• Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • New College of the Humanities Featured Masters Courses
  • Coventry University Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
  • St Mary’s University, Twickenham Featured Masters Courses
  • University of Glasgow Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
King’s College London Featured Masters Courses
Coventry University Featured Masters Courses
University of Hertfordshire Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
Loughborough University Featured Masters Courses
"smart" AND "grid"×
0 miles

Masters Degrees (Smart Grid)

  • "smart" AND "grid" ×
  • clear all
Showing 1 to 15 of 32
Order by 
The MSc in Smart Grid Demand Management (See http://www.postgraduate.hw.ac.uk/prog/msc-smart-grid-demand-management/ ) has been designed to progress students with an Electrical or Mechanical Engineering background to an expert in the understanding of a smart grid. Read more

Overview

The MSc in Smart Grid Demand Management (See http://www.postgraduate.hw.ac.uk/prog/msc-smart-grid-demand-management/ ) has been designed to progress students with an Electrical or Mechanical Engineering background to an expert in the understanding of a smart grid. By following a carefully selected set of courses covering energy resources (fossil and renewable), conversion technologies, electrical power generation, energy storage technologies, demand management, and energy economics. Graduates of this programme will be confident in all aspects of this subject. With a clear focus on smart Grid and Demand Management the programme provides;
- Knowledge and understanding of advanced scientific and mathematical principles relevant to the understanding, analysis and modelling of a smart grid.
- An understanding of fundamental facts, concepts, and technologies for demand management and energy storage.
- Knowledge and skill to apply engineering principles to design a system, component or process
- An ability to undertake independent research.
- Professional attitudes to implementation of safety and concepts embodied by sustainability.
- An ability to communicate effectively
- Familiarity with the application of relevant computer tools to the profession.

All aspects of the smart grid are integrated in a dedicated smart grid modelling course, which provides the mathematical and computational skills to model a smart grid. This course is unique to this programme and will give graduates the skills they need to enhance their career prospects.

The Scottish Funding Council has made available 20 scholarships covering fees only to students with Scottish backgrounds. 5 of these places are reserved for applicants to this programme in the first instance. The remaining places are spread over all our Energy based MSc programmes. There is no separate application process for this. If you are eligible, you will be considered automatically. You will be notified through the summer if you have been selected.

Scholarships available

We have a number of fully funded Scottish Funding Council (SFC) scholarships available for students resident in Scotland applying for Smart Grid Demand Management MSc. Find out more about this scholarship and how to apply http://www.hw.ac.uk/student-life/scholarships/postgraduate-funded-places.htm .

Programme content

Semester One - All courses are Mandatory
- B51ET Foundations of Energy
This course provides the foundations for the quantitative analysis of energy resources and conversion efficiencies through various technologies. It also places energy production and consumption into the wider field of environmental and socio-economic factors

- B51GE Renewable Energy Technologies
This course introduces the range of Renewable Energy resources together with established and emerging technologies. It provides the skills for a quantitative assessment of the Renewable Energy resources and the expected energy and power output from typical or specific installations.

- B31GA Electrical Power Systems
This course covers the operation of interconnected electrical power systems. Such interconnected power systems combine a number of different components, generators, transmission lines, transformers and motors, which must be appreciated to understand the operation of the interconnected system.

- C21EN Environmental and Energy Economics
This course introduces students to the core concepts and methods of modern economics, and environmental and energy economics in particular.

Semester Two – All courses are Mandatory
- B31GG Smart grid modeling
This course introduces the mathematical skills to model the operation of an electricity or energy network at a statistical and dynamical level, incorporating key elements of a smart grid, including technological constraints, economic drivers and information exchange.

- B31GB Distributed Generation
This course equips students with an understanding of the role of distributed generation in electrical energy networks. It provides students with an overview of distributed generation techniques and describes the contribution of distributed generation to network security. The course introduces the economics of distributed generation and the assessment of distributed generation schemes. It introduces students to the concept of intermittent sources and their contribution to capacity in electrical power systems and provides a detailed review of the reliability, fault and stability studies of distributed generation schemes.

- B51GK Demand Management and Energy Storage
This course provides students with an overview of demand-side management and its contribution to network capacity and security. It reviews energy storage technologies and their contribution to the integration of renewable generation and the operation of large-scale electrical network. It introduces students to the methods of interfacing energy storage mechanisms to electrical networks. The course describes the contribution energy storage technology can make to transportation and industry

- B81EZ Critical Analysis and Research Preparation
This course provides research training and addresses literature review skills, project planning, data analysis and presentation with a focus to critically discuss literature, and use data to support an argument.

- B31VZ MSc Project
An individual project led by a research active member of staff or an industrial partner on a topic relevant to smart grid technology, demand management technologies or approaches or smart grid/ electricity / energy systems modelling.

English language requirements

If you are not from a UKBA recognised English speaking country, we will need to see evidence of your English language ability. If your first degree was taught in English a letter from them confirming this will be sufficient. Otherwise the minimum requirement for English language is IELTS 6.5 or equivalent, with a minimum of 5.5 in each skill.

The University offers a range English language courses (See http://www.hw.ac.uk/study/english.htm ) to help you meet the English language requirement prior to starting your masters programme:
- 14 weeks English (for IELTS of 5.5 with no more than one skill at 4.5);
- 10 weeks English (for IELTS of 5.5 with minimum of 5.0 in all skills);
- 6 weeks English (for IELTS 5.5 with minimum of 5.5 in reading & writing and minimum of 5.0 in speaking & listening)
- 3 weeks English refreshers course (for students who meet the English condition for the MSc but wish to refresh their English skills prior to starting).

Find information on Fees and Scholarships here http://www.postgraduate.hw.ac.uk/prog/msc-smart-grid-demand-management/

Read less
This programme provides state-of-the-art education in the fields of sustainable energy generation, distribution and consumption. It is intended to respond to a growing skills shortage for engineers with a high level of training in renewable energy, smart grids and sustainability. Read more
This programme provides state-of-the-art education in the fields of sustainable energy generation, distribution and consumption. It is intended to respond to a growing skills shortage for engineers with a high level of training in renewable energy, smart grids and sustainability.

By the time you graduate, you will have a thorough understanding of sustainability standards, various renewable energies, smart grid and power electronics for renewable energy and energy use management in buildings, urban design and other areas. Research on sustainable energy technology has opened up many job opportunities in industry, government institutions and research centres.

What are benefits of the programme?

• studying at international university recognised throughout the world
• close cooperation with world-famous universities and research centres to solve major technical challenges including energy crises and environmental pollution
• excellent research opportunities, using advanced experimental equipment including a network analyser, power analyser, Dspace controller, wind turbine and PV testing system
• continuous development of core modules to meet the requirement of industrial innovation
• cutting-edge research in the intelligent and efficient utilisation of solar, wind energy and other renewable energy sources

Lab Facilities

Power electronics laboratory equipped with advanced experimental equipment
• Sustainable energy laboratory equipped with advanced experimental equipment including a 600W wind turbine, two 270W solar modules, batteries, an inverter with sinusoidal output and main controller
• Electric machine and power system laboratory

Modules

• Sustainable Energy and Environment
• Nuclear Energy Technology
• Power System Network and Smart Grid
• Integration of Energy Strategies in the Design of Buildings
• Photovoltaic Energy Technology
• Renewable Kinetic Energy Technologies
• Power Electronics and Applications for Renewable Energy
• Sustainable Urban Planning Strategies
• Msc Project

What are my career prospects?

Graduates of this programme will typically work on professional tasks including the implementation of sustainable energy technologies within existing or new systems, and modelling and evaluation of the impact on ecosystems, economics and society. Graduates may be employed as electric power system engineers, electric power system consultants, sustainable technology consultants, electric power projects managers, sustainable cities and building design consultants, managers and team leaders in government.

Read less
The graduate programs in Electrical and Computer Engineering (ECE) attract students from all over the globe; approximately 26 countries have been represented by our graduate students over the past decade. Read more
The graduate programs in Electrical and Computer Engineering (ECE) attract students from all over the globe; approximately 26 countries have been represented by our graduate students over the past decade. The department endeavors to create a warm, friendly, and collaborative atmosphere in which graduate students are encouraged to develop their full potential.

Graduate class sizes are typically small, allowing for substantial interaction between students and professors. In addition to various research opportunities, there are numerous teaching assistant (TA) positions available during the Fall and Winter terms; graduate students may also participate in the engineering co-op program once eligibility requirements are met.

ECE has developed research strengths in the areas listed below. Of special note is the world-class research conducted by the Sustainable Power Research Group and Emera & NB Power Research Centre for Smart Grid Techologies and the Optical Fiber Systems Research Laboratory (housed within ECE), as well as the research conducted by the Institute of Biomedical Engineering (closely affiliated with ECE) and COBRA (Collaboration Based Robotics and Automation). Emera & NB Power Research Centre for Smart Grid Technologies Our recent graduates have moved on to successful and rewarding careers at other universities, research institutions, power utilities, IT companies and numerous others ranging from local start-ups to large multi-national corporations.

Research Areas

-Biomedical Engineering
-Communications
-Controls and Instrumentation
-Electromagnetic Systems
-Electronics and Digital / Embedded Systems
-Signal Processing
-Software Systems
-Sustainable Energy

Read less
The evolution of wireless communication systems and networks in recent years has been accelerating at an extraordinary pace and become an essential part of modern lifestyle requirements. Read more

About the course

The evolution of wireless communication systems and networks in recent years has been accelerating at an extraordinary pace and become an essential part of modern lifestyle requirements.

The effects of this trend has seen a growing overlap between the network and communication industries, from component fabrication to system integration, and the development of integrated systems that transmit and process all types of data and information.

This distinctive course, developed with the support of industry, aims to develop a detailed technical knowledge of current practice in wireless systems and networks. You will study the fundamentals of wireless communication systems and the latest innovations in this field.

You will study the fundamentals of wireless communication systems and the latest industry innovations and needs. The MSc programme incorporates theory and practice and covers all aspects of a modern communication system ranging from RF components, digital signal processing, network technologies and wireless security and examines new wireless standards.

This course is accredited by the Institution of Engineering and Technology (IET).

Aims

The sharp increase in the use of smartphones, machine to machine communication systems (M2m), sensor netowrks, digital broadcasting networks and smart grid systems have brought tremendous technological growth in this field.

It has become a global phenomenon that presently outstrips the ability of commercial organisations to recruit personnel equipped with the necessary blend of technical and managerial skills who can initiate and manage the introduction of the new emerging technologies in networks and wireless systems.

By studying Wireless Communications Systems at Brunel, you will be equipped with the advanced technical and professional skills you need for a successful career either in industry or leading edge research in wireless communication systems.

Course Content

Typical Modules:

Advanced Digital Communications
Network Design and Management
DSP for Communications
Wireless Network Technologies
Communications Network Security
Research Methods
Radio and Optical Communication Systems
Project Management
Project & Dissertation

Teaching

The course blends lectures, workshops, seminars, self-study, and individual and group project work. You’ll develop communication and teamwork skills valued by industry through carefully designed lab exercises, group assignments, and your dissertation project.

In lectures, key concepts and ideas are introduced, definitions are stated, techniques are explained, and immediate student queries discussed.

Seminars provide the students with the opportunity to discuss at greater length issues arising from lectures.

Workshops sessions are used to foster practical engagement with the taught material.

The dissertation project plays a more significant role in supporting literature review in a technically complex area and to plan, execute and evaluate a significant investigation into a current problem area related to wireless communication systems.

Assessment

Taught modules are assessed by final examinations or by a mix of examination and laboratory work. Project management is assessed by course work. Generally, students start working on their dissertations in January and submit by the end of September.

Special Features

The course is taught by academics who are experts in their fields and have strong collaborative links with industry and other international research organisations. Some well-known textbooks in this area are authored by members of the course team.

The course is fully supported with computing and modern, well-equipped RF laboratories. As a student you will enjoy working on the latest and advanced equipment.

Electronic and Computer Engineering at Brunel supports a wide range of research groups, each with a complement of academics and research staff and students:

- Media Communications
- Wireless Networks and Communications
- Power Systems
- Electronic Systems
- Sensors and Instrumentation.

Our portfolio of research contracts totals £7.5 million, and we’ve strong links with industry.

Prizes
Rohde and Schwartz best in RF Prize
Criteria for award: Best overall PG student on MSc Wireless Communications Systems with a relevant RF dissertation
Composition of prize: RF books and Certificate

Women in Engineering and Computing Programme

Brunel’s Women in Engineering and Computing mentoring scheme provides our female students with invaluable help and support from their industry mentors.

Accreditation

The MSc in Wireless Communications Systems is fully accredited by the Institution of Engineering and Technology (IET).

Read less
Modern vehicles are often taken for granted and yet they represent an incredibly complex and diverse set of disciplines. Read more
Modern vehicles are often taken for granted and yet they represent an incredibly complex and diverse set of disciplines. The automotive electronics engineer has to bring together real-time software, safety critical constraints, sensor electronics, control algorithms, human factors, legislation and ethics into a working package that satisfies multiple stakeholders.

The Ricardo engineering consultancy helped to develop this course, ensuring MSc students come away equipped with industry-relevant skills. Their continued involvement includes offering the use of pioneering industry equipment through the Ricardo Universities IC Engines research facility. They also help to cultivate future engineering talent, both locally and internationally.

On this MSc course you'll explore a range of topics including interconnected communication networks, entertainment systems, safety critical software, diagnostics, alternative fuels and hybrid technologies.

In the latest Research Assessment Exercise (RAE2008), our automotive engineering research group achieved an excellent rating, with 70 per cent of its research rated as internationally excellent or world leading, and 95 per cent deemed to have been internationally recognised.

Our reputation has enabled us to invest more in our facilities.

This MSc is accredited by the Institution of Engineering and Technology on behalf of the Engineering Council as meeting the requirements for further learning for registration as a chartered engineer. Candidates must hold a CEng-accredited BEng or BSc(Hons) undergraduate degree to comply with full CEng registration requirements.

Course structure

The course starts in September. You will study four modules each term and will take exams after your Christmas and Easter vacations.

For each taught module you will have between three and four hours' contact with the lecturer each week, alongside further self-study tutorial and laboratory exercises requiring study outside of the class contact time.

After all eight taught modules have been completed you will then begin your individual project and masters dissertation stage. This final stage is full-time, but there are no classes during this phase, which ends in early September.

It is possible to study part-time study, by taking the modules at a slower rate. This can be tailored to fit around any personal or professional commitments that you may have. Please note, however, that there is no evening teaching so if you wish to study part-time then you will need to agree on study leave with your employer in order to attend the classes. The final project phase could be conducted at your place of work in some cases.

Syllabus

You will study eight modules and embark on an individual project. This project will form the basis of your dissertation.

Core modules:

Engineering with MATLAB
Sustainable Automotive Power Technology
Automotive Communication Systems
Embedded Processor Systems
Power Train Engineering
Sensors and Interfacing
Power Electronics and Actuators
An individual project on which you base your dissertation

Option modules:

Advanced Computer Systems
Secure Information Systems Engineering

Individual projects have included real-time power-train modelling for software in the loop testing, a smart grid system using electric vehicles as an energy storage resource and an experimental investigation of novel fuel injection and ignition systems for a spray-guided gasoline engine.

Our research labs

The Division of Engineering and Product Design’s research and teaching laboratories house a number of engine test cells in which world leading research is carried out. Although these labs centre on cylinders, pistons and valves they are surrounded by complex electronic equipment to control the mechanics and to monitor pressures, temperatures, chemistry and capture high speed events on computer for real-time and post-run analysis.

MSc students often carry out projects in these labs and make their contribution to research or commercial innovation. For details of these state of the art laboratories see Sir Harry Ricardo Laboratories.

Professor Stipidis and his team provide valuable state-of-the-art research into automotive communications architectures and also provide infrastructure for some of the laboratory exercises in the Automotive Communications Systems taught module.

Employability

This course serves as a training and proving ground for the next generation of researchers. It is ideal for those hoping to be employed as development or research engineers.

The MSc can also serve as the basis for further study at a doctoral level.

The nature of graduate work varies; it could be with OEM’s (Original Equipment Manufacturers) like Ford, General Motors, Jaguar Land Rover; it could be with consultants such as Ricardo, Lotus or AVL; or Tier One suppliers such as Delphi, Infineon or Denso.

Scholarships

Scholarships are available for this course. Please click the link below for more information.

https://www.brighton.ac.uk/studying-here/fees-and-finance/postgraduate/index.aspx

Read less
Renewable energy engineering is in high demand globally as we find alternate methods of energy harvesting to meet our future energy needs and future proof our reliance on hydrocarbons as much as it is possible to do. Read more

Your programme of study

Renewable energy engineering is in high demand globally as we find alternate methods of energy harvesting to meet our future energy needs and future proof our reliance on hydrocarbons as much as it is possible to do. Considerable innovation and improvements are continuous within this field as it is by no means at a stage where society can rely on it to fuel all needs. The sector is interdisciplinary and this programme provides you with a wide range of very useful skills and knowledge to problem solve and progress current renewables and work towards innovation whether that is in a renewables company or as a start up.

You study electrical and electronic engineering pertinent to smart grid, sensing energy use, developing energy harvesting techniques, and renewable energy exchange, plus ability to harvest energy from all of our natural resources including wind, solar, hydro, marine, geothermal, biomass and other newly developing areas.Renewables is definitely an employable sector as governments are now challenged by finite resources coming from traditional areas, climate change and societal concerns about how we harvest energy in the future and our ability to survive climatic issues, population increase and manage work and life.

Courses listed for the programme

Semester 1
Electrical Systems for Renewable Energy
Renewable Energy 1 (Solar and Geothermal)
Renewable Energy 2 (Biomass)
Fundamental Concepts in Safety Engineering

Second Half Session
Renewable Energy 3 (Wind, Marine and Hydro)
Energy Conversion and Storage
Renewable Energy Integration to Grid
Legislation, Planning and Economics

Semester 3
Project

Find out more detail by visiting the programme web page
https://www.abdn.ac.uk/study/postgraduate-taught/degree-programmes/278/renewable-energy-engineering/
or online:
https://www.abdn.ac.uk/study/postgraduate-taught/degree-programmes/1077/renewable-energy-engineering/

Why study at Aberdeen?

• You study with industry professionals and industry lead projects to encourage and challenge you in practical application
• The full supply of energy is covered in the programme from the initial harvesting to the conversion methods required to link to grid
• You can study your degree at University of Aberdeen or online to fit flexibly with your needs
• You learn within a lab setting with industry visits and events in a global sector community

Where you study

• University of Aberdeen
• Online option available (above)

International Student Fees 2017/2018

Find out about fees:
https://www.abdn.ac.uk/study/international/tuition-fees-and-living-costs-287.php

*Please be advised that online fees may offer a different structure

Scholarships

View all funding options on our funding database via the programme page
https://www.abdn.ac.uk/study/postgraduate-taught/finance-funding-1599.php
https://www.abdn.ac.uk/funding/

Living in Aberdeen

Find out more about:
• Your Accommodation
• Campus Facilities
• Aberdeen City
• Student Support
• Clubs and Societies

Find out more about living in Aberdeen:
https://abdn.ac.uk/study/student-life

Living costs
https://www.abdn.ac.uk/study/international/finance.php

Read less
The world demand for energy, in particular electricity, will increase significantly over the next decade and beyond. There are many challenges to be addressed in order to meet this ever-increasing demand, electrical and electronic engineers will provide key solutions to these problems. Read more
The world demand for energy, in particular electricity, will increase significantly over the next decade and beyond. There are many challenges to be addressed in order to meet this ever-increasing demand, electrical and electronic engineers will provide key solutions to these problems.

There are tremendous opportunities for us to make a significant impact that will shape the future, and this programme has been carefully designed and developed for this.

Our degree programmes are developed with industry partners to provide you with a career focused degree.

This programme provides you with an in-depth knowledge of the electrical power generation, transmission, distribution and networks. The operating principles, monitoring, optimisation and control of modern power systems are discussed in detail.

The environmental challenges, renewable energy generation, smart grid, high voltage power engineering and research and management skills are also addressed in this one-year programme. In addition, site visit and practical sessions are included. The programme has been carefully developed for graduates with electrical/electronic or related backgrounds to meet the increasing demand from the energy and power industry.

Projects

Project work contributes 60 credits, which will be based on a topic of industrial or scientific relevance, and will be carried out in laboratories in the University or at an approved placement in industry. The project is examined by oral presentation and dissertation, and award of the MSc (Eng) degree will require evidence of in-depth understanding, mastery of research techniques, ability to analyse assembled data, and assessment of outcomes.

Why Electrical Engineering and Electronics?

World-class facilities, including top industry standard laboratories

We have specialist facilities for processing semiconductor devices, optical imaging spectroscopy and sensing, technological plasmas, equipment for testing switch gear, specialist robot laboratories, clean room laboratories, e-automation, RF Engineering, bio-nano engineering labs and excellent mechanical and electrical workshops.

A leading centre for electrical and electronic engineering expertise

We are closely involved with over 50 prominent companies and research organisations worldwide, many of which not only fund and collaborate with us but also make a vital contribution to developing our students.

Career prospects

Our postgraduate students get to be a part of the cutting edge research projects being undertaken by our academic staff.

Here are some of the areas these projects cover:-

Molecular and semiconductor integrated circuit electronics
Technological plasmas
Communications
Digital signal processing
Optoelectronics
Nanotechnology
Robotics
Free electron lasers
Power electronics
Energy efficient systems
E-Automation
Intelligence engineering.

You'll get plenty of industry exposure too. Our industrial partners include ARM Holdings Plc, a top 200 UK company that specialises in microprocessor design and development.

As a result our postgraduates have an impressive record of securing employment after graduation in a wide range of careers not limited to engineering.

Read less
This Electrical and Electronic Engineering MSc aims to further develop students' knowledge of and expertise in specialist engineering subjects associated with the main application areas of electrical and electronic engineering. Read more
This Electrical and Electronic Engineering MSc aims to further develop students' knowledge of and expertise in specialist engineering subjects associated with the main application areas of electrical and electronic engineering. Particular prominence is given to electrical power systems and machines, robotics and sensors, digital systems incorporating VHDL and signal processing.

An emphasis on applied technical work will strengthen the engineering development skills of students from an academic background.

WHY CHOOSE THIS COURSE?

-The programme is delivered by a specialist team of academics
-Electrical and electronic research carried out in the Faculty is recognised as 5% World-leading, 45% Internationally Excellent, 25% International, 25% National (RAE 2008)
-Access to state-of-the-art studio, laboratory and computing facilities within the new Engineering and Computing building
-Personal tutor support throughout the postgraduate study
-Excellent links with a number of industrial organisations enable access to the latest technology and real-world applications

WHAT WILL I LEARN?

The work carried out on this course will provide the demonstrable expertise necessary to help secure professional level employment in related industries. The topic areas also provide opportunities for interaction with the Faculty’s Research Centres who will source some of the individual projects for the programme.

The MSc in Electrical and Electronic Engineering curriculum consists of a fixed menu of study and a substantial MSc project. Successful completion of all elements leads to the award of MSc in Electrical and Electronic Engineering. Completion of the taught modules without a project leads to the award of a Postgraduate Diploma.

The mandatory modules are as follows:
-Digital System Design with VHDL
-Electrical Machines and Drives
-Power Systems
-Digital Signal and Image Processing
-Robotics: Kinematics, Dynamics and Applications
-Measurement and Sensor Technology
-Microprocessor Applications
-Renewable Energy and Smart Grid
-Individual Project

The substantial individual project gives students the opportunity to work on a detailed area of related technology alongside an experienced academic supervisor. Some projects are offered in conjunction with the work of the Faculty’s Research Centres or industry.

Typical project titles include:
-Embedded network interface development for measurement instruments
-Wireless sensors for industrial thermocouple temperature monitoring
-Power system network simulation
-Wind turbine generator simulation

HOW WILL THIS COURSE ENHANCE MY CAREER PROSPECTS?

The specialist topics studied on the programme will prepare you for work in specialist companies involved with electrical and electronic engineering. There are also many roles in related industries that rely on the technology.

Possible destinations include:
-Electrical power supply generation and distribution including renewables;
-Transport and industrial equipment manufacturers employing electrical drives; electrical vehicles are anticipated to create an increased demand in this area
-Industrial measurement and monitoring systems
-Robotics and associated activities
-Microelectronic applications

Opportunities also exist to complete a PhD research degree upon completion of the master’s course.

Electrical and electronic technology is now indispensible for modern life. We rely on electricity for the reliable supply of essential energy to our homes and businesses. Electronics is at the heart of products enabling our transport and communication systems.

GLOBAL LEADERS PROGRAMME

To prepare students for the challenges of the global employment market and to strengthen and develop their broader personal and professional skills Coventry University has developed a unique Global Leaders Programme.

The objectives of the programme, in which postgraduate and eligible undergraduate students can participate, is to provide practical career workshops and enable participants to experience different business cultures.

Read less
This course is designed to meet the needs of electrical, electrical power, electronic and telecommunication engineers who are looking to open up their career prospects. Read more
This course is designed to meet the needs of electrical, electrical power, electronic and telecommunication engineers who are looking to open up their career prospects. You will specialise in one of three majors: Emerging Power Systems, Telecommunication and Networking, or Embedded Systems. Among a wide range of optional units, you may study electrical power, renewable energy, communications and computer engineering at the system level and the component level.

The course is designed to allow you to undertake further studies in a field of your preference through advanced coursework and a major project, ultimately developing a prototype and presenting a formal thesis on the outcome. With the approval of the course coordinator, you may also include a unit from the Curtin Business School, or the Department of Computing, or the Department of Mathematics and Statistics.

EMERGING POWER SYSTEMS (314675)

Global demands on resources have placed an urgent emphasis on supplying a growing population with affordable, environmentally responsible power. How we manage this challenging paradigm will rely on a new generation of creative, technically savvy engineers. Since fossil fuels are a finite resource, the development of alternative sources of electrical energy such as solar and wind is vital.

The challenges that face you as a power engineer include interfacing renewable sources to the electricity distribution system, maintaining stability in the presence of many small energy sources and guaranteeing an electrical supply in the presence of intermittent sources such as solar power.

This major addresses challenges in the generation, transmission and distribution of electricity. Emergent technologies like smart grid and distributed generation are covered in detail. You will have the opportunity to further investigate and apply emergent technologies through your project work.

TELECOMMUNICATIONS AND NETWORKING (314676)

The electronics and communication fields represent two of the greatest growing technology areas in the world. With the rapid progress of information technology, the role of communications is becoming even more crucial for increasing industry efficiency and competition – whether machine talking to machine, computer with computer or human with human via a wide array of methods.

This major explores relevant topics in telecommunications and networking like mobile radio communications and data network security. The wide range of optional units includes topics such as computer architectural philosophies, LAN and WAN technologies, electromagnetics, error control coding, troubleshooter management, legal frameworks, and system design. You will also have the opportunity to further investigate a specialist area and apply your skills and knowledge through your project work.

EMBEDDED SYSTEMS (314677)

Our world is characterised by the ever-increasing number of intelligent devices which have inbuilt or 'embedded' computers. Computers in the form of microprocessors are being embedded in almost every other form of system to control them or provide additional services, creating a strong demand for electrical engineers in all industrially advanced nations.

In this major, you will study intermediate and advanced topics in embedded systems, for example, embedded systems in field-programmable gate arrays (FPGAs) and embedded software engineering. You will have the opportunity to further investigate and apply emergent technologies in embedded systems through your chosen advanced project.

Credit for previous study

Applications for recognition of prior learning (RPL) are assessed on an individual basis.

2016 Curtin International Scholarships: Merit Scholarship

Curtin University is an inspiring, vibrant, international organisation, committed to making tomorrow better. It is a beacon for innovation, driving advances in technology through high-impact research and offering more than 100 practical, industry-aligned courses connecting to workplaces of tomorrow.

Ranked in the top two per cent of universities worldwide in the Academic Ranking of World Universities 2015, the University is also ranked 25th in the world for universities under the age of 50 in the QS World University Rankings 2015 Curtin also received an overall five-star excellence rating in the QS stars rating.

Curtin University strives to give high achieving international students the opportunity to gain an internationally recognised education through offering the Merit Scholarship. The Merit Scholarship will give you up to 25 per cent of your first year tuition fees and if you enrol in an ELB program at Curtin English before studying at Curtin, you will also receive a 10 per cent discount on your Curtin English fees.

For full details and terms and conditions of this scholarship, please visit: curtin.edu/int-scholarships and click on Merit.

Read less
The world demand for energy, in particular electricity, will increase significantly over the next decade and beyond. There are many challenges to be addressed in order to meet this ever-increasing demand, electrical and electronic engineers will provide key solutions to these problems. Read more
The world demand for energy, in particular electricity, will increase significantly over the next decade and beyond. There are many challenges to be addressed in order to meet this ever-increasing demand, electrical and electronic engineers will provide key solutions to these problems.

There are tremendous opportunities for us to make a significant impact that will shape the future, and this programme has been carefully designed and developed for this.

Our degree programmes are developed with industry partners to provide you with a career focused degree.

This programme provides you with an in-depth knowledge of the electrical power generation, transmission, distribution and networks. The operating principles, monitoring, optimisation and control of modern power systems are discussed in detail.

The environmental challenges, renewable energy generation, smart grid, high voltage power engineering and research and management skills are also addressed in this one-year programme. In addition, site visit and practical sessions are included. The programme has been carefully developed for graduates with electrical/electronic or related backgrounds to meet the increasing demand from the energy and power industry.

To meet the increasing demands for MSc students with industry experience, the Department of Electrical Engineering and Electronics has introduced a 2-year MSc programme for graduates of the highest calibre to develop advanced knowledge and skills in energy and power systems and give students the opportunity to put their knowledge into practice through valuable work experience during a one year industrial placement.

Graduates will be capable of undertaking research and development work in energy and power systems, and also developing and managing R&D programmes.

This 2-year MSc programme EEEI shares the same taught modules with its equivalent 1-year MSc in Energy and Power Systems (EEEP) in year 1. But unlike the 1-year MSc students who do their MSc project over the summer, students on the 2 year MSc (EEEI) are required to undertake an industrial project and placement (either in the UK or overseas) in year 2, typically 30 weeks from September to next June.

This opportunity to work in industry will help students strengthen their career options by

Undertaking the project work in an industrial setting;
Applying theory learnt in the classroom to real-world practice;
Developing communications and interpersonal skills;
Building networks and knowledge which will be invaluable throughout their career.

The placement

During the placement year students will spend time working in a relevant company suitable for the MSc. This is an excellent opportunity to gain practical engineering experience which will boost students’ CV, build networks and develop confidence in a working environment. Many placement students continue their relationship with the placement provider by undertaking relevant projects and may ultimately return to work for the company when they graduate.

The University of Liverpool has a dedicated team to help students find a suitable placement. Preparation for the placement is provided by the University’s Careers and Employability Services (CES) who assist students in finding a placement, help students produce a professional CV and prepare students for placement interviews. Placements can be near or far in the UK or overseas.

The University has very good links with industry; companies (such as ARM Plc) have offered our MSc students competitive placements. Although industry placements are not guaranteed, the University offers students opportunities and support throughout the process to ensure that the chance for a student to find a placement is high.

If a student is unable to secure a suitable placement by the end of April during year 1, the student will be transferred onto the 1-year MSc to undertake the MSc project over the summer and graduate after one year.

Read less
The future of information and communication technology (ICT) is driven by mobile and networked embedded systems. Read more

About Mobile and Embedded Systems

The future of information and communication technology (ICT) is driven by mobile and networked embedded systems: tomorrow’s digital cities, Industry 4.0, cyber-physical systems (CPS) and the Internet of Things (IoT) will all depend on embedded sensing of real-world phenomena, in-situ computation as well as automated information exchange and data distribution using machine-to-machine (M2M) com­munications between local and distributed control systems and machinery.

The ‘smart grid’ is one example of an application for future embedded systems, as it uses real-time sensing of the available renewable energy to determine where energy is to be routed across the power grid and controls intelligent machinery to increase production during peak times; this requires that internet-connected smart meters are installed in industrial plants and private homes alike to facilitate real-time sensing and control of technical systems.

Another exciting area of application for embedded systems is mobile and wearable technology, which allows users to access and manipulate information ‘on the go’ as the system provides relevant and timely information — indeed, this is one of the main purposes of mobile information technology such as smartphones and tablet computers. Additional meaning for this Human-Computer Interaction (HCI) is generated by the context of the device, the user, the location and many more factors, all of which are sensed and computed by a plenitude of embedded sensors and collocated or connected systems.

Wearable devices such as fitness trackers and smart watches collect bio-physiological and health-related data to facilitate novel applications, including smart contact lenses and feedback systems for the learning of physical activities. At the same time, increasing cross-device interoperability means that users of head-mounted augmented reality and virtual reality displays can, for instance, use their entire smartphone screen as a keyboard and have the typed text displayed on augmented reality glasses.

Programme content

The programme is divided into three module groups with core and elective modules. These are:

1. Human-Computer Interaction
2. Systems Engineering
3. Data Processing, Signals and Systems

Features

- Excellent rankings for computer science, e.g. in U-Multirank and the CHE rankings
- A strongly research-oriented two-year programme with a modern, broad range of subjects
- Allows flexible interest-based selection of modules from the groups ‘Human-Computer Interaction’, ‘Systems Engineering’ and ‘Data Processing, Signals and Systems’
- A fully English-taught programme
- An outstanding staff-student ratio
- Participation in cutting-edge research projects
- Excellent research and teaching infrastructure
- An extensive network of partnerships with academic institutions and businesses worldwide
- A great student experience in Passau, the ‘City of Three Rivers’

Language requirements

Unless English is your native language or the language of your secondary or undergraduate education, you should provide an English language certificate at level B2 CEFR, e.g. TOEFL with a minimum score of 567 PBT, 87 iBT or ITP 543 (silver); IELTS starting from 5.5; or an equivalent language certificate.

To facilitate daily life in Germany, it would be beneficial for you to have German language skills at level A1 CEFR (beginner’s level). If you do not have any German skills when starting out on the programme, you will complete a compulsory beginner’s German course during your first year of study.

Read less
Mechatronics is a synergistic combination of precision mechanics, electronics, controls, and computer engineering, combined through a process of integrated design. Read more
Mechatronics is a synergistic combination of precision mechanics, electronics, controls, and computer engineering, combined through a process of integrated design. On the MSc in Mechatronics, the development of skills and advancement of knowledge focus on enabling students to understand the combination, at a high level, of Mechanical and Electronic Engineering and to gain a broad range expertise in these areas.

This is alongside developing a student’s ability to control mechanical systems using analogue and digital electronics. This course will give students an awareness of modern digital embedded platforms for mechatronic systems.

Students will cover subject specific subjects such as Dynamics and Performance of mechanical Systems with the option of Artificial Intelligence or Renewable Energy Systems and Smart Grid alongside cohort taught subjects to develop their management skills and their employability.

The successful postgraduates of the course will acquire the knowledge and understanding, intellectual, practical and transferable skills necessary for the analysis and synthesis of problems in engineering and manufacturing through a combination of experimental, simulation, research methods and case studies.

They can expect to gain work in a range of disciplines within a variety of industries from specialist technical roles to positions of management responsibility.

Why choose this course?

Students who undergo this course will develop knowledge and understanding of the advanced theoretical issues and their practical implementations that underlie recent developments in Mechatronics.

Gain the abilities to evaluate the performance of systems appropriate to Mechatronics by theoretical analysis and/or simulation
Supported by the School which has over 25 years' experience of teaching electronic engineering and has established an excellent international reputation in this field.

We offer extensive lab facilities for engineering students, including the latest software packages.

Careers

Applications are extremely wide ranging covering for example the aerospace industry, road vehicles and trains, medical engineering, materials processing, advanced manufacturing systems, defence systems and consumer electronics. Graduates may therefore expect employment across a very wide range of engineering companies.

Teaching methods

Our enthusiastic staff is always looking for new ways to enhance your learning experience and over recent years, we have won national awards for our innovative teaching ideas. In addition, our staff are active in research and useful elements of it are reflected on the learning experience.

The School of Engineering and Technology has a reputation for innovation in teaching and learning, where nearly all MSc modules are delivered through a combination of traditional face-to-face teaching and backup tutorial's using the University's StudyNet web based facility. StudyNet allows students to access electronic teaching and learning resources, and conduct electronic discussions with staff and other students.

A heavy emphasis is placed on theory and practice, and the School of Engineering and Technology has a policy of using industrial standard software wherever possible.

Structure

Core Modules
-Advanced Reconfigurable Systems and Applications
-Control of Engineering Systems
-Digital Signal Processing and Processes
-Dynamics and Performance of Mechanical Systems
-Embedded Control Systems
-MSc Project
-MSc Projects
-Mixed Mode and VLSI Technologies
-Operations Management
-Operations Management
-Operations Research
-Operations Research

Optional
-Artificial Intelligence
-Renewable Energy Systems and Smart Grids Technology

Read less
Have you ever wanted to invent something mechanical, prevent environmental damage to a building from floods, fire, explosions, landslides and other natural… Read more

Your programme of study

Have you ever wanted to invent something mechanical, prevent environmental damage to a building from floods, fire, explosions, landslides and other natural disasters, understand risks and reliability across buildings, renewables, and other areas? Do you want to improve quality of life across environmental remediation, farming, smart grid, green technology, food production, housing, transportation, safety, security, healthcare and water? There will be plenty of major challenges to get involved with in the coming years crossing over into Nano technologies, advanced materials, electronic printing, grapheme technologies, wearable's, 3d printing, renewables and recycling and biotechnologies. Technology now means that you can design and engineer from anywhere in the world, including your home. Advanced Mechanical Engineering looks at computational mechanics, response to materials and reliability engineering.

Courses listed for the programme

SEMESTER 1
Compulsory Courses
Computational Fluid Dynamics
Numerical Simulation of Waves
Advanced Composite Materials

Optional Courses
Fire and Explosion Engineering
Structural Dynamics

SEMESTER 2
Compulsory Courses
Finite Element Methods
Mathematical Optimisation
Engineering Risk and Reliability Analysis

Optional Courses
Project Management
Risers Systems Hydrodynamics
Renewable Energy 3 (Wind, Marine and Hydro

SEMESTER
Project

Find out more detail by visiting the programme web page

Why study at Aberdeen?

• Your skills and knowledge can have huge application potential within newly disruptive industries affecting life and work
• You can improve employability in Aerospace, Marine, Defences, Transport Systems and Vehicles
• Some of the knowledge you build directly relates to industries in Aberdeen such as the energy industry.
• Mechanical Engineering cuts into high growth Industry 4.0 and IOT related areas across many areas disrupted by climate,
population growth, and quality of life

-We ensure close links with industries to attend industry events, visits and teaching by professionals from the industry
-Graduates are very successful and many work in senior industry roles

Where you study

• University of Aberdeen

International Student Fees 2017/2018

Postgraduate Arts-based Programmes & Select LLM Programmes - £14,300*
Postgraduate Science-based Programmes - £18,000*
Graduate Business School MSc & Select LLM Programmes - £16,100*
Graduate Business School MBA Programmes - LLM with Professional Skills - £18,000
MSc Finance and Investment Management/Finance and Real Estate with CFA and MSc Real Estate (International Option) - £19,800
Graduate Business School MBA Energy Management - £19,500

*Please be advised that some programmes have different tuition fees from those listed above and that some programmes also have additional costs.

Scholarships

View all funding options on our funding database via the programme page

Living in Aberdeen

Find out more about:
-Your Accommodation
-Campus Facilities
-Aberdeen City
-Student Support
-Clubs and Societies

Find out more about living in Aberdeen: - abdn.ac.uk/study/student-life

Read less
An internationally comparable degree in Economics from an AASCB accredited business school. Rigorous theoretical and empirical studies incorporating the latest research. Read more
• An internationally comparable degree in Economics from an AASCB accredited business school
• Rigorous theoretical and empirical studies incorporating the latest research
• Hands-on experience in developing economic models and using econometric methods to perform economic and financial analysis

Oulu Business School’s International Master’s Programme in Economics (ME) is a two-year programme providing rigorous training in modern Economics. The programme equips you with a comprehensive understanding of the theoretical and empirical research methods used in Microeconomics, Macroeconomics, and Econometrics. You will have the opportunity to develop an interest in fields such as:
• Mathematical economics
• Industrial organisation
• Energy economics
• Urban and regional economics
• Environmental economics
• International macroeconomics
• Game theory
• Financial econometrics

Through group work and projects, you will learn to apply your economic expertise and acquire the problem solving, project management and presentation skills you will need in your career as an economist.

It is not compulsory to choose a specialization, but the two-year programme offers two specialisation options:
Energy Economics and Smart Grid courses bring the latest economic and technical energy research into the classroom and equip you with the skills you need to work as an economic researcher or consultant in energy related projects. Gain experience in multidisciplinary project work and employ your skills in Economics to analyse and solve business problems in tomorrow’s energy markets.

Financial Economics focuses on equipping you with skills that are relevant for an economist working within the financial sector. You will gain further knowledge of statistical modelling software and intensify your knowledge of econometric models used for forecasting macroeconomic and financial variables.

The professorship for Economics at the University of Oulu was established in 1959 and the department is a part the AASCB accredited Oulu Business School (OBS). Economists at OBS and at associated research centres (MAIGBE, SYKE) focus on research in Energy Economics, Social Economics, and Regional Economics. The department is renowned for its achievements in input-output modelling and Energy Economics. Current faculty members are active, among others, in the Finnish Economic Policy Council, the Finnish Climate Panel and the national BCDC energy research project. OBS organizes frequent seminars with Finnish and international visitors from business and academia. You are strongly encouraged to attend these events.

The master’s programme equips you with the skills you need as a professional economist working in business, government, international organizations, and research centres. Depending on your interests, you can, for example, work with market research in the financial sector, with strategic pricing and production decisions in private firms, and with fiscal and monetary policy within the public sector. The master’s programme also serves as thorough preparation for Ph.D. studies. The master’s programme provides you with an internationally comparable degree in Economics from an AASCB accredited business school. Upon completion of the master’s programme, you will be equipped to pursue a career as an economist in Finland or abroad.

Possible titles include:
• Economist
• Economic Advisor
• Investment Advisor
• Industry Analyst
• Financial Analyst
• Economic Development Officer
• Economic Consultant

Students applying for the programme must possess an undergraduate or bachelor’s degree in Economics or a related subject. The quantitative nature of the ME programme ideally suits for those who have studied Economics, Finance, Accounting, Engineering, or Natural Sciences (e.g. Mathematics, Physics or Statistics).

For all enquiries, please refer to our enquiry form: http://www.oulu.fi/university/admissions-contact

Read less
If you want to get into renewable energy University of Aberdeen offer an online programme which you can study flexibly to fit around your work, life and anywhere in the world. Read more

Your programme of study

If you want to get into renewable energy University of Aberdeen offer an online programme which you can study flexibly to fit around your work, life and anywhere in the world. It is a great way to study a degree from a known and trusted brand with exactly the same content as the on campus version but delivered entirely online.

Renewable energy engineering is in high demand globally as we find alternate methods of energy harvesting to meet our future energy needs and future proof our reliance on hydrocarbons as much as it is possible to do. Considerable innovation and improvements are continuous within this field as it is by no means at a stage where society can rely on it to fuel all needs. The sector is interdisciplinary and this programme provides you with a wide range of very useful skills and knowledge to problem solve and progress current renewables and work towards innovation whether that is in a renewables company or as a start up.

You study electrical and electronic engineering pertinent to smart grid, sensing energy use, developing energy harvesting techniques, and renewable energy exchange, plus ability to harvest energy from all of our natural resources including wind, solar, hydro, marine, geothermal, biomass and other newly developing areas. Renewables is definitely an employable sector as governments are now challenged by finite resources coming from traditional areas, climate change and societal concerns about how we harvest energy in the future and our ability to survive climatic issues, population increase and manage work and life.

Courses listed for the programme

Find out more detail by visiting the programme web page
https://www.abdn.ac.uk/study/postgraduate-taught/degree-programmes/1077/renewable-energy-engineering/
or if you want to study on campus:
https://www.abdn.ac.uk/study/postgraduate-taught/degree-programmes/278/renewable-energy-engineering/

Why study at Aberdeen?

• You are taught by industry professionals and the engineering department each are highly regarded in their fields
• The programme is delivered flexibly so you can choose how best to study with various options at your disposal
• You cover energy harvesting methods and their integration into the grid plus planning and economics, ideal for enterprise and
innovation
• The sector is driven by a need which shows no signs of stopping in terms of necessity to life so there are plenty of opportunities

Where you study

• Online

International Student Fees 2017/2018

Find out about fees from the product page:
https://www.abdn.ac.uk/study/postgraduate-taught/degree-programmes/1077/renewable-energy-engineering/

Scholarships

View all funding options on our funding database via the programme page
https://www.abdn.ac.uk/study/postgraduate-taught/finance-funding-1599.php
https://www.abdn.ac.uk/funding/

Related Degrees

https://www.abdn.ac.uk/study/postgraduate-taught/degree-programmes/249/process-safety/
https://www.abdn.ac.uk/study/postgraduate-taught/degree-programmes/258/project-management/
https://www.abdn.ac.uk/study/postgraduate-taught/degree-programmes/283/reservoir-engineering/
https://www.abdn.ac.uk/study/postgraduate-taught/degree-programmes/288/safety-and-reliability-engineering-for-oil-and-gas/
https://www.abdn.ac.uk/study/postgraduate-taught/degree-programmes/317/subsea-engineering/

Read less

Show 10 15 30 per page



Cookie Policy    X