• University of Derby Online Learning Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
London Metropolitan University Featured Masters Courses
Southampton Solent University Featured Masters Courses
Xi’an Jiaotong-Liverpool University Featured Masters Courses
University of Bath Featured Masters Courses
University of Sheffield Featured Masters Courses
"smart"×
0 miles

Masters Degrees (Smart)

We have 325 Masters Degrees (Smart)

  • "smart" ×
  • clear all
Showing 1 to 15 of 325
Order by 
The recent growth in the desire to ‘build’ smart cities requires employees who understand the latest an emerging smart networking technologies including… Read more
The recent growth in the desire to ‘build’ smart cities requires employees who understand the latest an emerging smart networking technologies including Cloud Computing, Virtual Networking, Data Centre Management, Internet of things (IoT), 4G/5G Mobile Networks, Mobile App Development, Unmanned Aerial Vehicles (UAVs), and Data and Network Security, which are creating new opportunities for business education, research and many other aspects of our daily lives.

The course aims to produce graduates with the vision, knowledge and skills to apply these latest smart networking technologies to optimise the ICT networking infrastructure for businesses to design innovative networking solutions, and to develop smart networking-enabled applications and services.

It aims to provide you with the necessary current knowledge and skills to allow you to make an immediate contribution to relevant industries and research environments. The blend of theory and practical applications in smart networking will enhance your employability.

This course is offered via block delivery. There are two entry points (October and November). This allows you to start when it is most suitable

Visit the website: https://www.beds.ac.uk/howtoapply/courses/postgraduate/next-year/sensors-and-smart-cities-15-months#about

Course detail

The expertise that the University of Bedfordshire has in the related areas of smart cities, and the work it has undertaken as part of a world-leading smart city project called MK:Smart means that you will be at the forefront of developments in this exciting area.

Modules

• Wireless Embedded Systems
• Information Governance and Compliance
• Smart Infrastructure and Data Architecture
• Research Methodologies and Project Management
• MSc Project – Sensors and Smart Cities

Assessment

Most units are assessed with examinations and coursework. Details can be found in the individual module specifications. Assessment is carried out according to context and purpose and recognises that you may exhibit different aptitudes in different forms of assessment:

• Most of the units require collaborative assessments that ask students to form teams and work on a selected project or research topics. However, students will be assessed individually based on their contributions to the overall work.
• Oral presentations are also important assessment method in many units that require student to present the projects developed or researched outlined by the assignment specifications.
• There are formal unseen written examinations for two 30 credit units.
• Individual project that can formed as different ways with conjunctions with their supervisors but has to be suitable to the course scope.

Careers

Employability is understood widely as encompassing knowledge, skills and a professional attitude which your tutors expect you to display in all your units. All University of Bedfordshire courses aim to help you to be prepared for the world of work. The Careers Service is there to support you throughout the three years of your study. On the one hand, our curriculum gives you skills that are valuable for a career within Finance in particular but is also relevant for a much wider range of applications such as information analysis or decision support systems. On the other hand, the department will fully use our industry collaboration connections and resources to serve the course delivery. The collaboration industry partners include car manufactory, MK:SmartCity project and airport data security project and so on. These industry collaborations will well help students developing their real world problem solving skills and extended their employability.

The final year unit `Professional Project Management in particular requires you to work in a team so as to apply a current project management methodology that embraces all of these knowledge areas in an integrated way while going through the stages of planning, execution and project control; you will work as part of a team, take responsibility and make autonomous decisions that impact on the project team performance.

Funding

For information on available funding, please follow the link: https://www.beds.ac.uk/howtoapply/money/scholarships/pg

How to apply

For information on how to apply, please follow the link: https://www.beds.ac.uk/howtoapply/course/applicationform

Visit the MSc Sensors and Smart Cities (12 months) page on the University of Bedfordshire website for more details!

Read less
The recent growth in the desire to ‘build’ smart cities requires employees who understand the latest an emerging smart networking technologies including… Read more
The recent growth in the desire to ‘build’ smart cities requires employees who understand the latest an emerging smart networking technologies including Cloud Computing, Virtual Networking, Data Centre Management, Internet of things (IoT), 4G/5G Mobile Networks, Mobile App Development, Unmanned Aerial Vehicles (UAVs), and Data and Network Security, which are creating new opportunities for business education, research and many other aspects of our daily lives.

The course aims to produce graduates with the vision, knowledge and skills to apply these latest smart networking technologies to optimise the ICT networking infrastructure for businesses to design innovative networking solutions, and to develop smart networking-enabled applications and services.

It aims to provide you with the necessary current knowledge and skills to allow you to make an immediate contribution to relevant industries and research environments. The blend of theory and practical applications in smart networking will enhance your employability.

There are six entry points through the year. This allows you to start when it is most suitable. The entry points are:

• September
• November
• January
• March
• June
• July

Visit the website: https://www.beds.ac.uk/howtoapply/courses/postgraduate/next-year/sensors-and-smart-cities#about

Course detail

The expertise that the University of Bedfordshire has in the related areas of smart cities, and the work it has undertaken as part of a world-leading smart city project called MK:Smart means that you will be at the forefront of developments in this exciting area.

Modules

• Wireless Embedded Systems
• Information Governance and Compliance
• Smart Infrastructure and Data Architecture
• Research Methodologies and Project Management
• MSc Project – Sensors and Smart Cities

Assessment

Most units are assessed with examinations and coursework. Details can be found in the individual module specifications. Assessment is carried out according to context and purpose and recognises that you may exhibit different aptitudes in different forms of assessment:

• Most of the units require collaborative assessments that ask students to form teams and work on a selected project or research topics. However, students will be assessed individually based on their contributions to the overall work.
• Oral presentations are also important assessment method in many units that require student to present the projects developed or researched outlined by the assignment specifications.
• There are formal unseen written examinations for two 30 credit units.
• Individual project that can formed as different ways with conjunctions with their supervisors but has to be suitable to the course scope.

Careers

Employability is understood widely as encompassing knowledge, skills and a professional attitude which your tutors expect you to display in all your units. All University of Bedfordshire courses aim to help you to be prepared for the world of work. The Careers Service is there to support you throughout the three years of your study. On the one hand, our curriculum gives you skills that are valuable for a career within Finance in particular but is also relevant for a much wider range of applications such as information analysis or decision support systems. On the other hand, the department will fully use our industry collaboration connections and resources to serve the course delivery. The collaboration industry partners include car manufactory, MK:SmartCity project and airport data security project and so on. These industry collaborations will well help students developing their real world problem solving skills and extended their employability.

The final year unit `Professional Project Management in particular requires you to work in a team so as to apply a current project management methodology that embraces all of these knowledge areas in an integrated way while going through the stages of planning, execution and project control; you will work as part of a team, take responsibility and make autonomous decisions that impact on the project team performance.

Funding

For information on available funding, please follow the link: https://www.beds.ac.uk/howtoapply/money/scholarships/pg

How to apply

For information on how to apply, please follow the link: https://www.beds.ac.uk/howtoapply/course/applicationform

Read less
This programme is unique in its focus on the core challenges facing our increasingly 'smart' cities, from their operational functions and planning through to management and control. Read more

This programme is unique in its focus on the core challenges facing our increasingly 'smart' cities, from their operational functions and planning through to management and control. Reflecting the changes that technology is making to the operation of, and our understanding of, the city, the degree gives students the technical and theoretical skills needed to make a difference to the cities of today and tomorrow.

About this degree

Students are equipped with key quantitative practical skills such as mathematical and statistical modelling, computer programming, spatial analysis and cartographic visualisation, underpinned by broad theoretical perspectives on the demographics, economics, form, function, network interactions, governance, policy, planning and crucially science of cities across the world.

Students undertake modules to the value of 180 credits.

The programme consists of six core modules (105 credits), one optional module (15 credits) and a dissertation/report (60 credits).

A Postgraduate Diploma, six core modules (105 credits), one optional module (15 credits), is offered.

Core modules

  • Geographic Information Systems and Science
  • Quantitative Methods
  • Smart Cities: Context, Policy and Government
  • Urban Systems Theory
  • Spatial Data Capture, Storage and Analysis
  • Urban Simulation

Optional modules

  • Introduction to Programming
  • Or any other open 15-credit module from across UCL

Dissertation/report

All students undertake an independent research project which culminates in a dissertation of 10,000-12,000 words.

Teaching and learning

The technical aspects of the programme will be delivered through traditional workshops, lectures and practicals, but we will seek to incorporate novel assessment methods such as blog posts, and shared outputs such as visualisations/maps and web apps. Assessment is through a variety of written coursework assignments and final dissertation, presentation of researched material and practical investigations, and participation in dedicated skills modules.

Further information on modules and degree structure is available on the department website: Smart Cities and Urban Analytics MSc

Funding

For a comprehensive list of the funding opportunities available at UCL, including funding relevant to your nationality, please visit the Scholarships and Funding website.

Careers

This programme gives students the skill set and knowledge base to embark on a professional or academic path through the highly interdisciplinary field of spatial science.

Employability

Students will graduate with an extremely broad range of new transferable practical skills including computer programming, database management, (big) data mining and web-visualistation, along with an understanding of mathematical and statistical analysis methods, geographic information science, spatial analysis and urban modelling. All of these skills are developed in parallel with a wider appreciation of the problems and challenges facing contemporary cities and how the latest data and analysis methods can help address them.

Why study this degree at UCL?

The UCL Bartlett Centre for Advanced Spatial Analysis (CASA) is one of the leading research centres in the science of cities, generating new knowledge and insights for use in city planning, policy and design, and drawing on the latest geospatial methods and ideas in computer-based visualisation and modelling.

Smart Cities is a key area of future innovation and investment in the UK, and Smart Cities and Urban Analytics is currently the only UK-based Master’s programme available in this area.

Companies such as Intel, IBM, ARUP and CISCO all have strategies around smart city development, creating a demand for skilled personnel. CASA has well-established links with these companies and the Head of Department sits on the Smart Cities Board at the Greater London Authority to advise the Mayor on developments.



Read less
This programme is unique in its focus on the core challenges facing our increasingly 'smart' cities, from their operational functions and planning through to management and control. Read more

This programme is unique in its focus on the core challenges facing our increasingly 'smart' cities, from their operational functions and planning through to management and control. The programme reflects the changes that technology is making to the operation of, and our understanding of, the city, and gives students the technical and theoretical skills needed to make a difference to the planning of the cities of today and tomorrow.

About this degree

Students are equipped with key quantitative practical skills including mathematical and statistical modelling, computer programming, spatial analysis and cartographic visualisation.

Students undertake modules to the value of 180 credits. The programme consists of seven core modules (120 credits), and a dissertation/report (60 credits).

A Postgraduate Diploma, seven core modules (120 credits) is offered.

Core modules

  • Geographic Information Systems and Science
  • Quantitative Methods
  • Smart Cities: Context Policy and Government
  • Urban Systems Theory
  • Spatial Data Capture, Storage and Analysis
  • Urban Design: Place-making
  • Planning Practice

Dissertation/report

All students undertake an independent research project which culminates in a dissertation of 10,000-12,000 words.

Teaching and learning

The technical aspects of the programme will be delivered through traditional workshops, lectures and practicals, but we will seek to incorporate novel assessment methods such as blog posts, and shared outputs such as visualisations/maps and web apps. Assessment is through a variety of written coursework assignments and final dissertation, presentation of researched material and practical investigations, and participation in dedicated skills modules.

Further information on modules and degree structure is available on the department website: Smart Cities and Urban Analytics (RTPI Pathway) MSc

Funding

For a comprehensive list of the funding opportunities available at UCL, including funding relevant to your nationality, please visit the Scholarships and Funding website.

Careers

This programme gives students the skills and knowledge base to embark on a professional or academic path through the highly interdisciplinary field of spatial science.

Employability

Students will graduate with an extremely broad range of new transferable practical skills including computer programming, database management, (big) data mining and web visualisation, along with an understanding of mathematical and statistical analysis methods, geographic information science, spatial analysis and urban modelling. All of these skills are developed in parallel with a wider appreciation of the problems and challenges facing planners in contemporary cities and how the latest data and analysis methods can help address them. This degree will lead to full RTPI accreditation for students already holding an RTPI accredited Bachelor's degree from UCL or another accredited planning school, leading to a career in the UK planning system.

Why study this degree at UCL?

The UCL Barlett Centre for Advanced Spatial Analysis (CASA) is one of the leading research centres in the science of cities, generating new knowledge and insights for use in city planning, policy and design, and drawing on the latest geospatial methods and ideas in computer-based visualisation and modelling.

Smart cities is a key area of future innovation and investment in the UK, and Smart Cities and Urban Analytics is currently the only UK-based Master's programme available in this area.

Companies such as Intel, ARUP and Cisco all have strategies around smart city development, creating a demand for skilled personnel. CASA has well-established links with these companies and the Head of Department sits on the Smart London Board at the Greater London Authority to advise the Mayor of London on developments.



Read less
The rapid growth of urbanisation coupled with the rise of digital technologies has contributed to a huge transformation of city lives. Read more

The rapid growth of urbanisation coupled with the rise of digital technologies has contributed to a huge transformation of city lives. While we are facing several challenges in different fronts such as transportation, energy and living spaces, advances in technology have opened up a range of new opportunities to innovate and design smart cities. Smart Cities go beyond offering a decent quality of life. Smart Cities are characterised by, among other things, efficient use of resources, intelligent mobility solutions, digitalised services, low emissions and smart infrastructures. 

Smart City Market is continually growing as cities and governments around the world acknowledge the urgency of urban innovation and transition. Therefore, we need smart concepts and vision for cities. This is where our graduates add value. 

We prepare our students to become experts who can create sustainable future solutions for our cities and mobility by applying innovative design management.

Course Content

The Master’s specialisation in Smart City Design is taught in English and is designed to provide you with sound competencies in business, management and design. You will be studying topics of architecture, ecology and sociology with an emphasis on digital services. You will learn to analyze requirements, opportunities and risks in order to develop realistic future scenarios for the urban environment.

Through project work and case studies, you will learn about the emerging trends such as autonomous driving, renewable energies and e-governance. The study course provides you with, among other things, expert knowledge about modern working methods such as agile project management and design thinking.

Interested? Contact us to learn more.

Practice-led Learning

With a large network of more than 500 partner companies, our students have unmatched proximity to the media and design industry. Through exciting practice-projects with our partners, students have the opportunity to gain real work experiences while studying. See what kind of exciting projects our students get to work on here: http://www.macromedia-university.com/projects.html 

The benefits of choosing the Macromedia University 

• Top position in CHE Ranking 2014/15, globally recognised degrees accredited by FIBAA 

• Small classes with intensive, individual supervision 

• Campuses in Berlin & Munich: two of the Top 10 “Best Student Cities 2017” worldwide 

• Authentic, practice oriented projects with over 500 well-known companies 

• Highly qualified professors and industry insiders as lecturers 

• International students from all continents 

• Career perspectives in Germany: 18 months visa after successful graduation 

• Master’s degree over three days a week (e.g. from Thursday to Saturday) 

• Pre-Semester course available online 

• Buddy network for international students 

• Campus locations situated in the very centre of Germany’s industrial locations 

• Worldwide network of Partner Universities 

Registration deadline

Summer term: Non-EU 15.12 / EU 15.02 

Pre-semester / Winter term: Non-EU 15.07 / EU 15.08 

The deadlines may be extended in exceptional cases.

Contact us

Our Student Advisors are always happy to answer any questions you may have. You can use our online chat or contact us via WhatsApp to talk to us. You can also give us a call or use the information request form on our international website http://www.macromedia-university.com



Read less
In the course of the electronic revolution at the end of the 20th century, mechanical engineering was reinvented as the backbone of industrial production. Read more
In the course of the electronic revolution at the end of the 20th century, mechanical engineering was reinvented as the backbone of industrial production. The result is mechatronics, a synergistic combination of mechanical components with electronic and IT systems. This technological integration forms new areas of application like electrical and digital technology in machine communication and control.

With the introduction of the Master program in Mechatronics & Smart Technologies, MCI has filled a gap in the educational offering in the west of Austria. With its international orientation and a consistent focus on practical relevance, the program makes a significant contribution to the goal of establishing the Tyrol as a high-tech location with the ability to compete at the international level and defy the fluctuations of the business cycle. With the implementation of the majors in mechanical and electrical engineering and the specialization in computational mechanics at our partner campus in Paris, MCI continues its way as spear head of the Tyrolean technology offensive.

The goal of the Master program in particular is to equip graduates with a competence in mechatronics that is more than the sum of its parts, i.e. mechanical engineering, electronics and IT. Integration of these three pillars is the key to smart technologies as robotics, automated code generation, multi-physical simulation, systems in systems and smart automation, and their application in electro mobility, industry 4.0 and energy efficiency.

With supporting classes in Leadership, Strategic Management, Marketing and Entrepreneurship, this study program opens up perspectives for knowledge-based careers in the manufacturing and service industries worldwide.

Contents

The Master program in Mechatronics & Smart Technologies lasts four semesters comprising 915 hours of classes.

A semester of the full-time program comprises 15 weeks of lectures. The winter semester starts at the beginning of October until the end of January and the summer semester starts in March and lasts until the end of June.
Classes are entirely taught in English, attendance is required from Monday to Friday with additional block classes as well as project and laboratory work.

For the part-time program, the semesters last 20 weeks, from the beginning of September until the middle of February for the winter semester, and from the end of February until the middle of July for the summer semester. Classes are mainly taught in German but also partly in English. Attendance is required on Fridays from 1.30 to 10 p.m. and on Saturdays from 8 a.m. to 5 p.m., and there are additional block classes as well as project and laboratory work, etc.

Read less
In the course of the electronic revolution at the end of the 20th century, mechanical engineering was reinvented as the backbone of industrial production. Read more
In the course of the electronic revolution at the end of the 20th century, mechanical engineering was reinvented as the backbone of industrial production. The result is mechatronics, a synergistic combination of mechanical components with electronic and IT systems. This technological integration forms new areas of application like electrical and digital technology in machine communication and control.

With the introduction of the Master program in Mechatronics & Smart Technologies, MCI has filled a gap in the educational offering in the west of Austria. With its international orientation and a consistent focus on practical relevance, the program makes a significant contribution to the goal of establishing the Tyrol as a high-tech location with the ability to compete at the international level and defy the fluctuations of the business cycle. With the implementation of the majors in mechanical and electrical engineering and the specialization in computational mechanics at our partner campus in Paris, MCI continues its way as spear head of the Tyrolean technology offensive.

The goal of the Master program in particular is to equip graduates with a competence in mechatronics that is more than the sum of its parts, i.e. mechanical engineering, electronics and IT. Integration of these three pillars is the key to smart technologies as robotics, automated code generation, multi-physical simulation, systems in systems and smart automation, and their application in electro mobility, industry 4.0 and energy efficiency.

With supporting classes in Leadership, Strategic Management, Marketing and Entrepreneurship, this study program opens up perspectives for knowledge-based careers in the manufacturing and service industries worldwide.

Major Mechanical Engineering

The specialization in Mechanical Engineering prepares graduates for the challenges of modern mechanical engineering. The focus here is on simulation, hydraulics, pneumatics and material sciences, and also on mechanics, machine dynamics and handling technology.

Contents

The Master program in Mechatronics & Smart Technologies lasts four semesters comprising 915 hours of classes.

A semester of the full-time program comprises 15 weeks of lectures. The winter semester starts at the beginning of October until the end of January and the summer semester starts in March and lasts until the end of June.
Classes are entirely taught in English, attendance is required from Monday to Friday with additional block classes as well as project and laboratory work.

For the part-time program, the semesters last 20 weeks, from the beginning of September until the middle of February for the winter semester, and from the end of February until the middle of July for the summer semester. Classes are mainly taught in German but also partly in English. Attendance is required on Fridays from 1.30 to 10 p.m. and on Saturdays from 8 a.m. to 5 p.m., and there are additional block classes as well as project and laboratory work, etc.

Read less
Electrical Engineering is not an independent Master of Science programme, but it is an English track available in the Master of Science programme in Electrical Engineering. Read more

Important note

Electrical Engineering is not an independent Master of Science programme, but it is an English track available in the Master of Science programme in Electrical Engineering

Mission & Goals

Electrical Engineering is the branch of engineering that deals with the study and application of electricity, electronics and engineering electromagnetics, with particular focus on electric power systems, electrical machines and their control, electronic power converters, electrical transportation systems, electrical and electronic measurements, circuit theory and electromagnetic compatibility.
An electrical engineer has a wide background of knowledge that is necessary to address ever increasing challenges of the professional and research activities. These activities span not only in the traditional field of electricity generation, transmission and distribution, but also in the multi-faceted reality of industrial and home electrical appliances and systems, the electric systems in the transportation and health-care sectors, the electromagnetic compatibility, and the measurement and diagnosis techniques, just to mention some of the most relevant possible fields of activity.
A wide and in-depth knowledge of mathematics and physics is the essential background of graduates’ qualification in electrical engineering. Fundamental is also the background in computer science, automation and electronics applied to the different areas of electrical engineering.

The programme is entirely taught in English

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/electrical-engineering/electrical-engineering-track/

Career Opportunities

There is a steady high demand for electrical engineers: in 2010, the Master of Science graduated of that year were 60, whilst the Politecnico di Milano’s Career Service received 546 requests for employment of electrical engineers. According to the Technical Report of the Evaluation Committee of Politecnico di Milano, 88% of the Master of Science graduated in Electrical Engineer in 2007, interviewed in December 2008, declared that they would have applied again to the same Electrical Engineering Programme and the 90% of the interviewed graduated declared to have a stable, full-time employment.

- Contacts
For further information about didactic aspects of the course and curricula, visit http://www.electre.polimi.it http://www.ingpin.polimi.it or contact didattica.etec(at)polimi.it.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Electrical_eng_smartgrid.pdf
This track of the Master of Science in Electrical Engineering provides tools to manage the new challenges of electricity systems involving increasing presence of Renewable Energy Sources (RES) and Dispersed Generation. Such a new generation paradigm drives the evolution of distribution networks towards Smart Grids. Mastering the evolution requires new professional skills, ranging from the use of information-communication technology as enabling key for enhancing traditional networks to a full knowledge of the regulation of power systems operated in liberalized energy markets. Graduates will be highly employable in the following sectors: planning and operation of distribution systems; manufacturing of RES power plants; energy market operators.
The programme is taught in English and supported by ENEL Distribuzione S.p.A

Subjects

Electric power systems; Project management: principles & tools; Electricity Market; TLC networks for electricity systems Sensors, measurements and smart metering; Electromagnetic compatibility; Electric switching apparatus (or other offered courses); Planning & operation of distribution grids with a high penetration of RES; Renewable energy sources and network interface; Regulation of electric power systems; Network automation and protection systems; tools for network simulation; Smart grids: components, functionalities & benefits

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/electrical-engineering/electrical-engineering-track/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/electrical-engineering/electrical-engineering-track/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
Designed for. SCAV is designed for engineering or STEM subject graduates. Read more

Designed for

SCAV is designed for engineering or STEM subject graduates. It is particularly suitable for those with a background in electronics, electrical engineering, control systems, or communications who want to play a role in the development of connected and autonomous vehicles, and the Intelligent Transportation Systems Network.

With the advent of smart, connected and autonomous vehicles on the horizon of technical advancements, the automotive industry is facing a developmental challenge. How do we develop a robust technical infrastructure to support the anticipated explosive growth in smart vehicular functions, communications systems and driverless cars? This demands a comprehensive understanding of the technology and a bottom-up approach ensuring robustness and dependability of Electronics, Communications (e.g. V-2-V, V-2-I) and Control Systems.

The strategic success of any industrial player in this area would depend on a ready availability of a skilled work-force within high level technical competencies, specifically catered for the automotive environment.

What will the course provide?

Through this MSc we aim to address the knowledge-gap in the areas of machine learning, automated control strategies, connectivity, and communication infrastructure, cyber-security protocols, emerging automotive networks and robust automotive embedded systems within the context of smart, connected and autonomous vehicles.

WMG at the University of Warwick has an established legacy of leading automotive research in collaboration with industry. Our unique experimental facilities enable academics and industry practitioners to work together and include:

  • 3xD (Drive-in Driver-in-the-loop Driving) simulator facility
  • Fully-functional complete vehicle electrical/electronic system (labcar)
  • Hardware-in-the-Loop (HIL) facilities
  • National Automotive Innovation Centre (NAIC)

This MSc programme has extensive industrial support with the Industry Advisory Board consisting of Jaguar Land Rover (JLR), RDM and other industrial stakeholders.

Course modules

  • Sensor and Sensor Fusion
  • Networks and Communications for the Connected Car
  • Human-Technology Interaction
  • Machine Intelligence and Data Science
  • Robust Automotive Embedded Systems 

Elective modules

You will need to choose four elective modules from the module list*, which should be chosen to supplement your core modules above (subject to availability). *Important, please note: the list relates to modules available in 2017/18 academic year, and should be regarded as an illustrative guide to modules available in future years.

You are required to pass nine modules in total as part of this Master's course.

Project

Leveraging the close partnerships that WMG has with key organisations within the automotive sector, it is envisaged that your project will have an industrial sponsor, enabling you to work in close collaboration with an industry partner. This valuable experience will further your transferrable skills development, and expand your networking opportunities and understanding in a professional research and development environment.

The project is worth 50% of the final grade, and supports you in developing research and analytical skills.

Work on your project runs concurrently with your module study.

Learning style

The taught component of the course consists of lectures, workshops, practicals, demonstrations, syndicate exercises, extended surgery time and reviews. Module leaders are experts in their fields and are supported by external speakers working in organisations at the forefront of their fields.

Assessment is through post module assignment (PMA) rather than exam and is based on the learning objectives of each module. Your PMA should take around 60 hours of work and consolidate the knowledge you have gained from the module.

Each module usually lasts one week. There is more information here about the course structure.

After you graduate

Graduates of this MSc will understand a myriad of factors contributing towards the performance and dependability of connected and autonomous vehicles and will be well placed to continue professional work within R&D.



Read less
Our. MSc Building and Infrastructure Information Modelling (BIM) for Smart Engineering. Read more

Our MSc Building and Infrastructure Information Modelling (BIM) for Smart Engineering aims to provide you with the necessary training, skills and hands-on experience to become successful in the dynamic and highly competitive fields of BIM and smart engineering, and to give you a distinct edge when applying for a career in industry or for a PhD studentship.

The course will provide you with engineering oriented advanced BIM training, consolidate the related fundamental theory, strengthen your modelling and analysis skills and smart engineering knowledge, and enhance your future engineering competency and employability. It will build on your existing engineering knowledge and skills to deliver a comprehensive, flexible, robust and research led advanced BIM training package.



Read less
By 2050, 2/3rd of the population will live in cities and 2 Bn new urban citizens will reside in cities that do not exist yet. Those Smart Cities needs hands-on though visionary designers to create better lives conditions and to reinvent citizenship for every stakeholder. Read more
By 2050, 2/3rd of the population will live in cities and 2 Bn new urban citizens will reside in cities that do not exist yet. Those Smart Cities needs hands-on though visionary designers to create better lives conditions and to reinvent citizenship for every stakeholder: younger/elder, families/professionals, tourists/dwellers, and by giving meaning to the best technologies.
During this 2 year program, including a final 3 to 6 month internship, students become strong professionals thanks to an intensive project-based pedagogy, and a strong connection with the industry.

Run from fall 2017, both in Paris and Singapore (subject to final endorsement), the programme is recognised by the French State through its registration by the National Council of Professional Certification (CNCP) at Level 1.


Pedagogy:

1st Year
Design Projects and Methodology
Design Culture 1
General Culture 1
Representation & Visualization 1
Industry sponsored project
Design Culture 2
General Culture 2
Representation & Visualization 2
Thesis 1

2nd Year
Thesis 2
Inter-disciplinary industry sponsored project
Humanities
Professionalization
Preparation of oral defense
Degree Project follow up
Internship

Job opportunities

When you Graduate from Master in Design for Smart Cities you'll have a wide range of jobs opportunities, such as : Interaction Designer, Intelligent Objects Designer, Design Consultant, User Experience Designer, Interface Designer, Design Manager, Service Designer, Motion Designer

Read less
This masters is multidisciplinary with a strong emphasis on Electrical and Mechanical Engineering. Electrical energy networks and the methods by which electrical energy is generated are changing. Read more

This masters is multidisciplinary with a strong emphasis on Electrical and Mechanical Engineering. Electrical energy networks and the methods by which electrical energy is generated are changing. Generating resources are being connected to the distribution network rather than the transmission network. These distributed resources include renewables and conventional thermal plant. You will look in depth at the design, modelling, evaluation and operating requirements of smart girds. The masters is designed to give you an understanding of how the components in an energy or electricity network interact. With the increased contribution of renewable power, there’s a demand for highly-trained specialists with technical skills and knowledge in this area.

This programme is concerned with the concepts, applications, design, development and deployment of renewable generation and distributed electrical systems. It aims to enable students to acquire detailed knowledge and critical understanding of the core skills in renewable and distributed generation of electrical energy. Building on these, students will then develop and use a significant range of principal and specialist skills, techniques and practices in both renewable generation and distributed electrical energy systems, and apply this knowledge directly to complex applications.



Read less
The Digital Design MA is concerned with the creation of any digital or computer related content or products. This includes digital media, digital products, digital interiors, digital exhibitions and installations, digital graphics, digital fashion and even digital branding and marketing. Read more
The Digital Design MA is concerned with the creation of any digital or computer related content or products. This includes digital media, digital products, digital interiors, digital exhibitions and installations, digital graphics, digital fashion and even digital branding and marketing. You can specialise in the following:

• Digital media design, including multimedia design, web design, 2D and 3D computer animation, visual and special effects for TV and film, mobile app design for tablets and smart phones, computer and video games, virtual and augmented reality and 2D and 3D visualisation

• Digital product design, including the design of any computer-based or screen-based product such as smartphones, smart TV’s, tablet devices, smart watches, games consoles, smart household appliances, information systems and 3D digital printing

• Digital interior design, including digital display and projection design, intelligent interiors, digital lighting design and digital furniture design

• Digital exhibition, museum and installation design, including digital heritage resources, digital archeology, interactive kiosk and installation design, virtual museums and exhibitions

• Digital graphic design, including the design of e-books, e-learning, interface design, interaction design and digital signage

• Digital fashion design, including the design of wearable computing, smart clothing design and digital fabrics

• Digital branding and marketing design, including digital corporate identity design, logo design, social media marketing, digital channel advertising and promotion

You will have access to industry standard software and hardware such as Adobe Creative Suite and Autodesk MAYA while working in a dynamic environment with ongoing multimedia research and commercial projects. There are also opportunities to work on digital design projects set by external companies and other organisations. You will develop the skills and ideas to go on to employment as a digital designer or to set up your own business as a freelancer after graduation.

Read less
The interaction and communication between billions of devices produces and exchanges data related to real-world smart objects. This MSc develops your skills in data mining and Big Data analysis to better understand, utilise and leverage this data. Read more
The interaction and communication between billions of devices produces and exchanges data related to real-world smart objects. This MSc develops your skills in data mining and Big Data analysis to better understand, utilise and leverage this data.

A futuristic connected world, where we increasingly interact with smart objects, on-body, in buildings, in cities and in distant, harsher environments, was once science fiction. This is now a reality: parts of buildings can now interact with each other, smart vehicles can be autonomously controlled and humans can interact with all these using smart phones and wearables.
This innovative Internet of Things (IoT) MSc programme will help you adapt to become one of the highly skilled and in-demand engineers who are able to fully exploit the potential that these technologies offer.

The Internet of Things (IoT) focuses on a vision of more connected, different, things (or digital devices) than in previous visions of the Internet. More ‘things’ are part of the physical world that connect to form smart environments. Humans are constantly increasing the frequency and range of ‘things’ (sensors, tags, cards, phones, actuator, wearables) they interact with in the world. Machine-to-machine interaction will allow more physical things to interact with other things without human intervention for scalability.

Read less
Postgraduate degree programme. Electrical Power Systems Masters/MSc. The 3rd energy industry revolution is taking place where the key is the development of electrical power systems in the contexts of smart grids. Read more

Postgraduate degree programme: Electrical Power Systems Masters/MSc:

The 3rd energy industry revolution is taking place where the key is the development of electrical power systems in the contexts of smart grids. Electrical power systems are playing a pivotal role in the development of a sustainable energy supply, enabling renewable energy generation. Globally there is a big shortage of skilled engineers for designing, operating, controlling and the economic analysis of future electricity networks – smart grids

The MSc Electrical Power Systems will give you the timely skills and specialist knowledge required to significantly enhance your career prospects in the electrical power industry. This programme will develop your power engineering skills through expert teaching and extensive research work undertaken in collaboration with power industry partners.

Some modules will be taught by leading industry experts, offering exciting opportunities to understand the real challenges that the power industry is facing and will work with you to develop and provide innovative solutions. In addition, students working on relevant MSc projects may have the opportunity to work with leading industry experts directly.

Course details

This MSc programme meets the industrial demand for the training and education of both existing and future engineers in the advanced concepts of electrical power systems and renewable energy. It aims to produce graduates of the highest calibre with the right skills and knowledge who will be capable of leading in teams involved in the operation, control, design, and economic analysis of the electrical power systems and networks of the future – smart grids.

It will meet the demand for the research and development of sustainable electrical power systems and the demand for training and education of existing and future power engineers in the advanced concepts and understanding of sustainable electrical power systems and renewable energy.

This programme also aims to provide graduates with the ability to critically evaluate methodologies, analytical procedures and research methods in:

  • Control concepts and methods
  • Advanced energy conversion systems and power electronic applications
  • Advanced power electronic technologies for electrical power networks – HVDC and FACTS
  • Electrical power system engineering - using state-of-the-art computational tools and methods, and design of sustainable electrical power systems and networks
  • Economic analysis of electrical power systems and electricity markets.

Related links

Learning and teaching

Patterns of study

The majority of students study our taught Masters programmes full time. Our programmes are also suitable for practising engineers who wish to study part-time or take a single module to earn Continuing Professional Development (CPD) points. Many modules are completed in three-day sessions allowing you to focus one topic at a time. Following each session of lectures there is an opportunity for you to deepen your understanding through private study and in most cases there is also an assessed assignment.

Overview module

There is a shared introduction to topics from communications engineering, requirements analysis and object-oriented design, and an introduction to and recap of C programming. For the communications engineering programmes there is an introduction to key issues in the design of antennas, radio frequency circuits and link budgets. For the computing programmes there is an introduction to object-oriented programming.

Core modules

These modules cover the advanced specialist topics required for your specific degree programme, such as statistical signal processing and coding and advanced digital design. These technologies are at the heart of many current developments in modern electronic systems. 

Cross-programme option modules

These options specialize in topics relevant to each degree programme and give you the opportunity to adapt the programme that you have chosen to study. The prior knowledge needed for each module is specified in the student handbook to help you make the most appropriate choice. This allows you the greatest possible freedom to customise your study package appropriately.

Individual project

This is an opportunity for you to develop specialist knowledge. Some projects are undertaken in collaboration with companies and, in some cases, you may work on company premises investigating issues of direct concern to future product development. Typical projects include the development of hardware for automotive radar signal processing and the detection of leaks in landfill sites, wireless access systems, 3G mobile radio for light aircraft, the creation of 3D worlds for surgery simulation and wearable computing.

Assessment and awards

Assessment is by a combination of written examination and course work. There is a strong emphasis on course work to deepen understanding. The pass mark is 50%. A merit is awarded to students with an average of 60% or more and a distinction is awarded to students with an average of 70% or more, in both taught and project modules. There are prizes for students who perform especially well overall and for those who complete exceptionally good individual projects.

Employability

This course meets the industrial demand for the training and education of both existing and future engineers in the advanced concepts of electrical power systems and renewable energy. It aims to produce graduates of the highest calibre who will be much in demand due to their skills, knowledge and ability to lead in teams involved in the operation, control, design, and economic analysis of the electrical power systems and networks of the future – smart grids.



Read less

Show 10 15 30 per page



Cookie Policy    X