• Goldsmiths, University of London Featured Masters Courses
  • University of Oxford Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Southampton Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Swansea University Featured Masters Courses
Nottingham Trent University Featured Masters Courses
Coventry University Featured Masters Courses
Leeds Beckett University Featured Masters Courses
University of Manchester Featured Masters Courses
University of Surrey Featured Masters Courses
"sound" AND "engineering"…×
0 miles

Masters Degrees (Sound Engineering)

We have 326 Masters Degrees (Sound Engineering)

  • "sound" AND "engineering" ×
  • clear all
Showing 1 to 15 of 326
Order by 
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Civil Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Civil Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

Swansea University has an excellent reputation for civil engineering, the department is recognised as one of the top 200 departments in the world (QS World Subject Rankings).

Key Features of MSc in Civil Engineering

The MSc Civil Engineering course aims to provide advanced training in civil engineering analysis and design, particularly in modelling and analysis techniques.

As a student on the MSc Civil Engineering course you will be provided with in-depth knowledge and exposure to conventional and innovative ideas and techniques to enable you to develop sound solutions to civil engineering problems.

Through the MSc Civil Engineering course, you will also be provided with practical computer experience through the use of computational techniques, using modern software, to provide a solution to a range of current practical civil engineering applications. This will enable you to apply the approach with confidence in an industrial context.

Civil Engineering at Swansea University is recognised as one of the top 200 departments in the world (QS World Subject Rankings).

As a student on the Master's course in Civil Engineering, you will find the course utilises the expertise of academic staff to provide high-quality postgraduate training.

Modules

Modules on the MSc Civil Engineering course typically include:

Water and Wastewater Infrastructure

Finite Element Computational Analysis

Advanced Structural Design

Fluid-Structure Interaction

Entrepreneurship for Engineers

Computational Plasticity

Numerical Methods for Partial Differential Equations

Computational Case Study

Reservoir Modelling and Simulation

Dynamics and Transient Analysis

Coastal Engineering

Coastal Processes and Engineering

Flood Risk Management

Accreditation

The MSc Civil Engineering course at Swansea University is accredited by the Joint Board of Moderators (JBM).

The Joint Board of Moderators (JBM) is composed of the Institution of Civil Engineers (ICE), the Institution of Structural Engineers (IStructE), the Chartered Institution of Highways and Transportation (CIHT), and the Institute of Highway Engineers (IHE).

This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

See http://www.jbm.org.uk for further information.

This degree has been accredited by the JBM under licence from the UK regulator, the Engineering Council.

Accreditation is a mark of assurance that the degree meets the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC). An accredited degree will provide you with some or all of the underpinning knowledge, understanding and skills for eventual registration as an Incorporated (IEng) or Chartered Engineer (CEng). Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.

Facilities

Our new home at the innovative Bay Campus provides some of the best university facilities in the UK, in an outstanding location.

Hardware includes a 450 cpu Cluster, high-end graphics workstations and high-speed network links. Extensive software packages include both in-house developed and 'off-the-shelf' commercial.

Links with Industry

Strong interaction and cooperation is forged with the construction industry and relevant member institutions of the Joint Board of Moderators (JBM), particularly the Institution of Civil Engineers (ICE) and the Institution of Structural Engineers (IStructE).

These companies actively engaged with Civil Engineering at Swansea University: Atkins, Arup, Balfour Beatty Civil Engineering Ltd, Black and Veatch Ltd, City and Council of Swansea, Dean and Dyball, Halcrow UK, Hyder (Cardiff), Interserve Ltd, the Institution of Civil Engineers (ICE), Laing O’Rourke, Mott MacDonald Group Ltd, Veryard Opus.

Career Prospects

The civil engineering sector is one of the largest employers in the UK and demand is strong for civil engineering graduates. Thie MSc Civil Engineering course also equips you with the skills to be involved in other engineering projects and provides an excellent basis for a professional career in structural, municipal and allied engineering fields.

The MSc Civil Engineering is suitable for those who would like to prepare for an active and responsible career in civil engineering design and construction. Practising engineers will have the chance to improve their understanding of civil engineering by attending individual course modules.

Student Quotes

“I decided to study at the College of Engineering as it is a highly reputable engineering department.

My favourite memories of the course are the practical aspects and the lab work. Group projects have given me the opportunity to work in a team to overcome engineering-based problems. Studying at the College of Engineering has given me a good knowledge of engineering principles and has helped me to apply this to real life problems.

As part of my time here, I took part in the IAESTE programme. I worked with the Department of Civil Engineering at the University of Manipal, Southern India, on a development project involving an irrigation system.

My future plan is to get some experience in an engineering firm, and hopefully, this experience will allow me to work abroad for an NGO on further development projects."

Thomas Dunn, MSc Civil Engineering



Read less
You can access six study streams on this Masters programme. Bridge Engineering. Construction Management. Geotechnical Engineering. Read more

You can access six study streams on this Masters programme:

  • Bridge Engineering
  • Construction Management
  • Geotechnical Engineering
  • Structural Engineering
  • Water Engineering and Environmental Engineering
  • Infrastructure Engineering and Management

As well as supporting the career development of Civil Engineering graduates, this programme provides the necessary further learning for engineers working in the construction industry who hold related first degrees such as engineering geology or construction management.

It is also designed to update the technical skills of practising engineers engaged in the planning, design, construction and operation of civil-engineering works.

Programme structure

This programme is studied full-time over one academic year and part-time / distance learning for between two to five academic years. It consists of eight taught modules and a dissertation.

This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

Example module listing

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Structural Engineering Group Modules

Bridge Engineering Group Modules

Geotechnical Engineering Group Modules

Construction Management Group Modules

Infrastructure Engineering Group Modules

Water and Environmental Engineering Group Modules

Dissertation

Educational aims of the programme

  • The Civil Engineering programme aims to provide graduate engineers with:
  • Advanced capabilities and in-depth knowledge in a range of specialised aspects of civil engineering
  • It is also designed to update the technical skills of practising engineers engaged in the planning, design, construction and operation of civil engineering works and to contribute to a personal professional development programme
  • A working knowledge of some of the UK and European standards and codes of practice associated with the design, analysis and construction of civil engineering structures and the ability to interpret and apply these to both familiar and unfamiliar problems
  • The necessary further learning towards fulfilling the educational base for the professional qualification of Chartered Engineer in both a technical or non-technical capacity dependent upon module selection

Programme learning outcomes

The programme provides opportunities for students to develop and demonstrate knowledge and understanding, skills, qualities and other attributes in the following areas:

Knowledge and understanding

  • The mathematical principles necessary to underpin their education in civil engineering and to enable them to apply mathematical methods, tools and notations proficiently in the analysis and solution of multi-disciplinary open ended engineering problems
  • The properties, behaviour and use of relevant materials
  • The management techniques which may be used to achieve civil engineering objectives within that context
  • Some of the roles of management techniques and codes of practice in design
  • The principles and implementation of some advanced design and management techniques specific to civil engineering
  • Mathematical and computer models relevant to civil engineering, and an appreciation of their limitations
  • The role of the professional engineer in society, including health, safety, environmental, sustainability, ethical issues and risk assessment within civil engineering
  • The wider multidisciplinary engineering context and its underlying principles
  • Developing technologies related to civil engineering and the ability to develop an ability to synthesize and critically appraise some of them
  • The framework of relevant requirements governing engineering activities, including personnel, health, safety, and risk issues (an awareness of)
  • The advanced design processes and methodologies and the ability to adapt them in open ended situations.

Intellectual / cognitive skills

  • Analyse and solve problems
  • Think strategically
  • Synthesis of complex sets of information
  • Understand the changing nature of knowledge and practice in the management of culturally diverse construction environments
  • Select and transfer knowledge and methods from other sectors to construction-based organisation
  • Produce sound designs to meet specified requirements such as Eurocodes, deploying commercial software packages as appropriate
  • Dynthesis and critical appraisal of the thoughts of others

Professional practical skills

  • Awareness of professional and ethical conduct
  • Extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools where appropriate
  • Evaluate and integrate information and processes in project work
  • Present information orally to others
  • Show a capability to act decisively in a coordinated way using theory, better practice and harness this to experience
  • Use concepts and theories to make engineering judgments in the absence of complete data
  • Observe, record and interpret data using appropriate statistical methods and to present results in appropriate forms for the civil engineering industry

Key / transferable skills

  • Communicate engineering design, concepts, analysis and data in a clear and effective manner 
  • Collect and analyse research data 
  • Time and resource management planning

Global opportunities

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.



Read less
*New for 2017, subject to final approval. The MA in Sound Design is a forward thinking course, which invites you to explore the creative use of sound within film and other visual media at an advanced level. Read more

*New for 2017, subject to final approval.

The MA in Sound Design is a forward thinking course, which invites you to explore the creative use of sound within film and other visual media at an advanced level. The course focuses on the more creative aspects of sound design and post-production while providing you with the necessary technical skills.

You’ll develop your work within your areas of interest without stylistic boundaries. The content areas include:

• Sound editing (production audio, dialogue/ADR, SFX, music)

• The language and aesthetics of sound design (narrative, dramaturgy)

• Foley

• Field recording

• Sound sculpting and processing

• Working with directors

• Post-production workflows

• Dubbing

• Surround sound

• VR audio

• Industry deliverables

COURSE STRUCTURE

The course delivers a mixture of advanced technical skills related to sound design and audio post production for film and other visual media. It also provides creatively-oriented insights into contemporary sound design practice and encourages students to push the boundaries of the field. Subject areas include:

• Sound sculpting, processing and synthesis

• The language and aesthetics of sound design

• Storytelling and dramaturgy

MA Sound Design is part of a suite of postgraduate courses available across music and sound, operating alongside ‘sister’ pathways in Sound Production and Sound Arts, which allow further specialism in these areas.

For more information on the course structure, please go to: https://www.bathspa.ac.uk/courses/pg-sound-design/

MODULES

In trimester one, you'll gain the skills you’ll need to fulfil the rest of the course. The Skills Portfolio module is built on the idea that you’ll already have technical skills in this area. It therefore allows you to choose a handful of skills projects from a large number of options – these cover skills right across the Sound Arts, Sound Design and Sound Production pathways and include (optional) elements of multimedia.

The Research Methodology and Context module develops skills in postgraduate-level research and writing.

In trimester two, the core module is the Sound Design Practice module. It explores the creative and practical application of Sound Design within a visual narrative and storytelling context.

Alongside this core module, you’ll be offered a wide range of options. The Post Production module explores an industry-level workflow for Audio Post within film and visual media and covers a wide range of associated skillsets. Intertextuality in Sound Production, from the Sound Production pathway, explores the overlap between Urban Music production and what are considered more experimental genres. The Visual Music module, from the Sound Arts pathway, explores the idea that musical thinking can be extended to the visual, and encourages students to develop multimedia projects that explore this idea.

There are also choices in Composition, Performance, Musicology and Professional Practice.

In trimester three, you'll complete the course with a independent research project, compromising of a large-scale practical project, supported by a reflective account.

For more information on modules please visit the course webpage: https://www.bathspa.ac.uk/courses/pg-sound-design/

TEACHING METHODS

The delivery of the course involves a mixture of teaching and learning activities, including lectures, workshops, seminars, online study materials and guest speaker sessions.

The workshop / seminar sessions will include ongoing peer review and tutor support opportunities. Some parts of the course are delivered using a ‘flipped classroom’ model, where students independently work through online study materials and tasks, which are followed up by practical support workshops.

ASSESSMENT

The assessment is majorly based around practical coursework, with the aim to build an extensive portfolio of sound design and post production work. Practical coursework is typically supported by a written commentary or evaluation. The Research Methodology and Context module is assessed through a more substantial written paper.

CAREER OPPORTUNITIES

You can use the course to develop an individually-tailored portfolio of skills. This will equip you for the current employment landscape, where a combination of traditional audio post production roles are required alongside broader practice in sound, music and other media.

Our graduates have range of successful careers in production, composition, music for film and TV, sound design for moving image and games, sound art, software development, engineering, further education, higher education and research.



Read less
The Masters in Biomedical Engineering is an interdisciplinary programme that will equip you for employment within the biomedical engineering sector. Read more
The Masters in Biomedical Engineering is an interdisciplinary programme that will equip you for employment within the biomedical engineering sector. This programme addresses all the key aspects of biomedical engineering.

WHY THIS PROGRAMME

The University of Glasgow’s School of Engineering has been delivering engineering education and research for more than 150 years and is the oldest School of Engineering in the UK.
Biomedical Engineering is the newest division of the School, bringing together our long standing expertise. Research covers four themes, Biomaterials and Tissue Engineering, Bionanotechnology, Rehabilitation Engineering, Biosensors and Diagnostics.
The course is based on in-depth modules and individual projects, which are designed to give graduates an opportunity to specialise in specific areas of Biomedical Engineering or to cover a more general Biomedical Engineering syllabus.
This taught MSc/PG Dip offers a wide exposure to the philosophy and practice of Biomedical Engineering whilst simultaneously enabling the students to deepen their knowledge of specific areas of biomedical engineering disciplines, which have been chosen on the basis of the research strengths of the Discipline. The choice includes Biomaterials and Biomechanics including their application in Tissue Engineering and Regenerative Medicine, Rehabilitation Engineering includes applied within Glasgow hospital and bioelectronics and diagnostic systems, designed to be applied from advanced hospitals to out-in-the-field situations.
The compulsory part provides the basic underlying knowledge need throughout biomedical engineering these core courses are taken in both semesters to allow a wide range of optional subjects to be available.
You will broaden and/or deepen your knowledge of biomedical engineering disciplines.

Programme structure

Modes of delivery of the MSc in Biomedical Engineering include lectures, seminars and tutorials and allow students the opportunity to take part in lab, team work and study trips in the UK. You will undertake an MSc project working on a specific research area with one of the academics.

Core courses

Applications of biomedical engineering
Biological fluid mechanics
Cellular biophysics
Energy in biological systems
Medical imaging
Statistics for biomedical engineering
MSc project.
Optional courses

Advanced imaging and therapy
Applied engineering mechanics
Bioinformatics and systems biology
Biomechanics
Biosensors and diagnostics
Microscopy and optics
Nanofabrication
Rehabilitation engineering
Scaffolds and tissues
Signal processing of bio-signatures
Tissue and cell engineering.

Career prospects

Career opportunities include positions in rehabilitation engineering, biomaterials for reconstructive surgery, biosensors, device and implant design and development, and biosignal processing.

Read less
IN BRIEF. Study at our state-of-the-art MediaCityUK campus. Enjoy excellent job prospects in a growing field. Tap into the expertise of world-class audio-engineering and acoustics researchers. Read more

IN BRIEF:

  • Study at our state-of-the-art MediaCityUK campus
  • Enjoy excellent job prospects in a growing field
  • Tap into the expertise of world-class audio-engineering and acoustics researchers
  • Part-time study option
  • Based at MediaCityUK
  • International students can apply

COURSE SUMMARY

On this course, you’ll gain practical, theoretical and creative experience of sound engineering, music production and audio technology.

You’ll explore the design, manipulation and production of audio across many platforms, using our state-of-the-art audio-post recording, radio and TV studios to study a mix of sound engineering and theory modules.

The aim of the course is to develop the skills that you’ll need to create and deliver professional audio, whilst under pinning these skills with a sound theoretical background.

94% of our postgraduates go on to employment and/or further study within six months of graduating.DLHE 2009 and 2010

COURSE DETAILS

This course entails both practical based and theory modules. The modules are delivered in the recording studios, the audio technology suite, audio post production suite and lecture theatres.

DURATION

September start

MSc (one year full-time or up to three years part-time)

PgDip (nine months full-time or 18 months part-time)

January start

MSc (16 months full-time)

PgDip (one year full-time or up to two years part-time)

TEACHING

Teaching and learning involves a mix of lectures and practical sound engineering work, involving individual and group learning, There is an emphasis on motivated students' self-study.

ASSESSMENT

Assessment involves a mixture of practical work, report writing and project work. By the end of the course students will have built up a substantial portfolio of audio, video and new media work.

Assessment is approximately divided across the course as follows:

  • Practical work (30%)
  • Report/Assignment (35%)
  • Presentation (5%)
  • Dissertation - that may entail practical elements (30%)

FACILITIES

This degree is based in MediaCityUK,the new home for the BBC, ITV, Coronation Street and parts of the University of Salford. MediaCityUK is located at Salford Quays on the banks of Manchester's historic ship canal. The University has the first four floors of a new, purpose built facility that looks over the water to The Lowry theatre, Imperial War Museum North and the new Coronation Street set. ITV occupy the floors above us, with the three BBC buildings on one side of us and Peel Media Studios on the other.

A number of BBC departments are based at MediaCityUK, having moved from London, including BBC Breakfast, BBC Children's, BBC Radio 5 Live, BBC Future Media and Technology, BBC Learning, BBC Sport and BBC Academy. All of the BBC Manchester operations have also moved to MediaCityUK, including BBC Religion and Ethics, Current Affairs and the BBC Philharmonic.

For more information, check out the Salford MediaCityUK site and the main MediaCityUK site.

Here is a summary of our relevant facilities at MediaCityUK:

  • Audio Post Production and Audio Suite - Mac-based suites that run a range of audio software, including Pro Tools, Reason, Cubase and Reaktor. The Post Production suite has a Digidesign Icon D-command desk running Pro Tools.
  • TV Studios - full professional specification studios. Studio A has separate vision and audio control rooms. Studio B allows for a full 3D virtual studio.
  • Radio Studios - two radio studios, including a small studio space.
  • Computer Suites - a range of Mac and PC based computer rooms for general computer work.

On the main campus, we also have a Pro Tools equipped studio recording complex consisting of four control rooms and recording areas. Please see this brochure for more detailed information brochure.

EMPLOYABILITY

The wide range of skills provided on this course will enhance your employability. Possible career paths include: audio manufacturer research and design, broadcast engineer in audio for radio or TV, audio and visual design and installation, education, interactive media and sonic arts.

Possible career paths include:

  • Audio manufacturer research and design
  • Broadcast engineer in audio for radio or TV
  • Recording studio, live sound engineer, music production
  • Music technology retail
  • Theatre or film audio engineer
  • Musical instrument technology
  • Audio and visual design and installation
  • Education
  • Interactive Media
  • Sonic arts

LINKS WITH INDUSTRY

Staff have strong links with industry either through collaborative R&D projects with industry through the Acoustics Research Centre and our commercial test laboratories.  Our research department is a Centre of Excellence for BBC Research.

FURTHER STUDY

Some students could go on to study a PhD at our world-class Acoustics Research Centre. We have been carrying out acoustics and audio research for over 30 years. Our research is funded by research councils, government bodies, and industry. It has fed into audio products that companies make and sell worldwide, as well as regulations and standards used in the UK, Europe and beyond. We are also involved in public engagement - getting more people aware of and interested in acoustic science and engineering.



Read less
1. Big Challenges being addressed by this programme – motivation. Human health and quality of life is one of the most critical challenges facing humanity. Read more

About the Course

1. Big Challenges being addressed by this programme – motivation

• Human health and quality of life is one of the most critical challenges facing humanity.
• The challenge is all the greater due to a rapidly increasing and rapidly aging global population that now exceeds 7 billion.
• Biomedical Engineering addresses these issues directly, with engineers innovating, analysing, designing and manufacturing new medical implants, devices and therapies for the treatment of disease, injuries and conditions of the human body, to restore health and improve quality of life.
• CNN lists Biomedical Engineering as No. 1 in the “Best Jobs in America” 2013.

2. Programme objectives & purpose

The objective of the programme is to generate graduates with a sound grounding in engineering fundamentals (analysis, design and problem solving), but who also have the multi-disciplinary breadth that includes knowledge of human biology and clinical needs and applications, to be able to make an immediate impact in the field on graduation, in either the academic research or medical technology industry domains. Ultimately the programme aims to generate the future leaders of the national and international medical technology industry, and of academic research and teaching in biomedical engineering.

3. What’s special about CoEI/NUIG in this area:

• NUI Galway pioneered the development of educational programmes in Biomedical Engineering in Ireland, introducing the country’s first bachelor’s degree in Biomedical Engineering in 1998, that was the first to achieve professional accreditation from Engineers Ireland in 2004, and at the graduate level with the Structured PhD programme in Biomedical Engineering and Regenerative Medicine (BMERM) in 2011.
• NUI Galway has been at the forefront of world-class research in biomedical engineering for over 20 years and has pioneered multi-disciplinary research in biomedical engineering and science, with the establishment of the National Centre for Biomedical Engineering Science (NCBES) in 1999, and up to the present day with the announcement of NUI Galway as the lead institution in a new Science Foundation Ireland funded Centre for Research in Medical Devices (CÚRAM).
• NUI Galway has a very close and deep relationship with the medical device industry locally, nationally and internationally, at many levels, from industry visits, guest lectures and student placements, up to major research collaborations.
• Many of our engineering graduates now occupy senior management and technical positions in the medical device industry nationally and internationally.

4. Programme Structure – ECTS weights and split over semester; core/elective, etc.:

• 90ECTS programme
• one full year in duration, beginning September and finishing August
• comprises:
- Foundational taught modules (20 ECTS)
- Advanced taught modules (40 ECTS)
- Research/Industry Project (30 ECTS).

5. Programme Content – module names

Sample Modules:

Advanced Finite Element Methods
Advanced Computational Biomechanics
Advanced Biomaterials
Mechanobiology
Bioinstrumentation Design
Medical and Surgical Practice
Stem Cells and Gene Therapy
Translational Medicine
Polymer Engineering
Advanced Engineering Statistics
Systems Reliability
Lean Systems
Research Methods for Engineers
Financial Management
Regulatory Affairs and Case Studies
Technology, Innovation and Entrepreneurship

6. Any special funding arrangements – e.g. Irish Aid

Comment (PMcH): CoEI scholarships a great idea.

7. Opportunity for number of Industrial & Research internships.

Students enrolled on this programme will have an opportunity to apply for a one-year post-graduation internship in either a related industry or research group in Ireland.

8. Testimonials.

“The Biomedical Engineering programme at NUI Galway has given me the fundamental engineering skills and multi-disciplinary background in biology and clinical application that I needed to be able to make an immediate impact in industry and to be able to design and develop new medical implants and devices. My graduate education through my PhD in bone biomechanics was also very important in this because I directly combined engineering and biological analysis techniques to better understand how stem cells generate new bone, showing me how biomedical engineers can play a critically important role in generating new knowledge on how the body works, and how new treatments can be developed for diseases and injuries, such as osteoporosis.” Evelyn Birmingham, BE Biomedical Engineering (2009), PhD Biomedical Engineering (2014), R&D Engineer, Medtronic Vascular, Galway.

For further details

visit http://nuigalway.ie/engineering-informatics/internationalpostgraduatestudents/

How to Apply:

Applications are made online via the Postgraduate Applications Centre (PAC): https://www.pac.ie
Please use the following PAC application code for your programme:

M.Sc. Biomedical Engineering - PAC code GYE24

Scholarships :

Please visit our website for more information on scholarships: http://www.nuigalway.ie/engineering-informatics/internationalpostgraduatestudents/feesandscholarships/

Read less
Could you see yourself designing high performance bikes, working with racing car teams or producing ground breaking medical components? You could follow in the footsteps of some of our graduates and begin shaping your own exciting career in mechanical engineering. Read more
Could you see yourself designing high performance bikes, working with racing car teams or producing ground breaking medical components? You could follow in the footsteps of some of our graduates and begin shaping your own exciting career in mechanical engineering.

You will distinguish yourself professionally with a degree accredited by the Institution of Mechanical Engineers (IMechE) and the Institute of Materials, Minerals and Mining (IoM3) for Chartered Engineer status. You can apply to either of these institutions for membership as a Chartered Engineer.

Key features

-Open the door to a successful future. Our graduates have gone on to work for Ferrari, Honda, British Cycling, Rolls-Royce, Williams Grand Prix Engineering, Activa, Babcock Marine, Princess Yachts and more.
-Primed for your career: 82 per cent of our students are in a professional or managerial job six months after graduation. (Source: unistats)
-Benefit from an optional 48 week paid work placement.
-Distinguish yourself professionally with a degree accredited by the Institution of Mechanical Engineers (IMechE) and the Institute of Materials, Minerals and Mining (IoM3) for Chartered Engineer status. You can apply to either of these institutions for membership as a Chartered Engineer.
-Develop a strong foundation in mechanical engineering principles and materials science.
-Choose from specialist modules in composites engineering, design and manufacture.
-Experience modern laboratory facilities for practical work which is a core part of the degree.
-Benefit from working on industrially relevant problems within composite materials and design of composite structures.

Course details

Year 1
In Year 1, you’ll acquire a sound foundation in design, mechanics, materials, electrical principles, thermo-fluids, mathematics and business, learning by active involvement in real engineering problems. You‘ll undertake a popular hands-on module in manufacturing methods. Modules are shared with the MEng and BEng (Hons) in Mechanical Engineering and the MEng and BEng (Hons) Marine Technology.

Core modules
-MECH120 Skills for Design and Engineering (Mechanical)
-THER104 Introduction to Thermal Principles
-BPIE115 Stage 1 Mechanical Placement Preparation
-MECH117 Mechanics
-MECH118 Basic Electrical Principles
-A5MFT1 Mech BEng 1 MFT Session
-MATH187 Engineering Mathematics
-MATS122 Manufacturing and Materials
-MECH121PP Team Engineering (Engineering Design in Action)

Year 2
In Year 2, you’ll build your knowledge of composite materials in preparation for specialist modules in the final year. The central role of design integrates with other modules like structures and materials. You'll also study modules on thermodynamics, fluid mechanics, business dynamics, mathematics and control and quality management.

Core modules
-BPIE215 Stage 2 Mechanical Placement Preparation
-CONT221 Engineering Mathematics and Control
-HYFM230 Fluid Mechanics 1
-STRC203 Engineering Structures
-MECH232 Engineering Design
-MFRG208 Quality Management l
-MATS234 Materials
-THER207 Applied Thermodynamics
-STO208 Business for Engineers

Optional placement year
In Year 3, you're strongly encouraged to do a year’s work placement to gain valuable paid professional experience. We will support you to find a placement that is right for you. Our students have worked for a variety of companies from BMW Mini, Bentley, Babcock Marine to NASA. A successful placement could lead to sponsorship in your final year, an industrially relevant final year project, and opportunities for future employment.

Optional modules
-BPIE335 Mechanical Engineering Related Placement

Year 4
In Year 4, you’ll specialise in composites design, engineering and manufacture. You’ll undertake an group design project. Additional modules of study include statistics and quality management. You'll also develop your knowledge and skills through an in-depth project on a topic of your choice.

Core modules
-HYFM322 Computational Fluid Dynamics
-MFRG311 Quality Management II
-MATS347 Composites Design and Manufacture
-PRME307 Honours Project
-MATS348 Composites Engineering
-MECH340 Engineering Design

Final year
In your final year, you'll extend your existing skills in engineering design, analysis and control theory. Broaden your knowledge by studying subjects such as entrepreneurship, advanced information technology, robotics and marine renewable energy. You’ll also work in a design team with students from other engineering disciplines working on projects such as design, materials and environmental issues related to bioenergy production, gas/nuclear power stations, energy from the sea and eco villages.

Core modules
-MECH532 Applied Computer Aided Engineering
-MECH533 Robotics and Control
-MECH534 Product Development and Evaluation
-MAR528 Mechanics of MRE Structures
-PRCE513 Interdisciplinary Design
-MECH544 Data Processing, Simulation and Optimisation of Engineering Systems

Every undergraduate taught course has a detailed programme specification document describing the course aims, the course structure, the teaching and learning methods, the learning outcomes and the rules of assessment.

Read less
Audio engineering and the science behind it plays a major role in the delivery of music and sound, be that during gigs, conferences or in the recording studio. Read more
Audio engineering and the science behind it plays a major role in the delivery of music and sound, be that during gigs, conferences or in the recording studio.

Your course combines the study of acoustics, audio system design and software engineering, ensuring you gain a thorough understanding of all aspects of audio and the science behind it. It's our facilities that make us stand out from the crowd. They include a reverberation and anechoic chamber, a suite of high-quality professional music studios and the latest computer resources for software engineering.

You will study advanced audio engineering, including loud speaker design, interface and interactivity, theoretical acoustics, applied acoustics, advanced audio engineering and audio software engineering. You will learn digital signal processing, how to generate audio effects, how to use research on psychoacoustics, analogue modelled effects and music information retrieval. You will also examine the very latest research which is leading to better audio effects.

- Research Excellence Framework 2014: our University demonstrated strength in five emerging areas of research which it entered into the assessment for the first time, including in music, drama, dance and performing arts

Visit the website http://courses.leedsbeckett.ac.uk/audioengineering_msc

Mature Applicants

Our University welcomes applications from mature applicants who demonstrate academic potential. We usually require some evidence of recent academic study, for example completion of an access course, however recent relevant work experience may also be considered. Please note that for some of our professional courses all applicants will need to meet the specified entry criteria and in these cases work experience cannot be considered in lieu.

If you wish to apply through this route you should refer to our University Recognition of Prior Learning policy that is available on our website (http://www.leedsbeckett.ac.uk/studenthub/recognition-of-prior-learning.htm).

Please note that all applicants to our University are required to meet our standard English language requirement of GCSE grade C or equivalent, variations to this will be listed on the individual course entry requirements.

Careers

Whether you are a recent graduate or an audio professional wanting to move up the career ladder, your course combines so many areas of audio you will be able to tailor your studies to your individual interests and ambitions. This could be in live sound, designing venues for live sound, studio design, or as a sonic artist.

- Audio Designer
- Production Engineer
- Acoustic Consultant
- Live Sound Engineer

Careers advice:
Visit the careers site - https://www.leedsbeckett.ac.uk/employability/jobs-careers-support.htm

Course Benefits

You will have access to a phenomenal array of the latest equipment, including our reverberation chamber - in which you can move panels to control reverberation time and accurately create spaces - while our anechoic chamber will provide you with experience of measuring audio equipment.

Thanks to our strong links with live sound industries and audio plug-in development software companies you will hear from industry experts at guest lectures, while our tutors are some of the best acousticians around.

If you're an audio professional, we'll help you formalise your knowledge of acoustics and live sound - from setting up PA systems, sound checks and making modifications when the audience arrives, to improving your knowledge of what is happens to sound so you can build a system that gives an audience the best possible experience.

Core Modules

Acoustics
Develop your expertise in the application of acoustic theory and measurement techniques, and develop skills in communicating their findings in a professional manner.

Advanced Audio Engineering
Explore the technical considerations and challenges behind capturing, processing, recording and reproducing audio signals.

Audio Software Engineering
Study the role that software design and engineering plays in the professional audio industries. You will investigate digital signal processing techniques used for the analysis and manipulation of sound in the production of your own audio software.

Research Practice
Develop your awareness of the methods and skills required in order to carry out successful masters level research.

Final Individual Project
Combine your previous learning into a significant piece of work, the nature of which is determined by you. You will need to reflect and critically evaluate the methods you use.

Interfaces & Interactivity
You will create interactive (or reactive) musical or artistic systems, learning how to integrate control technologies in practical projects, and develop original systems for creating and manipulating sound or music.

Negotiated Skills Development
We will provide you with the opportunity to develop high-level skills in your particular field of study, with the aim of enhancing both your knowledge and employability.

Collaborative Practice
An opportunity to work in a collaborative environment, developing creative and technical work in small groups. We will provide you with guidance on group management, communication, creativity and inclusivity.

Michael Ward

Senior Lecturer

"Whether you're a recent graduate with a music technology or computing qualification, or an audio professional wanting to move up the career ladder - studying a course that combines so many areas of audio will enhance your employability."

Michael Ward spent many years working simultaneously but separately as a software engineer and as a sound engineer before deciding to combine the two interests and entered academia. As well as taking a lead in the MSc Audio Engineering, Michael also combines his industry experience and takes a lead in undergraduate modules in Audio Software Systems, Acoustics and Critical Listening and Mixing and Mastering. He now combines his academic work with a practice as a mastering engineer.

Facilities

- Library
Our Library is one of the only university libraries in the UK open 24/7 every day of the year. However you like to study, our Library has you covered with group study, silent study, extensive e-learning resources and PC suites.

- Broadcasting Place
Broadcasting Place provides students with creative and contemporary learning environments, is packed with the latest technology and is a focal point for new and innovative thinking in the city.

Find out how to apply here - http://www.leedsbeckett.ac.uk/postgraduate/how-to-apply/

Read less
This course is aimed at professional engineers aspiring to increased management responsibility in the building services sector or who have reached a stage in their careers when they are carrying increasing management responsibility. Read more

About the course

This course is aimed at professional engineers aspiring to increased management responsibility in the building services sector or who have reached a stage in their careers when they are carrying increasing management responsibility.

It caters to the worldwide demand for building services engineering managers who have a sound knowledge of engineering and management principles – and the ability to apply this knowledge to complex situations.

Management modules cover engineering finance and accounting, people management, business organisation and facilities and contract management.

Aims

Building Service Engineers help buildings to deliver on their potential by working with architects and construction engineers to produce buildings that offer the functionality and comfort we expect, with the minimum impact on our environment. They design the lighting appropriate for the space, the heating, cooling, ventilation and all systems that ensure comfort, health and safety in all types of buildings, residential commercial and industrial.

Building services engineering is an interdisciplinary profession. It involves the specification, design, installation and management of all the engineering services associated with the built environment.

With the growing complexity of engineering services in modern buildings and the significance of energy conservation and pollution control, the role of the building services engineer is becoming increasingly important.

As an interdisciplinary profession that involves the specification, design, installation and management of all the engineering services associated with the built environment, comfort and function also need to be combined – which calls for engineers with a wide range of knowledge and skills.

This MSc programme is for:

Recent engineering and technology graduates, moving into building services and related disciplines.
Established engineers and technologists, working in building services and faced with the challenge of new areas of responsibility.
Engineers who want to develop technical understanding and expertise across the multi-disciplines of building services engineering.
Managers and designers, who need to broaden their experience and require updating.
Lecturers in higher education, moving into or requiring updating in building services engineering.
Others with engineering and technology backgrounds, perhaps working in advisory or consultancy roles, who wish to familiarise themselves with building services engineering. However, choice of course will be dependent upon the type and extent of knowledge and skills required.

Course Content

Modes of Study
3-5 Years Distance Learning

The distance learning programme is designed to enable you to conduct most of your studies at home, in your own time and at your own pace.

There is no requirement to attend lectures at Brunel University and there is no set timetable of lectures, instead you follow a structured programme of self-study at home or at work. This gives you the freedom to arrange a work programme to suit yourself and you should usually allow about twelve hours each week for study.

There are set submission dates for assignments but we have tried to design the programme so that they are well-spaced, giving you the maximum flexibility in your study plans.

You can take between three and five years to complete the course. The average is three years, with students taking four modules in the first year, four modules in the second year and the dissertation in the third year. However, depending on your other commitments you can take longer up to a maximum of five years.

You are supplied with a study pack in the form of textbooks and CD-ROMs; you have assignments to submit and exams to sit each year.

Examinations can be taken either at Brunel University or in the country you are resident in. We have an extensive network of organisations (universities, colleges and British Council offices) throughout the world who will provide invigilation services.

The cost of invigilation away from Brunel is your responsibility. Examinations are held in May each year.

Compulsory Modules

Building Heat Transfer and Air Conditioning
Electrical Services and Lighting Design
Acoustics, Fire, Lifts and Drainage
Engineering Finance and Accounting
Management of People in Engineering Activities
Organisation of Engineering Business
Management of Facilities and Engineering Contracts
Dissertation

Students should choose one of the two themes below:

Theme A - Traditional

Energy Conversion Technologies
This element provides a broad introduction to the principles of energy conversion and thermodynamic machines and demonstrates their application to energy conversion and management in buildings. Emphasis is placed on refrigeration plant, energy conversion plant and energy management.
Refrigeration covers the basic principles and components of vapour compression systems, heat pumps and absorption systems.
Energy Conversion considers power cycles, combined heat and power, combustion processes, boiler plant, thermal energy storage and environmental impacts of plant operation.

Theme B - Renewable

Renewable Energy Technologies
This element includes: energy sources, economics and environmental impact, energy storage technologies, the role of renewables, solar thermal, solar electricity, wind power generation, hydro, tidal and wave power, biofuels, building integrated renewables.

Special Features

There are several advantages in choosing Brunel's Building Services programme:

Award-winning courses: Building Services Engineering courses at Brunel have been awarded the Happold Brilliant Award for teaching excellence by the Chartered Institution of Building Services Engineers.

Relevance: it is well established within the building services industry, with sponsors of students that include major design and contracting organisations, area health authorities, local authorities and the British Council, as well as several national governments.

Applicability: emphasis on applications enables students and employers to benefit immediately from the skills and knowledge gained.

Responsiveness: Brunel's proximity to London, where large and innovative building developments have been taking place over the last decade, enables rapid infusion of new ideas and technological innovations into the programme content.

Excellent facilities

We have extensive and well-equipped laboratories, particular areas of strength being in fluid and biofluid mechanics, IC engines, vibrations, building service engineering, and structural testing. Our computing facilities are diverse and are readily available to all students. The University is fully networked with both Sun workstations and PCs. Advanced software is available for finite and boundary element modelling of structures, finite volume modelling of flows, and for the simulation of varied control systems, flow machines, combustion engines, suspensions, built environment, and other systems of interest to the research groups.

Accreditation

The course is approved by the Chartered Institute of Building Services Engineers (CIBSE) and the Institution of Mechanical Engineers (IMechE) as appropriate additional academic study (further learning) for those seeking to become qualified to register as Chartered Engineers (CEng).

Teaching

Students are supplied with a study pack in the form of text books and CD-ROMs; you have assignments to submit and exams to sit each year. Examinations can be taken either at Brunel University or in the country you are resident in.
We have an extensive network of organisations (Universities, Colleges and British Council Offices) throughout the world who will provide invigilation services. The cost of invigilation away from Brunel is your responsibility. Examinations are held in May each year.

Assessment

Each module is assessed either by formal examination, written assignments or a combination of the two. Cut-off dates for receipt of assignments are specified at the beginning of each stage. Examinations are normally taken in May.
Successful completion of the taught modules allows the student to proceed to the dissertation stage. To qualify for the award of the MSc degree, the student must submit a satisfactory dissertation.

Read less
Summary. This programme will provide you with a sound understanding of civil engineering design and applications through a series of specialist modules in coastal, environmental, infrastructure, and transport engineering. Read more

Summary

This programme will provide you with a sound understanding of civil engineering design and applications through a series of specialist modules in coastal, environmental, infrastructure, and transport engineering. A wide range of laboratory projects are available, which enable students to deepen their understanding of a subject that is of particular interest to them and their future careers. The programme is accredited by the Institution of Civil Engineers and meets the further learning requirements to become a chartered civil engineer. We also offer a conversion degree pathway aimed at non-civil engineering graduates who wish to transfer into the civil engineering industry.

Modules

Compulsory modules: MSc Research Project; Data Analysis and Experimental Methods for Civil and Environmental Engineering

Optional modules: Understanding Civil Engineering (compulsory for non-civil engineering graduates); Coastal and Maritime Engineering and Energy; Earthquake Engineering; Project Economics and Management; Groundwater Hydrology and Contamination; Water Resources Planning and Management; Highway Engineering; Waste Resource Management; Advanced Structural Engineering; Advanced Foundation Engineering; Energy Performance Assessment of Buildings; River Engineering; Water and Wastewater Engineering; Advanced Finite Element Analysis; Transport Management and Safety, Coastal Flood Defence; Law and Contracts for Civil and Environmental Engineers . The following modules are not available for non-civil engineering graduates: Applied Hydraulics; Geotechnical Engineering; Railway Engineering and Operations; Structural Engineering

Visit our website for further information.



Read less
Structural engineers help to make, shape and maintain the built environment. They are professionals who enjoy innovation, a challenge, opportunities, responsibility and, excitement in a varied and very satisfying career. Read more

About the course

Structural engineers help to make, shape and maintain the built environment. They are professionals who enjoy innovation, a challenge, opportunities, responsibility and, excitement in a varied and very satisfying career.

The MSc programme in Structural Engineering is designed to attract both international and home students, who wish to pursue their career in civil and structural engineering. To meet the increasing demand for structural engineers to design more safe, economic and environmental friendly buildings, the programme content has specifically been designed to give a thorough grounding on current practice with regards to dealing with structural fire and earthquake resistances and design of carbon neutral buildings.

A particular feature of the course content lies with the emphasis on the performance-based, structural design philosophy. The strong focus on these aspects will appeal to any students who intend to become the next generation of structural engineers after graduation.

Aims

Structural engineering is a profession that provides a tremendous opportunity to make a real difference to people's lives and their environment. In the current century, climate change is an increasingly important issue which needs to be tackled - and the role of the structural engineer in tackling climate change is immense.

To meet these challenges, structural engineers need to combine traditional structural engineering expertise with an understanding of a wide range of issues related to design of zero carbon buildings. There is a significant shortage of structural engineers with the requisite knowledge, skills, and experience to deal efficiently with complex issues for designing structurally sound, elegantly simple and environmentally sustainable buildings. The skills shortage and its effects on the construction industry will be further exacerbated by the huge demand from some rising economic powers.

This new MSc programme has been developed in response to this growing need for graduates aware of current challenges in structural engineering. The primary aim of this programme is to create master’s degree graduates with qualities and transferable skills for demanding employment in the construction and civil engineering sector. The graduates will have the independent learning ability required for continuing professional development and acquiring new skills at the highest level.

Course Content

The programme is currently taken full-time, over 12 months. Each taught module will count for 15 credits, approximating to 150 learning hours. The modules will be taught over the first eight months and during the final four months, students will conduct an individual research project worth 60 credits (Dissertation).

Compulsory Modules:

Nonlinear Structural Analysis & Finite Element Method
Structural Dynamics & Seismic Design
Advanced Construction Materials and Structural Retrofitting Technology
Advanced Reinforced and Prestressed Concrete Design
Advanced Steel Design
Case Studies of Modern Structures and Sustainable Structural Design
Research Methods and Professional Studies
Msc Civil Engineering Dissertation

Optional Modules:

Structural Design for Fire
Foundation, Earthworks and Pavement Design and Construction

Teaching

Our Philosophy

The philosophy behind the teaching and learning strategy we use is largely underpinned by high quality and accessible learning opportunities developing over the years by the University and the College, which are highly acclaimed standards and practices for learning and teaching.

In addition to teaching, the academics staff of this MSc programme are active in research. Teaching is therefore informed by research, giving you the opportunity to learn about the latest developments in structural engineering from leading experts in their chosen fields of specialisation.

Contact between students and academic staff is relatively high at around 20 hours per week initially to assist you in adjusting to university life. As the programme progresses the number of contact hours is steadily reduced as you undertake more project-based work. You will be taught by various approaches that complement each other in achieving the set learning outcomes.

How you will be taught

Lectures: These provide a broad overview of the main concepts and principles you need to understand, give you with a framework on which to build and expand your knowledge on through private studies.
Laboratories: Practical’s are generally two or three-hour sessions in which you can practice your observational and analytical skills, and develop a deeper understanding of theoretical concepts.

Design Studios: In a studio you will work on individual and group projects with guidance from members of staff. You may be required to produce a design or develop a solution to an engineering problem. These sessions allow you to develop your intellectual ability and practice your teamwork skills.

Computer Sessions: These allow for the opportunity to develop knowledge and experience of structural analysis and design software packages and apply them to structural engineering problems. Students have access to computers outside scheduled sessions to allow them to develop their transferable skills and learn at their own pace and time as well.

One-to-one Tutoring: On registration for the course you will be allocated a personal tutor who will be available to provide academic and pastoral support during your time at university. You will get one-to-one supervision on all project work.

Input from Guest Lecturers: Industry practitioners are invited to present lectures on the real structural engineering projects at regular seminars. The seminars are designed to facilitate informal interactions between students and guest lecturers, encouraging student active engagement in the discussions.

Site Visits: Learning from real-world examples is an important part of the course. You will visit sites featuring a range of structural engineering approaches. This exposure will provide you with invaluable experience including opportunities to debate on the real projects.

Assessment

Each of the taught modules is assessed either by formal examination, an assignment, or a balanced combination of two. Methods of assessing assignments include essay, individual/group report, oral presentation and class test.

Information on assignments in terms of the aims, learning outcomes, assessment criteria and submissions requirements are clearly specified at the beginning of the academic year. Detailed feedback on assignments is provided to students to assist them in achieving the required learning outcomes. The research project is assessed by dissertation and oral presentation.

Special Features

Emphasis on safety and sustainability: This MSc programme is distinctive because of its emphasis on building safety and sustainability and disaster mitigation of civil structures – with four taught modules totalling 60 credits. The dissertation projects will also be closely linked to ongoing research in these areas.

Industry support: Brunel has a very active Industrial Liaison Panel, which is immensely supportive of our programmes. The Panel and the companies have also shown keen interest in offering industrial support for the new programme through assistance such as support with project dissertations and site visits.

Guest speakers: Our strong contact with industry is also used to invite experienced industry practitioners to come and give talks on specialist topics at regularly organised seminars. The seminars also serve as a platform for student project presentations, which goes to build their confidence level because of the recognition and value their project gains through such dissemination.

Supporting professional development: Under a professional development module, you will be required to actively pursue your personal development planning through continuously recording and record keeping of progress being made throughout the course duration. Personal tutors will offer support to their tutees by regularly checking these records (i.e. a Personal Development Log (PDL) and discussing any relevant issues with the aim of supporting them to find solutions.

Women in Engineering and Computing Programme

Brunel’s Women in Engineering and Computing mentoring scheme provides our female students with invaluable help and support from their industry mentors.

Accreditation

This new course has been designed in close consultation with industry and we are currently in the process of seeking accreditation for it from the major professional institutions (JBM). Related courses in the College of Engineering, Design and Physical Sciences are already accredited.

To ensure the programme addresses current industry concerns, it was developed in compliance with international standards, using Civil Engineering Body of Knowledge as a guide. The programme also satisfies the requirements of the major civil engineering professional bodies (JBM) as stipulated in their guidelines on coverage given to the teaching of structural engineering.

Read less
The programme aims at preparing engineers to develop and use information technology tools so as to satisfy the widest variety of applications. Read more

Mission and Goals

The programme aims at preparing engineers to develop and use information technology tools so as to satisfy the widest variety of applications. Compared to the Bachelor of Science, Master of Science students acquire greater ability to model and solve complex problems, integrating different advanced skills and technologies. The programme comprises three tracks: Communication and Society Engineering, Sound and Music Engineering, Data Engineering.

The teaching language is English.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/computer-science-and-engineering/computer-science-and-engineering-track-como/

Career Opportunities

The information technology engineer operates mainly in companies manufacturing and distributing information technology and robotics equipment and systems, companies providing products and services with a high information technology content, private organisations and public administration using information technology to plan, design, manage, decide, produce and administrate.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Computer_science_and_engineering_CO_01.pdf
The Master of Science programme in Computer Science and Engineering aims at training engineers able to develop and use information technology tools so as to satisfy the widest variety of applications. Four tracks are available, corresponding to four main cultural areas. The “Communication and Society Engineering” track focuses on the integration of computer science and communication skills, for designing, implementing, presenting and evaluating innovative multimedia applications. The methodologies for the management of data, such as data mining, pattern recognition, information retrieval, constitute the core of the “Data Engineering” track. The “ICT Engineering, Business and Innovation” track aims at building professional profiles that combine a solid computer science background with managerial capabilities, through a selection of computer science and management courses, integrated with a broad cross-disciplinary project, carried out in collaboration with companies and Management Engineering students and professors. Finally, the “Sound and Music Engineering” track (in collaboration with the “Giuseppe Verdi” Music Conservatory of Como) focuses on the concepts and processes that are behind generation, analysis, manipulation/ processing, transport, access, coding and rendering of audio and musical signals. The programme is taught in English.

Subjects

Key subjects available:
Multimedia Interactive Applications for Web and Mobile Devices, Computer Graphics and Applications, Advanced Software Engineering, Advanced Computer Architectures, Performance Evaluation of Computer Systems, Multimedia Information Retrieval, Multimedia Signal Processing, Sound Analysis, Synthesis and Processing, Electronics and Electroacoustic.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/computer-science-and-engineering/computer-science-and-engineering-track-como/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/computer-science-and-engineering/computer-science-and-engineering-track-como/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
In the MA for Sound Arts you will explore sound as a creative medium at an advanced level, and focus on the areas that interest you most. Read more

In the MA for Sound Arts you will explore sound as a creative medium at an advanced level, and focus on the areas that interest you most. We’ll help you develop the technical skills you need, but the course is about sound more than technology, and values lo-tech and no-tech as much as the latest technological developments.

You can work in any music genre, and/or cover areas such as soundscape recording and sound design, interactive audio (for applications such as live performance, gaming, VR, immersive environments and installations), spatial audio, hardware/software (instrument) design and interdisciplinary practice incorporating other media.

COURSE STRUCTURE

The course caters for those working in a wide variety of music genres, and at the same time also covers areas of practice such as soundscape recording and sound design, interactive audio, spatial audio, hardware/software design and interdisciplinary practice incorporating other media. Most students won’t cover all of these areas, but will use the course to develop an individually-tailored portfolio of skills, experience and top-level work across them.

Most students won’t cover all of these areas, but will use the course to develop an individually-tailored portfolio of skills, experience and top-level work across them. We believe this to be appropriate to the current employment landscape where many combine traditional roles in music with broader practice in sound and other media. The course also provides the breadth necessary for FE and HE teaching in this field, and provides a basis where required for PhD research and beyond.

MODULES

In trimester one, you'll gain the skills you’ll need to fulfil the rest of the course. The Skills Portfolio module is built on the idea that you’ll already have technical skills in this area. It therefore allows you to choose a handful of skills projects from a large number of options – these cover skills right across the Sound Arts, Sound Design and Sound Production pathways and include (optional) elements of multimedia.

The Research Methodology and Context module develops skills in postgraduate-level research and writing.

In trimester two, you'll study the Sonic Architecture module. This is intended as an expansion of traditional music composition teaching, where the aesthetic aspects of individual work will be examined and developed.

Alongside this core module, you’ll be offered a wide range of options.The Visual Music module explores the idea that musical thinking can be extended to the visual. Intertextuality in Sound Production, from the Sound Production pathway, explores the overlap between Urban Music production. Post Production, from the Sound Design pathway, explores an industry-level workflow for Audio Post for picture.

There are also choices in Composition, Performance, Musicology and Professional Practice.

In trimester three, you'll complete the course with a independent research project, compromising of a large-scale practical project. Allowing you to develop your own individual and original research area.

For detailed information on modules, please visit the course webpage: https://www.bathspa.ac.uk/courses/pg-sound-arts/

TEACHING METHODS

Most modules are taught through small-group seminars and workshops, where you’ll benefit from close interaction with tutors and peers. The Major Project and parts of the other modules are taught through individual tutorials where the focus will be entirely on your own practice.

ASSESSMENT METHODS

You’ll be assessed entirely on coursework. The majority of this will be practical and creative work, including the dissertation-equivalent Major Project. Some practical projects are accompanied by short informal written assignments, and for the Research Methodology and Context module you’ll produce a more substantial paper.

CAREER OPPORTUNITIES

Our graduates have range of successful careers in production, composition, music for film and TV, sound design for moving image and games, sound art, software development, engineering, further education, higher education and research.

MA Sound is a new course – this is based on MMus Creative Sound and Media Technology, which is its predecessor.

For information on facilities and resources, please go to our website: https://www.bathspa.ac.uk/courses/pg-sound-arts/



Read less
The MSc in Civil Engineering aims to build on the knowledge and skills that you have obtained as an undergraduate and to help prepare you for a career as a consulting civil engineer across the broad spectrum of the professional discipline. Read more
The MSc in Civil Engineering aims to build on the knowledge and skills that you have obtained as an undergraduate and to help prepare you for a career as a consulting civil engineer across the broad spectrum of the professional discipline. The overall aim of this well-established course is to provide a sound scientific, technical and commercial understanding of civil engineering issues and practice. You will be introduced to the broad nature of civil engineering through the integration of knowledge from structural engineering, geotechnical engineering and water engineering. The course will also provide training in engineering research methods and will develop a range of related transferable skills. You will also develop an appreciation of the principles and activities involved in the day-to-day management of engineering business units, typical of those within which civil engineering is practised.

Graduates of this course will be able to work as professional and highly proficient engineers with the skills and expertise necessary to work in a range of careers across the field of civil engineering.

Distinctive features

• The employment record of graduates is excellent, with the majority of graduates joining engineering consultancies.

• The MSc in Civil Engineering is accredited by the ICE, IStructE, IHT and the IHIE. It meets the requirements for Further Learning for a Chartered Engineer under the provisions of UK-SPEC for intakes 2014-2018 inclusive, for candidates that have already acquired a CEng-accredited BEng (Hons) undergraduate first degree or an IEng-accredited BSc (Hons) undergraduate first degree.

• You have the opportunity to study in a research-led department taught by staff rated in the highest possible category by independent Government assessment, and with facilities commensurate with a top-class research unit.

• We encourage an open and engaging culture between students and staff.

Structure

The programme is presented as a one-year full-time Master's level programme, and is also available in part-time mode over three years.

The programme is presented in two stages:

• The taught material is delivered during the Autumn and Spring semesters. An extended project within one of the Civil Engineering fields forms a major part of the course. In Stage 1 students follow taught modules to the value of 120 credits, with a limited amount of choice between optional modules.

• Stage 2 consists of a project and dissertation module worth 60 credits.

Summative assessment is undertaken at the end of each stage (or each year if part-time).

For a list of modules for the FULL-TIME route, please see website:

http://www.cardiff.ac.uk/study/postgraduate/taught/courses/course/civil-engineering-msc

For a list of the modules for the PART-TIME route, please see website:

http://www.cardiff.ac.uk/study/postgraduate/taught/courses/course/civil-engineering-msc-part-time

Teaching

A wide range of teaching styles will be used to deliver the diverse material forming the curriculum of the programme. You will attend lectures and participate in examples classes. All students must complete 120 credits in Stage 1 in order to progress to the dissertation, for which they are allocated a supervisor from among the teaching staff. Dissertation topics are normally chosen from a range of project titles proposed by academic staff, usually in areas of current research interest, although students are encouraged to put forward their own project ideas.

Assessment

Achievement of learning outcomes in the majority of modules is assessed by a combination of coursework assignments, plus University examinations set in January or May. Examinations count for 60%–70% of assessment in Stage 1 of the programme, depending on the options chosen, the remainder being largely project work and pieces of coursework.

The award of an MSc requires successful completion of Stage 2, the dissertation, with a mark of 50% or higher. Candidates achieving a 70% average may be awarded a Distinction. Candidates achieving a 60% average may be awarded a Merit. Candidates failing to qualify for an MSc may be awarded a Postgraduate Diploma for 120 credits in Stage 1. Candidates failing to complete the 120 credits required for Stage 1 may still be eligible for the award of a Postgraduate Certificate for the achievement of at least 60 credits.

Career prospects

This course's graduate employment record is excellent, with the majority of graduates joining engineering consultancies.

Read less
This programme responds to the worldwide demand for building services engineers who have a sound knowledge of engineering principles and the ability to apply this knowledge within the building services industry. Read more

About the course

This programme responds to the worldwide demand for building services engineers who have a sound knowledge of engineering principles and the ability to apply this knowledge within the building services industry.

Professional ‘Building Services Engineers’ design all of the systems that are necessary in a building for occupants to carry out their business. These systems include: heating, lighting, air-conditioning and electrical systems. The role is increasingly involved with the provision of sustainable, energy efficient and green building within our society. Services have to be carefully designed and installed so that they are unobtrusive and aesthetically pleasing, and also work in harmony with the architecture of the building. The programme will respond to the worldwide demand for building services engineers who have a sound knowledge engineering principles and the ability to apply this knowledge to the complex situations prevailing within the building services industry.

The course is available either as a full-time, 1-year programme at Brunel or as a 3-to-5 year distance learning programme.

Aims

With the growing complexity of engineering services in modern buildings and the significance of energy conservation and emissions control, the role of the building services engineer is becoming increasingly important.

As an interdisciplinary profession that involves the specification, design, installation and management of all the engineering services associated with the built environment, comfort and function also need to be combined – which calls for engineers with a wide range of knowledge and skills.

This MSc programme is suitable for:

Recent engineering and technology graduates, moving into building services and related disciplines.
Established engineers and technologists, working in building services and faced with the challenge of new areas of responsibility.
Engineers who want to develop technical understanding and expertise across the multi-disciplines of building services engineering.
Managers and designers, who need to broaden their experience and require updating.
Lecturers in higher education, moving into or requiring updating in building services engineering.
Others with engineering and technology backgrounds, perhaps working in advisory or consultancy roles, who wish to familiarise themselves with building services engineering. However, choice of course will be dependent upon the type and extent of knowledge and skills required.

Course Content

Modes of Study

1 Year Full-Time: The taught element of the course (September to April) includes seven modules; delivery will be by a combination of lectures, tutorials and group/seminar work. A further four months (May to September) is spent undertaking the dissertation.

3-5 Years Distance Learning: The distance learning programme is designed to enable you to conduct most of your studies at home, in your own time and at your own pace.

There is no requirement to attend lectures at Brunel University and there is no set timetable of lectures, instead you follow a structured programme of self-study at home or at work. This gives you the freedom to arrange a work programme to study yourself and you should usually allow about twelve hours each week for study.

There are set submission dates for assignments but we have tried to design the programme so that they are well-spaced, giving you the maximum flexibility in your study plans.

You can take between three and five years to complete the course. The average is three years, with students taking four modules in the first year, four modules in the second year and the dissertation in the third year. However, depending on your other commitments you can take longer up to a maximum of five years.

You are supplied with a study pack in the form of textbooks and CD-ROMs; you have assignments to submit and exams to sit each year.

Examinations can be taken either at Brunel University or in the country you are resident in. We have an extensive network of organisations (universities, colleges and British Council offices) throughout the world who will provide invigilation services.

The cost of invigilation away from Brunel is your responsibility. Examinations are held in May each year.

Typical Modules

The course comprises four core modules, three technical modules and a dissertation. The taught modules are:

Core Modules:

Building Heat Transfer and Air Conditioning
Electrical Services and Lighting Design
Acoustics, Fire, Lifts and Drainage
Energy Conversion Technologies
Dissertation

Technical Modules:

Building Management and Control Systems
Design of Fluid Services and Heat Transfer Equipment
Building Services Design and Management

Special Features

There are several advantages in choosing the Brunel Building Services programme:

Award-winning courses: Building Services Engineering courses have been awarded the Happold Brilliant Award for teaching excellence by the Chartered Institution of Building Services Engineers.

Relevance: It is well established within the building services industry, with sponsors of students that include major design and contracting organisations, area health authorities, local authorities and the British Council, as well as several national governments.

Applicability: Emphasis on applications enables students and employers to benefit immediately from the skills and knowledge gained.

Responsiveness: Brunel's proximity to London, where large and innovative building developments have been taking place over the last decade, enables rapid infusion of new ideas and technological innovations into the programme content.

Excellent facilities
We have extensive and well-equipped laboratories, particular areas of strength being in fluid and biofluid mechanics, IC engines, vibrations, building service engineering, and structural testing. Our computing facilities are diverse and are readily available to all students. The University is fully networked with both Sun workstations and PCs. Advanced software is available for finite and boundary element modelling of structures, finite volume modelling of flows, and for the simulation of varied control systems, flow machines, combustion engines, suspensions, built environment, and other systems of interest to the research groups.

Collaborative research
Engineering at Brunel benefits from research collaboration with numerous outside organisations including major oil companies, vehicle manufacturers, and other leading industrial firms and governmental laboratories. We have links with at least six teaching hospitals and work with universities in China, Poland, Egypt, Turkey, Denmark, Japan, Brazil, Germany, Belgium, Greece, Italy and the US.

Women in Engineering and Computing Programme

Brunel’s Women in Engineering and Computing mentoring scheme provides our female students with invaluable help and support from their industry mentors.

Accreditation

This course is approved by the Chartered Institute of Building Services Engineers (CIBSE) and the Institution of Mechanical Engineers (IMechE) as appropriate additional academic study (further learning) for those seeking to become qualified to register as Chartered Engineers (CEng). Additioanlly we are seeking reaccreditation with the Energy Institute.

Teaching

Students are supplied with a study pack in the form of text books and CD-ROMs; you have assignments to submit and exams to sit each year. Examinations can be taken either at Brunel University or in the country you are resident in.
We have an extensive network of organisations (Universities, Colleges and British Council Offices) throughout the world who will provide invigilation services. The cost of invigilation away from Brunel is your responsibility. Examinations are held in May each year.

Assessment

Each module is assessed either by formal examination, written assignments or a combination of the two. Cut-off dates for receipt of assignments are specified at the beginning of the academic year.
Examinations are normally taken in May. MSc dissertation project normally is carried out over four months (full-time students) or one year (distance learning students) and it is accessed by submission of an MSc dissertation.

Read less

Show 10 15 30 per page



Cookie Policy    X