• Aberystwyth University Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Birmingham City University Featured Masters Courses
  • University of Bristol Featured Masters Courses
University of Nottingham in China Featured Masters Courses
Liverpool John Moores University Featured Masters Courses
Queen Margaret University, Edinburgh Featured Masters Courses
University of Dundee Featured Masters Courses
University of the West of England, Bristol Featured Masters Courses
"smart" AND "grids"×
0 miles

Masters Degrees (Smart Grids)

We have 49 Masters Degrees (Smart Grids)

  • "smart" AND "grids" ×
  • clear all
Showing 1 to 15 of 49
Order by 
Electrical Engineering is not an independent Master of Science programme, but it is an English track available in the Master of Science programme in Electrical Engineering. Read more

Important note

Electrical Engineering is not an independent Master of Science programme, but it is an English track available in the Master of Science programme in Electrical Engineering

Mission & Goals

Electrical Engineering is the branch of engineering that deals with the study and application of electricity, electronics and engineering electromagnetics, with particular focus on electric power systems, electrical machines and their control, electronic power converters, electrical transportation systems, electrical and electronic measurements, circuit theory and electromagnetic compatibility.
An electrical engineer has a wide background of knowledge that is necessary to address ever increasing challenges of the professional and research activities. These activities span not only in the traditional field of electricity generation, transmission and distribution, but also in the multi-faceted reality of industrial and home electrical appliances and systems, the electric systems in the transportation and health-care sectors, the electromagnetic compatibility, and the measurement and diagnosis techniques, just to mention some of the most relevant possible fields of activity.
A wide and in-depth knowledge of mathematics and physics is the essential background of graduates’ qualification in electrical engineering. Fundamental is also the background in computer science, automation and electronics applied to the different areas of electrical engineering.

The programme is entirely taught in English

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/electrical-engineering/electrical-engineering-track/

Career Opportunities

There is a steady high demand for electrical engineers: in 2010, the Master of Science graduated of that year were 60, whilst the Politecnico di Milano’s Career Service received 546 requests for employment of electrical engineers. According to the Technical Report of the Evaluation Committee of Politecnico di Milano, 88% of the Master of Science graduated in Electrical Engineer in 2007, interviewed in December 2008, declared that they would have applied again to the same Electrical Engineering Programme and the 90% of the interviewed graduated declared to have a stable, full-time employment.

- Contacts
For further information about didactic aspects of the course and curricula, visit http://www.electre.polimi.it http://www.ingpin.polimi.it or contact didattica.etec(at)polimi.it.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Electrical_eng_smartgrid.pdf
This track of the Master of Science in Electrical Engineering provides tools to manage the new challenges of electricity systems involving increasing presence of Renewable Energy Sources (RES) and Dispersed Generation. Such a new generation paradigm drives the evolution of distribution networks towards Smart Grids. Mastering the evolution requires new professional skills, ranging from the use of information-communication technology as enabling key for enhancing traditional networks to a full knowledge of the regulation of power systems operated in liberalized energy markets. Graduates will be highly employable in the following sectors: planning and operation of distribution systems; manufacturing of RES power plants; energy market operators.
The programme is taught in English and supported by ENEL Distribuzione S.p.A

Subjects

Electric power systems; Project management: principles & tools; Electricity Market; TLC networks for electricity systems Sensors, measurements and smart metering; Electromagnetic compatibility; Electric switching apparatus (or other offered courses); Planning & operation of distribution grids with a high penetration of RES; Renewable energy sources and network interface; Regulation of electric power systems; Network automation and protection systems; tools for network simulation; Smart grids: components, functionalities & benefits

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/electrical-engineering/electrical-engineering-track/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/electrical-engineering/electrical-engineering-track/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
This masters is multidisciplinary with a strong emphasis on Electrical and Mechanical Engineering. Electrical energy networks and the methods by which electrical energy is generated are changing. Read more

This masters is multidisciplinary with a strong emphasis on Electrical and Mechanical Engineering. Electrical energy networks and the methods by which electrical energy is generated are changing. Generating resources are being connected to the distribution network rather than the transmission network. These distributed resources include renewables and conventional thermal plant. You will look in depth at the design, modelling, evaluation and operating requirements of smart girds. The masters is designed to give you an understanding of how the components in an energy or electricity network interact. With the increased contribution of renewable power, there’s a demand for highly-trained specialists with technical skills and knowledge in this area.

This programme is concerned with the concepts, applications, design, development and deployment of renewable generation and distributed electrical systems. It aims to enable students to acquire detailed knowledge and critical understanding of the core skills in renewable and distributed generation of electrical energy. Building on these, students will then develop and use a significant range of principal and specialist skills, techniques and practices in both renewable generation and distributed electrical energy systems, and apply this knowledge directly to complex applications.



Read less
Postgraduate degree programme. Electrical Power Systems Masters/MSc. The 3rd energy industry revolution is taking place where the key is the development of electrical power systems in the contexts of smart grids. Read more

Postgraduate degree programme: Electrical Power Systems Masters/MSc:

The 3rd energy industry revolution is taking place where the key is the development of electrical power systems in the contexts of smart grids. Electrical power systems are playing a pivotal role in the development of a sustainable energy supply, enabling renewable energy generation. Globally there is a big shortage of skilled engineers for designing, operating, controlling and the economic analysis of future electricity networks – smart grids

The MSc Electrical Power Systems will give you the timely skills and specialist knowledge required to significantly enhance your career prospects in the electrical power industry. This programme will develop your power engineering skills through expert teaching and extensive research work undertaken in collaboration with power industry partners.

Some modules will be taught by leading industry experts, offering exciting opportunities to understand the real challenges that the power industry is facing and will work with you to develop and provide innovative solutions. In addition, students working on relevant MSc projects may have the opportunity to work with leading industry experts directly.

Course details

This MSc programme meets the industrial demand for the training and education of both existing and future engineers in the advanced concepts of electrical power systems and renewable energy. It aims to produce graduates of the highest calibre with the right skills and knowledge who will be capable of leading in teams involved in the operation, control, design, and economic analysis of the electrical power systems and networks of the future – smart grids.

It will meet the demand for the research and development of sustainable electrical power systems and the demand for training and education of existing and future power engineers in the advanced concepts and understanding of sustainable electrical power systems and renewable energy.

This programme also aims to provide graduates with the ability to critically evaluate methodologies, analytical procedures and research methods in:

  • Control concepts and methods
  • Advanced energy conversion systems and power electronic applications
  • Advanced power electronic technologies for electrical power networks – HVDC and FACTS
  • Electrical power system engineering - using state-of-the-art computational tools and methods, and design of sustainable electrical power systems and networks
  • Economic analysis of electrical power systems and electricity markets.

Related links

Learning and teaching

Patterns of study

The majority of students study our taught Masters programmes full time. Our programmes are also suitable for practising engineers who wish to study part-time or take a single module to earn Continuing Professional Development (CPD) points. Many modules are completed in three-day sessions allowing you to focus one topic at a time. Following each session of lectures there is an opportunity for you to deepen your understanding through private study and in most cases there is also an assessed assignment.

Overview module

There is a shared introduction to topics from communications engineering, requirements analysis and object-oriented design, and an introduction to and recap of C programming. For the communications engineering programmes there is an introduction to key issues in the design of antennas, radio frequency circuits and link budgets. For the computing programmes there is an introduction to object-oriented programming.

Core modules

These modules cover the advanced specialist topics required for your specific degree programme, such as statistical signal processing and coding and advanced digital design. These technologies are at the heart of many current developments in modern electronic systems. 

Cross-programme option modules

These options specialize in topics relevant to each degree programme and give you the opportunity to adapt the programme that you have chosen to study. The prior knowledge needed for each module is specified in the student handbook to help you make the most appropriate choice. This allows you the greatest possible freedom to customise your study package appropriately.

Individual project

This is an opportunity for you to develop specialist knowledge. Some projects are undertaken in collaboration with companies and, in some cases, you may work on company premises investigating issues of direct concern to future product development. Typical projects include the development of hardware for automotive radar signal processing and the detection of leaks in landfill sites, wireless access systems, 3G mobile radio for light aircraft, the creation of 3D worlds for surgery simulation and wearable computing.

Assessment and awards

Assessment is by a combination of written examination and course work. There is a strong emphasis on course work to deepen understanding. The pass mark is 50%. A merit is awarded to students with an average of 60% or more and a distinction is awarded to students with an average of 70% or more, in both taught and project modules. There are prizes for students who perform especially well overall and for those who complete exceptionally good individual projects.

Employability

This course meets the industrial demand for the training and education of both existing and future engineers in the advanced concepts of electrical power systems and renewable energy. It aims to produce graduates of the highest calibre who will be much in demand due to their skills, knowledge and ability to lead in teams involved in the operation, control, design, and economic analysis of the electrical power systems and networks of the future – smart grids.



Read less
The 1-year Electrical Power Systems Masters/MSc is good, the 2-year Electrical Power Systems with Advanced Research Masters/MSc is even better!. Read more

The 1-year Electrical Power Systems Masters/MSc is good, the 2-year Electrical Power Systems with Advanced Research Masters/MSc is even better!

The 3rd energy industry revolution is taking place where the key is the development of electrical power systems in the contexts of smart grids. Electrical power systems are playing a pivotal role in the development of a sustainable energy supply, enabling renewable energy generation. Globally there is a big shortage of skilled engineers for designing, operating, controlling and the economic analysis of future electricity networks – smart grids

The new 2-year MSc Electrical Power Systems with Advanced Research will give you the timely advanced skills and specialist experience required to significantly enhance your career in the electrical power industry. The programme builds on a very close involvement with the power industry, the education of power engineers and extensive research work and expertise as well as the successful experience on the 1-year MSc Electrical Power Systems at the University of Birmingham. The 2-year MSc Electrical Power Systems with Advanced Research will be able to fill in the gap of skills between the 1-year MSc and PhD research.

Some modules will be taught by leading industry experts, which will give you the exciting opportunity to understand the real challenges that power industry is facing, hence propose innovative solutions. In addition, students working on relevant MSc projects may have the opportunity to work with leading industry experts directly. 

The new 2-Year MSc Electrical Power Systems with Advanced Research will run in parallel with the existing 1-Year MSc Electrical Power Systems. The taught credits in the 1st year of the 2 Year MSc are identical to that of the 1-Year MSc while the 2nd Year is mainly focused on a research project. 

This programme also aims to provide graduates with the ability to critically evaluate methodologies, analytical procedures and advanced research methods. Year 1 of the programme is focussed on the taught modules covering:

  • Control concepts and methods
  • Advanced energy conversion systems and power electronic applications
  • Advanced power electronic technologies for electrical power networks – HVDC and FACTS
  • Electrical power system engineering - using state-of-the-art computational tools and methods, and design of sustainable electrical power systems and networks
  • Economic analysis of electrical power systems and electricity markets. 

While Year 2 of the programme will give you the opportunity to work on an advanced research project. For some suitable projects, in conjunction with joint industry supervisions, industry placement may be available.

It is envisaged there will be the opportunity for students to transfer between the two programmes using the University’s procedures for transfers between programmes, subject to programme requirements. This opportunity would take place at the end of the taught part of the programme.

Course details

Electrical Power Systems with Advanced Research Masters/MSc (Two Year): 

This 2-year MSc programme meets the industrial demand for the training and education of both existing and future engineers in the advanced concepts of electrical power systems and renewable energy as well as advanced research skills. It aims to produce graduates of the highest calibre with the right advanced skills and knowledge who will be capable of leading in teams involved in the operation, control, design, and economic analysis of the electrical power systems and networks of the future – smart grids as well as developing and managing R&D programmes.

It will meet the demand for the research and development of sustainable electrical power systems and the demand for training and education of existing and future power engineers in the advanced concepts and designing of sustainable electrical power systems and renewable energy with significant research training.

Related links

Learning and teaching

Patterns of study 

The majority of students study our Masters programmes full time. Our programmes are also suitable for practising engineers who wish to study part-time or take a single module to earn Continuing Professional Development (CPD) points. Many modules are completed in three-day sessions allowing you to focus on one topic at a time. Following each session of lectures there is an opportunity for you to deepen your understanding through private study and in most cases there is also an assessed assignment. 

Core modules 

These modules cover the advanced specialist topics required for your specific degree programme, such as Power System Operation and Control, HVDC and FACTS and Power System Economics. These technologies are at the heart of many current developments in electrical power systems. 

Cross-programme option modules 

These options specialize in topics relevant to each degree programme and give you the opportunity to adapt the programme that you have chosen to study. The prior knowledge needed for each module is specified in the student handbook to help you make the most appropriate choice. This allows you the greatest possible freedom to customise your study package appropriately. 

Individual project 

In Year 2, you will have 12-months to work on a dedicated research project to develop your comprehensive research skills, which would be helpful to fill in the gap between the 1-year MSc and PhD. This is an opportunity for you to develop advanced specialist knowledge. Some projects are undertaken in collaboration with companies and, in some cases, you may work on company premises investigating issues of direct concern to future product development. 

Assessment and awards 

Assessment is by a combination of written examination and course work. There is a strong emphasis on course work to deepen understanding. The pass mark is 50%. A merit is awarded to students with an average of 60% or more and a distinction is awarded to students with an average of 70% or more, in both taught and project modules. There are prizes for students who perform especially well overall and for those who complete exceptionally good individual projects.



Read less
This one-year programme is designed to equip graduates and professionals with a broad and robust training on modern power engineering technologies, with a strong focus on renewable energy conversion and smart grids. Read more

This one-year programme is designed to equip graduates and professionals with a broad and robust training on modern power engineering technologies, with a strong focus on renewable energy conversion and smart grids. It is suitable for recent graduates who wish to develop the specialist knowledge and skills relevant to this industry and is also suitable as advanced study in preparation for research work in an academic or industrial environment.

In semesters 1 and 2, the programmes comprises a mixture of taught courses, workshops and a group design project, led by leading experts in the field, covering the key topics in power systems, electrical machines and power electronics. The final part of the programme is an individual dissertation, which provides a good opportunity for students to apply their acquired skills to real problems in electrical power engineering.

This one year programme at the University of Edinburgh will immerse the students in the most current developments in the area of Electrical Power Engineering, through a combination of taught modules, workshops, a research dissertation, and a range of supporting activities delivered by internationally leading experts in the field. The programme develops through the year from advanced fundamental topics and research tools and techniques in electrical power engineering, to specialist courses on emerging technologies and advanced numerical methods for power engineering problems, and culminates in the summer dissertation project where the acquired skills in various areas are put into practice in application to an actual power engineering problem.

Topics covered within the individual courses of the programme, include (but are not limited to):

  • Fundamental and emerging power engineering technologies
  • Advanced numerical methods in application to electrical power engineering problems
  • Modern power conversion components & systems
  • Integration of renewable energy in the power system
  • Distributed energy resources
  • Electrical engineering aspects of energy storage
  • Power, telecommunications & control aspects of smart grids
  • Research and innovation management techniques.

In addition, our MSc students actively engage in research as part of their dissertation projects either within the Institute for Energy Systems or with industry, with some joining our PhD community afterwards.

Programme structure

This programme is delivered over 12 months, with two semesters of taught courses, followed by a research project leading to the submission of a Master’s Thesis.

Semester 1

  • Power Electronics, Machines & Systems
  • Power Engineering Research Techniques
  • Energy & Environmental Economics
  • Technologies for Sustainable Energy

Semester 2

  • Power Conversion and Control
  • Power Systems Engineering & Economics
  • Distributed Energy Resources and Smart Grids

Research Project

  • Electrical Power Engineering Dissertation

The above courses correspond to 120 credits of taught material, plus 60 credits of a research project.

Learning outcomes

The main objective of the programme is to train the next generation of electrical power engineers who:

  • are aware of the most recent, cutting edge developments in power engineering;
  • have skills and training needed in both industrial and academic settings;
  • are able to tackle the global energy trilemma of supplying secure, equitable and environmentally sustainable energy, while appreciating the technical, social and economic challenges faced in both developed and developing countries.

Career opportunities

Governments worldwide are putting in place plans to decarbonise and modernise their electricity sector. A transition to a green economy will require a highly skilled workforce led by electrical power engineers with a solid academic background, an appreciation of the trajectory of the industry and an understanding of the challenges and implications brought about by the introduction of new power technologies.

According to the Institution for Engineering & Technology (IET): “The business of managing and distributing power in the UK is beginning to undergo revolutionary changes and [power] engineers are the people who will play a pivotal role in keeping the lights on”. This also holds true in many other developed and developing countries in the world.

Power engineers are employed in public/governmental organisations as well as in the private sector and cover areas spanning from generation, to conversion and transmission of electrical power, design and manufacturing of power components and systems, and energy policy and commerce. In the UK, experienced, chartered power engineers can earn around £45,000 a year on average*.

The programme will run in a close association with other activities within the broader Electrical Engineering programme within the School, including networking events, industrial presentations and seminars. It will benefit from the current strong connections with industry (coordinated by the Student Industry Liaison Manager, and existing research associations and consortia (such as the EPSRC Centre for Energy Systems Integration).



Read less
Gaining essential knowledge and skills in designing, managing, controlling and analysing the 21st century electric grid, you will bridge the gap that the Electrical Power industry is facing. Read more

Gaining essential knowledge and skills in designing, managing, controlling and analysing the 21st century electric grid, you will bridge the gap that the Electrical Power industry is facing. As an Electrical Power Engineer you will play a vital role in the development of a sustainable energy market. Your role will enable the merger of new technologies and the integration of renewable sources in the industry.

The MSc Electrical Power Engineering offers very exciting opportunities to understand the real challenges in future power networks and to develop innovative solutions.

GCU’s School of Engineering and Built Environment has almost 3 decades worth of graduates in the Electrical and Electronic Engineering field and this new Masters has been developed with UK-SPEC/IET (Institution of Engineering and Technology) to develop motivated and critical thinkers for the industry.

Students on the MSc Electrical Power Engineering programme are encouraged to join the IET and the Energy Institute (EI) and to participate in the activities which are frequently hosted by GCU. Involvement in the activities of the engineering institutions is an important aspect of career development for you as a student engineer, especially from the point of view of the eventual attainment of Chartered Engineer Status.

What you will study

Through the world class research led activities you will undertake you will develop proficiency in:

  • Exploring operational principles and management of future power networks and the importance of network asset management
  • Analyse and design power systems problems
  • Managerial, communication and information technology skills
  • Innovative thinking to accommodate future technological changes
  • Sufficiently wide perspective of the subject area to evaluate problem solving approaches.

Module information

Project Planning & Management

This module aims to develop in the student, the ability to select, develop and plan an MSc research project; to research and critically analyse the literature associated with the project; to present research findings effectively; and to be able to apply a competent process of thinking to all aspects of the project. In addition, the module aims to give the student an appreciation of the relationship between these skills and those associated with industrial project management.

Power Electronics and Drive Systems

This module examines Electro-magnetism and rare earth permanent magnets. It illustrates the applications of power electronic devices in addition to control and design of converter circuits and determination of filter technologies based on harmonic calculations. Characteristics of modern power electronic devices, driver circuits and protection. Also, it shows analysis and design of practical applications of electrical machines and power electronic systems.

Power System Operation & Protection

Critically analyse and assess technical requirements for power system operation, management and planning. It also develops a comprehensive view of power flow analysis, stability and protections. Appropriate modelling, analysis and design skills of AC power systems in steady state and in post-fault operation will be introduced.

Control Systems

This module aims to consolidate advanced classical and modern control design techniques encompassing the practical considerations in applying control design in an industrial environment. The appropriateness and difficulties encountered in applying various design techniques in practice is explored.

Energy Audit and Energy Asset Management

This module provides an understanding of the basic concepts and exposure to the relevant international standards in the areas of interests before it focuses the strategies and procedures of carrying out energy audit and asset management. The module will focus on life cycle management, including commissioning/decommissioning of equipment, techniques available for condition monitoring and statistical tools for remaining life and risk analysis.

Smart Grid & Sustainable Energy Systems

The module aims to introduce smart grids and renewable energy systems. It equips students with a detailed knowledge and problem solving skills of the engineering aspects of smart grids and the renewable generation of electricity.

Advanced AC and DC Transmission Systems

The module aims to equip the students with the knowledge and skills required for the design and analysis of hybrid modern AC/DC power systems. This module develops the students' understanding of FACTS (Flexible AC Transmission Systems), HVDC and other emerging power electronics applications for power systems and puts emphasis on the skills required to analyse and design such systems.

Condition Monitoring

This module aims to provide an understanding of both Mechanical and Electrical Condition monitoring and associated instrumentation requirements for successful condition monitoring. The application of standard and non-standard electrical condition monitoring systems to a range of electrical plant will be explained. The students learn to use condition monitoring tools and then to evaluate the data provided by them.

MSc Dissertation

The project acts as a vehicle for extending the knowledge and understanding of the student and the technical community in some specialist area. It serves to develop and extend a range of high-level 'thinking' skills, including analysing and synthesising skills and affords the opportunity for the student to demonstrate initiative and creativity in a major piece of technological work.



Read less
This programme provides an opportunity to specialise in the field of electrical power. It builds on a first degree in electrical/electronic engineering and explores how modern power systems from drives to power distribution are designed and implemented. Read more

This programme provides an opportunity to specialise in the field of electrical power. It builds on a first degree in electrical/electronic engineering and explores how modern power systems from drives to power distribution are designed and implemented. This programme develops technical skills and knowledge at an advanced level, as well as developing the professional, analytical and management skills of students.

Research project

This programme includes a major research project. Many of the projects reflect the key interests of the Faculty, such as power electronics, renewable and alternative energy systems. There is the opportunity for projects to be derived from our industrial links, and a number are proposed by students, reflecting their own personal interests or experience.

Accreditation

This programme is accredited by the Institution of Engineering and Technology as fully satisfying the further learning requirements for chartered engineer (CEng) registration. An individual holding an accredited MSc must also hold a CEng-accredited honours degree to have the full exemplifying qualifications for CEng status.

Outcomes

The aims of the programme are to:

  • Provide an enhanced base of knowledge and current and reflective practice necessary to initiate a career in electrical engineering at the professional level
  • Enhance specialist knowledge in the area of electrical engineering which build upon studies at the undergraduate level
  • Further develop improved skills of independent learning and critical appraisal
  • Develop an extensive insight into industrial applications and requirements
  • Develop an extensive insight of management issues relating to engineering business
  • Develop a comprehensive knowledge of leading-edge ICT tools and techniques in electrical engineering
  • Provide the ability to progress to the next level of study.

Full time

Year 1

Students are required to study the following compulsory courses.

Part time

Year 1

Students are required to study the following compulsory courses.

Year 2

Students are required to study the following compulsory courses.

Assessment

Students are assessed through

  • Examinations
  • Case studies
  • Assignments
  • Practical work, and
  • Dissertation.

Professional recognition

This programme is accredited by the Institution of Engineering and Technology.

Careers

Graduates can pursue a wide variety of opportunities exist for electrical power engineers in both the power supply sector and large industrial consumers.



Read less
It is envisaged that by 2020 more than 50 billion devices, or. things. , around the globe will be connected to the Internet - making Internet of Things (IoT) a mainstream technology. Read more

It is envisaged that by 2020 more than 50 billion devices, or things, around the globe will be connected to the Internet - making Internet of Things (IoT) a mainstream technology.

Smart Cities, Industrial Internet of Things (IIoT), Self-Driving cars, Smart Grids, Smart Homes and Buildings, Smart Infrastructure, Smart Agriculture, Smart Health, Smart Mobility are some of the application areas driving the phenomenal growth of IoT.

Businesses are already exploring how to adopt IoT for their operations, but they lack IoT skills and knowledge among employees and management. 

This unique full-time Master's programme is designed by experts in the field with wealth of research and development experience in IoT to address this shortage of professionally qualified specialists.

This MSc offers a unique advantage to its graduates in an increasingly competitive job market with highly-sought expertise.

The teaching on the course is research-led, and you will have opportunity to learn from the real-world, cutting-edge live projects.

You’ll have the opportunity to carry out a dissertation project with real-world clients, in our new Internet of Things Innovation Lab and our Computing Enterprise Centre.

What you will study

Core Modules

Option Modules

Learning and assessment

The programme utilises a range of learning methods to offer a personalised, research-led, and digitally rooted learning experience with a holistic, international focus.

At the centre of this strategy is the focus on problem-solving through the use of creative, analytical, logical and innovative thinking, and through networking and communicating effectively with peers.

The teaching delivery team includes internationally-renowned researchers and practitioners from all the relevant IoT areas, including sensors, communication, data engineering, data storage, big data analytics, cyber security and visualisation. We have secured multi-million-pound funding in IoT related projects, ensuring you’ll be exposed to cutting-edge knowledge and case studies. Our teaching is research-led, and you will have opportunity to learn from these real-world, cutting-edge live projects.

Formal lectures will facilitate your acquisition of knowledge and understanding, discipline specific skills, and apply this learning to industry practices. Laboratory sessions, using three state-of-the-art, purpose-built laboratories run in conjunction with the theoretical components, give you the opportunity to enhance your understanding of particular topics. These will also help to develop discipline-specific skills and personal transferable skills.

The unique teaching content and delivery on the course is extremely well supported with state-of-the-art, special purpose labs including IoT Innovation lab, Ethical Hacking lab and Computer Enterprise Centre.

In addition, the research and development carried out in these labs and the case studies from the publicly-funded high profile projects, ensures that the content is fresh and cutting-edge. This ensures you’ll be exposed to the very latest and future developments.

In addition to the standard technology-enhanced learning approaches, we embed technologies to deliver key concepts in an interactive environment that enhances your experience in developing IoT products. For example; extensive use of simulation for product design and use of cloud and big data testbeds to support hands-on learning.

Facilities

Students have access to state-of-the-art, special purpose labs including IoT Innovation lab, Ethical Hacking lab, Cyber Security Interdisciplinary Centre and Computer Enterprise Centre.

We also provide a range of online facilities to support independent learning, including our Virtual Learning Environment which gives you access to learning materials and collaborative learning tools 24/7, anywhere in the world.

We also provide virtual server technology using in house hardware to allow students to use our operating systems remotely.

Career prospects

A lack of IoT skills and knowledge among employees and management is viewed by the businesses as the biggest obstacle to using the IoT more extensively (Economist Intelligence Unit).

This programme will give you the skills you need to launch a career in this exciting, fast-growing international sector.

The University is committed to helping students develop and enhance employability and this is an integral part of many programmes. Specialist support is available throughout the course from Career and Employability Services including help to find part-time work while studying, placements, vacation work and graduate vacancies.

Students are encouraged to access this support at an early stage and to use the extensive resources on the Careers website.

Discussing options with specialist advisers helps to clarify plans through exploring options and refining skills of job-hunting. In most of our programmes there is direct input by Career Development Advisers into the curriculum or through specially arranged workshops.



Read less
The Master of Science course in Energy Engineering is aimed at students trained as general engineers with skills on the new technologies relevant to the energy conversion and its rational use. Read more
The Master of Science course in Energy Engineering is aimed at students trained as general engineers with skills on the new technologies relevant to the energy conversion and its rational use. Candidates will be required to plan, design and manage energy systems blending creative solutions with up-to-date technologies relative to energy conversion and efficiency enhancement.

At the end of the course, engineers will be good at operating in the current technological/industrial environment - i.e. a dynamic and competitive one - and sensitive to the main industry, environment and security issues and standards.

The main aim of the course is to offer an in-depth theoretical and practical understanding of the most advanced energy conversion technologies, including renewable energy generation and energy storage.

Please visit http://www.en2.unige.it for any further information.

The Course is held at Savona Campus, in the city of Savona.

WHAT WILL YOU STUDY AND FUTURE PROSPECTS

The course consists of modules that include thermo-fluid dynamics and thermo-chemical dynamics, as well as fluid machinery and energy conversion systems (co-generation, fuel cells, power plants from renewable energy sources and smart grids), traditional energy and civil engineering plants, electric networks, economics, available and emerging technologies for reducing greenhouse gas emissions and environmental monitoring.

A rising interest in and increased urge for 20/20/20 policies in Europe has resulted in a growing industrial demand for highly qualified Energy Engineers with a sound knowledge and specific skills to analyze, design and develop effective solutions in a broad range of contexts. Furthermore, in the last few years both emerging industrial countries and developing ones have increased their awareness of environmental issues and energy production and started implementing large energy engineering projects thus boosting the job opportunities worldwide. The course is aimed at students seeking high qualification in the following main fields:

Energy conversion processes from chemical, bio-chemical, thermal sources into mechanical and electrical ones

Sustainable & Distributed Energy: renewable energy (solar, geothermal, wind, hydro), fuel cells, bio-fuels, smart power grids, low emission power plants Sustainable Development: C02 sequestration, LCA analysis, biomass exploitation, Energy Audit in buildings, energy from waste, recycling, modeling and experimental techniques devoted to optimum energy management.

The MSc course work in partnership with industries and research institutes in Liguria, in Italy and abroad.

WHAT DOES THE MASTER IN ENERGY ENGINEERING OFFER TO ITS STUDENTS

In the last years both industrialization and population growth have brought to a higher demand for sustainable energy, smart energy management with reduced environmental impact. As a result the MSc Energy Engineering was born out of the need to better cope with Sustainable Development issues and progress in energy conversion technologies, in including renewable energy generation and energy storage, NZE buildings, with an increasing attention devoted to greenhouse gas emissions reduction through a multidisciplinary approach.

This MSc course is taught in English and students are supported in achieving higher English language skills. The University of Genoa set its modern campus in Savona and in the last few years, public and private funds have been invested to improve its infrastructures, sport facilities, hall of residence, library and an auditorium.

The University of Genoa and Siemens jointly developed a smart polygeneration microgrid in Savona Campus – officially commissioned on February 2014.

Since then the campus has largely generated enough power to satisfy its own needs with the help of several networked energy producers, i.e. total capacity 250Kw of electricity and 300kW of heating.

The grid includes microgasturbines, absorption chillers, a photovoltaic plant, a solar power station and electrochemical and thermal storage systems.

This huge facility together with a series of laboratories located at the Campus (e.g. Combustion Lab, Energy Hub Lab) offer the students a unique opportunity for hands-on activities, e.g. to measure and investigate the performance of real scale innovative energy systems.

Read less
Why this course?. This full time course will cover the practical, theoretical and technological aspects of 5G Communications Systems as they evolve over the coming years. Read more

Why this course?

This full time course will cover the practical, theoretical and technological aspects of 5G Communications Systems as they evolve over the coming years.

You’ll gain expert knowledge of the latest technologies that will drive the next mobile, wireless and communications revolution, and evolve our current 4G environment to 5G communications enabled systems. Applications will cover robotics & autonomous systems, UAVs, immersive systems and augmented realities, health monitoring, cyber-integrated systems, and smart grids. Data handling of the expected 50 billion IoT (internet of things) devices coming on-line to monitor traffic, weather, environment, smart agriculture, and even when your fridge runs out of milk, will also be explored.

5G will provide greater capacity, improved reliability, support at higher rates of mobility, and wider geographical coverage, at even higher data speeds and throughput and many new services and facilities. 

On the course you will engage with experts and specialists whose integrated knowledge will enable you to gain the skills, knowledge and expertise to be part of the definition of the next generation of mobile and wireless communications. These will include:

  • Mobile & Wireless Standards (such as LTE, 802.11x,)
  • Software Defined Radio (SDR)
  • Software Defined Networking (SDN) Systems
  • Internet of Things (IoT) Wireless Communications
  • Big Data & Information Management
  • Security & Cybersecurity systems
  • Spectrum Access, & Dynamic Spectrum
  • 5G Hardware Systems Design – FPGA & Microcontrollers
  • Advanced DSP/Comms Systems; eg Massive MIMO
  • Augmented Reality & Advanced Multimedia Systems

What you’ll study

There are two semesters of compulsory and optional taught classes, followed by a three month summer research project working in a core area of 5G Communications system design, either in the Department or with an industry partner via an internship.

Facilities for research projects are extensive and these will allow you to choose to work on projects in a wide variety of areas such as physical and MAC layers (e.g. Advanced LTE) from IoT, cybersecurity, dynamic spectrum, massive-MIMO, low latency communications, or in applications such as smart agriculture, environment monitoring, computer vision, communicating radar, satellite systems, automotive, driver-less cars and of course some application domains yet to be established with the advent of 5G!

Facilities

We have an extensive set of teaching spaces and learning environments alongside a dedicated Masters Project and Study Environment for self-study and group working.

We work closely with a number of industry partners, and our state-of-the-art facilities include wireless and mobile radio hardware and software, FPGA and SDR systems, supported by companies including EE, Vodafone, Xilinx, Cisco, MathWorks, British Telecom, Intel, Lime Microsystems , Analog Devices and many smaller companies and organisations. Our research laboratories include our Signal Processing Design Lab; Image and Vision Processing Lab; White Space Radio Testbed, IoT Test Facility, RF anechoic room, and so on.

Learning & teaching

We use a blend of teaching and learning methods including interactive lectures, on-line video lectures, problem-solving tutorials and practical project-based laboratories. Our extensive teaching and project facilities include state-of-the-art Software Defined Radio laboratories, IoT and networking capabilities, Computer Vision laboratories, alongside satellite and sensor equipment.

Each module comprises approximately five hours engagement per week. Some classes are presented in traditional lecture-tutorial-lab style, and we also offer a number of “flipped learning” classes whereby lectures are delivered through complete on-line video sets, with complementary in-class discussion and review seminars held each week to discuss relevant topics and subject matter.

To enhance your understanding, you are expected to undertake a further five to six hours of self-study, using our web-based virtual learning environment (MyPlace), research journals and library facilities.

The teaching and learning methods ensure you'll develop not only technical engineering expertise but also communications, project management and leadership skills.

Industry engagement

Interaction with industry is provided through our internships, teaching seminars and networking events.

British Telecom, Vodafone, Everything-Everywhere, Xilinx, Cisco, Texas Instruments, MathWorks, NXP/Qualcomm and Selex ES are just a few examples of the industry partners working with Strathclyde at this time, and you have the opportunity to engage with them during your studies.

Assessment

A variety of assessment techniques are used throughout the course. You'll complete 120 credits of taught modules. Each module has a combination of written assignments, individual and group reports, oral presentations, practical lab work and, where appropriate, an end-of-term exam.

Assessment of the summer research project consists of four elements, with individual criteria:

  • Interim report (10%, 1,500 to 3,000 words) – The purpose of this report is to provide a mechanism for supervisors to provide valuable feedback on the project’s objectives and direction
  • Poster Presentation (15%) – A vital skill of an engineer is the ability to describe their work to others and respond to requests for information. The poster presentation is designed to give you an opportunity to practise that
  • Final report (55%) – This assesses the communication of project objectives and context, accuracy and relevant of background material, description of practical work and results, depth and soundness of discussion and conclusions, level of engineering achievement and the quality of the report’s presentation
  • Conduct (20%) - Independent study, project and time management are key features of university learning. The level of your initiative & independent thinking and technical understanding are assessed through project meetings with your supervisor and your written logbooks

Careers

As communications now impacts on virtually all areas of society, commerce and business, job opportunities are excellent, and you will be equipped for employment across a range of sectors including mobile/wireless, IT, defence, and big data.

Professional and technical occupations with international companies such as Samsung, Xilinx, British Telecom, MathsWorks, Nokia and Texas Instruments, as well as local companies such as Cirrus Logic, Leonardo, and Stream, are available.

Globalisation of the communications sector and the evolution of many countries to 5G means if graduates wish to work abroad, this course provides an ideal passport to anywhere in the world.

Job titles include:

  • wireless communications engineer
  • wireless mobility engineer
  • graduate controls engineer


Read less
This programme provides state-of-the-art education in the fields of sustainable energy generation, distribution and consumption. It is intended to respond to a growing skills shortage for engineers with a high level of training in renewable energy, smart grids and sustainability. Read more
This programme provides state-of-the-art education in the fields of sustainable energy generation, distribution and consumption. It is intended to respond to a growing skills shortage for engineers with a high level of training in renewable energy, smart grids and sustainability.

By the time you graduate, you will have a thorough understanding of sustainability standards, various renewable energies, smart grid and power electronics for renewable energy and energy use management in buildings, urban design and other areas. Research on sustainable energy technology has opened up many job opportunities in industry, government institutions and research centres.

What are benefits of the programme?

• studying at international university recognised throughout the world
• close cooperation with world-famous universities and research centres to solve major technical challenges including energy crises and environmental pollution
• excellent research opportunities, using advanced experimental equipment including a network analyser, power analyser, Dspace controller, wind turbine and PV testing system
• continuous development of core modules to meet the requirement of industrial innovation
• cutting-edge research in the intelligent and efficient utilisation of solar, wind energy and other renewable energy sources

Lab Facilities

Power electronics laboratory equipped with advanced experimental equipment
• Sustainable energy laboratory equipped with advanced experimental equipment including a 600W wind turbine, two 270W solar modules, batteries, an inverter with sinusoidal output and main controller
• Electric machine and power system laboratory

Modules

• Sustainable Energy and Environment
• Nuclear Energy Technology
• Power System Network and Smart Grid
• Integration of Energy Strategies in the Design of Buildings
• Photovoltaic Energy Technology
• Renewable Kinetic Energy Technologies
• Power Electronics and Applications for Renewable Energy
• Sustainable Urban Planning Strategies
• Msc Project

What are my career prospects?

Graduates of this programme will typically work on professional tasks including the implementation of sustainable energy technologies within existing or new systems, and modelling and evaluation of the impact on ecosystems, economics and society. Graduates may be employed as electric power system engineers, electric power system consultants, sustainable technology consultants, electric power projects managers, sustainable cities and building design consultants, managers and team leaders in government.

Read less
Challenges of today’s society such as the increasing energy demand of a growing world population, climate change and environmental pollution require managers to have a global perspective and to make sustainable decisions. Read more

Challenges of today’s society such as the increasing energy demand of a growing world population, climate change and environmental pollution require managers to have a global perspective and to make sustainable decisions. Executives in today’s globalized society with knowledge and skills in both renewable energy and environmental management who know how to manage these challenging tasks are in high demand.

This MBA programme includes different perspectives on leadership, management and business administration. Students gain expertise in environmental management and acquire profound knowledge of the latest renewable energy technologies.

The curriculum is structured into interdisciplinary modules with a focus on leadership skills, subject expertise and methodical knowledge and is designed for professionals from all sectors of the energy and environmental industry who want to improve their management skills in order to qualify for leadership positions. In addition to management skills, soft skills are incorporated into the programme and students get the chance to expand their professional network and exchange ideas with executives, lecturers and guest speakers from around the globe. In three semesters, our MBA students get to know the relevant methods and trends in environmental management and the renewable energy sector. They become experts in their field and get the opportunity to advance their management careers.

Curriculum

Responsibilty

  • Teambuilding, Social Learning and Personal Communication
  • Leadership and Ethics
  • Behaviour and Consumption of Natural Resources

Decision Making & Rationality: 

  • Complexity and Decision Making
  • Information and Communication Technologies for Business Analysis
  • Knowledge Management in Environmental Business

Global Thinking:

  • Globalisation, Society and Responsibility
  • Intercultural Intelligence
  • International Perspective on Ecological Economics

Communication & Collaboration:

  • Trust and Collaboration
  • Corporate Communication and Cooperation
  • Smart Technologies in Environmental Management

Practice & Final Thesis:

  • Knowledge Management
  • Company Project in the fields of Energy, Water, Waste, Agriculture, Nutrition, Smart Grids or Smart Cities and Village
  • Master’s Colloquium and Master’s Thesis

Career Perspectives

Energy production and distribution and the management of natural resources are fast-growing industries. Governments across the globe recognize the need to focus on renewable energies and invest heavily in the green energy sector. The MBA degree provides the ideal conditions to take on a top-level management position in this expanding and dynamic industry.

The MBA programme qualifies professionals to work in international institutions and companies such as energy providers, technology manufacturers, industrial service providers, startups, public institutions and non-profit associations.

Graduates can work in:

  • Business leadership roles
  • International Sales and Key Account Management
  • Energy and Facility Management
  • Technology Consultancy and Assessment
  • Structural Development and Regional Management
  • Environmental Protection and Association Work - Business Consulting


Read less
If you have a general engineering and/or science background, this course will provide you with the additional knowledge and skills required to become a power engineer. Read more
If you have a general engineering and/or science background, this course will provide you with the additional knowledge and skills required to become a power engineer.

If you already have an electrical engineering or electronics background, the course enables you to update your knowledge to include the latest developments in renewable energy (including energy from the environment) and smart grids, making use of modern sensing, communication and signal- processing technologies.

The programme consists of five core taught modules, covering the fundamental aspects of the modern power systems and energy conversion technologies that are core in renewable generation and energy storage. You’ll also select three modules (from a choice of six options) to study ‘non-electrical’ technologies that are crucial to the safe and reliable operation of power and energy systems. Alongside the taught modules, you’ll carry out a supervised research/development project that is relevant to real-world industrial needs.

Course Structure

The MSc degree (totalling 180 credits) comprises:
-Eight taught modules (15 credits each), five core modules and three optional modules (see below)
-A research project worth 60 credits (see below)

Core modules

-Electrical Machines and Drives
-Fuel Cells and Energy Storage
-Operation and Control of Power Systems
-Power Electronic Converters and Devices
-Renewable Energy from the Environment

Optional modules (choose 3)

-ASICs, MEMS and Smart Devices
-Heat Transfer Theory and Design
-Optical Communication Systems
-Signal & Image Processing
-Systems Modelling and Simulation
-Antenna, Propagation and Wireless Communication Theory

Individual project

The individual research project is an in-depth experimental, theoretical or computational investigation of a topic chosen by you in conjunction with an academic supervisor.

Read less
Why this course?. This MSc is for ambitious engineering graduates who wish to strengthen, lead and transform the high-growth global wind energy industry. Read more

Why this course?

This MSc is for ambitious engineering graduates who wish to strengthen, lead and transform the high-growth global wind energy industry.

This course offers engineering graduates the opportunity to study at one of Europe's largest and leading University power and energy technology groups - the Institute for Energy & Environment.

The Institute is home to over 200 staff and researchers conducting strategic and applied research in the key technical and policy aspects of energy systems. It also houses the UK’s only Government funded Centres for Doctoral Training in Wind & Marine Energy Systems, and Future Power Networks and Smart Grids, both of which are dedicated to pioneering research and advanced skills training. 

On this course you'll develop and enhance your technical expertise of wind energy and deepen your understanding of the engineering, political and economic contexts of wind power. This course will provide you with an advanced level of knowledge to address the current and future challenges of this exciting and dynamic sector. 

With links to key UK and global business and industry energy partners, you’ll have unique access to companies at the forefront of wind energy developments.

You’ll study

There are two semesters of compulsory and optional classes, followed by a three-month research project in a specialist area. There’s the opportunity to carry this out through our department's competitive MSc industrial internships.

The internships are offered in collaboration with selected department industry partners eg ScottishPower, Smarter Grid Solutions, SSE. You'll address real-world engineering challenges facing the partner, with site visits, access and provision of relevant technical data and/or facilities provided, along with an industry mentor and academic supervisor.

Facilities

You'll have exclusive access to our extensive computing network and purpose built teaching spaces including our outdoor test facility for photovoltaics high voltage laboratory, equipped with the latest technologies including:

  • LDS 6-digital partial discharge test & measurement system
  • Marx impulse generators & GIS test rigs
  • £1M distribution network and protection laboratory comprising a 100kVA microgrid, induction machines and programme load banks

You'll have access to the UK’s only high-fidelity control room simulation suite and the Power Networks Demonstration Centre (PNDC). This is Europe’s first centre dedicated to the development and demonstration of “smart-grid” technologies.

Learning & teaching

We use a blend of teaching and learning methods including interactive lectures, problem-solving tutorials and practical project-based laboratories. Our technical and experimental officers are available to support and guide you on individual subject material.

Each module comprises approximately five hours of direct teaching per week. To enhance your understanding of the technical and theoretical topics covered in these, you're expected to undertake a further five to six hours of self-study, using our web-based virtual learning environment (MyPlace), research journals and library facilities.

Individual modules are delivered by academic leaders, and with links to key UK and global industry energy partners, you'll have unique access to companies at the forefront of wind energy developments.

The teaching and learning methods used ensure you'll develop not only technical engineering expertise but also communications, project management and leadership skills.

You'll undertake group projects. These will help to develop your interpersonal, communication and transferable skills essential to a career in industry.

Industry engagement

Interaction with industry is provided through our internships, teaching seminars and networking events. The department delivers monthly seminars to support students’ learning and career development. Atkins Global, BAE Systems, Iberdrola, National Grid, ScottishPower, Siemens and Rolls-Royce are just a few examples of the industry partners you can engage with during your course.

Assessment

A variety of assessment techniques are used throughout the course. You'll complete at least six modules. Each module has a combination of written assignments, individual and group reports, oral presentations, practical lab work and, where appropriate, an end-of-term exam.

Assessment of the summer research project/internship consists of four elements, with individual criteria: 

  1. Interim report (10%, 1500 – 3000 words) – The purpose of this report is to provide a mechanism for supervisors to provide valuable feedback on the project’s objectives and direction.
  2. Poster Presentation (15%) – A vital skill of an engineer is the ability to describe their work to others and respond to requests for information. The poster presentation is designed to give you an opportunity to practise that.
  3. Final report (55%) – This assesses the communication of project objectives and context, accuracy and relevant of background material, description of practical work and results, depth and soundness of discussion and conclusions, level of engineering achievement and the quality of the report’s presentation.
  4. Conduct (20%) - Independent study, project and time management are key features of university learning. The level of your initiative & independent thinking and technical understanding are assessed through project meetings with your supervisor and your written logbooks.

Careers

With the European Wind Energy Association (EWEA) forecasting UK/EU employment in wind energy related jobs to double to more than 500,000 by 2020, graduates of this course have excellent career prospects.

The UK electricity supply industry is currently undergoing a challenging transition driven by the need to meet the Government's binding European targets to provide 15% of the UK's total primary energy consumption from renewable energy sources by 2020.

Graduates of this course have unique access to key UK and global industry energy partners, who are committed to fulfilling these UK Government targets. These companies offer a diverse range of professional and technical employment opportunities in everything from research and development, construction and maintenance, to technical analysis and project design. Companies include Siemens Energy, Sgurr Energy, DNV GL, ScottishPower Renewables and SSE.



Read less
The concept of the German “Energiewende” – literally, energy transition – has gained international attention. It includes a variety of measures that aim at making Europe’s largest economy free of fossil fuels and nuclear energy. Read more

Program Background

The concept of the German “Energiewende” – literally, energy transition – has gained international attention. It includes a variety of measures that aim at making Europe’s largest economy free of fossil fuels and nuclear energy. In order to attain this, all areas of energy production and consumption will have to go through a transition process. Besides mobility and industry, buildings are therefore one of the key factors for a successful Energiewende.

Most of all, this implies re-directing from a mainly fossil-fueled energy supply towards renewable energies and a much more energy-efficient use of energy in buildings and urban areas. This is one of the largest and most urgent challenges of current urban development and other social disciplines.

Finding solutions to such a complex challenge means that a multitude of actors from business, society, and public administration take part in the process and influence it with their differing and often conflicting interests. Resulting from this is the need for skilled workers who both understand all stakeholders and are able to work with them.

Building Sustainability

Strategic concepts for communication and cooperation in large-scale projects are crucial for their success. Whereas, “simply” building a house has become a manageable task, things become much more complicated when considering the urban environment and wider interests such as energy efficiency. The Master program, Building Sustainability focuses therefore, not only on technical and economic perspectives, but also aims at imparting relevant knowledge from other disciplines. This means that the scope of the program is both broad and specific at the same time. The combination of technology, management and sustainability-related topics is therefore a unique opportunity for young professionals to extend their skills.

The MBA program Building Sustainability – Management Methods for Energy Efficiency will teach students skills, methods and concepts to consider different approaches, to understand them and to align them for reaching sustainable solutions. Such competences are not only important in the context of the Energiewende but they are indispensable in every building, construction and real estate project that takes energy efficiency and other sustainability criteria into account.

The idea is that sustainable project results that consider economic, ecological and social aspects can only be achieved in extensive cooperation of all stakeholders. Managing and moderating such a cooperation is one of the major challenges of implementing sustainability in building projects of all scales. The program aims therefore on enabling students to understand the complexity of planning and management processes and to develop according solutions. This will happen in modules with different approaches: some will teach facts and numbers, others will facilitate connections between different fields and the softer skills of mediating between them and some are designed to apply these competences to practical projects.

The TU-Campus EUREF is located on the EUREF (European Energy Forum) campus in Berlin-Schöneberg. This former industrial area has been developed into a research hub for energy efficiency, renewable energies and smart grids. Students will gain insight into the numerous real-life examples of building sustainability without having to leave the campus.

Students and graduates

The program addresses a broad group of professionals with varying academic backgrounds, mostly in engineering and technology, management, economics, architecture and urban or environmental planning. However, applicants with other academic backgrounds coupled with working experience in a related field are also encouraged to apply, personal motivation plays an important role in the selection process. Class diversity is one of its greatest assets, as students will not only learn from lecturers with science and business backgrounds, but also from each other.
Graduates will be able to moderate and manage complex projects in the construction, real estate, and planning sector. They will be able to assess the project from technical, ecological and economic perspectives and find solutions which take all stakeholders into account.

Curriculum

The first semester focuses on the basis for successful and sustainable projects. Two comprehensive modules in the fields of building technology and project management will allow students to work on their first, closely guided group project. A lecture series about the sustainable reorganization of building and urban structures with special regard to energy management and the energy market accompanies these modules.

The second semester focuses on the interdisciplinary aspects of building sustainability. It addresses real estate economics and the issue of energy-efficient societies in a global context. Together with the knowledge and skills attained in the first semester, students will conduct a comprehensive and interdisciplinary group project. At the same time, specialization starts and students can choose between deepening their knowledge in either technology and innovation management or in Smart Buildings.

The specialization continues in the third semester, either by completing the technology and innovation module or the technical module with the follow-up course Integration of Renewable Energies. All students take a module in Life Cycle Analysis to complete the holistic approach of sustainability and write their Master thesis. Graduates will earn a degree awarded from the Technische Universität Berlin.

Read less

Show 10 15 30 per page



Cookie Policy    X