• University of Edinburgh Featured Masters Courses
  • Imperial College London Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of York Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Regent’s University London Featured Masters Courses
  • Leeds Beckett University Featured Masters Courses
King’s College London Featured Masters Courses
University of Kent Featured Masters Courses
Cardiff University Featured Masters Courses
University of Leeds Featured Masters Courses
Coventry University Featured Masters Courses
"solar" AND "thermal"×
0 miles

Masters Degrees (Solar Thermal)

  • "solar" AND "thermal" ×
  • clear all
Showing 1 to 15 of 18
Order by 
This MSc teaches an international community of students about the latest advances in clean power developments and enables graduates to design and develop benign renewable energy solutions that can be implemented in countries around the world. Read more
This MSc teaches an international community of students about the latest advances in clean power developments and enables graduates to design and develop benign renewable energy solutions that can be implemented in countries around the world.

It is aimed at engineers and natural scientists pursuing or wishing to pursue a career in the renewable energy sector, particularly those in technical positions e.g. systems designers, technical consultants and R&D engineers and scientists.

Core study areas include solar power, wind power, water power, biomass, sustainability and energy systems, integration of renewables and a research project.

Optional study areas include advanced solar thermal, advanced photovoltaics, advanced wind, energy storage, energy system investment and risk management.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/eese/renewable-energy-systems-tech/

Programme modules

Compulsory Modules:
- Solar Power
- Wind Power 1
- Water Power
- Biomass
- Sustainability and Energy Systems
- Integration of Renewables
- Research Project

Optional Modules (choose three):
- Advanced Solar Thermal
- Advanced Photovoltaics
- Wind Power 2
- Energy Storage
- Energy System Investment and Risk Management

How will you learn

You can select options to develop a chosen specialism in greater depth, including through your individual project which is often carried out with renewable energy companies or alongside the research portfolio of our international experts.

This is a very practical course backed up by strong theoretical understanding of the principles and facts behind renewable energy production.

Assessment is via a mixture of written and practical coursework and examinations. The individual research project is also assessed by viva. Because of its multidisciplinary nature, assessment may be done in collaboration with academic colleagues from Civil Engineering, Mechanical Engineering and Materials.

Facilities

We have current industrial equipment and laboratories for PV cell production, PV module production, qualification testing, PV quality control, energy storage research facilities, vacuum glazing, wind flow measurement, and instrumentation for energy consumption and monitoring.

You will benefit from experience with industrial tools and software for system design (e.g. PV Syst, WASP, ReSoft Windfarm, DNV GL Windfarmer), materials research hardware (e.g. pilot lines for commercial solar cell production) and quality control laboratories.

This enables you to acquire the practical skills that industry uses today and builds the foundations for developing your knowledge base throughout their career.

Careers and further study

There is a world-wide shortage of skilled engineers in this field and so the combination of hands on experience with global industry standard tools and techniques and the strong theoretical knowledge which graduates of this course acquire, makes them highly attractive to employers.

Students may carry out their projects as part of a short-term placement in a company and graduates of this course are often fast-tracked in their applications. Consequently we have an extensive network of alumni, many in top jobs.

Why choose electronic, electrical and systems engineering at Loughborough?

We develop and nurture the world’s top engineering talent to meet the challenges of an increasingly complex world. All of our Masters programmes are accredited by one or more of the following professional bodies: the IET, IMechE, InstMC, Royal Aeronautical Society and the Energy Institute.

We carefully integrate our research and education programmes in order to support the technical and commercial needs of society and to extend the boundaries of current knowledge.

Consequently, our graduates are highly sought after by industry and commerce worldwide, and our programmes are consistently ranked as excellent in student surveys, including the National Student Survey, and independent assessments.

- Facilities
Our facilities are flexible and serve to enable our research and teaching as well as modest preproduction testing for industry.
Our extensive laboratories allow you the opportunity to gain crucial practical skills and experience in some of the latest electrical and electronic experimental facilities and using industry standard software.

- Research
We are passionate about our research and continually strive to strengthen and stimulate our portfolio. We have traditionally built our expertise around the themes of communications, energy and systems, critical areas where technology and engineering impact on modern life.

- Career prospects
90% of our graduates were in employment and/or further study six months after graduating. They go on to work with companies such as Accenture, BAE Systems, E.ON, ESB International, Hewlett Packard, Mitsubishi, Renewable Energy Systems Ltd, Rolls Royce and Siemens AG.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/eese/renewable-energy-systems-tech/

Read less
This is the distance learning version of the full time MSc in Renewable Energy Systems Technology. By using the same course materials distance learning students are able to achieve the same outcomes as the full-time MSc in Renewable Energy Systems Technology. Read more
This is the distance learning version of the full time MSc in Renewable Energy Systems Technology.

By using the same course materials distance learning students are able to achieve the same outcomes as the full-time MSc in Renewable Energy Systems Technology. We have developed new ways of learning, which offer students flexibility in place, pace and mode to meet the demand for this highly sought after qualification but who cannot attend traditional university classes.

By the end of the course, our renewable energy MSc graduates, will have gained a comprehensive understanding of renewable energy technologies and developed a range of important transferable
skills.

Core study areas include solar power, wind power, water power, biomass, sustainability and energy systems, integration of renewables and a research project.

Optional study areas include advanced solar thermal, advanced photovoltaics, energy storage, energy system investment and risk management.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/eese/renewable-energy-system-tech-dl/

Programme modules

Compulsory Modules:
- Sustainability and Energy Systems
- Integration of Renewables
- Solar 1
- Wind 1
- Water Power
- Biomass
- Research Project

Optional Modules (choose three):
- Energy Storage
- Advanced Solar Thermal
- Advanced Photovoltaics
- Wind 2
- Energy System Investment and Risk Management

Normally students are required to obtain 180 Master's level credits in these modules to become a Master of Science in Renewable Energy Systems Technology graduate. However optional leave awards of Postgraduate Diploma (120 credits) or Postgraduate Certificate (60 credits) are possible.

How you will learn

All of our renewable energy MSc Modules consist of a series of Study Units, each covering a specific subject area (see programme modules). Instead of face-to-face lectures and tutorials, the main learning routes for distance learning students are via the University’s virtual learning environment (LEARN). The learning resources for each Study Unit include:
- On line study materials
- Live streamed and recorded lectures
- Virtual and remote laboratories
- Tutorials, assignments and computer aided assessments
- Access to past exam papers

In addition there are several important communication features built into LEARN which include:
- Discussion forums (for communicating with tutors and fellow learners)
- Specialist tutor groups
- Assignment and tutorial upload facility (to allow tutors to check your progress and provide you with feedback)
- Online tutorial sessions with module lectures

Distance learning students also have the option to attend on campus modules.

- Assessment
By examination, coursework, group work and research project. Examinations are held in January and May/June with coursework and group work throughout the programme. The individual MSc research project is assessed by written report and viva voce. Students receive regular feedback on their progress from on-line support officers, tutors and academic staff.

It is also possible for distance learning students to take exams at a suitable local venue either a local British council or a recognised university. For further information about this process please contact the course administrator.

- Technical Requirements
To make full use of distance learning resources, the following are minimum requirements:
- Good specification PC or laptop running the latest operating system
- A printer if you wish to print out materials
- Good computer skills (see below)
- Fast and reliable access to the Internet via Broadband

You will require the skills that allow one to:
- Open, copy, and move files and directories on your hard drive
- Move around the desktop with several applications (programmes) opened at the same time
- Create documents using a software package such as MS Word or similar.
- Be able to zip files and make pdf files
- Manipulate and analyse data using spread sheet software such as MS Excel

Careers and further study

The flexibility offered by this MSc allows graduates already working in or seeking to enter the sector, the opportunity to gain strong technical knowledge whilst continuing to work.This combination of knowledge and practical experience makes them highly attractive to existing and future employers worldwide.

Fees: Structure and scholarships

Unlike the full time course distance learning students pay as they study and will pay for modules prior to registration at the beginning of each semester. There are no additional registration fees.
However please note that distance learning fees are reviewed annually and may increase during your period of study.

Why choose electronic, electrical and systems engineering at Loughborough?

We develop and nurture the world’s top engineering talent to meet the challenges of an increasingly complex world. All of our Masters programmes are accredited by one or more of the following professional bodies: the IET, IMechE, InstMC, Royal Aeronautical Society and the Energy Institute.

We carefully integrate our research and education programmes in order to support the technical and commercial needs of society and to extend the boundaries of current knowledge.

Consequently, our graduates are highly sought after by industry and commerce worldwide, and our programmes are consistently ranked as excellent in student surveys, including the National Student Survey, and independent assessments.

- Facilities
Our facilities are flexible and serve to enable our research and teaching as well as modest preproduction testing for industry.
Our extensive laboratories allow you the opportunity to gain crucial practical skills and experience in some of the latest electrical and electronic experimental facilities and using industry standard software.

- Research
We are passionate about our research and continually strive to strengthen and stimulate our portfolio. We have traditionally built our expertise around the themes of communications, energy and systems, critical areas where technology and engineering impact on modern life.

- Career prospects
90% of our graduates were in employment and/or further study six months after graduating. They go on to work with companies such as Accenture, BAE Systems, E.ON, ESB International, Hewlett Packard, Mitsubishi, Renewable Energy Systems Ltd, Rolls Royce and Siemens AG.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/eese/renewable-energy-system-tech-dl/

Read less
This programme is aimed at graduates of building services engineering and other science and engineering disciplines who wish to extend their technical expertise in the field of building services engineering. Read more
This programme is aimed at graduates of building services engineering and other science and engineering disciplines who wish to extend their technical expertise in the field of building services engineering. With energy consumption within the design and operation of buildings becoming an ever increasingly important factor this programme is designed to combine building services engineering knowledge with specific energy considerations in their design.

The programme is accredited for further learning for CEng and professional membership by the Energy Institute and CIBSE. CIBSE has praised the programme as ‘one of the leading MSc courses of its kind in the UK’.

Areas studied include low energy building design, designing for suitable indoor air quality and thermal comfort, state-of-the-art control systems, and the design of building heating, ventilating, and air conditioning systems.

The course attracts students from all over the world, including countries such as Greece, Iran, China, France, Germany and Colombia. This is attractive to potential employers who often have international offices around the world.

Key Facts

- An outstanding place to study. The School of Civil and Building Engineering is ranked 2nd in the UK for Building in the Times Good University Guide 2015
- Research-led teaching from international experts. 75% of the School’s research was rated as world-leading or internationally excellent in the latest Government Research Excellence Framework.
- The programme is accredited by the two main institutions representing energy and buildings – the Chartered Institution of Building Services Engineers and the Energy Institute. On successful completion of the course, students are deemed to meet the education requirements for both institutions and their applications can be endorsed by course tutors.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/civil/low-energy-building-services/

Programme modules

Compulsory Modules:
- Thermodynamics, Heat Transfer & Fluid Flow [70% exam, 10 credits]
The aim of this module is to provide students from related engineering backgrounds with an understanding of the fundamentals of heat transfer, fluid flow and thermodynamics for application to buildings and their engineering systems.

- Thermal Comfort & Indoor Air Quality [70% exam, 15 credits]
The aim of this module is for the student to understand the principles and practice involved in the design of indoor environments, with respect to occupant thermal comfort and air quality.

- Building Thermal Loads & Systems [70% exam, 15 credits]
The aim of this module is for the student to understand the principles of building thermal load analysis and required systems for medium to large buildings.

- Building Energy Supply Systems [70% exam, 15 credits]
The aim of this module is for the student to be provided with a practical foundation in system design and analysis, by developing the students' understanding of thermal plant in buildings including air conditioning systems and systems for heat recovery.

- Building Control & Commissioning [70% exam, 10 credits]
The aims of this module are for the student to understand the application of automatic control in energy monitoring and commissioning and to examine the control problems in buildings and develop control strategies that will improve thermal comfort and building energy use.

- Concept Design [0% exam, 15 credits]
The aims of this module are for the student to be introduced to the process within which buildings are conceived and designed by undertaking the architecture design of a major building using multi-disciplinary input. Students will develop team skills through working in design groups to generate schematic concepts before developing the best. They will apply previous knowledge of building services and low carbon design in the selection process and carry out performance analysis. Students will work with 3D architectural and 3D mechanical, electrical and plumbing (MEP) systems within BIM software to further develop their concepts.

- Low Carbon Building Design [50% exam, 15 credits]
The module aims to introduce the principles of low and zero carbon building with special attention to the process of design and decision-making.

- Advanced Thermal Modelling [50% exam, 15 credits]
The aims of this module are for the student to understand the principles of building thermal modelling and HVAC plant simulation, and be given a perspective on the applications of these techniques to the design process.

- Research Project [0% exam, 60 credits]
The aim of this module is to provide the student with experience of the process and methodology of research by defining and studying (on an individual basis) a complex problem in a specialised area relating to Building Energy

- Research Methods in Building Performance [0% exam, 10 credits]
The aims of this module are for the student to become familiar with and comprehend the wide range of research methods and skills needed to investigate, understand and communicate building performance.

Facilities

All masters students have access to a wide range of building simulation codes which include commercial software, as well as bespoke codes developed in-house. Students can run these codes on their personal laptops or access any one of our computer laboratories, including access to our recently commissioned 2000-node high performance computer cluster.

One of our key strengths at Loughborough is our experimental facilities which enable us to validate computer models. Our masters students have access to a vast range of experimental facilities, some of which are used during the taught modules and all of which are available for use by students during their research dissertations.

These include: a fully controllable environmental chamber; sophisticated thermal and breathing manikins; an indoor solar simulator; a 'darkroom' facility to carry out optical and high dynamic range measurements; and full-scale houses for pressure testing and studying innovative heating and control strategies. A recent investment of £360k was made to purchase an extensive array of monitoring and measuring equipment for use during field studies.

How you will learn

You will learn through a carefully balanced combination of lectures, in-class guided workshops, hands-on computer modelling, field measurements and independent research. Students have access to a wide range of air flow and thermal modelling software as wells as extensive laboratory facilities. Following nine taught modules, students pursue a research dissertation of their choice which draws on the skills developed during the taught modules.

Students are assessed by a combination of traditional written exams, coursework and assignments. This split is typically 70/30 (exam/coursework) or 50/50, although some modules, such as research methods and concept design are assessed entirely based on coursework which comprises individual presentations and group work.

Careers and further study

Previous students have gone on to work for leading consulting engineering companies such as Arup, Pick Everad, Hoare Lea, Cundall, Foster & Partners, and Atkins. Some of these companies offer work placements for students to undertake their research dissertations. Many visit the university to deliver lectures to our MSc students providing ideal opportunities for students to discuss employment opportunities.

Scholarships

The University offers over 100 scholarships each year to new self-financing full-time international students who are permanently resident in a county outside the European Union. These Scholarships are to the value of 25% of the programme tuition fee and that value will be credited to the student’s tuition fee account.
You can apply for a scholarship once you have received an offer for a place on this programme.

Why choose civil engineering at Loughborough?

As one of four Royal Academy of Engineering designated Centres of Excellence in Sustainable Building Design, the School of Civil and Building Engineering is one of the largest of its type in the UK and holds together a thriving community of over 60 academic staff, 40 technical and clerical support staff and over 240 active researchers that include Fellows, Associates, Assistants, Engineers and Doctoral Students.

Our world-class teaching and research are integrated to support the technical and commercial needs of both industry and society. A key part of our ethos is our extensive links with industry resulting in our graduates being extremely sought after by industry and commerce world-wide,

- Postgraduate programmes
The School offers a focussed suite of post graduate programmes aligned to meet the needs of industry and fully accredited by the relevant professional institutions. Consequently, our record of graduate employment is second to none. Our programmes also have a long track record of delivering high quality, research-led education. Indeed, some of our programmes have been responding to the needs of industry and producing high quality graduates for over 40 years.

Currently, our suite of Masters programmes seeks to draw upon our cutting edge research and broad base knowledge of within the areas of contemporary construction management, project management, infrastructure management, building engineering, building modelling, building energy demand and waste and water engineering. The programmes are designed to respond to contemporary issues in the field such as sustainable construction, low carbon building, low energy services, project complexity, socio-technical systems and socio-economic concerns.

- Research
Drawing from our excellent record in attracting research funds (currently standing at over £19M), the focal point of the School is innovative, industry-relevant research. This continues to nurture and refresh our long history of working closely with industrial partners on novel collaborative research and informs our ongoing innovative teaching and extensive enterprise activities. This is further complemented by our outstanding record of doctoral supervision which has provided, on average, a PhD graduate from the School every two weeks.

- Career Prospects
Independent surveys continue to show that industry has the highest regard for our graduates. Over 90% were in employment and/or further study six months after graduating. Recent independent surveys of major employers have also consistently rated the School at the top nationally for civil engineering and construction graduates.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/civil/low-energy-building-services/

Read less
The world is facing increasing environmental threats which are posing severe scientific, social and economic challenges to the human race. Read more

Overview

The world is facing increasing environmental threats which are posing severe scientific, social and economic challenges to the human race. These challenges include: the depletion of natural resources, the loss of diversity and the need to develop new forms of energy generation whilst efficiently utilising existing energy sources.
Tackling these environmental problems and establishing a sustainable environment requires the adoption of appropriate policies and managerial strategies. The interdisciplinary nature of this postgraduate course provides a broad understanding of these environmental problems whilst embedding the appropriate specialist scientific, managerial and generic skills for a career in the environmental sustainability sector.
The course incorporates Keele University’s internationally recognised expertise in research and teaching on environmental issues. It is taught by a team of environmental specialists working in the fields of environmental technologies, biological sciences, chemical science, project management, and environmental policy and politics.

See the website https://www.keele.ac.uk/pgtcourses/environmentalsustainabilityandgreentechnology/

Keele University Sustainability Hub

Keele University’s campus has unrivalled potential to form a unique hub for research, development and demonstration of a range of environmental and sustainable technologies.

The Keele Sustainability Hub site contains both academic buildings and buildings for technological companies. Renewable energy sources are integrated into these buildings, incorporating:
- Solar thermal
- Solar PV
- Climate control and underfloor heating
- Smart lighting systems
- Rainwater harvesting
- Ground source heat
- Bio-fuel woodchip burner
- Wind turbine

The main focus of the site is the specialist Hub for Sustainability building. The Sustainability Hub acts as a focus for the research into, teaching of, and management of sustainability and green technology that takes place at Keele University. It’s a means to bring all these different activities together and then to communicate the innovations and implications out to the rest of campus, schools, businesses and the wider community.

As a student on the MSc in Environmental Sustainability & Green Technology programme a lot of your teaching will take place at the Hub, and you’ll have direct access to these environmental developments first hand. The students use the Hub and its facilities as their base - a place to meet and to study - during their year at Keele.

Course Aims

The MSc in Environmental Sustainability and Green Technology is designed to provide an interdisciplinary understanding of environmental challenges whilst giving the opportunity to specialise in several sustainability themes related to geosciences, energy generation, biological science, green information technology, environmental policy and politics, and project management.

Successful students will gain
- An understanding of knowledge in the areas of science, technology, policy and green political theory relevant to environmental sustainability

- Experience in analytical and computer techniques which would allow them to contribute to the solving of environmental challenges

- A conceptual understanding to evaluate critically current research and advance scholarship in environmental sustainability

- A comprehensive understanding of experimental design, planning and scientific techniques within a research project

- Problem-solving and team-working skills relevant to the implementation of sustainable technologies and policies

Course Content

The MSc programme comprises 8 taught 15-credit modules and a 60-credit research project which is undertaken either at Keele University or on placement with an industrial collaborator.

This structure allows students to obtain a postgraduate certificate (60 credits) or a postgraduate diploma (120 credits) depending on the number of modules studied.

The first two modules provide an overview of important environmental technologies and policies relevant to sustainability. Students then choose four from ten optional modules which are arranged within four themes:
- Renewable and Sustainable Energy
- Biological Challenges and Sustainability
- Environmental Politics
- Policy and Project Management

Cross theme studies are encouraged. This interdisciplinary knowledge is then applied in a student-centred learning situation. This provides the necessary teamwork and problem-solving skills to formulate strategies to address a range of environmental and sustainability challenges.

The 60-credit research project is preceded by a Research Skills module.

Teaching & Assessment

Modules are assessed by assignment and/or examination. The research project is based on the submission of a 15 - 20,000 word report that is undertaken by the student in conjunction with an academic supervisor and, where appropriate, an industrial collaborator.

Field course costs

There will be no charge to new students taking field courses. The School receives an annual financial contribution from the University to support the cost of the field course programme. Therefore field course costs for new postgraduate students will be paid for by the University.

Employment Case Studies

Our unique inter-disciplinary course leads our graduates into a diverse range of careers.

Our students have chosen careers in research; in local, regional and national government; multi-national corporations; environmental consultancies and charities.

For examples of what graduates are doing now, see here - https://www.keele.ac.uk/gge/applicants/postgraduatetaughtcourses/msc-esgt/employmentcasestudies/

Find information on Scholarships here - http://www.keele.ac.uk/studentfunding/bursariesscholarships/

Read less
Within the rapidly expanding European renewable energy industry, an urgent demand exists for more postgraduate trained staff specialised in renewable energy technology. Read more
Within the rapidly expanding European renewable energy industry, an urgent demand exists for more postgraduate trained staff specialised in renewable energy technology. Together with leading European Universities, EUREC Agency has developed the European Master in Renewable Energy. Hanze University of Applied Sciences, Groningen (Hanze UAS), became member of the EUREC consortium and started this master programme in September 2012.

The aim of the European Master in Renewable Energy is to train postgraduate students to fill the gap between the growing industry demand for specialised renewable energy expertise and the skills currently available on the job market.

By structuring the course in three sections, students are guaranteed to spend time in at least two different EU countries and make contact with a wide range of European universities and companies involved in the renewable energy sector. The participating universities are all well-established in training and research and recognised internationally for their work in the field of renewable energy technology.

First semester

The first semester the student will acquire a solid foundation in key renewable energy technologies and the socio-economic issues related to these. For the core the student can choose one of the following universities:
-Ecoles des MINES de Paris, France - French-taught
-Loughborough University, UK - English-taught
-University of Zaragoza, Spain - Spanish-taught
-Oldenburg University, Germany - English-taught
-Hanze UAS, Groningen, The Netherlands - English-taught

Second semester: Specialisation

The second semester will give students the opportunity to specialise in a chosen technology at a different university. The specialisations are taught in English. For the specialization there are the following options:
-National Technical University of Athens, Greece - Wind
-University of Northumbria, UK - Photovoltaics
-University of Zaragoza, Spain - Grid Integration
-University of Perpignan, France - Solar Thermal
-Instituto Superior Tecnico in Lisbon, Portugal - Ocean Energy

Third semester: The thesis

In the third semester each student will conduct a 6 month research project in a company or a research centre. This is done under supervision of a professor of the core, a professor of the specialization and a supervisor from the project provider. For your final thesis placement it is possible to apply for an Erasmus placement grant.

The participating universities are all well-established in training and research as well as being recognised at an international level for their work in the field of renewable energy technology.

Read less
Energy Engineering is the branch of engineering concerned with the design and the management of energy plants and their components in order to ensure the best use of the available resources with the minimum environmental impact. Read more

Mission and goals

Energy Engineering is the branch of engineering concerned with the design and the management of energy plants and their components in order to ensure the best use of the available resources with the minimum environmental impact. Energy plants are systems in which energy forms are transformed and utilized. To name a few examples: large thermal power stations, air-conditioning and climate control equipment for residences and offices, vehicle engines, airplane propellers, solar panels etc.
The Master of Science in Energy Engineering prepares professionals to design, select and use the main technologies in energy transformation, to actively follow scientific improvements and to operate effectively in a competitive and multi-disciplinary industrial context, characterized by significant environmental, regulatory and safety constraints. Students will analyze broad themes as well as specific subjects for which both a rigorous methodological approach to thermodynamics and an open attitude towards related interdisciplinary topics are required.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/energy-engineering/energy-engineering-track/

Professional opportunities

Graduates can find employment in several sectors: in the technical area of designing, testing, running, and maintaining the energy systems, like heating and cooling systems, thermal power and hydro-electric power plants, engines, oil and gas fields; in the energy management area; and in utilities and public boards that supply energy as electricity and natural gas.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Energy_Engineering_MI.pdf
Energy Engineering is the branch of engineering concerned with the design and the management of energy plants and their components in order to ensure the best use of the available resources with the minimum environmental impact. Energy plants are
systems in which energy forms are transformed and utilized. To name a few examples: large thermal power stations, air-conditioning and climate control equipment for residences and offices, vehicle engines, airplane propellers, solar panels etc. The Master of Science in Energy Engineering prepares professionals to design, select and use the main technologies in energy transformation, to actively follow scientific improvements and to operate effectively in a competitive and multi-disciplinary industrial context, characterized by significant environmental, regulatory and safety constraints. Students will analyze broad themes as well as specific subjects for which both a rigorous methodological approach to thermodynamics and an open attitude towards related interdisciplinary topics are required.
Graduates can find employment in several sectors: in the technical area of designing, testing, running, and maintaining the energy systems, like heating and cooling systems, thermal power and hydro-electric power plants, engines, oil and gas fields; in the energy management area; and in utilities and public boards that supply energy as electricity and natural gas. The programme is taught in English.

Subjects

- Five tracks available: Power Production; Heating, Ventilation and Air-Conditioning; Oil and Gas Engineering; Energy Engineering for an Environmentally Sustainable World (offered on Piacenza campus, see separate leaflet); Energy for Development.

- Subjects and courses common to all the tracks: Heat and Mass Transfer; Fundamentals of Chemical Processes; Advanced Energy Engineering and Thermoeconomics;; Combustion and Safety; Energy Conversion or Refrigeration, Heat Pumps and Thermal Power Systems and Components; Energy Economics or Project Management or Management Control Systems; Graduation Thesis.

- Optional subjects according to the selected track: Development Economy; Engineering and Cooperation for Development; Power Production from Renewable Sources; Engineering of Solar Thermal Processes; Petroleum Reservoir Engineering; Petroleum Technology and Biofuel; Transport Phenomena in the Reservoirs; CFD for Energy Engineering Analysis; System and Electrical Machines; Advanced Energy Systems; Dynamic Behavior and Diagnostics of Machines; Materials for Energy; Turbomachinery; Internal Combustion Engines; Air Conditioning and Room Pollutant-Controlling Plants, Energy Savings and Renewable Energies in Buildings; Applied Acoustics and Lighting; Design of Thermal Systems; Energy Systems and Low-Carbon Technologies; Air Pollutions and Control Engineering; Operation and Control of Machines for Power Generation; Bio-energy and Waste-to-Energy Technologies; Smart Grids and Regulation for Renewable Energy Sources.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/energy-engineering/energy-engineering-track/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/energy-engineering/energy-engineering-track/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
This programme is aimed at anyone interested in learning more about the design and operation of low energy buildings with the added attraction of three modules dedicated to computer modelling of building performance – an essential skill for anyone wishing to work in today’s rapidly changing world of building engineering consultancy. Read more
This programme is aimed at anyone interested in learning more about the design and operation of low energy buildings with the added attraction of three modules dedicated to computer modelling of building performance – an essential skill for anyone wishing to work in today’s rapidly changing world of building engineering consultancy.

Modules are taught by world-leading experts in the field who have designed some of the world’s most innovative low energy buildings. These design experiences provide unique case study material which students find exciting and invaluable for their own research and design work.

The programme is accredited for further learning for CEng and professional membership by CIBSE and the Energy Institute and benefits from its links with the Royal Academy of Engineering Centre of Excellence in Sustainable Building Design.

The course attracts students from all over the world, including countries such as Greece, Iran, China, France, Germany and Colombia. This is attractive to potential employers who often have international offices around the world.

Key Facts

- An outstanding place to study. The School of Civil and Building Engineering is ranked 2nd in the UK for Building in the Times Good University Guide 2015

- Research-led teaching from international experts. 75% of the School’s research was rated as world-leading or internationally excellent in the latest Government Research Excellence Framework.

- The programme is accredited by the two main institutions representing energy and buildings – the Chartered Institution of Building Services Engineers and the Energy Institute. On successful completion of the course, students are deemed to meet the education requirements for both institutions and their applications can be endorsed by course tutors.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/civil/low-carbon-building-design/

Programme modules

- Building Energy Consumption [70% exam, 10 credits]
The aim of this module is for the student to understand the impact that climate, people, equipment selection and design have on energy consumption on a range of building sizes from domestic to large commercial.

- Renewable Energy and Low Carbon Technologies [70% exam, 15 credits]
The aims of this module are for the student to understand the principles of renewable energy and low carbon technologies and their integration into buildings, and to be given a perspective on the potential benefits and applications of these technologies.

- Building Control & Commissioning [70% exam, 10 credits]
The aims of this module are for the student to understand the application of automatic control in energy monitoring and commissioning and to examine the control problems in buildings and develop control strategies that will improve thermal comfort and building energy use.

- Concept Design [0% exam, 15 credits]
The aims of this module are for the student to be introduced to the process within which buildings are conceived and designed by undertaking the architecture design of a major building using multi-disciplinary input. Students will develop team skills through working in design groups to generate schematic concepts before developing the best. They will apply previous knowledge of building services and low carbon design in the selection process and carry out performance analysis. Students will work with 3D architectural and 3D mechanical, electrical and plumbing (MEP) systems within BIM software to further develop their concepts.

- Low Carbon Building Design [50% exam, 15 credits]
The module aims to introduce the principles of low and zero carbon building with special attention to the process of design and decision-making.

- Advanced Thermal Modelling [50% exam, 15 credits]
The aims of this module are for the student to understand the principles of building thermal modelling and HVAC plant simulation, and be given a perspective on the applications of these techniques to the design process.

- Advanced Airflow Modelling [50% exam, 15 credits]
The aims of this module are for the student to understand the principles of building airflow and ventilation modelling with respect to comfort and energy efficiency, and be given a perspective on the applications of these techniques to the design process.

- Advanced Lighting Modelling [50% exam, 15 credits]
The aims of this module are for the student to understand the principles of lighting modelling in buildings with respect to comfort and energy efficiency, and be given a perspective on the application of these techniques to the design process.

- Research Project [0% exam, 60 credits]
The aim of this module is to provide the student with experience of the process and methodology of research by defining and studying (on an individual basis) a complex problem in a specialised area relating to Building Energy

- Research Methods in Building Performance [0% exam, 10 credits]
The aims of this module are for the student to become familiar with and comprehend the wide range of research methods and skills needed to investigate, understand and communicate building performance.

Facilities

All masters students have access to a wide range of building simulation codes which include commercial software, as well as bespoke codes developed in-house. Students can run these codes on their personal laptops or access any one of our computer laboratories, including access to our recently commissioned 2000-node high performance computer cluster.

One of our key strengths at Loughborough is our experimental facilities which enable us to validate computer models. Our masters students have access to a vast range of experimental facilities, some of which are used during the taught modules and all of which are available for use by students during their research dissertations.

These include: a fully controllable environmental chamber; sophisticated thermal and breathing manikins; an indoor solar simulator; a 'darkroom' facility to carry out optical and high dynamic range measurements; and full-scale houses for pressure testing and studying innovative heating and control strategies. A recent investment of £360k was made to purchase an extensive array of monitoring and measuring equipment for use during field studies.

How you will learn

You will learn through a carefully balanced combination of lectures, in-class guided workshops, hands-on computer modelling, field measurements and independent research. Students have access to a wide range of air flow, thermal and daylight modelling software as well as extensive laboratory facilities. Following nine taught modules, students pursue a research dissertation of their choice which draws on the skills developed during the taught modules.

Students are assessed by a combination of traditional written exams, coursework and assignments. This split is typically 70/30 (exam/coursework) or 50/50, although some modules, such as research methods and concept design are assessed entirely based on coursework which comprises individual presentations and group work.

Careers and further study

Previous students have gone on to work for leading consulting engineering companies such as Arup, Pick Everad, Hoare Lea, Hulley and Kirkwood and SE Controls. Some of these companies offer work placements for students to undertake their research dissertations. Many visit the university to deliver lectures to our MSc students providing ideal opportunities for students to discuss employment opportunities.

Accreditation

The programme is accredited for further learning for CEng and professional membership by the CIBSE and Energy Institute.
The 'SE Controls prize for best overall performance' is awarded to the student graduating from this course with the highest overall mark. This presentation is made on graduation day.

Scholarships

The University offers over 100 scholarships each year to new self-financing full-time international students who are permanently resident in a county outside the European Union. These Scholarships are to the value of 25% of the programme tuition fee and that value will be credited to the student’s tuition fee account.
You can apply for a scholarship once you have received an offer for a place on this programme.

Why choose civil engineering at Loughborough?

As one of four Royal Academy of Engineering designated Centres of Excellence in Sustainable Building Design, the School of Civil and Building Engineering is one of the largest of its type in the UK and holds together a thriving community of over 60 academic staff, 40 technical and clerical support staff and over 240 active researchers that include Fellows, Associates, Assistants, Engineers and Doctoral Students.

Our world-class teaching and research are integrated to support the technical and commercial needs of both industry and society. A key part of our ethos is our extensive links with industry resulting in our graduates being extremely sought after by industry and commerce world-wide,

- Postgraduate programmes
The School offers a focussed suite of post graduate programmes aligned to meet the needs of industry and fully accredited by the relevant professional institutions. Consequently, our record of graduate employment is second to none. Our programmes also have a long track record of delivering high quality, research-led education. Indeed, some of our programmes have been responding to the needs of industry and producing high quality graduates for over 40 years.

Currently, our suite of Masters programmes seeks to draw upon our cutting edge research and broad base knowledge of within the areas of contemporary construction management, project management, infrastructure management, building engineering, building modelling, building energy demand and waste and water engineering. The programmes are designed to respond to contemporary issues in the field such as sustainable construction, low carbon building, low energy services, project complexity, socio-technical systems and socio-economic concerns.

- Research
Drawing from our excellent record in attracting research funds (currently standing at over £19M), the focal point of the School is innovative, industry-relevant research. This continues to nurture and refresh our long history of working closely with industrial partners on novel collaborative research and informs our ongoing innovative teaching and extensive enterprise activities. This is further complemented by our outstanding record of doctoral supervision which has provided, on average, a PhD graduate from the School every two weeks.

- Career Prospects
Independent surveys continue to show that industry has the highest regard for our graduates. Over 90% were in employment and/or further study six months after graduating. Recent independent surveys of major employers have also consistently rated the School at the top nationally for civil engineering and construction graduates.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/civil/low-carbon-building-design/

Read less
As we head towards zero carbon buildings, we need to better understand how buildings should be constructed and the materials we should use in their construction in order to increase their energy efficiency. Read more
As we head towards zero carbon buildings, we need to better understand how buildings should be constructed and the materials we should use in their construction in order to increase their energy efficiency.

Whether you are working in the construction industry, a graduate from a built environment background or you want to upskill for a new construction role, we will teach you how to analyse the performance of existing buildings and to design and model new, energy efficient buildings.

You will gain an understanding of building physics and performance, including how buildings respond to weather, how to heat buildings efficiently and how bricks, mortar, timber and insulants act as a thermal barrier. Discover how to use 3D modelling packages to study individual building components and analyse how buildings respond to environmental conditions and occupancy patterns.

You can combine this course with other Advanced Professional Diplomas as part of our MSc Sustainable Engineering or study it as a standalone qualification.

Visit the website http://courses.leedsbeckett.ac.uk/buildingmodellingandsimulation_apd

Mature Applicants

Our University welcomes applications from mature applicants who demonstrate academic potential. We usually require some evidence of recent academic study, for example completion of an access course, however recent relevant work experience may also be considered. Please note that for some of our professional courses all applicants will need to meet the specified entry criteria and in these cases work experience cannot be considered in lieu.

If you wish to apply through this route you should refer to our University Recognition of Prior Learning policy that is available on our website (http://www.leedsbeckett.ac.uk/studenthub/recognition-of-prior-learning.htm).

Please note that all applicants to our University are required to meet our standard English language requirement of GCSE grade C or equivalent, variations to this will be listed on the individual course entry requirements.

Careers

Aimed at professionals working within the built environment or graduates looking to build on their knowledge of the built environment, we will help you further your employment prospects within the construction industry. With the ability to assess the performance of existing buildings and the specialist skills to design and model new buildings, you will be a valuable asset to any construction company.

- Building Surveyor
- Architectural Technician
- Mechanical Engineer

Careers advice:
The dedicated Jobs and Careers team offers expert advice and a host of resources to help you choose and gain employment. Whether you're in your first or final year, you can speak to members of staff from our Careers Office who can offer you advice from writing a CV to searching for jobs.

Visit the careers site - https://www.leedsbeckett.ac.uk/employability/jobs-careers-support.htm

Course Benefits

Study part time at your own pace around your job and learn the latest developments in building modelling and performance that will set you apart in the workplace.

When it comes to understanding the performance of buildings in the UK, the government and building industry alike turn to our University for expertise and advice. You will be learning from a teaching team and industry experts who have worked with the UK government and large material manufacturers including Saint-Gobain and ARC Building Solutions to enhance the performance and efficiency of buildings. You will hear the first-hand experiences of business leaders and sustainability experts involved in UK and international consultancy projects on building modelling and simulation.

Through our virtual learning environment you will have access to the latest information about building designs and research on how building stock can be made more energy efficient. Online materials including videos, up-to-date research on thermal performance, moisture propagation and building fabrics, and simulations considering weather conditions, occupancy and the impact of solar and ventilation will inform your learning.

Core Modules

Building Environmental Science & Modelling
Learn to assess building performance for occupant comfort, health, energy use and serviceable life. Discover how modelling of building fabrics and components is used to predict performance.

Building Detailed Design & Specification
Apply the principals learned in the Building Environment Science & Modelling module to the design of building details to maximise performance while avoiding problems.

Professor Chris Gorse

Professor of Construction and Project Management

"The future of our energy efficient homes, workplaces and smart cities is underpinned by the performance and reliability of the models we use. This course will advance your understanding and ability to apply the latest tools and techniques to the field"

Chris Gorse is Professor of Construction and Project Management and Director of Leeds Sustainability Institute. He leads projects in the areas of sustainability, low carbon and building performance and has an interest in domestic new builds, commercial buildings and refurbishment. Chris is an established author and has consultancy experience in construction management and law.

Facilities

- Northern Terrace
Based at our City Campus, only a short walk from Leeds city centre, Northern Terrace is home to our School of Built Environment & Engineering.

- Leeds Sustainability Institute
Our Leeds Sustainability Institute's facilities include the latest drone and thermal imaging technology to provide new ways of measuring and evaluating building sustainability.

- Library
Our Library is open 24/7, every day of the year. However you like to work, we have got you covered with group and silent study areas, extensive e-learning resources and PC suites.

Find out how to apply here - http://www.leedsbeckett.ac.uk/postgraduate/how-to-apply/

Read less
The Master of Science course in Energy Engineering is aimed at students trained as general engineers with skills on the new technologies relevant to the energy conversion and its rational use. Read more
The Master of Science course in Energy Engineering is aimed at students trained as general engineers with skills on the new technologies relevant to the energy conversion and its rational use. Candidates will be required to plan, design and manage energy systems blending creative solutions with up-to-date technologies relative to energy conversion and efficiency enhancement.

At the end of the course, engineers will be good at operating in the current technological/industrial environment - i.e. a dynamic and competitive one - and sensitive to the main industry, environment and security issues and standards.

The main aim of the course is to offer an in-depth theoretical and practical understanding of the most advanced energy conversion technologies, including renewable energy generation and energy storage.

Please visit http://www.en2.unige.it for any further information.

The Course is held at Savona Campus, in the city of Savona.

WHAT WILL YOU STUDY AND FUTURE PROSPECTS

The course consists of modules that include thermo-fluid dynamics and thermo-chemical dynamics, as well as fluid machinery and energy conversion systems (co-generation, fuel cells, power plants from renewable energy sources and smart grids), traditional energy and civil engineering plants, electric networks, economics, available and emerging technologies for reducing greenhouse gas emissions and environmental monitoring.

A rising interest in and increased urge for 20/20/20 policies in Europe has resulted in a growing industrial demand for highly qualified Energy Engineers with a sound knowledge and specific skills to analyze, design and develop effective solutions in a broad range of contexts. Furthermore, in the last few years both emerging industrial countries and developing ones have increased their awareness of environmental issues and energy production and started implementing large energy engineering projects thus boosting the job opportunities worldwide. The course is aimed at students seeking high qualification in the following main fields:

Energy conversion processes from chemical, bio-chemical, thermal sources into mechanical and electrical ones

Sustainable & Distributed Energy: renewable energy (solar, geothermal, wind, hydro), fuel cells, bio-fuels, smart power grids, low emission power plants Sustainable Development: C02 sequestration, LCA analysis, biomass exploitation, Energy Audit in buildings, energy from waste, recycling, modeling and experimental techniques devoted to optimum energy management.

The MSc course work in partnership with industries and research institutes in Liguria, in Italy and abroad.

WHAT DOES THE MASTER IN ENERGY ENGINEERING OFFER TO ITS STUDENTS

In the last years both industrialization and population growth have brought to a higher demand for sustainable energy, smart energy management with reduced environmental impact. As a result the MSc Energy Engineering was born out of the need to better cope with Sustainable Development issues and progress in energy conversion technologies, in including renewable energy generation and energy storage, NZE buildings, with an increasing attention devoted to greenhouse gas emissions reduction through a multidisciplinary approach.

This MSc course is taught in English and students are supported in achieving higher English language skills. The University of Genoa set its modern campus in Savona and in the last few years, public and private funds have been invested to improve its infrastructures, sport facilities, hall of residence, library and an auditorium.

The University of Genoa and Siemens jointly developed a smart polygeneration microgrid in Savona Campus – officially commissioned on February 2014.

Since then the campus has largely generated enough power to satisfy its own needs with the help of several networked energy producers, i.e. total capacity 250Kw of electricity and 300kW of heating.

The grid includes microgasturbines, absorption chillers, a photovoltaic plant, a solar power station and electrochemical and thermal storage systems.

This huge facility together with a series of laboratories located at the Campus (e.g. Combustion Lab, Energy Hub Lab) offer the students a unique opportunity for hands-on activities, e.g. to measure and investigate the performance of real scale innovative energy systems.

Read less
This Master Program is unique throughout Europe's postgraduate education landscape. It is the first cross-border course dealing with the future issues of alternative energy production. Read more
This Master Program is unique throughout Europe's postgraduate education landscape. It is the first cross-border course dealing with the future issues of alternative energy production. In the beginning the focus of this program relied on contributions from Austria, Hungary and Slovakia. Meanwhile the international orientation was enlarged.

The program is designed more and more cross-border in view of the growing markets in Central and Eastern Europe and the expected investments of enterprises in these countries. The international orientation of the program is reflected not only in the curriculum, but also in the cross-border cooperation with universities and organizations of other countries in the scope of country modules.

Tailor-made country modules are offered to gain in-depth knowledge on energy markets in CEE.

Contents
During the first academic year basic knowledge is taught in order to achieve a uniform level of knowledge on renewable energy among the students. A systematic integration of theory, practice and case studies ensures that the knowledge acquired by the participants can be directly put into practice in their respective companies:

Introduction on Renewable Energy
Biomass, Biofuels and Biogas
Solar Energy – Solar Heating and Photovoltaics
Geothermal Energy, Wind Power, and Small Hydro Power
Efficient Energy Use and Thermal Building Optimization
General Legal and Economical Frameworks
Integration of Renewable Energy Sources into the Energy System
Management and Soft Skills
Perspectives on the Use of Renewable Energy
Master´s Thesis

Target Group

Individuals within companies, organisations, and authorities who are engaged in planning, operating or evaluation of renewable energy or who are involved in financing, promotion, legal licensing, operation of facilities for the use of renewable energy or environmental issues.

Read less
Renewable Energy Systems and the Environment is one of the pathways offered in the Sustainable Engineering programme. This course examines the design and operation of the energy systems that provide the environments in which people live and work. Read more

Why this course?

Renewable Energy Systems and the Environment is one of the pathways offered in the Sustainable Engineering programme.

This course examines the design and operation of the energy systems that provide the environments in which people live and work. It explores how quality of life can be balanced by the need for conservation of world resources.

You’ll learn about different energy resources:
- renewable
- fossil
- nuclear

You’ll look at the systems that are employed to control these resources such as:
- combined heat & power schemes
- heat pumps
- solar capture devices
- high efficiency condensing boilers
- advanced materials
- adaptive control systems

You’ll explore the impact energy has on the environment and how it can be reduced.

Our course has been running for over 20 years and has over 400 graduates. External examiners consistently refer to our beneficial links with industry and the high quality of our project work.

Study mode and duration:
- MSc:12 months full-time, up to 36 months part-time
- PgDip: 9 months full-time

See the website https://www.strath.ac.uk/courses/postgraduatetaught/sustainableengineeringrenewableenergysystemstheenvironment/

You’ll study

Studying at least three generic modules will meet the key requirements to attain Chartered Engineer status.

You must take three specialist modules if you’re studying for the Postgraduate Certificate and up to five if you’re studying for a Postgraduate Diploma or MSc.

Successful completion of six modules leads to the award of a Postgraduate Certificate.

Major projects

- Group project
This usually involves four or five students working together. Each project focuses on a particular energy/environment system and includes a technical appraisal, and, where appropriate, an assessment of its cost effectiveness and environmental impact.
At the end of the project, students perform a presentation during the University’s Knowledge Exchange week to invited guests from industry. This event provides an important networking opportunity for students.

- Individual project
The individual project is an opportunity for students to work independently on an energy topic with a more in-depth analysis than the group project.

Accreditation

The course is approved by the Energy Institute, the Institution of Mechanical Engineers and the Royal Aeronautical Society and meets the academic requirements for Chartered Engineer (CEng) status.
Students are encouraged to take up free membership of these professional organisations.

Facilities

Students have access to departmental laboratories with a range of testing equipment. For example, a recent MSc project included the use of sophisticated thermal measurement of thermal storage materials undertaken in the Advanced Materials Research Laboratory.

Student competitions

Students can enter a number of competitions, which vary year-to-year. Recent examples include:
- District Heating and Cooling (DHC+) Student Competition
- Chartered Institution of Building Services Engineers Simulation Group Award for Best MSc Dissertation

- Guest lectures
Students are regularly invited to talks by research visitors from the Energy Systems Research Unit. Talks on career options are also given by representatives of the Energy Institute.

Pre-Masters preparation course

The Pre-Masters Programme is a preparation course for international students (non EU/UK) who do not meet the entry requirements for a Masters degree at University of Strathclyde. The Pre-Masters programme provides progression to a number of degree options.

To find out more about the courses and opportunities on offer visit isc.strath.ac.uk or call today on +44 (0) 1273 339333 and discuss your education future. You can also complete the online application form. To ask a question please fill in the enquiry form and talk to one of our multi-lingual Student Enrolment Advisers today.

Learning & teaching

The course comprises compulsory technical modules, a choice of broader generic modules, which are recommended by accrediting professional bodies, group projects with industry input, and individual projects.

Teaching methods are varied, and include lectures, discussions, group work, informal reviews, on-line questionnaires, and computer modelling laboratories.

Assessment

Assessment of taught modules are by written assignments and exams. Group projects are assessed by project websites and presentations. Individual projects are assessed on the submitted thesis.

Careers

- Where are they now?
100% of our graduates are in work or further study.*

Job titles include:
- Artificial Intelligence Engineer
- Biomass Engineer
- Renewable Energy Consultant
- Renewable Energy Development Officer
- Technical Analyst

Employers include:
- Greenspan
- Mott Macdonald
- Natural Power
- SSE
- Scottish Power Energy Networks
- The Campbell Palmer Partnership
- RSP Consulting Engineers

*Based on the results of the national Destinations of Leavers from Higher Education Survey (2010/11 and 2011/12).

Find information on Scholarships here http://www.strath.ac.uk/search/scholarships/index.jsp

Read less
COURSE AIMS. This MSc programme meets the industrial demand for the training and education of both existing and future engineers in the advanced concepts of sustainable electrical power and energy generation. Read more
COURSE AIMS
This MSc programme meets the industrial demand for the training and education of both existing and future engineers in the advanced concepts of sustainable electrical power and energy generation. This programme aims to produce graduates of the highest calibre with the right skills and knowledge who will be capable of leading in teams involved in the operation, control, design, regulation and management of the power systems and networks of the future.

This programme also aims to provide graduates with the ability to critically evaluate methodologies, analytical procedures and research methods in:

Power system engineering – using state-of-the-art computational tools and methods;
Design of sustainable electrical power systems and networks;
Regulatory frameworks for, and operation of, power systems and electricity markets.
Who should Study this Course?
This newly designed M.Sc. programme is appropriate for those seeking an in-depth knowledge of sustainable electrictrical power including:

Graduates in power or electrical engineering, physical sciences, or related disciplines who aspire to work in the electrical power industry;
Industrially experienced graduate engineers and managers who recognise the importance of developing new analytical and critical skills, and state-of-the-art methodologies associated with the development sustainable electrical power systems.

COURSE MODULES

Sustainable Power Generation

Generation costing of solar, geo-thermal, bio-mass, wind, hydro, tidal, and wave.
Storage technologies and energy conversion: practical understanding and limitations.
Embedded renewable generation: technical challenges, opportunities and connection in electrical transmission and distribution grids.

Energy Economics and Power Markets

Principles, objectives, regulation, computational methods, economic procedures, emissions trading, and operation of electricity markets.
Restructuring and deregulation in generation, transmission, and distribution.
Concepts of transmission congestion and demand side management.

Power System Analysis and Security

Capabilities and limitations of modern power systems design.
Accurate use of power systems modelling and analysis of secure operation.
Computational techniques for power systems modelling, optimal power flow, mathematical programming, heuristic methods, artificially intelligent methods.

Power System Operation and Management

Business drivers and technical requirements for operational management.
In-depth knowledge of operational management software.
Energy balance and intermittency in sustainable electrical power system operation and management.

Power Electronics and FACTS

Practical understanding of how to design advanced power electronic circuits.
Modern power electronic integration techniques and state-of-the-art Flexible AC Transmission Systems.
Capabilities and limitations of different power electronic circuits.
Integration of power electronic circuits into Flexible AC Transmission Systems.

Power System Stability and Control

How to ensure effective power system stability and control power system operation using computational methods.
Power system stability problems, static and dynamic, relaying and protection, stability control and protection design, excitation and power system stabilisers.

Project Management

Formal methods and skills to function effectively at high levels of project management.
Development of skills to achieve practical business objectives.

Sustainable Electrical Power Workshop
You will gain experience and expertise with industry relevant tools and techniques through hands-on workshop environments. These practical sessions involve individual and group work. Typical assignments include:

Sustainable generation scheduling.
Integration of renewable energy sources.
Computer simulation of active power filters.
Phase-controlled rectifiers.
Power network security.
Sustainable electrical power system stability control.
Electricity market auctions.
Sustainable electrical power system investment and planning.

Project
This provides a stimulating and challenging opportunity to apply your knowledge and develop deep understanding in a specialised aspect of your choice. Projects can be university or industry and company sponsored students have the opportunity to develop their company’s future enterprise. Industrial projects often lead to the recruitment of the student by the collaborating company.

Read less
The Specializing Master Sustainable Design for Complexity is a First and Second-level Politecnico di Milano Specializing Master, born as an evolution of… Read more
The Specializing Master Sustainable Design for Complexity is a First and Second-level Politecnico di Milano Specializing Master, born as an evolution of the five editions of the Specializing Master Sustainable Environments and Architecture to give designers, architects, and engineers bespoke, specialized training for ecologically and bioclimatically compatible projects in the built environment, integrating energy planning into new and existing architectural spaces.

Operating Context

Issues of complexity, nomadism, environmental and energy resources, the crisis for cities, and the gradual acceptance of ecological compatibility principles have brought the following needs to the fore:
a design and knowledge approach inspired by sustainable development;
innovation in the principles for settling and building cities and surrounding areas;
tight synergy with the potential technological innovation;
new skills on the part of designers in social, ecological, and energy fields;
finding new ways to design the land, its towns, and a sustainable built environment.
Relation to Job Market

Training is designed to build professionals and researchers:
who can interpret and manage the complexity of new land, town, and architecture scenarios;
who own the knowledge to use renewable energy resources and advanced technology properly;
who are optimally equipped to enhance the enormous potential of new nomadism.

Main Content

This Specializing Master seeks to build opportunities to acquire and experience the following features:
interpretative evaluation of the ways of interethnic living;
innovative approaches to understanding local context and transforming the natural and built environments;
knowledge of advanced technology and the use of alternative energy sources;
integrated design of photovoltaic and thermal solar technology;
integrated design of phytopurification, botanical land use and agronomy;
integrated design of re-naturalized rivers and farmland;
Innovation in the conceptions/concept of the structures.

Starting date: October 2016.

Read less
Do you want to help power the world? We’re running out of fossil fuels fast and it’s more important than ever to find new sustainable and renewable sources of energy. Read more
Do you want to help power the world? We’re running out of fossil fuels fast and it’s more important than ever to find new sustainable and renewable sources of energy. This involves meeting challenges such as engineering new technologies and considering how these technologies can be integrated into power distribution networks.

This course will offer you advanced knowledge of a diverse range of sustainable energy technologies, including wind, tidal, solar, fuel cells and biomass. From the fundamental principles to the latest developments in these technologies, you’ll learn about key enabling technologies for energy storage (electrical, electrochemical, mechanical and thermal) and power distribution.

You’ll also develop skills in project management, ethics, and health and safety. These skills will leave you well prepared for an active future career in the energy technology industry or further academic research in the field.

Read less
This leading-edge programme, established before many in the built environment field were aware of greenhouse gases, has produced a stream of high-achieving graduates sought after by the biggest names in building design and the construction industry. Read more
This leading-edge programme, established before many in the built environment field were aware of greenhouse gases, has produced a stream of high-achieving graduates sought after by the biggest names in building design and the construction industry. We attract students from across the globe eager to find positions throughout the globe or to take relevant, cutting-edge thinking about sustainable building design back to their own part of the world.

Degree information

The programme aims to develop students' knowledge and expertise in problem solving in the area of the built environment, and provide a framework for developing innovative thinking in the design and operation of buildings, placing associated environmental issues in a global, national and personal context.

Students undertake modules to the value of 180 credits. The programme consists of six core modules (90 credits), two optional modules (30 credits) and a built environment dissertation (60 credits). A Postgraduate Diploma (120 credits, full-time nine months) is offered.

Core modules
-The Built Environment: The Energy Context
-Health, Comfort and Wellbeing in Buildings
-Building Solar Design
-Natural and Mechanical Ventilation of Buildings
-Efficient Building Service Systems
-Methods of Environmental Analysis

Optional modules
-Building Acoustics
-Advanced Building Simulation
-Light, Lighting and Vision in Buildings
-Energy Systems Modelling
-Environmental Masterplanning
-Industrial Symbiosis
-Low Energy Housing Retrofit
-Low Carbon, Energy Supply Systems
-Smart Energy Systems Implementation
-Post Occupancy Evaluation of Buildings
-Multi-objective Design Optimisation
-Introduction to System Dynamics Modelling
-Indoor Air Quality in Buildings

The availability of all optional modules is subject to demand.

Dissertation/report
All MSc students submit a 10,000-word report on a topic related to the main themes of the programme. The topic can be chosen to enhance career development or for its inherent interest.

Teaching and learning
The programme is delivered through a combination of interactive seminars, individual and group tutorials, site visits and a residential field trip. Assessment is through unseen examination, coursework, and the built environment report. Joint coursework, including two major low-energy architectural design projects, is carried out by students in multi-disciplinary teams.

Fieldwork
Students will have the opportunity to participate in field trips and site visits including a residential trip to the Centre for Alternative Technology in north Wales. There are no additional cost to students for the field trip to the Centre for Alternative Technology.

Careers

Most students who complete the programme move into, or continue in, a building-related profession, such as architecture, low-energy design consultancy, or building services engineering. As the awareness of global environmental issues increases, the demand for people with expertise in the health and energy performance of buildings is expanding rapidly. A number of students have used the MSc as a foundation for MPhil/PhD research.

First destinations of recent graduates include: Neapoli, XC02, Max Fordham, Arup, WSP, Atkns, Buro Happold, PassivSystems, EnergyExcel, local authorities, Foster and Partners, Rogers Stirk Harbour and Partners.

Top career destinations for this degree:
-Environmental Design Engineer, Neapoli
-Energy Consultant, XCO2 Energy
-Graduate Engineer, Arup
-Environmental Engineer, XCO2 Energy
-Sustainability Consultant, Arup and studying Environment Facility Management, University College London (UCL)

Employability
This programme is very "close to market" with many students finding jobs even before their studies have finished: the skills students gain are those that employers need. For example, we teach several tools used by commercial companies including the thermal analysis software IESVE and SAP. Students can walk straight into jobs where these are used and be useful immediately. Students sometimes take placement positions while working on their dissertations; in recent years this has included overseas options, for example, with Neapoli in Malaysia. Graduates often contact us through our strong alumni network to recruit for new positions, listening to their feedback ensures we keep the programme relevant to industry needs.

Why study this degree at UCL?

The UCL Bartlett is the UK's largest multidisciplinary Faculty of the Built Environment, bringing together scientific and professional specialisms required to research, understand, design, construct and operate the buildings and urban environments of the future.

Located in London, the UCL Bartlett is at the heart of a large cluster of creative architects and engineering firms, next to the UK's seat of government and finance and has all the resources of a world city to hand. It offers unrivalled networking opportunities, with alumni in the majority of the major firms in London, who often give lectures to students and appear at networking events.

The multidisciplinary faculty contains the UCL Bartlett School of Architecture, which has been ranked first for Architecture in the UK for many years, and is characterised by a high level of invention and creativity. The school is internationally known as a centre for innovative design.

Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X