• Swansea University Featured Masters Courses
  • Regent’s University London Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of York Featured Masters Courses
  • Leeds Beckett University Featured Masters Courses
  • Imperial College London Featured Masters Courses
King’s College London Featured Masters Courses
Southampton Solent University Featured Masters Courses
University of Sussex Featured Masters Courses
University of Birmingham Featured Masters Courses
Coventry University Featured Masters Courses
"smart" AND "building"×
0 miles

Masters Degrees (Smart Building)

  • "smart" AND "building" ×
  • clear all
Showing 1 to 15 of 49
Order by 
The Sustainable Smart Cities Dual Master’s program from the University of Alabama at Birmingham (USA) and Staffordshire University (UK) is a unique professional postgraduate program that provides an inter-disciplinary grounding in the principles, application and key technologies required to develop sustainable smart cities. Read more
The Sustainable Smart Cities Dual Master’s program from the University of Alabama at Birmingham (USA) and Staffordshire University (UK) is a unique professional postgraduate program that provides an inter-disciplinary grounding in the principles, application and key technologies required to develop sustainable smart cities.

Delivered by experienced faculty at both UAB and Staffordshire University, this genuinely international course will equip you with the knowledge, skills and critical thinking to assess, design and implement sustainable smart cities strategies across the globe.

Get two Master's degrees

As a Dual Award you will receive two Master’s degrees, one from the University of Alabama at Birmingham and one from Staffordshire University. Upon successful completion of the Master’s programme you will be awarded the following degrees:

MEng Sustainable Smart Cities (UAB)

MSc Sustainable Smart Cities (SU)

The course offers a broad curriculum covering sustainability theory, sustainable urban development, low carbon and renewable energy systems, green infrastructure, natural resource management, health and liveability, transport and mobility, big data analytics and smart technologies.

Course content

The Dual Master's in Sustainable Smart Cities is delivered via ten modules:

Principles of Sustainable Development (UAB)
Drivers of sustainable smart cities (i.e. climate change, population growth, resource scarcity, etc) and the principles of sustainable development.

Introduction to Sustainable Smart Cities (SU)
Sustainable urban planning and smart growth, engaging with smart citizens, sustainable governance and creating sustainable economic development.

Low Carbon and Renewable Energy Systems (SU)
Low carbon and renewable energy technologies, renewable energy integration and smart grids.

Managing Natural Resources and Sustainable Smart Cities (SU)
Water, waste and carbon management, pollution prevention, climate adaptation and resilience and integrated environmental systems management.

Green Infrastructure and Transportation (UAB)
Public and open space design, principles of urban design and smart sustainable mobility and transportation.

Green Buildings (UAB)
Smart buildings and infrastructure, principles of sustainable construction, sustainable building materials, building and energy management systems and standards and rating systems.

Health & Liveability (UAB)
Genomics, health informatics, designing for well-being:, environmental justice and food smart cities.

Smart Technologies for Cities & Buildings (SU)
Internet of things, remote sensing and communication technologies at individual building, neighbourhood and city-scale.

Big Data & Smart Cities (SU)
Big data platforms and cloud computing, urban informatics, GIS and spatial analysis, measuring impact and data visualization.

Research Methods & Project Planning (UAB & SU)
Introduction to research methods and the principles of project planning to enable students to plan for their capstone project.

Capstone Research Project (UAB & SU)
You will design and implement a piece of research that will enable you to reflect on the knowledge and skills which you have learned during your taught modules and apply them to a real world problem or issue. This research may draw on the practical and work-related experiences of the student.

You will have an opportunity to present their capstone project findings at the annual Sustainable Smart Cities Research Symposium hosted by the University of Alabama at Birmingham and Staffordshire University.

Read less
As we head towards zero carbon buildings, we need to better understand how buildings should be constructed and the materials we should use in their construction in order to increase their energy efficiency. Read more
As we head towards zero carbon buildings, we need to better understand how buildings should be constructed and the materials we should use in their construction in order to increase their energy efficiency.

Whether you are working in the construction industry, a graduate from a built environment background or you want to upskill for a new construction role, we will teach you how to analyse the performance of existing buildings and to design and model new, energy efficient buildings.

You will gain an understanding of building physics and performance, including how buildings respond to weather, how to heat buildings efficiently and how bricks, mortar, timber and insulants act as a thermal barrier. Discover how to use 3D modelling packages to study individual building components and analyse how buildings respond to environmental conditions and occupancy patterns.

You can combine this course with other Advanced Professional Diplomas as part of our MSc Sustainable Engineering or study it as a standalone qualification.

Visit the website http://courses.leedsbeckett.ac.uk/buildingmodellingandsimulation_apd

Mature Applicants

Our University welcomes applications from mature applicants who demonstrate academic potential. We usually require some evidence of recent academic study, for example completion of an access course, however recent relevant work experience may also be considered. Please note that for some of our professional courses all applicants will need to meet the specified entry criteria and in these cases work experience cannot be considered in lieu.

If you wish to apply through this route you should refer to our University Recognition of Prior Learning policy that is available on our website (http://www.leedsbeckett.ac.uk/studenthub/recognition-of-prior-learning.htm).

Please note that all applicants to our University are required to meet our standard English language requirement of GCSE grade C or equivalent, variations to this will be listed on the individual course entry requirements.

Careers

Aimed at professionals working within the built environment or graduates looking to build on their knowledge of the built environment, we will help you further your employment prospects within the construction industry. With the ability to assess the performance of existing buildings and the specialist skills to design and model new buildings, you will be a valuable asset to any construction company.

- Building Surveyor
- Architectural Technician
- Mechanical Engineer

Careers advice:
The dedicated Jobs and Careers team offers expert advice and a host of resources to help you choose and gain employment. Whether you're in your first or final year, you can speak to members of staff from our Careers Office who can offer you advice from writing a CV to searching for jobs.

Visit the careers site - https://www.leedsbeckett.ac.uk/employability/jobs-careers-support.htm

Course Benefits

Study part time at your own pace around your job and learn the latest developments in building modelling and performance that will set you apart in the workplace.

When it comes to understanding the performance of buildings in the UK, the government and building industry alike turn to our University for expertise and advice. You will be learning from a teaching team and industry experts who have worked with the UK government and large material manufacturers including Saint-Gobain and ARC Building Solutions to enhance the performance and efficiency of buildings. You will hear the first-hand experiences of business leaders and sustainability experts involved in UK and international consultancy projects on building modelling and simulation.

Through our virtual learning environment you will have access to the latest information about building designs and research on how building stock can be made more energy efficient. Online materials including videos, up-to-date research on thermal performance, moisture propagation and building fabrics, and simulations considering weather conditions, occupancy and the impact of solar and ventilation will inform your learning.

Core Modules

Building Environmental Science & Modelling
Learn to assess building performance for occupant comfort, health, energy use and serviceable life. Discover how modelling of building fabrics and components is used to predict performance.

Building Detailed Design & Specification
Apply the principals learned in the Building Environment Science & Modelling module to the design of building details to maximise performance while avoiding problems.

Professor Chris Gorse

Professor of Construction and Project Management

"The future of our energy efficient homes, workplaces and smart cities is underpinned by the performance and reliability of the models we use. This course will advance your understanding and ability to apply the latest tools and techniques to the field"

Chris Gorse is Professor of Construction and Project Management and Director of Leeds Sustainability Institute. He leads projects in the areas of sustainability, low carbon and building performance and has an interest in domestic new builds, commercial buildings and refurbishment. Chris is an established author and has consultancy experience in construction management and law.

Facilities

- Northern Terrace
Based at our City Campus, only a short walk from Leeds city centre, Northern Terrace is home to our School of Built Environment & Engineering.

- Leeds Sustainability Institute
Our Leeds Sustainability Institute's facilities include the latest drone and thermal imaging technology to provide new ways of measuring and evaluating building sustainability.

- Library
Our Library is open 24/7, every day of the year. However you like to work, we have got you covered with group and silent study areas, extensive e-learning resources and PC suites.

Find out how to apply here - http://www.leedsbeckett.ac.uk/postgraduate/how-to-apply/

Read less
The concept of the German “Energiewende” – literally, energy transition – has gained international attention. It includes a variety of measures that aim at making Europe’s largest economy free of fossil fuels and nuclear energy. Read more

Program Background

The concept of the German “Energiewende” – literally, energy transition – has gained international attention. It includes a variety of measures that aim at making Europe’s largest economy free of fossil fuels and nuclear energy. In order to attain this, all areas of energy production and consumption will have to go through a transition process. Besides mobility and industry, buildings are therefore one of the key factors for a successful Energiewende.

Most of all, this implies re-directing from a mainly fossil-fueled energy supply towards renewable energies and a much more energy-efficient use of energy in buildings and urban areas. This is one of the largest and most urgent challenges of current urban development and other social disciplines.

Finding solutions to such a complex challenge means that a multitude of actors from business, society, and public administration take part in the process and influence it with their differing and often conflicting interests. Resulting from this is the need for skilled workers who both understand all stakeholders and are able to work with them.

Building Sustainability

Strategic concepts for communication and cooperation in large-scale projects are crucial for their success. Whereas, “simply” building a house has become a manageable task, things become much more complicated when considering the urban environment and wider interests such as energy efficiency. The Master program, Building Sustainability focuses therefore, not only on technical and economic perspectives, but also aims at imparting relevant knowledge from other disciplines. This means that the scope of the program is both broad and specific at the same time. The combination of technology, management and sustainability-related topics is therefore a unique opportunity for young professionals to extend their skills.

The MBA program Building Sustainability – Management Methods for Energy Efficiency will teach students skills, methods and concepts to consider different approaches, to understand them and to align them for reaching sustainable solutions. Such competences are not only important in the context of the Energiewende but they are indispensable in every building, construction and real estate project that takes energy efficiency and other sustainability criteria into account.

The idea is that sustainable project results that consider economic, ecological and social aspects can only be achieved in extensive cooperation of all stakeholders. Managing and moderating such a cooperation is one of the major challenges of implementing sustainability in building projects of all scales. The program aims therefore on enabling students to understand the complexity of planning and management processes and to develop according solutions. This will happen in modules with different approaches: some will teach facts and numbers, others will facilitate connections between different fields and the softer skills of mediating between them and some are designed to apply these competences to practical projects.

The TU-Campus EUREF is located on the EUREF (European Energy Forum) campus in Berlin-Schöneberg. This former industrial area has been developed into a research hub for energy efficiency, renewable energies and smart grids. Students will gain insight into the numerous real-life examples of building sustainability without having to leave the campus.

Students and graduates

The program addresses a broad group of professionals with varying academic backgrounds, mostly in engineering and technology, management, economics, architecture and urban or environmental planning. However, applicants with other academic backgrounds coupled with working experience in a related field are also encouraged to apply, personal motivation plays an important role in the selection process. Class diversity is one of its greatest assets, as students will not only learn from lecturers with science and business backgrounds, but also from each other.
Graduates will be able to moderate and manage complex projects in the construction, real estate, and planning sector. They will be able to assess the project from technical, ecological and economic perspectives and find solutions which take all stakeholders into account.

Curriculum

The first semester focuses on the basis for successful and sustainable projects. Two comprehensive modules in the fields of building technology and project management will allow students to work on their first, closely guided group project. A lecture series about the sustainable reorganization of building and urban structures with special regard to energy management and the energy market accompanies these modules.

The second semester focuses on the interdisciplinary aspects of building sustainability. It addresses real estate economics and the issue of energy-efficient societies in a global context. Together with the knowledge and skills attained in the first semester, students will conduct a comprehensive and interdisciplinary group project. At the same time, specialization starts and students can choose between deepening their knowledge in either technology and innovation management or in Smart Buildings.

The specialization continues in the third semester, either by completing the technology and innovation module or the technical module with the follow-up course Integration of Renewable Energies. All students take a module in Life Cycle Analysis to complete the holistic approach of sustainability and write their Master thesis. Graduates will earn a degree awarded from the Technische Universität Berlin.

Read less
This specialised Masters programme is unique in Scotland, designed for meeting the increasing business requirements of modern enterprises. Read more
This specialised Masters programme is unique in Scotland, designed for meeting the increasing business requirements of modern enterprises.

About the programme

Building on your networking and computing expertise, the programme focuses on the latest and emerging smart networking technologies that are creating new opportunities for business, education, research and everyday life. These include cloud computing, virtual networking, data centre management, Internet of Things (IoT), 4G/5G mobile networks, mobile app development, machine-to-machine communications, and data and network security.

The programme aims to produce graduates with the vision, knowledge and skills to apply these latest smart networking technologies to optimise the ICT networking infrastructure for businesses, to design innovative networking solutions, to develop smart networking enabled applications and services, and to research the next generation networking technologies.

Your learning

You will study the key concepts, latest standards, enabling technologies and applications in designing, deploying, operating, and evaluating the emerging smart networks. The programme is practically-focused and boasts a purposely-built specialised smart networking lab including a private cloud platform, advanced wireless/mobile/IoT/UAV networking equipment, a mobile app development platform and R&D testbeds associated with the Centre of Audio-Visual Communications and Networks (http://www.uws.ac.uk/avcn). You will thus gain extensive hands-on laboratory experience in realistic smart networking scenarios.

Modules studied include:
• Virtual Networking and Cloud Computing
• Mobile Networks and Smartphone Applications
• Advanced Wireless Networking Technologies
• Internet of Things (IoT)
• Data and Network Security
• Research Design and Methods
• Emerging Topics in Smart Networks
• Masters Project

Our Careers Adviser says

This programme equips graduates with the knowledge and skills demanded by industry (and academia) for smart and smarter networking solutions. Graduates possess the potential to secure leading roles as cloud architects, wireless/mobile network consultants or analysts, mobile app developers and researchers.

Further learning

Successful completion of the programme prepares you for advanced research studies in related technology areas. Graduates have the priority to be admitted to the MPhil/PhD degree programmes directed by individual teaching team members affiliated with AVCN.

Professional recognition

Professional recognition for this specialised smart networking programme is being sought from the British Computer Society.

Financial support

A limited number of scholarships were available in 2015 – check our website for updates on 2016 information.

Cutting-edge facilities

As you would expect, we offer access to high-quality computing and state-of-the-art software systems as well as tried and tested in demand technologies such as Oracle, CIW, Adobe, CISCO, SAP and Microsoft.

Research and collaboration

We have a proven track record in knowledge and technology transfer in the form of applied research, training and consultancy. More than 65% of our research outputs were rated as world-leading and internationally excellent in the Research Excellence Framework 2014. We are proud that our research expertise informs teaching and our students are taught by academic staff who are at the forefront of their profession.

Read less
Do you want to address the big challenges which face our world today - climate change, quality of life and the new economic reality? Gain the knowledge and skills needed to be at the leading edge of the building discipline and work towards the best products and processes in the industry by studying this course. Read more
Do you want to address the big challenges which face our world today - climate change, quality of life and the new economic reality? Gain the knowledge and skills needed to be at the leading edge of the building discipline and work towards the best products and processes in the industry by studying this course. On graduating you will be in a unique position to work on integrated design project teams, in building energy/facility management or continue towards postgraduate research.

Key features

-Join a course that aims to set new international standards in building performance. Move beyond the concepts of green buildings or sustainability - these are embedded in this programme, but we go the extra mile, giving you a more holistic view.
-Combine a solid grounding in core aspects of this subject area such as energy efficiency with a wider context that includes the economic, socio-cultural and historic dimensions.
-Help tackle some of the key challenges that face the building industry, such as the new economic reality, quality of life, climate change, and population growth.
-Gain expertise in the key enabling technologies of building performance simulation, building information modelling, and energy management.
-Get inspired through research-informed teaching. All staff contributing to this programme are part of a research group that runs projects funded by the Engineering and Physical Sciences Research Council (EPSRC), European Union, InnovateUK, Leverhulme Trust and others.
-Interact with various stakeholders in the building domain, including design and engineering companies, contractors, property developers, facility managers, and governmental organisations.
-Expand your network through special interest groups that focus both on industry as well as research.
-Become part of a vibrant multidisciplinary school. Part of this programme allows you to explore modules of our Masters in Architecture (MArch) programme.

Course details

The programme aims to provide you with an opportunity to develop your knowledge in quantifying building performance, and the application of the performance concept throughout the building life cycle. The regular duration is one year, full-time.

On successful completion of the programme you will have developed knowledge and understanding of building systems. You will be able to assess performance from different perspectives, such as environmental, socio-economic and cultural point of view. You will have the skills to use building performance simulation tools, carry out monitoring, and analyse complex data. You will have the skills to deal with the different stakeholders in building performance.

Core modules
-HPB701 Introduction to High Performance Buildings
-HPB702 Emerging Construction Technology
-HPB703 Smart and Intelligent Buildings
-HPB705 Performance Finance and Investment
-HPB706 Performative Architecture
-HPB707 High Performance Buildings Research Project
-HPB704 Advanced Building Performance Simulation

Read less
BIM is a growing technology used in the building industry worldwide. It uses digital techniques to create and use intelligent 3D models to communicate building project decisions. Read more

Study a Top UK degree in China

Course outline

BIM is a growing technology used in the building industry worldwide. It uses digital techniques to create and use intelligent 3D models to communicate building project decisions. GIS is a technical system to implement the collection, storage, management, calculation, analysis, display and description of geospatial information data. The results help to understand what is happening in a geographical space which can increase efficiency in building planning and design. The current ‘lack of BIM innovation’ and ‘lack of BIM talent’ could delay the progress of Chinese “smart” cities, which aim to reduce resource consumption and cost and use digital technologies to benefit their citizens.

This programme will be run entirely at the University of Nottingham Ningbo China (UNNC) with internship opportunities in leading BIM companies in China. It is a collaboration between Department of Architecture and Built Environment and Civil Engineering. In particular, research and teaching support will be provided by three leading research laboratories including Geospatial BIM lab, Digital City Infrastructure and technology Innovation Laboratory D-CiTi, and Big Data and Visual Analytics Lab. These laboratories are working closely with leading AEC consultants (Arup, WSP BP), international professional institutions (RICS, ICES, CIBSE) and leading BIM software vendors (Autodesk, Bentley, Leica, Tekla, Trimble).

Students are able to learn how to use and operate a very wide variety of state-of-the-art software, as well as surveying equipment including servo driven total stations, laser scanners, GNSS, digital and analogue photogrammetry. With extensive project and consultancy experience on the Geospatial Engineering, BIM in the AEC sector in the UK and China, the team is planning to promote the Smart City with multi-dimension BIM applications across China.

Advantages of studying this programme at the University of Nottingham Ningbo:

1. be familiar with BIM related software and surveying device
2. the ability to apply their skills directly within the surveying and AEC industry
3. react quickly to new technologies and innovations
4. communicate ideas effectively in written reports, verbally and presentations to groups
5. exercise original thought, as well as gain interpersonal, communication and professional skills
6. participate real project work for experience accumulation
7. plan and undertake individual projects


This programme will help:

1. gain a complete understanding of theory, practice and issues of BIM and Geospatial technologies
2. acquire opportunities to use what you have learnt in real project work
3. explore new research methodology to promote development in this field
4. acquire technical skills of software operation, data analysis and design optimization
5. improve team-work ability and communication skill
6. foster individual ability to conduct academic researches

Read less
The MSc Building Surveying programme is designed to respond to the dynamic demands for sustainable management of the existing built environment and is accredited by the Royal Institution of Chartered Surveyors (RICS). Read more
The MSc Building Surveying programme is designed to respond to the dynamic demands for sustainable management of the existing built environment and is accredited by the Royal Institution of Chartered Surveyors (RICS).

What's covered in the course?

The course is founded on the principal that participants intend to attain membership of the RICS. The programme therefore embraces the values of the RICS and reflects the requirements of the professional body in terms of core technical and professional skills and attributes. All students are expected to be student or graduate members of the RICS.

The course content and delivery is underpinned by the need to respond to the RICS Strategic Foresight 2030 report, including incorporation of the seven strategic pillars for the future within learning, teaching and assessment.

The course will provide you with a broad but solid foundation in the fundamentals of organising, managing, and designing work to existing buildings. It seeks to provide you with the knowledge and skills to meet the challenges presented by the globally evolving built environment marketplace.

The course focuses on developing and expanding the knowledge, understanding and ability of practitioners to respond to the challenges of the 21st century. You will receive a rigorous grounding in the advanced skills needed to operate at a high level in industry and become competent in the solving the problems and challenges you will face. You will also be able to add value to your decisions through a thorough analytical approach and be able to better implement them as a competent project manager.

The course encompasses the entirety of the property life cycle, allowing you to appreciate how decisions made in one aspect of a property’s development and use can have a significant impact later on in the life cycle.

Why choose us?

-This course is RICS accredited
-You can follow either the building surveying or facilities management pathway on completion of the course
-There is a mock Assessment of Professional Competence (APC) built into the assessment process
-This course is designed to respond to the challenges of the 21st century identified by Royal Institution of Chartered Surveyors (RICS), including responding to increased use of BIM, smart cities and Big Data
-This course will give you the broad range of practical and theoretical skills needed to practice and develop your surveying career

Royal Institution of Chartered Surveyors (RICS)

The course is fully accredited by the Royal Institution of Chartered Surveyors (RICS) and the Chartered Institute of Building (CIOB). Successful completion of the course will lead to Professional Membership after the Assessment of Professional Competence (APC).

Course in depth

Modules
-Commercial Surveys and Inspection 20 credits
-Facilities Management (Soft) 20 credits
-BIM for the Built Environment 20 credits
-Development Project 20 credits
-Facilities Management (Hard) 20 credits
-Professional Practice 20 credits
-Dissertation 60 credits

The course is delivered via a series of lectures, tutorials, case studies and project work. The assessment is by portfolio exercises, reports, presentations and a dissertation.

Each of the taught modules are designed to have a total study time of 200 hours. Approximately 36 hours of this is face to face teaching, tutorials and seminars, with the remainder a mixture of directed and self-study.

Enhancing your employability skills

Birmingham City University has the Graduate+ scheme, an extracurricular programme which has been designed to hone the subject-based skills you develop throughout the programme alongside broader employability skills. You’ll develop skills in CV writing, presentations, a portfolio and more.

Read less
This program helps to enhance the knowledge and competencies of building services and related professionals engaged in complex multi-disciplinary building projects that involve the provision of effective and efficient solutions to an ever-evolving urban built environment. Read more
This program helps to enhance the knowledge and competencies of building services and related professionals engaged in complex multi-disciplinary building projects that involve the provision of effective and efficient solutions to an ever-evolving urban built environment.

Program Objectives

Ever since the first appearance of the term ‘Intelligent Buildings’ in US in the early 1980s, it has grown into a major area of study for design and management professionals involved in major modern urban building projects. The start of the twenty-first century is witnessing rapid developments in intelligent building design technology and management. Building services engineers have to deal with complex multi-disciplinary building projects that involve the provision of effective and efficient solutions to an ever-evolving urban built environment. The provision of a quality and up-to-date postgraduate level program such as this MSc program helps to enhance the knowledge and competencies of professionals who are engaged in intelligent building projects in modern metropolises such as Hong Kong and major cities in Mainland China. The program aims to contribute towards the sustainability of today’s urban built environment.

The MSc program in Intelligent Building Technology and Management is a postgraduate degree program designed for professionals in the building services industry. They can be mechanical engineers, electrical engineers, building services engineers, civil engineers, architects and other building operation professionals who wish to pursue comprehensive studies in intelligent building design, operation and facilities management. Our program consists of core courses that equip students with the basic theme and foundation on intelligent building technology and management concepts, and a variety of electives that cover topics from safety and health issues, risk management, energy management, to impact analysis and use of advanced building materials, indoor air quality, facility management, etc. The program aims to provide a balance between both frontier technology updates and management strategies, in both a quantitative and qualitative way.

Curriculum

All students are required to take a total of 30 credits to complete the MSc(IBTM) program. The program consists of two core courses that all students are required to take. The remaining credits will be taken from the elective courses. Subject to the approval of the Program Director, students may take a maximum of nine credits of non-IBTM courses, which may include a maximum of six credits of CIEM courses from the MSc program in Civil Infrastructural Engineering and Management and a maximum of six credits of MESF or MECH courses offered by the Department of Mechanical and Aerospace Engineering as partial fulfillment of the graduation requirement.

Core Courses
-IBTM 5010 Intelligent Building Facility Management
-IBTM 5050 Intelligent Building System

Elective Courses
-IBTM 5150 Advanced HVAC Systems
-IBTM 5200 Advanced Energy Conversion Systems
-IBTM 5260 Architectural Acoustics and Audio Systems
-IBTM 5300 Computational Methods in Building Environment Design
-IBTM 5330 Energy Management in Buildings
-IBTM 5430 Indoor Air Quality Technology and Management
-IBTM 5460 Materials in Built Environment
-IBTM 5470 Mechanical Vibration
-IBTM 5500 Occupational Safety and Health Issues in Buildings
-IBTM 5530 Risk Management and Decision-Making in Intelligent Building
-IBTM 5550 Financial Assessment of Intelligent Building Systems
-IBTM 5620 Electrical Facilities in Intelligent Buildings
-IBTM 6010 Special Topics in Intelligent Building Systems *
-IBTM 6010A Special Topics in Intelligent Building Systems: Leadership & System Design
-IBTM 6010B Special topics in Intelligent Building Systems: Mechanical Vibration
-IBTM 6010C Special Topics in Intelligent Building Systems: Entrepreneurship and Smart Building Technologies
-IBTM 6010D Special Topics in Intelligent Building Systems: Micro Sensors for Smart Buildings
-IBTM 6950 Independent Studies *

All Core and Elective courses carry 3 credits each, except IBTM 6950 which is worth 3 or 6 credits.

* A maximum of six credits of IBTM 6010 and a maximum of six credits of IBTM 6950 (which may be taken once only) may be counted toward the graduation requirement.

** Courses are offered subject to needs and availability.

Facilities

Students can enjoy library support, computer support, sports facilities, and email account at no extra cost. Upon graduation, students could also apply for related alumni services.

Read less
This leading-edge programme, established before many in the built environment field were aware of greenhouse gases, has produced a stream of high-achieving graduates sought after by the biggest names in building design and the construction industry. Read more
This leading-edge programme, established before many in the built environment field were aware of greenhouse gases, has produced a stream of high-achieving graduates sought after by the biggest names in building design and the construction industry. We attract students from across the globe eager to find positions throughout the globe or to take relevant, cutting-edge thinking about sustainable building design back to their own part of the world.

Degree information

The programme aims to develop students' knowledge and expertise in problem solving in the area of the built environment, and provide a framework for developing innovative thinking in the design and operation of buildings, placing associated environmental issues in a global, national and personal context.

Students undertake modules to the value of 180 credits. The programme consists of six core modules (90 credits), two optional modules (30 credits) and a built environment dissertation (60 credits). A Postgraduate Diploma (120 credits, full-time nine months) is offered.

Core modules
-The Built Environment: The Energy Context
-Health, Comfort and Wellbeing in Buildings
-Building Solar Design
-Natural and Mechanical Ventilation of Buildings
-Efficient Building Service Systems
-Methods of Environmental Analysis

Optional modules
-Building Acoustics
-Advanced Building Simulation
-Light, Lighting and Vision in Buildings
-Energy Systems Modelling
-Environmental Masterplanning
-Industrial Symbiosis
-Low Energy Housing Retrofit
-Low Carbon, Energy Supply Systems
-Smart Energy Systems Implementation
-Post Occupancy Evaluation of Buildings
-Multi-objective Design Optimisation
-Introduction to System Dynamics Modelling
-Indoor Air Quality in Buildings

The availability of all optional modules is subject to demand.

Dissertation/report
All MSc students submit a 10,000-word report on a topic related to the main themes of the programme. The topic can be chosen to enhance career development or for its inherent interest.

Teaching and learning
The programme is delivered through a combination of interactive seminars, individual and group tutorials, site visits and a residential field trip. Assessment is through unseen examination, coursework, and the built environment report. Joint coursework, including two major low-energy architectural design projects, is carried out by students in multi-disciplinary teams.

Fieldwork
Students will have the opportunity to participate in field trips and site visits including a residential trip to the Centre for Alternative Technology in north Wales. There are no additional cost to students for the field trip to the Centre for Alternative Technology.

Careers

Most students who complete the programme move into, or continue in, a building-related profession, such as architecture, low-energy design consultancy, or building services engineering. As the awareness of global environmental issues increases, the demand for people with expertise in the health and energy performance of buildings is expanding rapidly. A number of students have used the MSc as a foundation for MPhil/PhD research.

First destinations of recent graduates include: Neapoli, XC02, Max Fordham, Arup, WSP, Atkns, Buro Happold, PassivSystems, EnergyExcel, local authorities, Foster and Partners, Rogers Stirk Harbour and Partners.

Top career destinations for this degree:
-Environmental Design Engineer, Neapoli
-Energy Consultant, XCO2 Energy
-Graduate Engineer, Arup
-Environmental Engineer, XCO2 Energy
-Sustainability Consultant, Arup and studying Environment Facility Management, University College London (UCL)

Employability
This programme is very "close to market" with many students finding jobs even before their studies have finished: the skills students gain are those that employers need. For example, we teach several tools used by commercial companies including the thermal analysis software IESVE and SAP. Students can walk straight into jobs where these are used and be useful immediately. Students sometimes take placement positions while working on their dissertations; in recent years this has included overseas options, for example, with Neapoli in Malaysia. Graduates often contact us through our strong alumni network to recruit for new positions, listening to their feedback ensures we keep the programme relevant to industry needs.

Why study this degree at UCL?

The UCL Bartlett is the UK's largest multidisciplinary Faculty of the Built Environment, bringing together scientific and professional specialisms required to research, understand, design, construct and operate the buildings and urban environments of the future.

Located in London, the UCL Bartlett is at the heart of a large cluster of creative architects and engineering firms, next to the UK's seat of government and finance and has all the resources of a world city to hand. It offers unrivalled networking opportunities, with alumni in the majority of the major firms in London, who often give lectures to students and appear at networking events.

The multidisciplinary faculty contains the UCL Bartlett School of Architecture, which has been ranked first for Architecture in the UK for many years, and is characterised by a high level of invention and creativity. The school is internationally known as a centre for innovative design.

Read less
Energy has been considered a core research area within the broadly-based disciplines of environmental science and technology. It is one of the most salient emerging disciplines amongst many in the fields of engineering, science and social science. Read more
Energy has been considered a core research area within the broadly-based disciplines of environmental science and technology. It is one of the most salient emerging disciplines amongst many in the fields of engineering, science and social science. Energy Technology research covers many areas, including sustainable technology, conventional technology, and energy efficiency and conservation. The interdisciplinary postgraduate research program in Energy Technology in the School of Engineering at the Hong Kong University of Science and Technology provides long-term support to our ongoing educational training and fast-developing research in technology in general.

Due to the multi-disciplinary nature of Energy Technology, research and training in the field is integrated with different disciplines so that students can be equipped with the necessary knowledge and experience. The School of Engineering has introduced an Energy Technology Concentration in different disciplines including Chemical and Biomolecular Engineering, Civil and Environmental Engineering, Computer Science and Engineering, Electronic and Computer Engineering, Industrial Engineering and Logistics Management and Mechanical Engineering. Students can enroll in a particular discipline for research with a special focus on topic(s) in Energy Technology.

The Energy Technology Concentration is open exclusively to research postgraduates in the School of Engineering. Students interested in energy technology can enroll in one of the following research degree programs:
-MPhil/PhD in Chemical Engineering and Biomolecular Engineering
-MPhil/PhD in Civil Engineering
-MPhil/PhD in Computer Science and Engineering
-MPhil/PhD in Electronic and Computer Engineering
-MPhil/PhD in Industrial Engineering and Logistics Management
-MPhil/PhD in Mechanical Engineering

Research Foci

The School of Engineering has unrivaled strength in Energy Technology with a strong team of more than 40 faculty members working in one or multiple topics related to energy. The following core research areas represent the current expertise and research activities across the six departments in the School:

Sustainable Technology
Sustainable energy sources including all renewable sources, such as plant matter, solar power, wind power, wave power, geothermal power and tidal power, improving energy efficiency, fuel cells for transportation and power generation, nanostructured materials for energy storage devices including fuel cells, advanced batteries and supercapacitors, nanostructured electrodes, graphene-based anode and cathode materials, battery system and package management, organic and inorganic photovoltaic materials, gasification of biomass for energy production, biorefinery and bioprocessing for energy generation, and innovative technologies for converting and recovering solid wastes into energy.

Production of Ethanol from Cellulosic Materials
Enhanced use of biogas produced from microbial conversion in landfills of municipal solid wastes, wastewater, industrial effluents, and manure wastes, use of planted forests for production of electricity either by direct combustion or by gasification, use of highly efficient gas turbines, energy scavenging for mobile and wireless electronics which enable systems to scavenge power from human activity or derive limited energy from ambient heat, light, radio, or vibrations.

Conventional Technology
Three main types of fossil fuels, namely coal, petroleum, and natural gas, liquefied petroleum gas (LPG) derived from the production of natural gas, nuclear energy, solid waste treatment and management, radioactive waste treatment, reactor materials, durability and fracture mechanics of reactor materials and structure, nuclear reprocessing, environmental effect of nuclear power, hydropower dam structures, turbine materials and design, hydrology and sediment, water quantity and quality, sources of water, environmental consideration in the design of waterway systems, advanced technologies for conventional energy production, such as gas hydrates, microwave refining, and synthetic fuel involving the conversion process from coal, natural gas and biomass into liquid fuel.

Energy Efficiency and Conservation
In electronics: energy integration for chemical and energy industries, energy-efficient computation, high-efficiency power electronics, power management integrated circuits, low power ICs, green radio, customized building for energy-saving, LED for solid state lighting, smart grids, wireless sensor networks, battery-powered electronics, and mobile electronics. In energy-efficient building: lightweight heat-insulating building material, customized building for energy-saving, energy-saving from solid state lighting.

Economy and Society
Clean production process for reducing material consumption and pollution, software for waste minimization and pollution prevention, green materials for industrial application and building environment, hazards impacting environmental health, analysis of environmental risk, socio-economic and life-cycle analysis for policy-making and planning, novel compounds from marine organisms, and policy on efficient energy use.

Facilities

A total of six research centers are actively involved in energy-related topics: the Center for Sustainable Energy Technology, Center for Display Research, Center for Advanced Microsystems Packaging, Finetex-HKUST R&D Center, Photonics Technology Center, and Building Energy Research Center at Nansha.

Read less
Energy has been considered a core research area within the broadly-based disciplines of environmental science and technology. It is one of the most salient emerging disciplines amongst many in the fields of engineering, science and social science. Read more
Energy has been considered a core research area within the broadly-based disciplines of environmental science and technology. It is one of the most salient emerging disciplines amongst many in the fields of engineering, science and social science. Energy Technology research covers many areas, including sustainable technology, conventional technology, and energy efficiency and conservation. The interdisciplinary postgraduate research program in Energy Technology in the School of Engineering at the Hong Kong University of Science and Technology provides long-term support to our ongoing educational training and fast-developing research in technology in general.

Due to the multi-disciplinary nature of Energy Technology, research and training in the field is integrated with different disciplines so that students can be equipped with the necessary knowledge and experience. The School of Engineering has introduced an Energy Technology Concentration in different disciplines including Chemical and Biomolecular Engineering, Civil and Environmental Engineering, Computer Science and Engineering, Electronic and Computer Engineering, Industrial Engineering and Logistics Management and Mechanical Engineering. Students can enroll in a particular discipline for research with a special focus on topic(s) in Energy Technology.

The Energy Technology Concentration is open exclusively to research postgraduates in the School of Engineering. Students interested in energy technology can enroll in one of the following research degree programs:
-MPhil/PhD in Chemical Engineering and Biomolecular Engineering
-MPhil/PhD in Civil Engineering
-MPhil/PhD in Computer Science and Engineering
-MPhil/PhD in Electronic and Computer Engineering
-MPhil/PhD in Industrial Engineering and Logistics Management
-MPhil/PhD in Mechanical Engineering

Research Foci

The School of Engineering has unrivaled strength in Energy Technology with a strong team of more than 40 faculty members working in one or multiple topics related to energy. The following core research areas represent the current expertise and research activities across the six departments in the School:

Sustainable Technology
Sustainable energy sources including all renewable sources, such as plant matter, solar power, wind power, wave power, geothermal power and tidal power, improving energy efficiency, fuel cells for transportation and power generation, nanostructured materials for energy storage devices including fuel cells, advanced batteries and supercapacitors, nanostructured electrodes, graphene-based anode and cathode materials, battery system and package management, organic and inorganic photovoltaic materials, gasification of biomass for energy production, biorefinery and bioprocessing for energy generation, and innovative technologies for converting and recovering solid wastes into energy.

Production of Ethanol from Cellulosic Materials
Enhanced use of biogas produced from microbial conversion in landfills of municipal solid wastes, wastewater, industrial effluents, and manure wastes, use of planted forests for production of electricity either by direct combustion or by gasification, use of highly efficient gas turbines, energy scavenging for mobile and wireless electronics which enable systems to scavenge power from human activity or derive limited energy from ambient heat, light, radio, or vibrations.

Conventional Technology
Three main types of fossil fuels, namely coal, petroleum, and natural gas, liquefied petroleum gas (LPG) derived from the production of natural gas, nuclear energy, solid waste treatment and management, radioactive waste treatment, reactor materials, durability and fracture mechanics of reactor materials and structure, nuclear reprocessing, environmental effect of nuclear power, hydropower dam structures, turbine materials and design, hydrology and sediment, water quantity and quality, sources of water, environmental consideration in the design of waterway systems, advanced technologies for conventional energy production, such as gas hydrates, microwave refining, and synthetic fuel involving the conversion process from coal, natural gas and biomass into liquid fuel.

Energy Efficiency and Conservation
In electronics: energy integration for chemical and energy industries, energy-efficient computation, high-efficiency power electronics, power management integrated circuits, low power ICs, green radio, customized building for energy-saving, LED for solid state lighting, smart grids, wireless sensor networks, battery-powered electronics, and mobile electronics. In energy-efficient building: lightweight heat-insulating building material, customized building for energy-saving, energy-saving from solid state lighting.

Economy and Society
Clean production process for reducing material consumption and pollution, software for waste minimization and pollution prevention, green materials for industrial application and building environment, hazards impacting environmental health, analysis of environmental risk, socio-economic and life-cycle analysis for policy-making and planning, novel compounds from marine organisms, and policy on efficient energy use.

Facilities

A total of six research centers are actively involved in energy-related topics: the Center for Sustainable Energy Technology, Center for Display Research, Center for Advanced Microsystems Packaging, Finetex-HKUST R&D Center, Photonics Technology Center, and Building Energy Research Center at Nansha.

Read less
Energy has been considered a core research area within the broadly-based disciplines of environmental science and technology. It is one of the most salient emerging disciplines amongst many in the fields of engineering, science and social science. Read more
Energy has been considered a core research area within the broadly-based disciplines of environmental science and technology. It is one of the most salient emerging disciplines amongst many in the fields of engineering, science and social science. Energy Technology research covers many areas, including sustainable technology, conventional technology, and energy efficiency and conservation. The interdisciplinary postgraduate research program in Energy Technology in the School of Engineering at the Hong Kong University of Science and Technology provides long-term support to our ongoing educational training and fast-developing research in technology in general.

Due to the multi-disciplinary nature of Energy Technology, research and training in the field is integrated with different disciplines so that students can be equipped with the necessary knowledge and experience. The School of Engineering has introduced an Energy Technology Concentration in different disciplines including Chemical and Biomolecular Engineering, Civil and Environmental Engineering, Computer Science and Engineering, Electronic and Computer Engineering, Industrial Engineering and Logistics Management and Mechanical Engineering. Students can enroll in a particular discipline for research with a special focus on topic(s) in Energy Technology.

The Energy Technology Concentration is open exclusively to research postgraduates in the School of Engineering. Students interested in energy technology can enroll in one of the following research degree programs:
-MPhil/PhD in Chemical Engineering and Biomolecular Engineering
-MPhil/PhD in Civil Engineering
-MPhil/PhD in Computer Science and Engineering
-MPhil/PhD in Electronic and Computer Engineering
-MPhil/PhD in Industrial Engineering and Logistics Management
-MPhil/PhD in Mechanical Engineering

Research Foci

The School of Engineering has unrivaled strength in Energy Technology with a strong team of more than 40 faculty members working in one or multiple topics related to energy. The following core research areas represent the current expertise and research activities across the six departments in the School:

Sustainable Technology
Sustainable energy sources including all renewable sources, such as plant matter, solar power, wind power, wave power, geothermal power and tidal power, improving energy efficiency, fuel cells for transportation and power generation, nanostructured materials for energy storage devices including fuel cells, advanced batteries and supercapacitors, nanostructured electrodes, graphene-based anode and cathode materials, battery system and package management, organic and inorganic photovoltaic materials, gasification of biomass for energy production, biorefinery and bioprocessing for energy generation, and innovative technologies for converting and recovering solid wastes into energy.

Production of Ethanol from Cellulosic Materials
Enhanced use of biogas produced from microbial conversion in landfills of municipal solid wastes, wastewater, industrial effluents, and manure wastes, use of planted forests for production of electricity either by direct combustion or by gasification, use of highly efficient gas turbines, energy scavenging for mobile and wireless electronics which enable systems to scavenge power from human activity or derive limited energy from ambient heat, light, radio, or vibrations.

Conventional Technology
Three main types of fossil fuels, namely coal, petroleum, and natural gas, liquefied petroleum gas (LPG) derived from the production of natural gas, nuclear energy, solid waste treatment and management, radioactive waste treatment, reactor materials, durability and fracture mechanics of reactor materials and structure, nuclear reprocessing, environmental effect of nuclear power, hydropower dam structures, turbine materials and design, hydrology and sediment, water quantity and quality, sources of water, environmental consideration in the design of waterway systems, advanced technologies for conventional energy production, such as gas hydrates, microwave refining, and synthetic fuel involving the conversion process from coal, natural gas and biomass into liquid fuel.

Energy Efficiency and Conservation
In electronics: energy integration for chemical and energy industries, energy-efficient computation, high-efficiency power electronics, power management integrated circuits, low power ICs, green radio, customized building for energy-saving, LED for solid state lighting, smart grids, wireless sensor networks, battery-powered electronics, and mobile electronics. In energy-efficient building: lightweight heat-insulating building material, customized building for energy-saving, energy-saving from solid state lighting.

Economy and Society
Clean production process for reducing material consumption and pollution, software for waste minimization and pollution prevention, green materials for industrial application and building environment, hazards impacting environmental health, analysis of environmental risk, socio-economic and life-cycle analysis for policy-making and planning, novel compounds from marine organisms, and policy on efficient energy use.

Facilities

A total of six research centers are actively involved in energy-related topics: the Center for Sustainable Energy Technology, Center for Display Research, Center for Advanced Microsystems Packaging, Finetex-HKUST R&D Center, Photonics Technology Center, and Building Energy Research Center at Nansha.

Read less
Energy has been considered a core research area within the broadly-based disciplines of environmental science and technology. It is one of the most salient emerging disciplines amongst many in the fields of engineering, science and social science. Read more
Energy has been considered a core research area within the broadly-based disciplines of environmental science and technology. It is one of the most salient emerging disciplines amongst many in the fields of engineering, science and social science. Energy Technology research covers many areas, including sustainable technology, conventional technology, and energy efficiency and conservation. The interdisciplinary postgraduate research program in Energy Technology in the School of Engineering at the Hong Kong University of Science and Technology provides long-term support to our ongoing educational training and fast-developing research in technology in general.

Due to the multi-disciplinary nature of Energy Technology, research and training in the field is integrated with different disciplines so that students can be equipped with the necessary knowledge and experience. The School of Engineering has introduced an Energy Technology Concentration in different disciplines including Chemical and Biomolecular Engineering, Civil and Environmental Engineering, Computer Science and Engineering, Electronic and Computer Engineering, Industrial Engineering and Logistics Management and Mechanical Engineering. Students can enroll in a particular discipline for research with a special focus on topic(s) in Energy Technology.

The Energy Technology Concentration is open exclusively to research postgraduates in the School of Engineering. Students interested in energy technology can enroll in one of the following research degree programs:
-MPhil/PhD in Chemical Engineering and Biomolecular Engineering
-MPhil/PhD in Civil Engineering
-MPhil/PhD in Computer Science and Engineering
-MPhil/PhD in Electronic and Computer Engineering
-MPhil/PhD in Industrial Engineering and Logistics Management
-MPhil/PhD in Mechanical Engineering

Research Foci

The School of Engineering has unrivaled strength in Energy Technology with a strong team of more than 40 faculty members working in one or multiple topics related to energy. The following core research areas represent the current expertise and research activities across the six departments in the School:

Sustainable Technology
Sustainable energy sources including all renewable sources, such as plant matter, solar power, wind power, wave power, geothermal power and tidal power, improving energy efficiency, fuel cells for transportation and power generation, nanostructured materials for energy storage devices including fuel cells, advanced batteries and supercapacitors, nanostructured electrodes, graphene-based anode and cathode materials, battery system and package management, organic and inorganic photovoltaic materials, gasification of biomass for energy production, biorefinery and bioprocessing for energy generation, and innovative technologies for converting and recovering solid wastes into energy.

Production of Ethanol from Cellulosic Materials
Enhanced use of biogas produced from microbial conversion in landfills of municipal solid wastes, wastewater, industrial effluents, and manure wastes, use of planted forests for production of electricity either by direct combustion or by gasification, use of highly efficient gas turbines, energy scavenging for mobile and wireless electronics which enable systems to scavenge power from human activity or derive limited energy from ambient heat, light, radio, or vibrations.

Conventional Technology
Three main types of fossil fuels, namely coal, petroleum, and natural gas, liquefied petroleum gas (LPG) derived from the production of natural gas, nuclear energy, solid waste treatment and management, radioactive waste treatment, reactor materials, durability and fracture mechanics of reactor materials and structure, nuclear reprocessing, environmental effect of nuclear power, hydropower dam structures, turbine materials and design, hydrology and sediment, water quantity and quality, sources of water, environmental consideration in the design of waterway systems, advanced technologies for conventional energy production, such as gas hydrates, microwave refining, and synthetic fuel involving the conversion process from coal, natural gas and biomass into liquid fuel.

Energy Efficiency and Conservation
In electronics: energy integration for chemical and energy industries, energy-efficient computation, high-efficiency power electronics, power management integrated circuits, low power ICs, green radio, customized building for energy-saving, LED for solid state lighting, smart grids, wireless sensor networks, battery-powered electronics, and mobile electronics. In energy-efficient building: lightweight heat-insulating building material, customized building for energy-saving, energy-saving from solid state lighting.

Economy and Society
Clean production process for reducing material consumption and pollution, software for waste minimization and pollution prevention, green materials for industrial application and building environment, hazards impacting environmental health, analysis of environmental risk, socio-economic and life-cycle analysis for policy-making and planning, novel compounds from marine organisms, and policy on efficient energy use.

Facilities

A total of six research centers are actively involved in energy-related topics: the Center for Sustainable Energy Technology, Center for Display Research, Center for Advanced Microsystems Packaging, Finetex-HKUST R&D Center, Photonics Technology Center, and Building Energy Research Center at Nansha.

Read less
Energy has been considered a core research area within the broadly-based disciplines of environmental science and technology. It is one of the most salient emerging disciplines amongst many in the fields of engineering, science and social science. Read more
Energy has been considered a core research area within the broadly-based disciplines of environmental science and technology. It is one of the most salient emerging disciplines amongst many in the fields of engineering, science and social science. Energy Technology research covers many areas, including sustainable technology, conventional technology, and energy efficiency and conservation. The interdisciplinary postgraduate research program in Energy Technology in the School of Engineering at the Hong Kong University of Science and Technology provides long-term support to our ongoing educational training and fast-developing research in technology in general.

Due to the multi-disciplinary nature of Energy Technology, research and training in the field is integrated with different disciplines so that students can be equipped with the necessary knowledge and experience. The School of Engineering has introduced an Energy Technology Concentration in different disciplines including Chemical and Biomolecular Engineering, Civil and Environmental Engineering, Computer Science and Engineering, Electronic and Computer Engineering, Industrial Engineering and Logistics Management and Mechanical Engineering. Students can enroll in a particular discipline for research with a special focus on topic(s) in Energy Technology.

The Energy Technology Concentration is open exclusively to research postgraduates in the School of Engineering. Students interested in energy technology can enroll in one of the following research degree programs:
-MPhil/PhD in Chemical Engineering and Biomolecular Engineering
-MPhil/PhD in Civil Engineering
-MPhil/PhD in Computer Science and Engineering
-MPhil/PhD in Electronic and Computer Engineering
-MPhil/PhD in Industrial Engineering and Logistics Management
-MPhil/PhD in Mechanical Engineering

Research Foci

The School of Engineering has unrivaled strength in Energy Technology with a strong team of more than 40 faculty members working in one or multiple topics related to energy. The following core research areas represent the current expertise and research activities across the six departments in the School:

Sustainable Technology
Sustainable energy sources including all renewable sources, such as plant matter, solar power, wind power, wave power, geothermal power and tidal power, improving energy efficiency, fuel cells for transportation and power generation, nanostructured materials for energy storage devices including fuel cells, advanced batteries and supercapacitors, nanostructured electrodes, graphene-based anode and cathode materials, battery system and package management, organic and inorganic photovoltaic materials, gasification of biomass for energy production, biorefinery and bioprocessing for energy generation, and innovative technologies for converting and recovering solid wastes into energy.

Production of Ethanol from Cellulosic Materials
Enhanced use of biogas produced from microbial conversion in landfills of municipal solid wastes, wastewater, industrial effluents, and manure wastes, use of planted forests for production of electricity either by direct combustion or by gasification, use of highly efficient gas turbines, energy scavenging for mobile and wireless electronics which enable systems to scavenge power from human activity or derive limited energy from ambient heat, light, radio, or vibrations.

Conventional Technology
Three main types of fossil fuels, namely coal, petroleum, and natural gas, liquefied petroleum gas (LPG) derived from the production of natural gas, nuclear energy, solid waste treatment and management, radioactive waste treatment, reactor materials, durability and fracture mechanics of reactor materials and structure, nuclear reprocessing, environmental effect of nuclear power, hydropower dam structures, turbine materials and design, hydrology and sediment, water quantity and quality, sources of water, environmental consideration in the design of waterway systems, advanced technologies for conventional energy production, such as gas hydrates, microwave refining, and synthetic fuel involving the conversion process from coal, natural gas and biomass into liquid fuel.

Energy Efficiency and Conservation
In electronics: energy integration for chemical and energy industries, energy-efficient computation, high-efficiency power electronics, power management integrated circuits, low power ICs, green radio, customized building for energy-saving, LED for solid state lighting, smart grids, wireless sensor networks, battery-powered electronics, and mobile electronics. In energy-efficient building: lightweight heat-insulating building material, customized building for energy-saving, energy-saving from solid state lighting.

Economy and Society
Clean production process for reducing material consumption and pollution, software for waste minimization and pollution prevention, green materials for industrial application and building environment, hazards impacting environmental health, analysis of environmental risk, socio-economic and life-cycle analysis for policy-making and planning, novel compounds from marine organisms, and policy on efficient energy use.

Facilities

A total of six research centers are actively involved in energy-related topics: the Center for Sustainable Energy Technology, Center for Display Research, Center for Advanced Microsystems Packaging, Finetex-HKUST R&D Center, Photonics Technology Center, and Building Energy Research Center at Nansha.

Read less
Energy has been considered a core research area within the broadly-based disciplines of environmental science and technology. It is one of the most salient emerging disciplines amongst many in the fields of engineering, science and social science. Read more
Energy has been considered a core research area within the broadly-based disciplines of environmental science and technology. It is one of the most salient emerging disciplines amongst many in the fields of engineering, science and social science. Energy Technology research covers many areas, including sustainable technology, conventional technology, and energy efficiency and conservation. The interdisciplinary postgraduate research program in Energy Technology in the School of Engineering at the Hong Kong University of Science and Technology provides long-term support to our ongoing educational training and fast-developing research in technology in general.

Due to the multi-disciplinary nature of Energy Technology, research and training in the field is integrated with different disciplines so that students can be equipped with the necessary knowledge and experience. The School of Engineering has introduced an Energy Technology Concentration in different disciplines including Chemical and Biomolecular Engineering, Civil and Environmental Engineering, Computer Science and Engineering, Electronic and Computer Engineering, Industrial Engineering and Logistics Management and Mechanical Engineering. Students can enroll in a particular discipline for research with a special focus on topic(s) in Energy Technology.

The Energy Technology Concentration is open exclusively to research postgraduates in the School of Engineering. Students interested in energy technology can enroll in one of the following research degree programs:
-MPhil/PhD in Chemical Engineering and Biomolecular Engineering
-MPhil/PhD in Civil Engineering
-MPhil/PhD in Computer Science and Engineering
-MPhil/PhD in Electronic and Computer Engineering
-MPhil/PhD in Industrial Engineering and Logistics Management
-MPhil/PhD in Mechanical Engineering

Research Foci

The School of Engineering has unrivaled strength in Energy Technology with a strong team of more than 40 faculty members working in one or multiple topics related to energy. The following core research areas represent the current expertise and research activities across the six departments in the School:

Sustainable Technology
Sustainable energy sources including all renewable sources, such as plant matter, solar power, wind power, wave power, geothermal power and tidal power, improving energy efficiency, fuel cells for transportation and power generation, nanostructured materials for energy storage devices including fuel cells, advanced batteries and supercapacitors, nanostructured electrodes, graphene-based anode and cathode materials, battery system and package management, organic and inorganic photovoltaic materials, gasification of biomass for energy production, biorefinery and bioprocessing for energy generation, and innovative technologies for converting and recovering solid wastes into energy.

Production of Ethanol from Cellulosic Materials
Enhanced use of biogas produced from microbial conversion in landfills of municipal solid wastes, wastewater, industrial effluents, and manure wastes, use of planted forests for production of electricity either by direct combustion or by gasification, use of highly efficient gas turbines, energy scavenging for mobile and wireless electronics which enable systems to scavenge power from human activity or derive limited energy from ambient heat, light, radio, or vibrations.

Conventional Technology
Three main types of fossil fuels, namely coal, petroleum, and natural gas, liquefied petroleum gas (LPG) derived from the production of natural gas, nuclear energy, solid waste treatment and management, radioactive waste treatment, reactor materials, durability and fracture mechanics of reactor materials and structure, nuclear reprocessing, environmental effect of nuclear power, hydropower dam structures, turbine materials and design, hydrology and sediment, water quantity and quality, sources of water, environmental consideration in the design of waterway systems, advanced technologies for conventional energy production, such as gas hydrates, microwave refining, and synthetic fuel involving the conversion process from coal, natural gas and biomass into liquid fuel.

Energy Efficiency and Conservation
In electronics: energy integration for chemical and energy industries, energy-efficient computation, high-efficiency power electronics, power management integrated circuits, low power ICs, green radio, customized building for energy-saving, LED for solid state lighting, smart grids, wireless sensor networks, battery-powered electronics, and mobile electronics. In energy-efficient building: lightweight heat-insulating building material, customized building for energy-saving, energy-saving from solid state lighting.

Economy and Society
Clean production process for reducing material consumption and pollution, software for waste minimization and pollution prevention, green materials for industrial application and building environment, hazards impacting environmental health, analysis of environmental risk, socio-economic and life-cycle analysis for policy-making and planning, novel compounds from marine organisms, and policy on efficient energy use.

Facilities

A total of six research centers are actively involved in energy-related topics: the Center for Sustainable Energy Technology, Center for Display Research, Center for Advanced Microsystems Packaging, Finetex-HKUST R&D Center, Photonics Technology Center, and Building Energy Research Center at Nansha.

Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X