advanced Architecture of Catalonia Featured Masters Courses
Bath Spa University Featured Masters Courses
"space" AND "science"×
0 miles

Masters Degrees (Space Science)

We have 430 Masters Degrees (Space Science)

  • "space" AND "science" ×
  • clear all
Showing 1 to 15 of 430
Order by 
This MSc effectively transfers to students the knowledge and expertise gained by UCL space scientists over more than four decades and is taught by world-recognised researchers in the field. Read more
This MSc effectively transfers to students the knowledge and expertise gained by UCL space scientists over more than four decades and is taught by world-recognised researchers in the field. The programme aims to provide a broad understanding of all aspects of space science together with specialised training in research methods, directly applicable to a career in academia, the public and private sectors.

Degree information

The Space Science pathway is focussed on scientific research applications of space technology; it aims to equip participants with a sound knowledge of the physical principles essential to sustain careers in space research and related fields. Students develop a thorough understanding of the fundamentals of:

a range of space science fields
spacecraft, space science instrumentation, the space environment, space operations and space project management
Students undertake modules to the value of 180 credits.

The programme consists of four core modules (60 credits), three optional modules (45 credits), a group project (15 credits), and a research project (60 credits).

Core modules
-Space Data Systems and Processing
-Space Instrumentation and Applications
-Space Science, Environment and Satellite Missions
-Space Systems Engineering
-Group Project

Optional modules
-Planetary Atmospheres
-Solar Physics
-High Energy Astrophysics
-Space Plasma and Magnetospheric Physics
-Principles and Practice of Remote Sensing
-Global Monitoring and Security

Dissertation/report
All MSc students undertake an independent research project, which normally involves attachment to a research group, and culminates in a report of 10,000–12,000 words.

Teaching and learning
The programme is delivered through a combination of lectures, tutorials, team-based coursework exercises, presentations and tutorials. Student performance is assessed through unseen written examination, coursework, and the individual and group projects.

Careers

The programme aims to prepare students for further research degrees and/or careers in space research or the space industry. First destinations of recent graduates include:
-University of Lancaster: PhD Solar Physics
-Irongate Archaeological Project: IT Specialist
-UCL: PhD Space Climate Physics

Why study this degree at UCL?

UCL’s Space & Climate Physics Department, located at the Mullard Space Science Laboratory, is a world-leading research organisation and is the largest university space science group in the UK.

It offers a unique environment at the forefront of space science research, where scientists and research students work alongside top engineers building and testing instruments for space, as well as studying the data from these and other spaceborne and ground-based instruments.

The close contact that the laboratory enjoys with space agencies such as ESA and NASA and with industrial research teams encourages the development of transferable skills which enhance job prospects in academic circles and beyond.

Read less
This postgraduate qualification is designed for those with an academic or professional interest in space science and the technology that underpins this discipline. Read more
This postgraduate qualification is designed for those with an academic or professional interest in space science and the technology that underpins this discipline. It equips students with the skills to carry out scientific investigations using space-based instrumentation, both individually and as a team. Students learn how to use a programming language in support of space science applications and develop other skills that are relevant to further research or employment in the space sector. The qualification also requires students to conduct an in-depth research project on a topic in space science or space technology.

Key features of the course

•Develops skills in conducting science in the space environment through the use of robotic experiments
•Explores current debates in space and planetary sciences using data from space missions
•Develops technical and professional skills according to individual needs and interests
•Culminates with an in-depth individual research project in space science or space technology.

This qualification is eligible for a Postgraduate Loan available from Student Finance England. For more information, see our fees and funding webpage.

Modules

To gain this qualification, you need 180 credits as follows:

60 credits from the compulsory module:

• Space science (S818) NEW

Plus

30 credits from List A: Optional modules

• Managing technological innovation (T848)
• Project management (M815)
• Strategic capabilities for technological innovation (T849)

Plus

30 credits from List B: Optional modules

• Finite element analysis: basic principles and applications (T804)
• Manufacture materials design (T805)
• Software development (M813)
• Software engineering (M814)

a 60-credit compulsory module:

Compulsory module

The MSc project module for MSc in Space Science and Technology (SXS810)

The modules quoted in this description are currently available for study. However, as we review the curriculum on a regular basis, the exact selection may change over time.

Credit transfer

If you’ve successfully completed some relevant postgraduate study elsewhere, you might be able to count it towards this qualification, reducing the number of modules you need to study. You should apply for credit transfer as soon as possible, before you register for your first module. For more details and an application form, visit our Credit Transfer website.

Read less
Taught jointly by UCL’s Space & Climate Physics and UCL’s Electronic & Electrical Engineering Departments by expert researchers and engineers in the field… Read more
Taught jointly by UCL’s Space & Climate Physics and UCL’s Electronic & Electrical Engineering Departments by expert researchers and engineers in the field, this MSc programme aims to provide a broad understanding of the basic principles of space technology and satellite communications together with specialised training in research methods and transferable skills, directly applicable to a career in the public and private space sectors.

Degree information

The Space Technology pathway is focussed on the application of space technology in industrial settings, and therefore has as its main objective to provide a sound knowledge of the underlying principles which form a thorough basis for careers in space technology, satellite communications and related fields. Students develop a thorough understanding of the fundamentals of:
-Spacecraft, satellite communications, the space environment, space operations and space project management.
-The electromagnetics of optical and microwave transmission, and of communication systems modelling.
-A range of subjects relating to spacecraft technology and satellite communications.

Students undertake modules to the value of 180 credits.

The programme consists of three core modules (45 credits), four optional modules (60 credits), a Group Project (15 credits) and an Individual research Project (60 credits).

Core modules
-Space Science, Environment and Satellite Missions
-Space Systems Engineering
-Communications Systems Modelling Type
-Group Project

Optional modules - at least one module from the following:
-Spacecraft Design – Electronic Sub-systems
-Mechanical Design of Spacecraft
-Antennas and Propagation
-Radar Systems
-Space-based Communication Systems

At least one module from:
-Space Instrumentation and Applications
-Space Plasma and Magnetospheric Physics
-Principles and Practice of Remote Sensing
-Global Monitoring and Security
-Space Data Systems and Processing

Dissertation/report
All MSc students undertake an Individual research Project, which normally involves attachment to a research group, and culminates in a report of 10,000–12,000 words.

Teaching and learning
The programme is delivered through a combination of lectures, coursework problem tasks, team-based coursework exercises, presentations and tutorials. Student performance is assessed through unseen written examinations, coursework, and the individual and group projects.

Careers

The programme aims to prepare students for careers in space research or the space industry, or further research degrees.

First destinations of recent graduates include:
-ONERA: Research Engineer
-Hispassat: Telecommunications Engineer
-Detica: Engineer
-Equinox Consulting: Financial Consultant
-Murex: Financial Consultant
-Risk Management Solutions: Risk Analyst
-Defence Science and Technology Laboratory: Analyst
-School of Electronics & Computer Science IT-Innovation: Research Engineer
-EADS Astrium Ltd: Engineer
-Thales Space: Engineer

Why study this degree at UCL?

UCL Space & Climate Physics, located at the Mullard Space Science Laboratory, is a world-leading research organisation and is the largest university space science group in the UK.

It offers a unique environment at the forefront of space science research, where scientists and research students work alongside top engineers building and testing instruments for space as well as studying the data from these and other spaceborne and ground-based instruments.

The close contact that the laboratory enjoys with space agencies such as ESA and NASA and with industrial research teams encourages the development of transferable skills which enhance job prospects in industrial and research centres in the public and private space sectors.

Read less
What is the Master of Space Studies all about?. The Master of Space Studies programme is designed to prepare scientists to respond to a myriad of challenges and opportunities. Read more

What is the Master of Space Studies all about?

The Master of Space Studies programme is designed to prepare scientists to respond to a myriad of challenges and opportunities. In addition to coursework in space sciences, the curriculum is enriched by a Master's thesis and a series of guest lecturers from international, national and regional institutions.

This is an advanced Master's programme and can be followed on a full-time or part-time basis.

Structure

The programme is conceived as an advanced master’s programme and as such it requires applicants to have successfully completedan initial master’s programme in either the humanities and social sciences, exact sciences and technology or biomedical sciences.

  • The interdisciplinary nature of the programme is expressed by the common core of 25 ECTS in introductory coursework. These courses are mandatory for every student. They acquaint the student with the different aspects that together form the foundation of space-related activities. The backgrounds of the students in programme are diverse, but all students have the ability to transfer knowledge across disciplines.
  • Depending on their background and interests, students have the opportunity to deepen their knowledge through more domain-specific optional courses, for a total of 20 ECTS, covering the domains of (A) Space Law, Policy, Business and Management, (B) Space Sciences and (C) Space Technology and Applications, with the possibility to combine the latter two. 
  • For the master’s thesis (15 ECTS), students are embedded in a research team of one of the organising universities, or in an external institute, organisation or industrial company, in which case an academic supervisor is assigned as the coordinator of the project. The master’s thesis is the final section of the interdisciplinary programme, in which the acquired knowledge and abilities are applied to a complex and concrete project.

Department

The mission of the Department of Physics and Astronomy is exploring, understanding and modelling physical realities using mathematical, computational, experimental and observational techniques. Fifteen teams perform research at an international level. Publication of research results in leading journals and attracting top-level scientists are priorities for the department.

New physics and innovation in the development of new techniques are important aspects of our mission. The interaction with industry (consulting, patents...) and society (science popularisation) are additional points of interest. Furthermore, the department is responsible for teaching basic physics courses in several study programmes.

Learning Outcomes

After the completion of the programme, students will have attained the following learning outcomes:

Knowledge and understanding

LO1: Are capable of analysing and understanding the main scientific, technological, political, legal and economical aspects of space activities.

LO2: Demonstrate an advanced knowledge in one of the following fields: A. Space Law, Policy, Business and Management; B. Space Sciences; C. Space Technology.

Skills

LO3: Are capable of discussing and reporting on the main scientific, technological, political, legal and economical aspects of space activities.

LO4: Can apply, in the field of space studies, the knowledge, skills and approaches they obtained during their previous academic master.

LO5: Are able to integrate their own disciplinary expertise applied to space related activities within their broad and complex multi-disciplinary environment, taking into account their societal, technological and scientific context.

LO6: Can communicate clearly and unambiguously to specialist and non-specialist audiences about space projects in general and their specific area of expertise.

LO7: Have the skills to commence participation in complex space projects in multi-disciplinary and/or multinational settings in the framework of institutions, agencies or industry. This includes information collection, analysis and drawing conclusions, individually and/or as part of a team.

LO8: Can undertake research in the space field individually, translate the findings in a structured fashion, and communicate and discuss the results in a clear manner (oral and written).

Approaches

LO9: Have a multi-disciplinary approach to complex projects, with special attention to the integration of the different and complementary aspects of such projects.

LO10: Understand and are able to contribute to exploiting the benefits of space for humanity and its environment and are familiarised with the broad spectrum of aspects of peaceful space activities, including the societal ones.

LO11: Have a critical approach towards the place of space activities in their societal framework, including ethical questions arising from space activities.

Career perspectives

Graduates will be in a position to develop a career in the space sector or in space research.

Depending on his/her previous degree, the student will find opportunities in the space industry (engineers, product developers and technical-commercial functions with a high degree of technical and financial responsibilities), research institutions with activities in space (researchers and project developers), (inter)governmental bodies with responsibilities in research and development programmes related to space (project managers and directors, policy makers on national, European and international levels). The spectrum of employment possibilities encompasses not only the space sector as such, but also the broader context of companies and organisations which use or are facilitated by space missions.



Read less
The objective of the Space Engineering MSc is to educate highly skilled professionals, qualified to develop and manage technical activities related to research and design in the space sector. Read more

Mission and goals

The objective of the Space Engineering MSc is to educate highly skilled professionals, qualified to develop and manage technical activities related to research and design in the space sector. Space Engineering graduates have all the competences to fully develop activities related to the design, technical analysis and verification of a space mission. Within these activities, in particular, graduates from Politecnico di Milano can develop specific skills in the areas of: mission analysis, thermal and structural design of space components, design of the space propulsion and power generation system, design of the orbit and attitude control systems, space systems integration and testing.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/space-engineering/

Professional opportunities

The knowledge gained through the degree in Space Engineering is suited to responsibility positions where working autonomy is required. As an example, positions offered by the space industry, research centres, private or public companies involved in the design, manufacturing and testing of space components. Furthermore, the skills and competences of the space engineer are well suited to companies involved in the design and manufacturing of products characterized by lightweight structures and autonomous operation capacity, and more in general where advanced design tools and technologies are adopted.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Space_Engineering_02.pdf
The Master of Science programme in Space Engineering aims at training professionals able to develop and manage technical activities related to research and design in the space sector. Within these activities, students can develop specific skills in the following areas: mission analysis, thermal and structural design of space components, design of the space propulsion and power generation system, design of the orbit and attitude control systems, and space systems integration/testing. Space engineers are suitable for positions offered by the space industry, research centres, private or public companies involved in the design, manufacturing and testing of space components, or generally in the design of advanced technologies. The programme is taught in English.

Subjects

- 1st year
Aerothermodynamics, Orbital Mechanics, Aerospace Structures, Dynamics and Control of Aerospace Structures with Fundamentals of Aeroelasticity, Fundamentals of Thermochemical Propulsion, Heat Transfer and Thermal Analysis, Communications Skills.

- 2nd year
Spacecraft Attitude Dynamics and Control, Space Propulsion and Power Systems, Space Physics, Numerical Modeling of Aerospace Systems, Experimental Techniques in Aerospace Engineering, Aerospace Technologies and Materials, Telecommunication Systems, Space Mission Analysis and Design, Graduation Thesis and Final Work.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/space-engineering/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/space-engineering/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
The space sector plays an important role in economic, social, technological and scientific developments. The future of the sector and its manifold applications require highly skilled experts with a broad interdisciplinary perspective. Read more

The space sector plays an important role in economic, social, technological and scientific developments. The future of the sector and its manifold applications require highly skilled experts with a broad interdisciplinary perspective. The development of innovative space technologies is fostered by an intense symbiosis between technological sectors and the challenges set by fundamental research in exact and biomedical sciences. Additionally, the economic and social valorisation of space technologies requires an efficient relationship between project developers and the economic sector.

The large scale of space projects imposes important constraints on management. The international character of the space sector and of its broad applications, including the relevance of space for security and defence, implies a need for European and international legal and political measures.

What is the Master of Space Studies all about?

The Master of Space Studies programme is designed to prepare scientists to respond to a myriad of challenges and opportunities. In addition to coursework in space sciences, the curriculum is enriched by a Master's thesis and a series of guest lecturers from international, national and regional institutions.

This is an advanced Master's programme and can be followed on a full-time or part-time basis.

Structure

The programme is conceived as an advanced master’s programme and as such it requires applicants to have successfully completedan initial master’s programme in either the humanities and social sciences, exact sciences and technology or biomedical sciences.

  • The interdisciplinary nature of the programme is expressed by the common core of 25 ECTS in introductory coursework. These courses are mandatory for every student. They acquaint the student with the different aspects that together form the foundation of space-related activities. The backgrounds of the students in programme are diverse, but all students have the ability to transfer knowledge across disciplines.
  • Depending on their background and interests, students have the opportunity to deepen their knowledge through more domain-specific optional courses, for a total of 20 ECTS, covering the domains of (A) Space Law, Policy, Business and Management, (B) Space Sciences and (C) Space Technology and Applications, with the possibility to combine the latter two. 
  • For the master’s thesis (15 ECTS), students are embedded in a research team of one of the organising universities, or in an external institute, organisation or industrial company, in which case an academic supervisor is assigned as the coordinator of the project. The master’s thesis is the final section of the interdisciplinary programme, in which the acquired knowledge and abilities are applied to a complex and concrete project.

Department

The mission of the Department of Physics and Astronomy is exploring, understanding and modelling physical realities using mathematical, computational, experimental and observational techniques. Fifteen teams perform research at an international level. Publication of research results in leading journals and attracting top-level scientists are priorities for the department.

New physics and innovation in the development of new techniques are important aspects of our mission. The interaction with industry (consulting, patents...) and society (science popularisation) are additional points of interest. Furthermore, the department is responsible for teaching basic physics courses in several study programmes.

Objectives

The objectives of the programme are to develop students' knowledge of all aspects of space studies generally and, specifically, to impart:

  • the ability to situate the relevance of students' own curriculum in the broad field of space studies
  • specialised knowledge and attitudes in specific fields relevant to space studies;
  • insight in the development and realisation of large international projects;
  • abilities necessary for the guiding of complex projects.

Career perspectives

Graduates will be in a position to develop a career in the space sector or in space research.

Depending on his/her previous degree, the student will find opportunities in the space industry (engineers, product developers and technical-commercial functions with a high degree of technical and financial responsibilities), research institutions with activities in space (researchers and project developers), (inter)governmental bodies with responsibilities in research and development programmes related to space (project managers and directors, policy makers on national, European and international levels). The spectrum of employment possibilities encompasses not only the space sector as such, but also the broader context of companies and organisations which use or are facilitated by space missions.



Read less
Our Masters in Space Engineering programme is designed to give you the specialist multidisciplinary knowledge and skills required for a career working with space technology and its applications. Read more

Our Masters in Space Engineering programme is designed to give you the specialist multidisciplinary knowledge and skills required for a career working with space technology and its applications.

Surrey students have access to all aspects of the design and delivery of spacecraft and payloads, and as a result are very attractive to employers in space-related industries.

As we develop and execute complete space missions, from initial concept to hardware design, manufacturing and testing, to in orbit operations (controlled by our ground station at the Surrey Space Centre), you will have the chance to be involved in, and gain experience of, real space missions.

Programme structure

This programme is studied full-time over one academic year and part-time students must study at least two taught technical modules per academic year. It consists of eight taught modules and a project.

Example module listing

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Educational aims of the programme

Our philosophy is to integrate the acquisition of core engineering and scientific knowledge with the development of key practical skills (where relevant). To fulfil these objectives, the programme aims to:

  • Attract well-qualified entrants, with a background in Electronic Engineering, Physical Sciences, Mathematics, Computing & Communications, from the UK, Europe and overseas
  • Provide participants with advanced knowledge, practical skills and understanding applicable to the MSc degree
  • Develop participants' understanding of the underlying science, engineering, and technology, and enhance their ability to relate this to industrial practice
  • Develop participants' critical and analytical powers so that they can effectively plan and execute individual research/design/development projects
  • Provide a high level of flexibility in programme pattern and exit point
  • Provide students with an extensive choice of taught modules, in subjects for which the Department has an international and UK research reputation

Intended capabilities for MSc graduates:

  • Underpinning learning– know, understand and be able to apply the fundamental mathematical, scientific and engineering facts and principles that underpin space engineering.
  • Engineering problem solving - be able to analyse problems within the field of mobile and satellite communications and more broadly in electronic engineering and find solutions
  • Engineering tools - be able to use relevant workshop and laboratory tools and equipment, and have experience of using relevant task-specific software packages to perform engineering tasks
  • Technical expertise - know, understand and be able to use the basic mathematical, scientific and engineering facts and principles associated with the topics within space engineering.
  • Societal and environmental context - be aware of the societal and environmental context of his/her engineering activities
  • Employment context - be aware of commercial, industrial and employment-related practices and issues likely to affect his/her engineering activities
  • Research & development investigations - be able to carry out research-and- development investigations
  • Design - where relevant, be able to design electronic circuits and electronic/software products and systems

Technical characteristics of the pathway

This programme in Space Engineering aims to provide a high-level postgraduate qualification relating to the design of space missions using satellites. Study is taken to a high level, in both theory and practice, in the specialist areas of space physics, mechanics, orbits, and space-propulsion systems, as well as the system and electronic design of space vehicles.

This is a multi-disciplinary programme, and projects are often closely associated with ongoing space projects carried out by Surrey Satellite Technology, plc.

This is a large local company that builds satellites commercially and carries out industrially-sponsored research. Graduates from this programme are in demand in the UK and European Space Industries.

Global opportunities

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.



Read less
Space Physiology & Health MSc is a unique programme providing training for biomedical scientists & physicians delivered by international experts from academia, contractors and space agencies (eg NASA). Read more
Space Physiology & Health MSc is a unique programme providing training for biomedical scientists & physicians delivered by international experts from academia, contractors and space agencies (eg NASA). Graduates will be equipped through lectures, seminars and extensive laboratory practicals and visits to RAF & Space Agency (ESA & DLR) facilities to serve future manned space expeditions.

Key benefits

- The programme is unique within Europe.

- Has input from professionals within the Space industry.

- Provides experiences with external partners including the Crew Medical Support Office at the European Astronaut Centre in Cologne.

- Located in the heart of London.

Visit the website: http://www.kcl.ac.uk/study/postgraduate/taught-courses/space-physiology-and-health-msc.aspx

Course detail

- Description -

The programme provides opportunities for students to develop and demonstrate knowledge, understanding and skills in the following areas:

- Detailed and in depth knowledge of the physiological effects of the space environment upon humans and of the methods employed to mitigate such effects.

- Provide practical experience in experimentation methods appropriate to investigate the physiological effects of the space environment and those employed to mitigate such effects.

- A knowledge of instrumentation, calibration, data acquisition and the analysis of results whilst applying the appropriate statistical methods.an understanding of the effect of the space environment upon human behaviour and performance.

- An understanding of the effect of the space environment upon human behaviour and performance.

- A detailed knowledge of the practical implications of disease and physical deconditioning in space-faring humans and the practices required to counter and manage such events.

- Knowledge of the characteristics and practices associated with medical and life science research environments in space.

- Course purpose -

The aim of this programme is to provide graduates with advanced theoretical and practical training in the physiology, psychology and operational medicine of humans exposed to or working in the Space environment.

- Course format and assessment -

Full-time study: Approximately 20 hours of taught classes per week with some entire weeks spent at research establishments in the UK and abroad. Part-time study: Not offered. The programme will comprise lectures, tutorials and seminars with a large practical component. The latter will provide personal experience and experimental studies of a wide variety of Space relevant environments including flight, acceleration, heat and cold, noise, and spatial disorientation. Modules are assessed by coursework and/or examinations. The 10,000 word dissertation (with 10+5 min oral presentation) aims to facilitate student research in the labs of world renowned supervisors in space agencies, academia and industry across the globe.

Career prospects

The programme provides a range of multidisciplinary skills and will help those wishing to pursue a career in human physiology in its broadest sense, either in academic research i.e. PhD, in industry, in Ministry of Defence research laboratories or National/International Space agencies including ESA.

How to apply: http://www.kcl.ac.uk/study/postgraduate/apply/taught-courses.aspx

About Postgraduate Study at King’s College London:

To study for a postgraduate degree at King’s College London is to study at the city’s most central university and at one of the top 20 universities worldwide (2015/16 QS World Rankings). Graduates will benefit from close connections with the UK’s professional, political, legal, commercial, scientific and cultural life, while the excellent reputation of our MA and MRes programmes ensures our postgraduate alumni are highly sought after by some of the world’s most prestigious employers. We provide graduates with skills that are highly valued in business, government, academia and the professions.

Scholarships & Funding:

All current PGT offer-holders and new PGT applicants are welcome to apply for the scholarships. For more information and to learn how to apply visit: http://www.kcl.ac.uk/study/pg/funding/sources

Free language tuition with the Modern Language Centre:

If you are studying for any postgraduate taught degree at King’s you can take a module from a choice of over 25 languages without any additional cost. Visit: http://www.kcl.ac.uk/mlc

Read less
Ocean acidification, energy resources, coastal erosion and flooding are just some of the issues that make ocean science such an important component when addressing the world’s most pressing environmental, energy and construction challenges. Read more
Ocean acidification, energy resources, coastal erosion and flooding are just some of the issues that make ocean science such an important component when addressing the world’s most pressing environmental, energy and construction challenges. This course allows you to tailor your study towards employment in a specific sector including oceanographic and environmental research and consultancy, marine renewable energy, marine conservation management, offshore exploration and hydrographic surveying.

You will equip yourself for a career in hydrographic surveying by choosing the hydrography pathway in the final year - study the exploration and sustainable management of marine resources, construction and environmental support. You’ll conduct a research or consultancy-type project closely linked to one of our marine science research groups or industrial partners, providing an experience of working with established marine scientists and contributing to current work in a wider context.

Key features

-Gain a sound knowledge base across all areas of ocean science with options to develop specialist skills in marine conservation, oceanography or hydrography.
-Specialise in subjects that most interest you including coastal dynamics, seafloor mapping, physical oceanography, meteorology, remote sensing, offshore exploration, biological oceanography, marine pollution and conservation.
-Equip yourself for a career in hydrographic surveying by choosing the hydrography pathway in the final year (with potential high-level professional FIG/IHO/ICA accreditation) - study the exploration and sustainable management of marine resources, construction and environmental support.
-Conduct a research or consultancy-type project closely linked to one of our marine science research groups or industrial partners, providing an experience of working with established marine scientists and contributing to current work in a wider context.
-Develop your range of practical skills with our own fully-equipped fleet of boats, a new £4.65 million Marine Station used as a base for fieldwork afloat, industry standard oceanographic and surveying equipment and a type-approved ship simulator.
-Option to take the industry-recognised professional diving qualification (HSE Professional SCUBA) alongside your degree, and an optional scientific diving module to provide training and qualification for diving-based research projects and employment (limited places and additional costs apply).
-Experience an overseas field course that's aimed at integrating ocean science knowledge and understanding across the different sub-disciplines.

Course details

Year 1
Your first year, shared across the Marine Science Undergraduate Scheme, introduces the full range of topics within the degree and develops your underpinning scientific knowledge and practical skills. You’ll develop your understanding of the Earth’s oceans and the key physical, chemical, biological processes that occur in these systems. You’ll build practical skills and enhance your ability to analyse, present and interpret scientific data through field-based activities.

Core modules
-OS101 Introduction to Ocean Science
-OS103 Biology and Hydrography of the Ocean
-OS105 Mapping the Marine Environment
-OS102 Physical and Chemical Processes of the Ocean
-OS104 Measuring the Marine Environment

Optional modules
-GEES1002PP Climate Change and Energy
-GEES1003PP Sustainable Futures
-GOV1000PP One Planet? Society and Sustainability
-ENGL405PP Making Waves: Representing the Sea, Then and Now
-GEES1001PP Natural Hazards
-OS106PP Our Ocean Planet
-OS107PP Space Exploration

Year 2
In your second year, the emphasis will be on understanding core aspects of ocean science, including topics in ocean exploration, oceanography and marine conservation, and enhancing your practical and research skills. You’ll participate in a field work module based at our Marine Station, learning how to use industry standard instrumentation and software for measuring a variety of parameters in the coastal zone and you’ll develop a proposal for your final year project. There's also opportunity to apply scientific diving skills gained alongside the degree for suitably qualified individuals.

Core modules
-OS201 Global Ocean Processes
-OS202 Monitoring the Marine Environment
-OS206 Researching the Marine Environment

Optional modules
-OS208 Meteorology
-OS209 Marine Remote Sensing
-OS207 Scientific Diving
-OS203 Seafloor Mapping
-OS204 Waves, Tides and Coastal Dynamics
-OS205 Managing Human Impacts in the Marine Environment

Year 3
You’ll focus on topics with special relevance to your future plans including options across the specialisms offered through the related BSc Marine Science courses. A residential field course allows you to develop a group-based in-situ investigative study. A large part of the year is spent completing a research project, carrying out an in-depth investigation under the guidance of a member of academic staff.

Optional modules
-BPIE338 Ocean Science Placement

Year 4
Pathway options in the final year provide both an opportunity for you to pursue your choice of topic in greater depth and an opportunity to increase the breadth of your study through modules from the applied contemporary offerings of our Marine Science MSc programmes: Applied Marine Science, Marine Renewable Energy and Hydrography. You’ll conduct a research or consultancy-type project closely linked to one of our internationally-leading marine science research groups or industrial partners, providing an experience of working with established marine scientists.

Optional modules
-MAR517 Coastal Erosion and Protection
-MATH523 Modelling Coastal Processes
-MAR520 Hydrography
-MAR522 Survey Project Management
-MAR515 Management of Coastal Environments
-MAR518 Remote Sensing and GIS
-MAR521 Acoustic and Oceanographic Surveying
-MAR507 Economics of the Marine Environment
-MAR523 Digital Mapping
-MAR516 Contemporary Issues in Marine Science
-MAR519 Modelling Marine Processes

Every undergraduate taught course has a detailed programme specification document describing the course aims, the course structure, the teaching and learning methods, the learning outcomes and the rules of assessment.

Read less
Our Primary and Secondary PGCEs are "Outstanding" (Ofsted, 2015). All our Education courses have been developed in collaboration with Partnership schools and the National College for Teaching and Leadership (NCTL). Read more

About the course

Our Primary and Secondary PGCEs are "Outstanding" (Ofsted, 2015).

All our Education courses have been developed in collaboration with Partnership schools and the National College for Teaching and Leadership (NCTL). This ensures not only the highest possible quality of provision, but also relevance in reflecting national and school-level priorities in Education.

Aims

The Brunel Science Postgraduate Certificate (PGCE) is a M-level course with 60 credits that can contribute to further Master's level study in Education, subject to approval.

The course will equip you with the knowledge, understanding and skills necessary to teach science and the ability to:

Demonstrate an understanding of the vital role of the teacher and the school in ensuring excellence in the educational experiences of young people

Undertake professional practice which enables you to evidence the Teachers’ Standards which facilitate the award of Qualified Teacher Status

Understand the relationships between Education and science within current national and government frameworks, and critically reflect on the impact of these in the work of schools and the educational experiences of young people

Recognise the contribution that science as part of the whole school curriculum makes to the development of the individual learner and groups of learners

Think critically about what it means to be scientifically educated and how this informs curriculum planning and design within the subject area

Apply a thorough knowledge and understanding of science (Physics) National Curriculum to the planning of curriculum experiences for pupils in school

Demonstrate competence and confidence in your ability to teach across the contexts for pupil learning in the mathematics National Curriculum range and content, applying principles of continuity and progression

Use subject knowledge and relevant course specifications to plan and deliver the 14-16 curriculum including examination and vocational courses

Demonstrate an understanding of the subject knowledge and specification requirements for the 16-19 curriculum

Utilise a range of teaching strategies to meet the identified learning needs of a wide range of pupils

Utilise a range of resources, including information and communication technology, to enhance pupil learning in physics

Understand the importance of safe practice and safeguarding and apply these in working with young people both within and beyond lessons

Use a wide range of class management strategies to maximise pupil learning

Understand the principles of inclusion and apply these to ensure equality of opportunity for all pupils in the subject area

Understand national frameworks for assessment within the subject area and use these to support the recording and analysis of data, and the subsequent use of this to plan the next phase of learning

Raise the status of the subject area by demonstrating high standards of professionalism at all times

Understand the crucial role of professional learning for the teacher, the pupils and schools.

Course Content

The PGCE is an intensive programme, which combines an exploration of principles and methods of teaching and learning with practical school-based teaching placements. It lasts for 36 weeks from early September to late June.

The Secondary programme prepares you to work with pupils aged 11-16. At the heart of our programmes is a vision that our student teachers’ teaching will impact positively on pupil progress over time in schools and that our Partnership activities with schools will contribute to school improvement. We aspire for all our students to be outstanding teachers.

The PGCE Secondary courses are structured around three modules, which share a generic General Professional Education (GPE) component. The GPE programme involves an enquiry based learning approach, which combines taught sessions with independent professional learning activities (PLAs). These PLAs require independent research, which is either school-related or school-based. The three PGCE modules are:

1. Education Studies I
This module covers the following GPE themes:

Professionalism, values and reflective practice;
Safeguarding, child protection and e-safety;
Understanding curriculum and the National Curriculum;
Supporting learners, learning and effective behaviour management;
Inclusive education, with a specific focus on supporting pupils with SEND and SEBD;
Effective planning and teaching to promote pupil progress;
Assessment and its role in promoting effective learning.

You will also focus on teaching and learning issues of particular concern to your phase or subject specialism.

2. Education Studies II
This module covers the following GPE themes:

Applying for your first post;
Understanding data analysis to support effective teaching and learning;
Behaviour for learning and the wider professional responsibilities of the subject teacher;
Inclusive education, with a specific focus on supporting pupils with English as an Additional Language, pupils receiving the Pupil Premium and able pupils;
Safeguarding with a focus on the Prevent and Channel national strategy and bullying and homophobic bullying.

You will also continue to focus on teaching and learning issues of particular concern to your phase or subject specialism.

3. Education Studies III
This module focuses specifically on supporting student teachers to make an effective transition into their first post and examines the following themes in GPE:

Preparing for induction and the professional learning action plan for your first post;
Pathways into leadership in education;
Learning outside the classroom;
Contributing to the wider aspects of the formal and informal curriculum and your wider professional role as a teacher.

Subject Specific Course Content

As a qualified science teacher you may be required to teach National Curriculum general science to Key Stage 4, as well as your particular specialism to ‘A’ level and beyond. To this end, the course aims to facilitate your transformation into a well-educated, well-trained, confident and motivated science educator.

Along with English and mathematics, science is one of the three core subjects of the National Curriculum and since all pupils have to study a broad, balanced curriculum in science there is a demand for well-qualified and skilled science teachers. Most pupils entering secondary school are excited at the prospect of work, for the first time in a fully equipped laboratory, and secondary school science teachers have to build upon and sustain this interest for the subject.

To meet this challenge we need capable, skilled and enthusiastic teachers who are able to motivate young people and lead them to discover the wonders of science.

School Experience

School-based professional learning is a compulsory element of all programmes leading to a recommendation for QTS. The course involves the statutory requirement of at least 120 days of school experience in the form of block school placements undertaken in at least two different contexts.

Our current partnership schools are mainly located in the West London area and adjoining Home Counties. We have developed close links with a number of very good schools over a number of years, and offer placements within carefully chosen schools that provide an appropriate professional learning experience. The ethnic and cultural diversity of the schools we work with is a distinctive aspect of our provision and we are equally proud of the diversity of our student teacher cohort, who reflect the communities in which many of them go on to work as teachers.

We also offer student teachers the opportunity to experience placements in alternative settings, which include special schools, Pupil Referral Units (PRUs), young offenders institutions. This further demonstrates our commitment to preparing teachers to work with young people in a diverse range of educational contexts.

You will be allocated a school-based mentor, selected for their experience and expertise, who is there to help you develop and learn while you are on placement. The importance of this person should not be underestimated. Teaching is a very challenging profession and with the help of your school-based mentor and your University tutor we aim to make sure that you have support every step of the way, encouraging reflection and development.

Disclosure and Barring Service (DBS), Childcare Disqualification and Prohibition Orders

As an accredited provider of Initial Teacher Education we have to have regard to the Department for Education’s statutory guidance Keeping Children Safe in Education, when carrying out their duties to safeguard and promote the welfare of children. We ensure that all student teachers have been subject to Disclosure and Barring Service (DBS) criminal records checks, including a check of the children’s barred list. The Department for Education has published statutory guidance on the application to schools of the Childcare (Disqualification) Regulations 2009 and related obligations under the Childcare Act 2006.

We undertake our responsibility to ensure that the student teachers are not, therefore, disqualified from childcare or that the student teacher has obtained a childcare disqualification waiver from Ofsted. We also check that candidates are not subject to a prohibition order for teaching issued by the Secretary of State.

Teaching

We adopt an enquiry-based learning approach in our PGCE Secondary courses where students are encouraged to research and investigate a range of broad and subject specific educational themes and issues and bring their findings back for discussion in interactive lectures, workshops and seminars. These themes and issues address national, regional and partnership priorities as well as specific areas for investigation with the subject area.

Assessment

Postgraduate Certificate in Education (PGCE)
The PGCE Secondary programme carries 60 Master’s Level credits and requires you to successfully complete three formally assessed pieces of academic work during the year.
All of these assessments also require an accompanying portfolio of evidence.
The Master’s Level credits provide an excellent foundation for future academic and professional study.

Qualified Teacher Status (QTS)
Alongside the PGCE academic award for your programme, you will also be assessed for the recommendation of QTS. In order to be recommended for QTS you are required to demonstrate that you have met the Teachers’ Standards (DfE, 2013) in both the University and in school and alternative education settings. All aspects of the programme are designed around you being able to demonstrate that you are meeting the Teachers’ Standards.

Part 1 of the Teachers’ Standards require you to:

Set high expectations which inspire, motivate and challenge pupils
Promote good progress and outcomes by pupils
Demonstrate good subject and curriculum knowledge
Plan and teach well structured lessons
Adapt teaching to respond to the strengths and needs of all pupils
Make accurate and productive use of assessment
Manage behaviour effectively to ensure a good and safe learning environment
Fulfil wider professional responsibilities
(Teachers’ Standards, DfE, 2013)

Part 2 of the Teachers’ Standards require students to demonstrate the highest standards of personal and professional conduct.

As the PGCE is a professional course, 100% attendance is an expectation.

Recommendation for Qualified Teacher Status will be made by the Secondary PGCE Examination Board for all those who successfully demonstrate the Teachers’ Standards as shown in the requirements for University and school-based work.

Special Features

As a leading centre of education and with roots in teacher education dating back to 1798, we are able to provide first class teacher education that is internationally recognised.

A Brunel PGCE is a recognised symbol of quality teacher education which accounts for our high employment rates.

At the heart of our programmes is a vision that our student teachers’ teaching will impact positively on pupil progress over time in schools and that our partnership activities with schools will contribute to school improvement. We aspire for all our students to be outstanding teachers.

You will benefit from an established partnership between Brunel and a variety of educational institutions and local schools. Brunel education degrees offer multicultural placement learning opportunities. For example, our location in West London and our diverse and well-established schools network means you will gain highly-valued placement learning experiences in vibrant multicultural schools.

Beyond ITE, for early career teachers we offer the Masters in Teaching (MAT), where students can utilise their 60 PGCE Masters level credits to continue their postgraduate studies part-time, whilst also meeting the requirements outlined for Newly Qualified Teachers (NQTs) and early career development. Where schools have qualified for Enhanced Partnership status with Brunel University London, NQTs in those schools have access to the first year MAT module for free, illustrating our commitment to supporting NQTs into and through their first year of teaching. We also offer a Masters in Education (MAEd), a Doctorate in Education (EdDoc) and PhD postgraduate routes through the Department of Education. This continuum of provision ensures a commitment to teacher education and professional learning at all stages and the growing community of professional practice strengthens our Partnership.

Staff are nationally and internationally recognised for their research, and liaise with government and other agencies on education policy issues. The Department of Education is host to a number of research centres, including the Brunel Able Children’s Centre. The process of learning is informed by cutting-edge research by staff in the strands of: Science, Technology, Engineering and Mathematics (STEM) and Pedagogy and Professional Practice (PPP).

You can take advantage of free access to our excellent University Academic Skills service, ASK.

We have an award winning Professional Development Centre.

Our library has been nominated for national awards for its outstanding provision.

We have on-site volunteering opportunities through our Brunel Volunteers provision.

Our Disability and Dyslexia Service team have an excellent track record of support for students.

Our Union of Brunel Students provides you with a range of additional support and a broad range of extra-curricular opportunities and social events.

There is excellent University-wide access to PCs and the Internet, as well as free loan of media equipment and music/recording studios, and web space on the University server.

Read less
There has been a recent upsurge in commercial interest in the new role of "data scientist". A data scientist is a person who excels at manipulating and analysing data, particularly large data sets that don't fit easily into tabular structures (so-called "Big Data"). Read more
There has been a recent upsurge in commercial interest in the new role of "data scientist". A data scientist is a person who excels at manipulating and analysing data, particularly large data sets that don't fit easily into tabular structures (so-called "Big Data").

Why study Data Science at Dundee?

The School of Computing has been working on 'big data' and data analysis for at least five years; not only working with data but also developing new algorithms and techniques for data scientists. The School already runs the most successful Business Intelligence Masters course in the UK.

This course will be led by Professor Mark Whitehorn and Andy Cobley. Mark is an emeritus professor at the University of Dundee and also runs a successful consultancy company that specialises in BI, Data Sciences and analytics. Andy is the course organiser for both the existing BI course and the new Data Science course.

This course will enhance your employability by providing you with knowledge, skills and understanding of data science research and implementation. You will also acquire skills in the professional procedures necessary to ensure that data science research and implementation is both valid and actionable and engage with contemporary debate about the role, ethics and utility of data science in commercial and other settings.

What is the difference between Data Science and Business Intelligence?

There is clearly a huge overlap with Business Intelligence. A BI specialist will need to understand data and data analytics. However there is a bias towards understanding how data is stored in the current operational systems within an enterprise the design and the implementation of an analytical system such as a data warehouse. A data scientist will be less concerned with the construction of a data warehouse and more interested in the message the specific sets of data can deliver.

However, without some understanding of data warehouses the data scientist will find it difficult to interrogate the data for its secrets. For this reason there is overlap between the two courses.

If you already have a strong grounding in Business Intelligence and would like to upgrade your knowledge to include topics from the Data Science MSc, we offer the relevant Data Science modules either on a stand alone basis or as a PGCert.

What's so good about Data Science at Dundee?

Our facilities will give you 24-hour access to our award winning and purpose-built Queen Mother Building. It has an unusual mixture of lab space and breakout areas, with a range of conventional and special equipment for you to use. It's also easy to work on your own laptop as there is wireless access throughout the building. Our close ties to industry allows us access to facilities such as Windows Azure and Teradata, and university and industry standard software such as Tableau for you to evaluate and use.

A booming Postgraduate culture where the School of Computing maintains a friendly, intimate and supportive atmosphere, and we take pride in the fact that we know all of our students - you're far more than just a matriculation number to us. We have a thriving postgraduate department with regular seminars and guest speakers.

Duncan Ross (Director of Data Sciences at Teradata) has said that: "The first and most important trait is curiosity. Insane curiosity. In many walks of life evolution selects against the kind of person who decides to find out what happens 'if I push that button'. Data Science selects for it."

How you will be taught

The programme will be delivered by Prof. Mark Whitehorn with input from Andy Cobley, Yasmeen Ahmad, Chris Hillman and other specialists from within the School of Computing in an innovative blend of live co-presented master-classes, video seminars and recorded materials. A series of guest speakers from industry will provide case studies across both semesters.

The programme will be provided predominantly on-campus, with two intensive study weeks in each of the semesters. Other classes may be taken off-campus using the university’s VLE, remote desktop, Adobe Connect and video conferencing systems along with telephone conferencing.

What you will study

Semester 1
Big Data - 20 Credits
Business Intelligent Systems - 20 Credits
Data Analysis and Visualisation - 20 Credits

Semester 2
Analytical Database Models and Design - 20 Credits
Advanced statistics and data mining - 20 credits
MDX - 20 Credits

Semester 3
Data Science Mini Project - 20 credits (for Certificate)
Data Science Research Project - 60 credits

PGCert:
The PGCert is intended for students who have a strong grounding in Business Intelligence and would like to upgrade their knowledge to include topics from the Data Science MSc. The modules are available stand alone for those who want to take their time studying the material and perhaps build up to a PGCert.

The three modules that make up the PGCert are:
Big Data
Advanced Anlaysis
Mini Project

For more information about the content of the course, please visit the course webpage on the School of Computing website.

How you will be assessed

Assessment will be by examination, practical coursework and research project.

Careers

Various job sites now report an increase in jobs carrying the title of data scientist. Other career opportunities are in intelligence analysis, data management/database maintenance, data processing manager, database development and research, business intelligence consultant and more.

Read less
The MA in Science and Security is designed to provide an integrated understanding of science and international politics. Developments in technology are central to all aspects of international conflict, and a multidisciplinary understanding of these developments is necessary to fully comprehend their policy implications. Read more
The MA in Science and Security is designed to provide an integrated understanding of science and international politics. Developments in technology are central to all aspects of international conflict, and a multidisciplinary understanding of these developments is necessary to fully comprehend their policy implications. Topics include nuclear weapons, arms control verification, cyber security, and terrorism.

Key benefits

• A unique programme designed to develop students' abilities to understand and analyse the security implications of scientific and technological developments, utilising knowledge and tools of analysis from the hard sciences, political science, history, philosophy and the sociology.

• The Centre for Science and Security Studies, based in the Department of War Studies, provides a vibrant home for the MA. The Centre has a growing cadre of PhD students and researchers, and sponsors its own speaker series. Students on the MA are encouraged to apply for internships (on Centre research projects and/or with other relevant institutions in London, such as the Verification Research, Training and Information Centre (VERTIC) and IISS).

• With a typical 50-50 mix of students with a hard science versus social science/humanities background, the programme provides an excellent opportunity for students to learn from each other as well as from staff and visiting lecturers; in recent years students have institutionalised this by forming their own reading group.

• Students have access to visiting academics, serving officers, government ministers and other experts who give regular public lectures and seminars.

• The Department of War Studies is unique in the UK and one of very few university departments in the world devoted exclusively to the study of war as a human phenomenon.

• The Department has an excellent reputation as a graduate training institution and is recognised by the British Academy, the Arts and Humanities Research Council and the Economic and Social Research council as a training institution for War Studies.

• The Department places great emphasis on recruiting leading experts who bring with them not only a wealth of knowledge and ideas but an extensive and continually growing network of links with other departments, think-tanks, organisations, policy-making bodies and institutions.

• The unrivalled location in the heart of London beside the River Thames brings outstanding advantages. Students enjoy excellent academic, social and cultural opportunities.

• The department is close to the seat of Government, the City, the Imperial War Museum, the National Maritime Museum, the Royal Courts of Justice and the Inns of Court.

Visit the website: http://www.kcl.ac.uk/study/postgraduate/taught-courses/science-and-security-ma.aspx

Course detail

- Description -

There is an increased need in today's world to understand the security implications of scientific and technological developments. While science and technology have always affected national and international security, current developments in the fields of space, nuclear and biological weapons, and long-range missiles as well as work in such emerging fields as biotechnology and information technology suggest that the impact of science on security is becoming more diverse as well as more central to policy planners. At the same time, individuals and sub-national groups have more access to new technologies than ever before.

Our programme is designed to provide you with an integrated understanding of science and politics. This involves developing an understanding of the science underlying key weapons systems and technologies, the main concepts and tools of international politics and security studies, and the process by which scientists and policymakers can interact productively in the policy process. The goal is to equip you to be able to analyse the impact of current and future scientific developments on security.

- Course purpose -

Our programme is designed to provide you with an integrated understanding of science and international politics to cope with the demands of the emerging security agenda.

- Course format and assessment -

Most of the 20-credit modules are assessed by a 4,000-word essay or two 2000-word essays. However, some 20-credit modules are assessed on class participation and attendance, oral vivas or exams, or a combination of these.

Most 40-credit modules are assessed through a combination of essays (3,000-6,000 words), class participation and attendance, oral vivas, exams.

The dissertation module assessment will be on the research proposal (10%) and the dissertation (up to 15,000 words) (90%) for some programmes or solely on the dissertation for others.

Career prospects

Whilst this is not a vocational programme, students on our MA programmes have gone on to build careers in further academic research, NGOs, civil service, NATO, UN, media and publishing, finance and investment, teaching, and the armed forces.

How to apply: http://www.kcl.ac.uk/study/postgraduate/apply/taught-courses.aspx

About Postgraduate Study at King’s College London:

To study for a postgraduate degree at King’s College London is to study at the city’s most central university and at one of the top 20 universities worldwide (2015/16 QS World Rankings). Graduates will benefit from close connections with the UK’s professional, political, legal, commercial, scientific and cultural life, while the excellent reputation of our MA and MRes programmes ensures our postgraduate alumni are highly sought after by some of the world’s most prestigious employers. We provide graduates with skills that are highly valued in business, government, academia and the professions.

Scholarships & Funding:

All current PGT offer-holders and new PGT applicants are welcome to apply for the scholarships. For more information and to learn how to apply visit: http://www.kcl.ac.uk/study/pg/funding/sources

Free language tuition with the Modern Language Centre:

If you are studying for any postgraduate taught degree at King’s you can take a module from a choice of over 25 languages without any additional cost. Visit: http://www.kcl.ac.uk/mlc

Read less
This programme is for graduates with a strong grounding in forensic science who wish to advance their knowledge of the field. It prepares you for a professional role in forensic science within the criminal or civil judicial system, police or forensic practice, or research. Read more
This programme is for graduates with a strong grounding in forensic science who wish to advance their knowledge of the field.

It prepares you for a professional role in forensic science within the criminal or civil judicial system, police or forensic practice, or research. You develop command, control and management skills that will enable you to present expert evidential incident reports to the highest standard at court.

You also develop your knowledge and understanding of advanced laboratory analytical methods applied to forensic investigation. This enables you to select the most appropriate analytical techniques for forensic investigation and to use a wide range of advanced analytic apparatus to evidential standards.

This programme helps you to develop an integrated and critical understanding of forensic science to prepare you to undertake a PhD in any associated discipline.

Visit the website https://www.kent.ac.uk/courses/postgraduate/5/forensic-science

About The School of Physical Sciences

The School offers postgraduate students the opportunity to participate in groundbreaking science in the realms of physics, chemistry, forensics and astronomy. With strong international reputations, our staff provide plausible ideas, well-designed projects, research training and enthusiasm within a stimulating environment. Recent investment in modern laboratory equipment and computational facilities accelerates the research.

The School maintains a focus on progress to ensure each student is able to compete with their peers in their chosen field. We carefully nurture the skills, abilities and motivation of our students which are vital elements in our research activity. We offer higher degree programmes in chemistry and physics (including specialisations in forensics, astronomy and space science) by research. We also offer taught programmes in Forensic Science, studied over one year full-time, and a two-year European-style Master’s in Physics.

Our principal research covers a wide variety of topics within physics, astronomy and chemistry, ranging from specifically theoretical work on surfaces and interfaces, through mainstream experimental condensed matter physics, astrobiology, space science and astrophysics, to applied areas such as biomedical imaging, forensic imaging and space vehicle protection. We scored highly in the most recent Research Assessment Exercise, with 25% of our research ranked as “world-leading” and our Functional Materials Research Group ranked 2nd nationally in the Metallurgy and Materials discipline.

Modules

The following modules are indicative of those offered on this programme. This list is based on the current curriculum and may change year to year in response to new curriculum developments and innovation. Most programmes will require you to study a combination of compulsory and optional modules. You may also have the option to take modules from other programmes so that you may customise your programme and explore other subject areas that interest you.

PS601 - Fires and Explosions (15 credits)
PS637 - DNA Analysis & Interpretation (15 credits)
PS700 - Physical Science Research Planning (15 credits)
PS702 - Contemporary and Advanced Issues in Forensic Science (15 credits)
PS704 - Major Incident Management (15 credits)
PS713 - Substances of Abuse (15 credits)
PS720 - Advanced Forensic Project Laboratory (30 credits)
PS780 - MSC Research Project (60 credits)

Assessment

Assessment is by examination and coursework.

Programme aims

This programme aims to:

- develop your integrated and critically aware understanding of forensic science and to prepare you to undertake a PhD in any associated disciplines

- prepare you for a professional role in forensic science within the criminal or civil judicial system, police, or forensic practice or research

- develop your command, control, and management skills in relation to major incidents, and to prepare and present expert evidential incident reports at court to the highest standard

- develop a clear recognition of the constraints and opportunities of the environment in which professional forensic science is carried out

- develop a variety of Masters’ level intellectual and transferable skills

- equip you with the learning skills to keep abreast of developments in the continually evolving field of forensic science and forensic investigation

- enable you to realise your academic potential.

Careers

All programmes in the School of Physical Sciences equip you with the tools you need to conduct research, solve problems, communicate effectively and transfer skills to the workplace, which means our graduates are always in high demand. Our links with industry not only provide you with the opportunity to gain work experience during your degree, but also equip you with the general and specialist skills and knowledge needed to succeed in the workplace.

Typical employment destinations for graduates from the physics programmes include power companies, aerospace, defence, optoelectronics and medical industries. Typical employment destinations for graduates from our forensic science and chemistry programmes include government agencies, consultancies, emergency services, laboratories, research or academia.

Find out how to apply here - https://www.kent.ac.uk/courses/postgraduate/apply/

Read less
The Technology Management Group of UCL’s Mullard Space Science Laboratory (MSSL) and UCL Centre for Systems Engineering (UCLse) have pooled expertise to develop this exciting new programme, which aims to equip students with the knowledge and skills necessary to develop a career in technology management or engineering management. Read more
The Technology Management Group of UCL’s Mullard Space Science Laboratory (MSSL) and UCL Centre for Systems Engineering (UCLse) have pooled expertise to develop this exciting new programme, which aims to equip students with the knowledge and skills necessary to develop a career in technology management or engineering management.

Degree information

Students learn about the challenges and opportunities of working with new and legacy technology, and are introduced to key concepts such as technology maturity, lifecycles, risk, reliability and resilience. Systems and strategic thinking is promoted throughout, and the importance of the enterprise context. The research elements aim to instil a deep knowledge of at least one area of technology management with industrial relevance.

Students undertake modules to the value of 180 credits.

The programme consists of four core taught modules (60 credits), two optional taught modules (30 credits) and three research modules (90 credits).

Core modules
-Business Environment
-Lifecycle Management
-Risk, Reliability, Resilience
-Technology Strategy

Optional modules - students choose two from the following:
-Defence Systems
-Environmental Systems*
-Project Management*
-Rail Systems
-Responsible Science and Innovation*
-Spacecraft Systems
-Systems Design
-Systems, Society and Sustainability*

*These modules are delivered by other UCL departments (subject to availability)

Research modules - students undertake a structured research programme comprising:
-Emerging Technology Review (group project, 15 credits)
-Technology Management Project Concept (15 credits)
-Technology Management Research Project (60 credits, including a 12,000-word dissertation)

Teaching and learning
Teaching methods incorporate a mix of lectures and case study-based teaching, and groupwork, in which students will be challenged to come up with novel ideas, lead groups to innovative solutions and manage complex tasks under tight time pressure. Assessment is through coursework, examinations, written reports and presentations, and the dissertation.

Careers

UCLse has strong links with companies in the aerospace, communications, construction, energy, transport and defence sectors and our Industrial Advisory Board ensures relevance to industry.

Typical career destinations might include:
-Graduate Systems Engineer (Airbus, BAE Systems, Boeing, GE, GDUK, SELEX, THALES, Ultra Electronics)
-Technology/Business Consultant (Accenture, Capgemini, Deloitte, Ernst & Young, KPMG, PwC).

Employability
Drawing on our experience of providing short training courses for industry (such as the Project Manager training courses we run for the European Space Agency) we will integrate a large amount of skills development into our teaching, including skills in communication, negotiation, leadership and motivation, decision-making, and managing complex, time-constrained tasks, all of which will be beneficial for future careers.

Why study this degree at UCL?

The programme blends general principles of management with technology-focused teaching and integrates aspects of systems engineering and project management; the UCL Mullard Space Science Laboratory has nearly fifty years’ experience of developing cutting-edge spacecraft technology, and the programme content builds on research conducted by the Technology Management Group at MSSL in these areas.

The programme contains two compulsory modules relevant to leadership and entrepreneurship (Technology Strategy, and Business Environment). These modules will give students the knowledge and skills necessary to lead new technology-driven enterprises.

The curriculum has an international focus, with case studies from major technology companies around the world including Apple, Samsung and Lenovo. A number of industrial visits are anticipated and this ‘real world’ exposure to organisations will help contextualise the theory and techniques learnt.

Read less
Research degrees may be undertaken in the three main areas of research interest in the Laboratory. The growing number of academic staff are supported in their research by the technical staff and post-doctoral research fellows. Read more
Research degrees may be undertaken in the three main areas of research interest in the Laboratory. The growing number of academic staff are supported in their research by the technical staff and post-doctoral research fellows.

We make every attempt to allocate you to a supervisor directly in your field of interest, consistent with available funding and staff loading. When you apply, please give specific indications of your research interest – including, where appropriate, the member(s) of staff you wish to work with – and whether you are applying for a studentship or propose to be self-funded.

Visit the website https://www.kent.ac.uk/courses/postgraduate/212/physics

About The School of Physical Sciences

The School offers postgraduate students the opportunity to participate in groundbreaking science in the realms of physics, chemistry, forensics and astronomy. With strong international reputations, our staff provide plausible ideas, well-designed projects, research training and enthusiasm within a stimulating environment. Recent investment in modern laboratory equipment and computational facilities accelerates the research.

The School maintains a focus on progress to ensure each student is able to compete with their peers in their chosen field. We carefully nurture the skills, abilities and motivation of our students which are vital elements in our research activity. We offer higher degree programmes in chemistry and physics (including specialisations in forensics, astronomy and space science) by research. We also offer taught programmes in Forensic Science, studied over one year full-time, and a two-year European-style Master’s in Physics.

Our principal research covers a wide variety of topics within physics, astronomy and chemistry, ranging from specifically theoretical work on surfaces and interfaces, through mainstream experimental condensed matter physics, astrobiology, space science and astrophysics, to applied areas such as biomedical imaging, forensic imaging and space vehicle protection. We scored highly in the most recent Research Assessment Exercise, with 25% of our research ranked as “world-leading” and our Functional Materials Research Group ranked 2nd nationally in the Metallurgy and Materials discipline.

Study support

- Postgraduate resources

The University has good facilities for modern research in physical sciences. Among the major instrumentation and techniques available on the campus are NMR spectrometers (including solutions at 600 MHz), several infrared and uvvisible spectrometers, a Raman spectrometer, two powder X-ray diffractometers, X-ray fluorescence, atomic absorption in flame and graphite furnace mode, gel-permeation chromatography, gaschromatography, analytical and preparative highperformance liquid chromatography (including GC-MS and HPLC-MS), mass spectrometry (electrospray and MALDI), scanning electron microscopy and EDX, various microscopes (including hot-stage), differential scanning calorimetry and thermal gravimetric analysis, dionex analysis of anions and automated CHN analysis. For planetary science impact studies, there is a two-stage light gas gun.

- Interdisciplinary approach

Much of the School’s work is interdisciplinary and we have successful collaborative projects with members of the Schools of Biosciences, Computing and Engineering and Digital Arts at Kent, as well as an extensive network of international collaborations.

- National and international links

The School is a leading partner in the South East Physics Network (SEPnet), a consortium of seven universities in the south-east, acting together to promote physics in the region through national and international channels. The School benefits through the £12.5 million of funding from the Higher Education Funding Council for England (HEFCE), creating new facilities and resources to enable us to expand our research portfolio.

The School’s research is well supported by contracts and grants and we have numerous collaborations with groups in universities around the world. We have particularly strong links with universities in Germany, France, Italy and the USA. UK links include King’s College, London and St Bartholomew’s Hospital, London. Our industrial partners include British Aerospace, New York Eye and Ear Infirmary, and Ophthalmic Technology Inc, Canada. The universe is explored through collaborations with NASA, ESO and ESA scientists.

- Dynamic publishing culture

Staff publish regularly and widely in journals, conference proceedings and books. Among others, they have recently contributed to: Nature; Science; Astrophysical Journal; Journal of Polymer Science; Journal of Materials Chemistry; and Applied Optics.

- Researcher Development Programme

Kent's Graduate School co-ordinates the Researcher Development Programme (http://www.kent.ac.uk/graduateschool/skills/programmes/tstindex.html) for research students, which includes workshops focused on research, specialist and transferable skills. The programme is mapped to the national Researcher Development Framework and covers a diverse range of topics, including subjectspecific research skills, research management, personal effectiveness, communication skills, networking and teamworking, and career management skills.

Careers

All programmes in the School of Physical Sciences equip you with the tools you need to conduct research, solve problems, communicate effectively and transfer skills to the workplace, which means our graduates are always in high demand. Our links with industry not only provide you with the opportunity to gain work experience during your degree, but also equip you with the general and specialist skills and knowledge needed to succeed in the workplace.

Typical employment destinations for graduates from the physics programmes include power companies, aerospace, defence, optoelectronics and medical industries. Typical employment destinations for graduates from our forensic science and chemistry programmes include government agencies, consultancies, emergency services, laboratories, research or academia.

Find out how to apply here - https://www.kent.ac.uk/courses/postgraduate/apply/

Read less

Show 10 15 30 per page



Cookie Policy    X