• Ross University School of Veterinary Medicine Featured Masters Courses
  • Durham University Featured Masters Courses
  • Anglia Ruskin University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of Cambridge Featured Masters Courses
Cranfield University Featured Masters Courses
Institute for Advanced Architecture of Catalonia Featured Masters Courses
Queen Mary University of London Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
Aberdeen University Featured Masters Courses
"smart" AND "systems"×
0 miles

Masters Degrees (Smart Systems)

We have 177 Masters Degrees (Smart Systems)

  • "smart" AND "systems" ×
  • clear all
Showing 1 to 15 of 177
Order by 
The Sustainable Smart Cities Dual Master’s program from the University of Alabama at Birmingham (USA) and Staffordshire University (UK) is a unique professional postgraduate program that provides an inter-disciplinary grounding in the principles, application and key technologies required to develop sustainable smart cities. Read more
The Sustainable Smart Cities Dual Master’s program from the University of Alabama at Birmingham (USA) and Staffordshire University (UK) is a unique professional postgraduate program that provides an inter-disciplinary grounding in the principles, application and key technologies required to develop sustainable smart cities.

Delivered by experienced faculty at both UAB and Staffordshire University, this genuinely international course will equip you with the knowledge, skills and critical thinking to assess, design and implement sustainable smart cities strategies across the globe.

Get two Master's degrees

As a Dual Award you will receive two Master’s degrees, one from the University of Alabama at Birmingham and one from Staffordshire University. Upon successful completion of the Master’s programme you will be awarded the following degrees:

MEng Sustainable Smart Cities (UAB)

MSc Sustainable Smart Cities (SU)

The course offers a broad curriculum covering sustainability theory, sustainable urban development, low carbon and renewable energy systems, green infrastructure, natural resource management, health and liveability, transport and mobility, big data analytics and smart technologies.

Course content

The Dual Master's in Sustainable Smart Cities is delivered via ten modules:

Principles of Sustainable Development (UAB)
Drivers of sustainable smart cities (i.e. climate change, population growth, resource scarcity, etc) and the principles of sustainable development.

Introduction to Sustainable Smart Cities (SU)
Sustainable urban planning and smart growth, engaging with smart citizens, sustainable governance and creating sustainable economic development.

Low Carbon and Renewable Energy Systems (SU)
Low carbon and renewable energy technologies, renewable energy integration and smart grids.

Managing Natural Resources and Sustainable Smart Cities (SU)
Water, waste and carbon management, pollution prevention, climate adaptation and resilience and integrated environmental systems management.

Green Infrastructure and Transportation (UAB)
Public and open space design, principles of urban design and smart sustainable mobility and transportation.

Green Buildings (UAB)
Smart buildings and infrastructure, principles of sustainable construction, sustainable building materials, building and energy management systems and standards and rating systems.

Health & Liveability (UAB)
Genomics, health informatics, designing for well-being:, environmental justice and food smart cities.

Smart Technologies for Cities & Buildings (SU)
Internet of things, remote sensing and communication technologies at individual building, neighbourhood and city-scale.

Big Data & Smart Cities (SU)
Big data platforms and cloud computing, urban informatics, GIS and spatial analysis, measuring impact and data visualization.

Research Methods & Project Planning (UAB & SU)
Introduction to research methods and the principles of project planning to enable students to plan for their capstone project.

Capstone Research Project (UAB & SU)
You will design and implement a piece of research that will enable you to reflect on the knowledge and skills which you have learned during your taught modules and apply them to a real world problem or issue. This research may draw on the practical and work-related experiences of the student.

You will have an opportunity to present their capstone project findings at the annual Sustainable Smart Cities Research Symposium hosted by the University of Alabama at Birmingham and Staffordshire University.

Read less
The global challenge of environmental sustainability highlights the need for holistic design and management of complex environmental and technological systems. Read more
The global challenge of environmental sustainability highlights the need for holistic design and management of complex environmental and technological systems. This interdisciplinary Master's programme presents environmental issues and technologies within a systems engineering context. Graduates will understand interactions between the natural environment, people, processes and technologies to develop sustainable solutions.

Degree information

Students will develop an understanding of systems engineering and environmental engineering. Environmental engineering is a multidisciplinary branch of engineering concerned with devising, implementing and managing solutions to protect and restore the environment within an overall framework of sustainable development. Systems engineering is the branch of engineering concerned with the development and management of large complex systems.

Students undertake modules to the value of 180 credits. The programme consists of four core modules (60 credits), a collaborative environmental systems project (30 credits), two optional modules (30 credits) and an individual environmental systems dissertation (60 credits). A Postgraduate Diploma (120 credits) is offered.

Core modules
-Collaborative Environmental Systems Project
-Environmental Systems
-Systems Engineering and Management
-Systems Society and Sustainability
-Environmental Modelling

Optional modules - options may include the following:
-Urban Flooding and Drainage
-Coastal Engineering
-Water and Wastewater Treatment
-Natural Environmental Disasters
-The Control of Noise
-Industrial Symbiosis
-Environmental Masterplanning
-Energy Systems Modelling
-Smart Energy Systems
-Low Carbon Energy Supply System Design for Buildings and Neighbourhoods
-Energy Systems & Sustainability
-Politics of Climate Change
-Natural Environmental Disasters
-Engineering and International Development
-Waste and Resource Efficiency
-Project Management for Engineers

Dissertation/report
All MSc students undertake an independent research project addressing a problem of systems research, design or analysis, which culminates in a dissertation of 10,000.

Teaching and learning
The programme is delivered through lectures, seminars, tutorials, laboratory classes and projects. The individual and group projects in the synthesis element involve interaction with industrial partners, giving students real-life experience and contacts for the future. Assessment is through written examination, coursework, presentations, and group and individual projects.

Careers

Career paths for environmental systems engineers are diverse, expanding and challenging, with the pressures of increasing population, desire for improved standards of living and the need to protect the environmental systems. There are local UK and international opportunities in all areas of industry: in government planning and regulation, with regional and municipal authorities, consultants and contracting engineers, research and development organisations, and in education and technology transfer. Example of recent career destinations include Ford, KPMG, EDF Energy, Brookfield Multiplex, and the Thames Tideway Tunnel Project.

Top career destinations for this degree:
-Environmental Specialist, BHP Billiton
-Project Engineer, Alberta WaterSMART
-Project Manager, Veolia Environmental Services
-MSc Business Management, Imperial College Business School, Imperial College
-PhD Environmental Research, Imperial College London

Employability
The discipline of environmental systems engineering is growing rapidly with international demand for multi-skilled, solutions-focussed professionals who can take an integrated approach to complex problems.

Why study this degree at UCL?

The discipline of environmental systems engineering is growing rapidly with an international demand for multi-skilled professionals who can take an integrated approach to solving complex environmental problems (e.g. urban water systems, technologies to minimise industrial pollution). Environmental engineers work closely with a range of other environmental professionals, and the community.

Skills may be used to:
-Design, construct and operate urban water systems.
-Develop and implement cleaner production technologies to minimise industrial pollution.
-Recycle waste materials into new products and generate energy.
-Evaluate and minimise the environmental impact of engineering projects.
-Develop and implement sound environmental management strategies and procedures.

UCL Civil, Environmental & Geomatic Engineering is an energetic and exciting environment in which to explore environmental systems engineering. Students have the advantages of studying in a multi-faculty institution with a long tradition of excellence in teaching and research, situated at the heart of one of the world's greatest cities.

Read less
This course is designed in collaboration with transport industry partners to equip you to meet the needs of the rail and road industries. Read more
This course is designed in collaboration with transport industry partners to equip you to meet the needs of the rail and road industries. There is an increased demand for advancements in electrical, electronic, control and communication systems for transport, with a particular focus on themes like higher efficiency and sustainability, safety and driving assistance, position and traffic control for smart transport planning.

Modern electrical, electronic, control and communication systems for intelligent transport require today engineers with a combination of skills and solutions from cross-disciplinary abilities spanning electrical, electronic, control and communications. In this context, the overall aim of this Conversion Masters is to provide you with an enriching learning experience, and to enhance your knowledge and skill-base in the area of modern road vehicle and rail transport systems design.

This conversion course is intended both for engineers in current practice and for fresh honours graduates to facilitate their professional development, mobility and employability.

Course content

This course aims to enhance your knowledge and skills in the area of intelligent and efficient transport systems design. You will develop advanced practical skills that will help you determine system requirements, select and deploy suitable design processes and use the latest specialist tool chains to test and/or prototype a device or algorithm. The programme will help you acquire the cross-disciplinary skills and abilities that today are vital to be able to implement effective solutions for modern electrical, electronic and communication systems applied to intelligent transport. The broad range of disciplines covered by the course will enable you to enter a career that requires a cross-disciplinary approach with a practical skillset.

The subject areas covered within the course offer you an excellent launch pad which will enable you to enter into this ever expanding, fast growing and dominant area within the electrical engineering sector, and particularly in the area of intelligent and efficient transport systems. Furthermore, the course will provide the foundations required to re-focus existing knowledge and enter the world of multi-disciplined jobs.

Modules

The following modules are indicative of what you will study on this course.

Core modules
-Electric Motors and Control for Transport Systems
-Power Conversion and Drives for Transport Systems
-Project
-Sensor, Data Acquisition and Communication for Transport Systems

Associated careers

The course provides the foundations required to re-focus existing knowledge and enter the world of multi-disciplined jobs. Graduates can expect to find employment, for example, as Electrical systems design engineers; Control systems engineers, Transport systems engineers; Plant control engineers; Electronic systems design engineer; Communication systems design engineers; Sensor systems engineers; Computer systems engineer. Examples of typical industries of employment can be: Transport; Automobile; Aviation; Electrical systems; Electronic systems; Assembly line manufacturers; Robotics and home help; Toy; Communication systems; Logistics and distribution; Consumer industry; Life-style industry; Security and surveillance; Petro-chemical.

Professional recognition

This course will be seeking accreditation from the IET.

Read less
The MSc in Smart Grid Demand Management (See http://www.postgraduate.hw.ac.uk/prog/msc-smart-grid-demand-management/ ) has been designed to progress students with an Electrical or Mechanical Engineering background to an expert in the understanding of a smart grid. Read more

Overview

The MSc in Smart Grid Demand Management (See http://www.postgraduate.hw.ac.uk/prog/msc-smart-grid-demand-management/ ) has been designed to progress students with an Electrical or Mechanical Engineering background to an expert in the understanding of a smart grid. By following a carefully selected set of courses covering energy resources (fossil and renewable), conversion technologies, electrical power generation, energy storage technologies, demand management, and energy economics. Graduates of this programme will be confident in all aspects of this subject. With a clear focus on smart Grid and Demand Management the programme provides;
- Knowledge and understanding of advanced scientific and mathematical principles relevant to the understanding, analysis and modelling of a smart grid.
- An understanding of fundamental facts, concepts, and technologies for demand management and energy storage.
- Knowledge and skill to apply engineering principles to design a system, component or process
- An ability to undertake independent research.
- Professional attitudes to implementation of safety and concepts embodied by sustainability.
- An ability to communicate effectively
- Familiarity with the application of relevant computer tools to the profession.

All aspects of the smart grid are integrated in a dedicated smart grid modelling course, which provides the mathematical and computational skills to model a smart grid. This course is unique to this programme and will give graduates the skills they need to enhance their career prospects.

The Scottish Funding Council has made available 20 scholarships covering fees only to students with Scottish backgrounds. 5 of these places are reserved for applicants to this programme in the first instance. The remaining places are spread over all our Energy based MSc programmes. There is no separate application process for this. If you are eligible, you will be considered automatically. You will be notified through the summer if you have been selected.

Scholarships available

We have a number of fully funded Scottish Funding Council (SFC) scholarships available for students resident in Scotland applying for Smart Grid Demand Management MSc. Find out more about this scholarship and how to apply http://www.hw.ac.uk/student-life/scholarships/postgraduate-funded-places.htm .

Programme content

Semester One - All courses are Mandatory
- B51ET Foundations of Energy
This course provides the foundations for the quantitative analysis of energy resources and conversion efficiencies through various technologies. It also places energy production and consumption into the wider field of environmental and socio-economic factors

- B51GE Renewable Energy Technologies
This course introduces the range of Renewable Energy resources together with established and emerging technologies. It provides the skills for a quantitative assessment of the Renewable Energy resources and the expected energy and power output from typical or specific installations.

- B31GA Electrical Power Systems
This course covers the operation of interconnected electrical power systems. Such interconnected power systems combine a number of different components, generators, transmission lines, transformers and motors, which must be appreciated to understand the operation of the interconnected system.

- C21EN Environmental and Energy Economics
This course introduces students to the core concepts and methods of modern economics, and environmental and energy economics in particular.

Semester Two – All courses are Mandatory
- B31GG Smart grid modeling
This course introduces the mathematical skills to model the operation of an electricity or energy network at a statistical and dynamical level, incorporating key elements of a smart grid, including technological constraints, economic drivers and information exchange.

- B31GB Distributed Generation
This course equips students with an understanding of the role of distributed generation in electrical energy networks. It provides students with an overview of distributed generation techniques and describes the contribution of distributed generation to network security. The course introduces the economics of distributed generation and the assessment of distributed generation schemes. It introduces students to the concept of intermittent sources and their contribution to capacity in electrical power systems and provides a detailed review of the reliability, fault and stability studies of distributed generation schemes.

- B51GK Demand Management and Energy Storage
This course provides students with an overview of demand-side management and its contribution to network capacity and security. It reviews energy storage technologies and their contribution to the integration of renewable generation and the operation of large-scale electrical network. It introduces students to the methods of interfacing energy storage mechanisms to electrical networks. The course describes the contribution energy storage technology can make to transportation and industry

- B81EZ Critical Analysis and Research Preparation
This course provides research training and addresses literature review skills, project planning, data analysis and presentation with a focus to critically discuss literature, and use data to support an argument.

- B31VZ MSc Project
An individual project led by a research active member of staff or an industrial partner on a topic relevant to smart grid technology, demand management technologies or approaches or smart grid/ electricity / energy systems modelling.

English language requirements

If you are not from a UKBA recognised English speaking country, we will need to see evidence of your English language ability. If your first degree was taught in English a letter from them confirming this will be sufficient. Otherwise the minimum requirement for English language is IELTS 6.5 or equivalent, with a minimum of 5.5 in each skill.

The University offers a range English language courses (See http://www.hw.ac.uk/study/english.htm ) to help you meet the English language requirement prior to starting your masters programme:
- 14 weeks English (for IELTS of 5.5 with no more than one skill at 4.5);
- 10 weeks English (for IELTS of 5.5 with minimum of 5.0 in all skills);
- 6 weeks English (for IELTS 5.5 with minimum of 5.5 in reading & writing and minimum of 5.0 in speaking & listening)
- 3 weeks English refreshers course (for students who meet the English condition for the MSc but wish to refresh their English skills prior to starting).

Find information on Fees and Scholarships here http://www.postgraduate.hw.ac.uk/prog/msc-smart-grid-demand-management/

Read less
The 1-year Electrical Power Systems Masters/MSc is good, the 2-year Electrical Power Systems with Advanced Research Masters/MSc is even better!. Read more
The 1-year Electrical Power Systems Masters/MSc is good, the 2-year Electrical Power Systems with Advanced Research Masters/MSc is even better!

The 3rd energy industry revolution is taking place where the key is the development of electrical power systems in the contexts of smart grids. Electrical power systems are playing a pivotal role in the development of a sustainable energy supply, enabling renewable energy generation. Globally there is a big shortage of skilled engineers for designing, operating, controlling and the economic analysis of future electricity networks – smart grids

The new 2-year MSc Electrical Power Systems with Advanced Research will give you the timely advanced skills and specialist experience required to significantly enhance your career in the electrical power industry. The programme builds on a very close involvement with the power industry, the education of power engineers and extensive research work and expertise as well as the successful experience on the 1-year MSc Electrical Power Systems at the University of Birmingham. The 2-year MSc Electrical Power Systems with Advanced Research will be able to fill in the gap of skills between the 1-year MSc and PhD research.

Some modules will be taught by leading industry experts, which will give you the exciting opportunity to understand the real challenges that power industry is facing, hence propose innovative solutions. In addition, students working on relevant MSc projects may have the opportunity to work with leading industry experts directly.

The new 2-Year MSc Electrical Power Systems with Advanced Research will run in parallel with the existing 1-Year MSc Electrical Power Systems. The taught credits in the 1st year of the 2 Year MSc are identical to that of the 1-Year MSc while the 2nd Year is mainly focused on a research project.

This programme also aims to provide graduates with the ability to critically evaluate methodologies, analytical procedures and advanced research methods. Year 1 of the programme is focussed on the taught modules covering:

Control concepts and methods
Advanced energy conversion systems and power electronic applications
Advanced power electronic technologies for electrical power networks – HVDC and FACTS
Electrical power system engineering - using state-of-the-art computational tools and methods, and design of sustainable electrical power systems and networks
Economic analysis of electrical power systems and electricity markets.
While Year 2 of the programme will give you the opportunity to work on an advanced research project. For some suitable projects, in conjunction with joint industry supervisions, industry placement may be available.

It is envisaged there will be the opportunity for students to transfer between the two programmes using the University’s procedures for transfers between programmes, subject to programme requirements. This opportunity would take place at the end of the taught part of the programme.

About the School of Electronic, Electrical & Systems Engineering

Electronic, Electrical and Systems Engineering, is an exceptionally broad subject. It sits between Mathematics, Physics, Computer Science, Psychology, Materials Science, Education, Biological and Medical Sciences, with interfaces to many other areas of engineering such as transportation systems, renewable energy systems and the built environment.
Our students study in modern, purpose built and up to date facilities in the Gisbert Kapp building, which houses dedicated state-of-theart teaching and research facilities. The Department has a strong commitment to interdisciplinary research and boasts an annual research fund of more than £4 million a year. This means that wherever your interest lies, you can be sure you’ll be taught by experts in the field.

Funding and Scholarships

There are many ways to finance your postgraduate study at the University of Birmingham. To see what funding and scholarships are available, please visit: http://www.birmingham.ac.uk/postgraduate/funding

Open Days

Explore postgraduate study at Birmingham at our on-campus open days.
Register to attend at: http://www.birmingham.ac.uk/postgraduate/visit

Virtual Open Days

If you can’t make it to one of our on-campus open days, our virtual open days run regularly throughout the year. For more information, please visit: http://www.pg.bham.ac.uk

Read less
The future of information and communication technology (ICT) is driven by mobile and networked embedded systems. Read more

About Mobile and Embedded Systems

The future of information and communication technology (ICT) is driven by mobile and networked embedded systems: tomorrow’s digital cities, Industry 4.0, cyber-physical systems (CPS) and the Internet of Things (IoT) will all depend on embedded sensing of real-world phenomena, in-situ computation as well as automated information exchange and data distribution using machine-to-machine (M2M) com­munications between local and distributed control systems and machinery.

The ‘smart grid’ is one example of an application for future embedded systems, as it uses real-time sensing of the available renewable energy to determine where energy is to be routed across the power grid and controls intelligent machinery to increase production during peak times; this requires that internet-connected smart meters are installed in industrial plants and private homes alike to facilitate real-time sensing and control of technical systems.

Another exciting area of application for embedded systems is mobile and wearable technology, which allows users to access and manipulate information ‘on the go’ as the system provides relevant and timely information — indeed, this is one of the main purposes of mobile information technology such as smartphones and tablet computers. Additional meaning for this Human-Computer Interaction (HCI) is generated by the context of the device, the user, the location and many more factors, all of which are sensed and computed by a plenitude of embedded sensors and collocated or connected systems.

Wearable devices such as fitness trackers and smart watches collect bio-physiological and health-related data to facilitate novel applications, including smart contact lenses and feedback systems for the learning of physical activities. At the same time, increasing cross-device interoperability means that users of head-mounted augmented reality and virtual reality displays can, for instance, use their entire smartphone screen as a keyboard and have the typed text displayed on augmented reality glasses.

Programme content

The programme is divided into three module groups with core and elective modules. These are:

1. Human-Computer Interaction
2. Systems Engineering
3. Data Processing, Signals and Systems

Features

- Excellent rankings for computer science, e.g. in U-Multirank and the CHE rankings
- A strongly research-oriented two-year programme with a modern, broad range of subjects
- Allows flexible interest-based selection of modules from the groups ‘Human-Computer Interaction’, ‘Systems Engineering’ and ‘Data Processing, Signals and Systems’
- A fully English-taught programme
- An outstanding staff-student ratio
- Participation in cutting-edge research projects
- Excellent research and teaching infrastructure
- An extensive network of partnerships with academic institutions and businesses worldwide
- A great student experience in Passau, the ‘City of Three Rivers’

Language requirements

Unless English is your native language or the language of your secondary or undergraduate education, you should provide an English language certificate at level B2 CEFR, e.g. TOEFL with a minimum score of 567 PBT, 87 iBT or ITP 543 (silver); IELTS starting from 5.5; or an equivalent language certificate.

To facilitate daily life in Germany, it would be beneficial for you to have German language skills at level A1 CEFR (beginner’s level). If you do not have any German skills when starting out on the programme, you will complete a compulsory beginner’s German course during your first year of study.

Read less
The evolution of wireless communication systems and networks in recent years has been accelerating at an extraordinary pace and become an essential part of modern lifestyle requirements. Read more

About the course

The evolution of wireless communication systems and networks in recent years has been accelerating at an extraordinary pace and become an essential part of modern lifestyle requirements.

The effects of this trend has seen a growing overlap between the network and communication industries, from component fabrication to system integration, and the development of integrated systems that transmit and process all types of data and information.

This distinctive course, developed with the support of industry, aims to develop a detailed technical knowledge of current practice in wireless systems and networks. You will study the fundamentals of wireless communication systems and the latest innovations in this field.

You will study the fundamentals of wireless communication systems and the latest industry innovations and needs. The MSc programme incorporates theory and practice and covers all aspects of a modern communication system ranging from RF components, digital signal processing, network technologies and wireless security and examines new wireless standards.

This course is accredited by the Institution of Engineering and Technology (IET).

Aims

The sharp increase in the use of smartphones, machine to machine communication systems (M2m), sensor netowrks, digital broadcasting networks and smart grid systems have brought tremendous technological growth in this field.

It has become a global phenomenon that presently outstrips the ability of commercial organisations to recruit personnel equipped with the necessary blend of technical and managerial skills who can initiate and manage the introduction of the new emerging technologies in networks and wireless systems.

By studying Wireless Communications Systems at Brunel, you will be equipped with the advanced technical and professional skills you need for a successful career either in industry or leading edge research in wireless communication systems.

Course Content

Typical Modules:

Advanced Digital Communications
Network Design and Management
DSP for Communications
Wireless Network Technologies
Communications Network Security
Research Methods
Radio and Optical Communication Systems
Project Management
Project & Dissertation

Teaching

The course blends lectures, workshops, seminars, self-study, and individual and group project work. You’ll develop communication and teamwork skills valued by industry through carefully designed lab exercises, group assignments, and your dissertation project.

In lectures, key concepts and ideas are introduced, definitions are stated, techniques are explained, and immediate student queries discussed.

Seminars provide the students with the opportunity to discuss at greater length issues arising from lectures.

Workshops sessions are used to foster practical engagement with the taught material.

The dissertation project plays a more significant role in supporting literature review in a technically complex area and to plan, execute and evaluate a significant investigation into a current problem area related to wireless communication systems.

Assessment

Taught modules are assessed by final examinations or by a mix of examination and laboratory work. Project management is assessed by course work. Generally, students start working on their dissertations in January and submit by the end of September.

Special Features

The course is taught by academics who are experts in their fields and have strong collaborative links with industry and other international research organisations. Some well-known textbooks in this area are authored by members of the course team.

The course is fully supported with computing and modern, well-equipped RF laboratories. As a student you will enjoy working on the latest and advanced equipment.

Electronic and Computer Engineering at Brunel supports a wide range of research groups, each with a complement of academics and research staff and students:

- Media Communications
- Wireless Networks and Communications
- Power Systems
- Electronic Systems
- Sensors and Instrumentation.

Our portfolio of research contracts totals £7.5 million, and we’ve strong links with industry.

Prizes
Rohde and Schwartz best in RF Prize
Criteria for award: Best overall PG student on MSc Wireless Communications Systems with a relevant RF dissertation
Composition of prize: RF books and Certificate

Women in Engineering and Computing Programme

Brunel’s Women in Engineering and Computing mentoring scheme provides our female students with invaluable help and support from their industry mentors.

Accreditation

The MSc in Wireless Communications Systems is fully accredited by the Institution of Engineering and Technology (IET).

Read less
This Masters in Computer Systems Engineering exposes students to state-of-the-art miniaturised and mobile computer systems and smart device technology, allowing them to acquire the complementary hardware and software knowledge and skills required for understanding and designing such systems. Read more
This Masters in Computer Systems Engineering exposes students to state-of-the-art miniaturised and mobile computer systems and smart device technology, allowing them to acquire the complementary hardware and software knowledge and skills required for understanding and designing such systems.

Why this programme

◾You will be taught jointly by the Schools of Engineering and Computing Science. You will benefit from their combined resources and expertise and from an industry-focused curriculum.
◾Electronic and Electrical Engineering at the University of Glasgow is consistently highly ranked recently achieving 1st in Scotland and 4th in the UK (Complete University Guide 2017).
◾If you are a computer engineering graduate, this programme will enhance your knowledge; if you are an electronic engineering graduate you can focus on developing your software skills; or if you are computer science graduate you can focus on developing your hardware skills.
◾With a 92% overall student satisfaction in the National Student Survey 2015, Electronic and Electrical Engineering at the School of Engineering combines both teaching excellence and a supportive learning environment.

Programme structure

Modes of delivery of the MSc in Computer Systems Engineering include lectures, seminars and tutorials and allow students the opportunity to take part in lab, project and team work.

Core courses
◾Digital signal processing
◾Either networked systems or computer communications
◾Human–computer interaction
◾Software and requirements engineering
◾MSc project.

Optional courses typically include
◾Advanced operating systems
◾Artificial intelligence
◾Computer architecture
◾Digital communications 4
◾Human-centred security
◾Information retrieval
◾Internet technology
◾Microwave and millimetre wave circuit design
◾Optical communications
◾Real time embedded programming
◾Safety critical systems.

Projects

◾In addition to taught work and practical assignments you will also complete a joint research project worth 60 credits in one of the state-of-the-art laboratories in the schools.
◾This extended project is an integral part of the MSc programme: many of these are linked to industry while others are related to research in either of the participating Schools.
◾The project is an important part of your MSc where you can apply your newly learned skills and show to future employers that you have been working on cutting edge projects relevant to the industry.
◾You can choose a topic from a list of MSc projects in Computer Systems Engineering. Alternatively, should you have your own idea for a project, department members are always open to discussion of topics.

Example projects

Examples of projects can be found online

*Posters shown are for illustrative purposes

Industry links and employability

◾As computer systems have reduced in size, and are increasingly mobile with more complex functionalities, they are now a fundamental component of smart device technology.
◾This postgraduate programme is particularly suited to acquiring the complementary hardware and software knowledge and skills required for understanding and designing such systems.
◾The programme makes use of the combined resources and complementary expertise of the engineering and computing science staff to deliver a curriculum which is relevant to the needs of industry.
◾The School of Computing Science has extensive contacts with industrial partners who contribute to several of their taught courses, through active teaching, curriculum development, and panel discussion. Recent contributions in Computer Systems Engineering include: IBM, J.P. Morgan, Amazon, Adobe and Red Hat.
◾During the programme students have an opportunity to develop and practice relevant professional and transferrable skills, and to meet and learn from employers about working in the computer/software industry.
◾The Computer Systems Engineering MSc programme also provides excellent preparation for those wanting to pursue a PhD in a similar research field.

Career prospects

Career opportunities include positions in software development, chip design, embedded system design, telecommunications, video systems, automation and control, aerospace, development of PC peripherals and FPGA programming, defence and services for the heavy industries, for example generator and industrial motor control systems, etc.

Read less
EIT is pleased to bring you the Master of Engineering (Electrical Systems)** program. IN THIS ACCREDITED AND PRESTIGIOUS PROGRAM YOU WILL GAIN. Read more
EIT is pleased to bring you the Master of Engineering (Electrical Systems)** program.

IN THIS ACCREDITED AND PRESTIGIOUS PROGRAM YOU WILL GAIN:
- Skills and know-how in the latest and developing technologies in electrical systems
- Practical guidance and feedback from experts from around the world
- Live knowledge from the extensive experience of expert instructors, rather than from just theoretical information gained from books and college
- Credibility and respect as the local electrical systems expert in your firm
- Global networking contacts in the industry
- Improved career choices and income
- A valuable and accredited Master of Engineering (Electrical Systems)** qualification

The next intake will start on the week of June 27, 2016.

Contact us to find out more and apply (http://www.eit.edu.au/course-enquiry).

** A note regarding recognition of this program in the Australian education system: EIT is the owner of this program. The qualification is officially accredited by the Tertiary Education Quality and Standards Agency (TEQSA). EIT delivers this program to students worldwide.

Visit the website http://www.eit.edu.au/master-engineering-electrical-systems

PROFESSIONAL RECOGNITION

This Master Degree (or Graduate Diploma) is officially accredited by the Tertiary Education Quality and Standards Agency (TEQSA) in Australia.

It is a professional development program and is not currently an entry-to-practice qualification. Engineers Australia are considering this and other programs for those students desiring professional status (e.g. CPEng). However, the outcome of this review may or may not result in a student gaining chartered professional status if he or she does not already possess this.

Additional Entry Requirements

An appropriate level of English Language Proficiency equivalent to an English pass level in an Australian Senior Certificate of Education, or an IELTS score of 6.5 (with no individual band less than 6.0) or equivalent as outlined in the EIT Admissions Policy.

Congruent field of practice means one of the following with adequate electrical engineering content (with fields not listed below to be considered by the Dean and the Admissions committee on a case-by-case basis):

• Electrical Engineering

• Electronic and Communication Systems

• Industrial Engineering

• Instrumentation, Control and Automation

• Mechatronic Systems

• Manufacturing and Management Systems

• Industrial Automation

• Production Engineering

Overview

Electrical power is an essential infrastructure of our society. Adequate and uninterrupted supply of electrical power of the required quality is essential for industries, commercial establishments and residences; and almost any type of human activity is impossible without the use of electricity. The ever-increasing cost of fuels required for power generation, restricted availability in many parts of the world, demand for electricity fueled by industrial growth and shortage of skilled engineers to design, operate and maintain power network components are problems felt everywhere today. The Master of Engineering (Electrical Systems) is designed to address the last-mentioned constraint, especially in today’s context where the field of electrical power is not perceived as being ‘cool’ unlike computers and communications and other similar nascent fields experiencing explosive growth. But it is often forgotten that even a highly complex and sophisticated data centre needs huge amounts of power of extremely high reliability, without which it is just so much silicon (and copper).

This program presents the topics at two levels. The first year addresses the design level where the student learns how to design the components of a power system such as generation, transmission and distribution as well as the other systems contributing to the safety of operation. The topics in the first year also cover the automation and control components that contribute to the high level of reliability expected from today’s power systems. Because of the constraints imposed by the fuel for power generation and the environmental degradation that accompanies power generation by fossil fuels, the attention today is focused on renewable energy sources and also more importantly how to make the generation of power more efficient and less polluting so that you get a double benefit of lower fuel usage and lower environmental impact. Even the best designed systems need to be put together efficiently. Setting up power generation and transmission facilities involves appreciable capital input and complex techniques for planning, installation and commissioning. Keeping this in view, a unit covering project management is included in the first year.

The second year of the program focuses on the highly complex theory of power systems. If the power system has to perform with a high degree of reliability and tide over various disturbances that invariably occur due to abnormal events in the power system, it is necessary to use simulation techniques that can accurately model a power system and predict its behavior under various possible disturbance conditions. These aspects are covered in the course units dealing with power system analysis and stability studies for steady-state, dynamic and transient conditions. The aspect of power quality and harmonic flow studies is also included as a separate unit.

The study of power systems has an extensive scope and besides the topics listed above, a student may also like to cover some other related topic of special interest. The ‘Special Topics in Electrical Power Systems’ unit aims to provide students with the opportunity for adding one ‘state-of-the art’ topic from a list of suggested fields. Examples are: Smart grids, Micro-grids and Geographic Information System (GIS) application in utility environment.

The Masters Thesis which spans over two complete semesters is the capstone of the program, requiring a high level of personal autonomy and accountability, and reinforces the knowledge and skill base developed in the preceding units. As a significant research component of the course, this program component will facilitate research, critical evaluation and the application of knowledge and skills with creativity and initiative, enabling the students to critique current professional practice in the electrical power industry.

WHO WOULD BENEFIT

Those seeking to achieve advanced know-how and expertise in industrial automation, including but not limited to:

- Electric Utility engineers

- Electrical Engineers and Electricians

- Maintenance Engineers and Supervisors

- Energy Management Consultants

- Automation and Process Engineers

- Design Engineers

- Project Managers

- Consulting Engineers

- Production Managers

Read less
This Masters in Sensor and Imaging Systems (SIS) focuses on the technologies and techniques that underpin a vast range of societal, research and industrial needs. Read more
This Masters in Sensor and Imaging Systems (SIS) focuses on the technologies and techniques that underpin a vast range of societal, research and industrial needs. It is delivered and awarded jointly by the Universities of Glasgow and Edinburgh. Sensing and sensor systems are essential for advances in research across all fields of physics, engineering and chemistry and are enhanced when multiple sensing functions are combined into arrays to enable imaging. Industrial applications of sensor systems are ubiquitous: from mass-produced sensors found in modern smart phones and every modern car to the state-of-the-art, specialist high-value sensors routinely used in oil and gas recovery, scientific equipment, machine tools, medical equipment and environmental monitoring. This is an industry-focused programme, designed for people looking to develop skills that will open up opportunities in a host of end applications.

Why this programme

◾This is a jointly taught and awarded degree from the University of Glasgow and the University of Edinburgh, developed in with conjunction with CENSIS.
◾CENSIS is a centre of excellence for Sensor and Imaging Systems (SIS) technologies, CENSIS enables industry innovators and university researchers to collaborate at the forefront of market-focused SIS innovation, developing products and services for global markets.
◾CENSIS, the Innovation Centre for Sensor and Imaging Systems, is one of eight Innovation Centres that are transforming the way universities and business work together to enhance innovation and entrepreneurship across Scotland’s key economic sectors, create jobs and grow the economy. CENSIS is funded by the Scottish Funding Council (£10m) and supported by Scottish Enterprise, Highlands and Islands Enterprise and the Scottish Government.
◾CENSIS has now launched its collaborative MSc in Sensor and Imaging Systems, designed to train the next generation of sensor system experts.
◾This programme will allow you to benefit from the commercial focus of CENSIS along with the combined resources and complementary expertise of staff from two top ranking Russell Group universities, working together to offer you a curriculum relevant to the needs of industry.
◾The Colleges of Science and Engineering at the University of Glasgow and the University of Edinburgh delivered power and impact in the 2014 Research Excellent Framework. Overall, 94% of Edinburgh’s and 90% of Glasgow’s research activity is world leading or internationally excellent, rising in Glasgow’s case to 95% for its impact.
◾Fully-funded places and bursaries are available to Scottish/EU candidates. Further information on funded places.

Programme structure

The programme comprises a mix of core and optional courses. The curriculum you undertake is flexible and tailored to your prior experience and expertise, your particular research interests, and the specific nature of the extended research project topic provisionally identified at the beginning of the MSc programme.

Graduates receive a joint degree from the universities of Edinburgh and Glasgow.

Programme timetable
◾Semester 1: University of Glasgow
◾Semester 2: University of Edinburgh
◾Semester 3: MSc project, including the possibility of an industry placement

Core courses
◾Circuits and systems
◾Fundamentals of sensing and imaging
◾Imaging and detectors
◾Technology and innovation management
◾Research project preparation.

Optional courses
◾Biomedical imaging techniques
◾Biophysical chemistry
◾Biosensors and instrumentation
◾Chemical biology
◾Digital signal processing
◾Electronic product design and manufacture
◾Electronic system design
◾Entrepreneurship
◾Lab-on-chip technologies
◾Lasers and electro-optic systems
◾Microelectronics in consumer products
◾Microfabrication techniques
◾Nanofabrication
◾Physical techniques in action
◾Waves and diffraction.

Career prospects

You will gain an understanding of sensor-based systems applicable to a whole host of markets supported by CENSIS.

Career opportunities are extensive. Sensor systems are spearheading the next wave of connectivity and intelligence for internet connected devices, underpinning all of the new ‘smart markets’, e.g., grid, cities, transport and mobility, digital healthcare and big data.

You will graduate with domain-appropriate skills suitable for a range of careers in areas including renewable energy, subsea and marine technologies, defence, automotive engineering, intelligent transport, healthcare, aerospace, manufacturing and process control, consumer electronics, and environmental monitoring.

Globally, the market for sensor systems is valued at £500Bn with an annual growth rate of 10%. The Scottish sensor systems market is worth £2.6Bn pa. There are over 170 sensor systems companies based in Scotland (SMEs and large companies), employing 16,000 people in high-value jobs including product R&D, design, engineering, manufacturing and field services.

Read less
Electrical Engineering is not an independent Master of Science programme, but it is an English track available in the Master of Science programme in Electrical Engineering. Read more

Important note

Electrical Engineering is not an independent Master of Science programme, but it is an English track available in the Master of Science programme in Electrical Engineering

Mission & Goals

Electrical Engineering is the branch of engineering that deals with the study and application of electricity, electronics and engineering electromagnetics, with particular focus on electric power systems, electrical machines and their control, electronic power converters, electrical transportation systems, electrical and electronic measurements, circuit theory and electromagnetic compatibility.
An electrical engineer has a wide background of knowledge that is necessary to address ever increasing challenges of the professional and research activities. These activities span not only in the traditional field of electricity generation, transmission and distribution, but also in the multi-faceted reality of industrial and home electrical appliances and systems, the electric systems in the transportation and health-care sectors, the electromagnetic compatibility, and the measurement and diagnosis techniques, just to mention some of the most relevant possible fields of activity.
A wide and in-depth knowledge of mathematics and physics is the essential background of graduates’ qualification in electrical engineering. Fundamental is also the background in computer science, automation and electronics applied to the different areas of electrical engineering.

The programme is entirely taught in English

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/electrical-engineering/electrical-engineering-track/

Career Opportunities

There is a steady high demand for electrical engineers: in 2010, the Master of Science graduated of that year were 60, whilst the Politecnico di Milano’s Career Service received 546 requests for employment of electrical engineers. According to the Technical Report of the Evaluation Committee of Politecnico di Milano, 88% of the Master of Science graduated in Electrical Engineer in 2007, interviewed in December 2008, declared that they would have applied again to the same Electrical Engineering Programme and the 90% of the interviewed graduated declared to have a stable, full-time employment.

- Contacts
For further information about didactic aspects of the course and curricula, visit http://www.electre.polimi.it http://www.ingpin.polimi.it or contact didattica.etec(at)polimi.it.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Electrical_eng_smartgrid.pdf
This track of the Master of Science in Electrical Engineering provides tools to manage the new challenges of electricity systems involving increasing presence of Renewable Energy Sources (RES) and Dispersed Generation. Such a new generation paradigm drives the evolution of distribution networks towards Smart Grids. Mastering the evolution requires new professional skills, ranging from the use of information-communication technology as enabling key for enhancing traditional networks to a full knowledge of the regulation of power systems operated in liberalized energy markets. Graduates will be highly employable in the following sectors: planning and operation of distribution systems; manufacturing of RES power plants; energy market operators.
The programme is taught in English and supported by ENEL Distribuzione S.p.A

Subjects

Electric power systems; Project management: principles & tools; Electricity Market; TLC networks for electricity systems Sensors, measurements and smart metering; Electromagnetic compatibility; Electric switching apparatus (or other offered courses); Planning & operation of distribution grids with a high penetration of RES; Renewable energy sources and network interface; Regulation of electric power systems; Network automation and protection systems; tools for network simulation; Smart grids: components, functionalities & benefits

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/electrical-engineering/electrical-engineering-track/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/electrical-engineering/electrical-engineering-track/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
Distributed and networked computation is now the paradigm that underpins the software-enabled systems that are proliferating in the modern world, with huge impact in the economy and society, from the sensor and actuator networks that are now connecting cities, to cyberphysical systems, to patient-centred healthcare, to disaster-recovery systems. Read more
Distributed and networked computation is now the paradigm that underpins the software-enabled systems that are proliferating in the modern world, with huge impact in the economy and society, from the sensor and actuator networks that are now connecting cities, to cyberphysical systems, to patient-centred healthcare, to disaster-recovery systems.

This new Masters course will educate and train you in the fundamental principles, methods and techniques required for developing such systems. Given the number of elective modules offered, you will be able to acquire further skills in one or more of Cloud Computing, Data Analytics and Information Security.

Facilities include a laboratory where you can experiment with physical devices that can be interconnected in a network, and a cluster facility configured to run the Hadoop MapReduce stack.

A Year in Industry option is also available for this course.

See the website https://www.royalholloway.ac.uk/computerscience/coursefinder/msc-distributed-and-networked-systems.aspx

Why choose this course?

This course will develop a highly analytical approach to problem solving and a strong background in distributed and networked systems, fault-tolerance and data replication techniques, distributed coordination and time-synchronisation techniques (leader-election, consensus, and clock synchronisation), data communication protocols and software stacks for wireless, sensor, and ad hoc networking technologies in virtualisation, and cloud computing technologies.

The course develops an advanced understanding of principles of failure detection and monitoring, principles of scalable storage, and in particular NoSQL technology.

Students will acquire the ability to:
- apply well-founded principles to building reliable and scalable distributed systems
- analyse complex distributed systems in terms of their performance, reliability, and correctness
- design and implement middleware services for reliable communication in unreliable networks
- work with state-of-the-art wireless, sensor, and ad hoc networking technologies
- design and implement reliable data communication and storage solutions for wireless, sensor, and ad hoc networks
- detect sources of vulnerability in networks of connected devices and deploy the appropriate countermeasures to information security threats.
- enforce privacy in “smart” environments
- work with open source and cloud tools for scalable data storage (DynamoDB) and coordination (Zookeeper)
- work with modern network management technologies (Software-Defined Networking) and standards (OpenFlow)
- design custom-built application-driven networking topologies using OpenFlow, and other modern tools
- work with relational databases (SQL), non-relational databases (MongoDb), as well as with Hadoop/Pig scripting and other big data manipulation techniques.

Department research and industry highlights

Royal Holloway is recognised for its research excellence in Machine Learning, Information Security, and Global Ubiquitous Computing.
We work closely with companies such as Centrica (British Gas, Hive), Cognizant, Orange Labs (UK), the UK Cards Association, Transport for London and ITSO.
We host a Smart Card Centre and we are a GCHQ Academic Centre of Excellence in Cyber Security Research (ACE-CSR).

Course content and structure

You will take taught modules during Term One (October to December) and Term Two (January to March). Examinations are held in May. If you are in the Year-in-Industry pathway, you then take an industrial placement, after which you come back for your project/dissertation (12 weeks).

Core course units are:
Interconnected Devices
Advanced Distributed Systems
Wireless, Sensor and Actuator Networks
Individual Project

Elective course units are:

Computation with Data
Databases
Introduction to Information Security
Data Visualisation and Exploratory Analysis
Programming for Data Analysis
Semantic Web
Multi-agent Systems
Advanced Data Communications
Machine Learning
Concurrent and Parallel Programming
Large-Scale Data Storage and Programming
Data Analysis
On-line Machine Learning
Smart Cards, RFIDs and Embedded Systems Security
Network Security
Computer Security
Security Technologies
Security Testing
Software Security
Introduction to Cryptography

Assessment

Assessment is carried out by a variety of methods including coursework, practical projects and a dissertation.

Employability & career opportunities

Our graduates are highly employable and, in recent years, have entered many different [department]-related areas, including This taught masters course equips postgraduate students with the subject knowledge and expertise required to pursue a successful career, or provides a solid foundation for continued PhD studies.

Read less
The recent growth in the desire to ‘build’ smart cities requires employees who understand the latest an emerging smart networking technologies including… Read more
The recent growth in the desire to ‘build’ smart cities requires employees who understand the latest an emerging smart networking technologies including Cloud Computing, Virtual Networking, Data Centre Management, Internet of things (IoT), 4G/5G Mobile Networks, Mobile App Development, Unmanned Aerial Vehicles (UAVs), and Data and Network Security, which are creating new opportunities for business education, research and many other aspects of our daily lives.

The course aims to produce graduates with the vision, knowledge and skills to apply these latest smart networking technologies to optimise the ICT networking infrastructure for businesses to design innovative networking solutions, and to develop smart networking-enabled applications and services.

It aims to provide you with the necessary current knowledge and skills to allow you to make an immediate contribution to relevant industries and research environments. The blend of theory and practical applications in smart networking will enhance your employability.

This course is offered via block delivery. There are two entry points (October and November). This allows you to start when it is most suitable

Visit the website: https://www.beds.ac.uk/howtoapply/courses/postgraduate/next-year/sensors-and-smart-cities-15-months#about

Course detail

The expertise that the University of Bedfordshire has in the related areas of smart cities, and the work it has undertaken as part of a world-leading smart city project called MK:Smart means that you will be at the forefront of developments in this exciting area.

Modules

• Wireless Embedded Systems
• Information Governance and Compliance
• Smart Infrastructure and Data Architecture
• Research Methodologies and Project Management
• MSc Project – Sensors and Smart Cities

Assessment

Most units are assessed with examinations and coursework. Details can be found in the individual module specifications. Assessment is carried out according to context and purpose and recognises that you may exhibit different aptitudes in different forms of assessment:

• Most of the units require collaborative assessments that ask students to form teams and work on a selected project or research topics. However, students will be assessed individually based on their contributions to the overall work.
• Oral presentations are also important assessment method in many units that require student to present the projects developed or researched outlined by the assignment specifications.
• There are formal unseen written examinations for two 30 credit units.
• Individual project that can formed as different ways with conjunctions with their supervisors but has to be suitable to the course scope.

Careers

Employability is understood widely as encompassing knowledge, skills and a professional attitude which your tutors expect you to display in all your units. All University of Bedfordshire courses aim to help you to be prepared for the world of work. The Careers Service is there to support you throughout the three years of your study. On the one hand, our curriculum gives you skills that are valuable for a career within Finance in particular but is also relevant for a much wider range of applications such as information analysis or decision support systems. On the other hand, the department will fully use our industry collaboration connections and resources to serve the course delivery. The collaboration industry partners include car manufactory, MK:SmartCity project and airport data security project and so on. These industry collaborations will well help students developing their real world problem solving skills and extended their employability.

The final year unit `Professional Project Management in particular requires you to work in a team so as to apply a current project management methodology that embraces all of these knowledge areas in an integrated way while going through the stages of planning, execution and project control; you will work as part of a team, take responsibility and make autonomous decisions that impact on the project team performance.

Funding

For information on available funding, please follow the link: https://www.beds.ac.uk/howtoapply/money/scholarships/pg

How to apply

For information on how to apply, please follow the link: https://www.beds.ac.uk/howtoapply/course/applicationform

Visit the MSc Sensors and Smart Cities (12 months) page on the University of Bedfordshire website for more details!

Read less
This programme is for graduate engineers wishing to work in the electrical power industry. It develops your knowledge of electrical power and energy ystems, giving you a good understanding of the latest developments and techniques within the electrical power industry. Read more
This programme is for graduate engineers wishing to work in the electrical power industry. It develops your knowledge of electrical power and energy ystems, giving you a good understanding of the latest developments and techniques within the electrical power industry.

Course details

The programme is centred around three major themes:
-Electrical power networks with emphasis on conventional networks, smart grids, high voltage direct current transmission and asset management of network infrastructure
-Renewable energies with emphasis on wind and solar power
-Power electronics with emphasis on power electronic convertors in converting and controlling power flows in electrical networks and renewable energy systems#

What you study

For the postgraduate diploma (PgDip) award you must successfully complete 120 credits of taught modules.

For an MSc award you must successfully complete 120 credits of taught modules and a 60-credit master's research project.

Core modules
-Asset Management
-Emerging Transmission Systems
-Power Electronics
-Practical Health and Safety Skills
-Project Management and Enterprise
-Renewable Energy Conversion Systems
-Research and Study Skills
-Smart Power Distribution

MSc only
-Major Project

Modules offered may vary.

Teaching

You learn through lectures, tutorials and practical sessions. Lectures provide the theoretical underpinning while practical sessions give you the opportunity to put theory into practice, applying your knowledge to specific problems.

Tutorials and seminars provide a context for interactive learning and allow you to explore relevant topics in depth. In addition to the taught sessions, you undertake a substantive MSc research project.

Assessment varies from module to module. The assessment methodology could include in-course assignments, design exercises, technical reports, presentations or formal examinations. For your MSc project you prepare a dissertation.

Employability

As an electrical power and energy systems engineer you can be involved in designing, constructing, commissioning and lifecycle maintenance of complex energy production, conversion and distribution systems.

Your work could include energy storage systems, management and efficient use of energy in building, manufacturing and processing systems. You could also be involved in work relating to the environmental and economic impact of energy usage.

Examples of the types of jobs you could be doing include:
-Designing new electrical transmission and distribution systems
-Managing maintenance and repair
-Managing operations of existing systems
-Managing operations of a wind turbine farm
-Analysing the efficiency of hydroelectric power systems
-Evaluating the economic viability of new solar power installations
-Assessing the environmental impact of energy systems

Read less
The recent growth in the desire to ‘build’ smart cities requires employees who understand the latest an emerging smart networking technologies including… Read more
The recent growth in the desire to ‘build’ smart cities requires employees who understand the latest an emerging smart networking technologies including Cloud Computing, Virtual Networking, Data Centre Management, Internet of things (IoT), 4G/5G Mobile Networks, Mobile App Development, Unmanned Aerial Vehicles (UAVs), and Data and Network Security, which are creating new opportunities for business education, research and many other aspects of our daily lives.

The course aims to produce graduates with the vision, knowledge and skills to apply these latest smart networking technologies to optimise the ICT networking infrastructure for businesses to design innovative networking solutions, and to develop smart networking-enabled applications and services.

It aims to provide you with the necessary current knowledge and skills to allow you to make an immediate contribution to relevant industries and research environments. The blend of theory and practical applications in smart networking will enhance your employability.

There are six entry points through the year. This allows you to start when it is most suitable. The entry points are:

• September
• November
• January
• March
• June
• July

Visit the website: https://www.beds.ac.uk/howtoapply/courses/postgraduate/next-year/sensors-and-smart-cities#about

Course detail

The expertise that the University of Bedfordshire has in the related areas of smart cities, and the work it has undertaken as part of a world-leading smart city project called MK:Smart means that you will be at the forefront of developments in this exciting area.

Modules

• Wireless Embedded Systems
• Information Governance and Compliance
• Smart Infrastructure and Data Architecture
• Research Methodologies and Project Management
• MSc Project – Sensors and Smart Cities

Assessment

Most units are assessed with examinations and coursework. Details can be found in the individual module specifications. Assessment is carried out according to context and purpose and recognises that you may exhibit different aptitudes in different forms of assessment:

• Most of the units require collaborative assessments that ask students to form teams and work on a selected project or research topics. However, students will be assessed individually based on their contributions to the overall work.
• Oral presentations are also important assessment method in many units that require student to present the projects developed or researched outlined by the assignment specifications.
• There are formal unseen written examinations for two 30 credit units.
• Individual project that can formed as different ways with conjunctions with their supervisors but has to be suitable to the course scope.

Careers

Employability is understood widely as encompassing knowledge, skills and a professional attitude which your tutors expect you to display in all your units. All University of Bedfordshire courses aim to help you to be prepared for the world of work. The Careers Service is there to support you throughout the three years of your study. On the one hand, our curriculum gives you skills that are valuable for a career within Finance in particular but is also relevant for a much wider range of applications such as information analysis or decision support systems. On the other hand, the department will fully use our industry collaboration connections and resources to serve the course delivery. The collaboration industry partners include car manufactory, MK:SmartCity project and airport data security project and so on. These industry collaborations will well help students developing their real world problem solving skills and extended their employability.

The final year unit `Professional Project Management in particular requires you to work in a team so as to apply a current project management methodology that embraces all of these knowledge areas in an integrated way while going through the stages of planning, execution and project control; you will work as part of a team, take responsibility and make autonomous decisions that impact on the project team performance.

Funding

For information on available funding, please follow the link: https://www.beds.ac.uk/howtoapply/money/scholarships/pg

How to apply

For information on how to apply, please follow the link: https://www.beds.ac.uk/howtoapply/course/applicationform

Read less

Show 10 15 30 per page



Cookie Policy    X