• Goldsmiths, University of London Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • University of Glasgow Featured Masters Courses
  • Coventry University Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • New College of the Humanities Featured Masters Courses
  • St Mary’s University, Twickenham Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
De Montfort University Featured Masters Courses
Queen Mary University of London Featured Masters Courses
Institute for Advanced Architecture of Catalonia Featured Masters Courses
Leeds Beckett University Featured Masters Courses
Loughborough University Featured Masters Courses
"skills" AND "shortage"×
0 miles

Masters Degrees (Skills Shortage)

  • "skills" AND "shortage" ×
  • clear all
Showing 1 to 15 of 197
Order by 
There has never been a more urgent need to train scientists in the area of food security, equipped with skills in agronomy; plant pathology, plant disease and plant genetics; and knowledge of modern agricultural systems and agricultural policy. Read more

Food security: a global concern

There has never been a more urgent need to train scientists in the area of food security, equipped with skills in agronomy; plant pathology, plant disease and plant genetics; and knowledge of modern agricultural systems and agricultural policy. The Royal Society report Reaping the Benefits: science and the sustainable intensification of global agriculture published in October 2009, provided the clearest evidence of the challenge of ensuring global food security during the next 50 years. Crop yields need to rise significantly, but in a manner that requires much lower dependency on chemical intervention and fertilisers.

Meeting the challenge of sustainable agriculture

This programme was developed in collaboration with the agricultural industry, government agencies including Department for Environment, Food and Rural Affairs (Defra) and The Food and Environment Research Agency (Fera), and farmers and food manufacturers, to provide a multi-disciplinary training in sustainable agriculture and global food security. Research-led teaching in molecular plant pathology, plant sciences and microbiology is strongly supplemented by Rothamsted Research, North Wyke expertise in grassland management, soil science and sustainable farming systems. Leading social scientists also provide valuable input in rural land use and the rural economy. The combination of expertise in both arable and pastureland systems ensures a truly rounded learning experience.

The curriculum takes account of the key skills shortages in the UK to train highly skilled individuals who can enter government agencies, agriculture and food industries and fulfil very valuable roles in scientific research, advice, evaluation, policy development and implementation tackling the challenges of food security. The programme provides opportunities to gain industrial and practical experiences including field trips.

Expert teaching

Teaching is enriched by expert contributions from a broad cross-section of the industry. Scientific staff from Fera provide specialist lectures as part of the Crop Security module, members of the Plant Health Inspectorate cover field aspects of plant pathology, and a LEAF1 farmer addresses agricultural systems and the realities of food production using integrated farm management. In addition, teaching staff from the University and BBSRC Rothamsted-North Wyke will draw on material and experiences from their academic research and scientific links with industry.

Industrial and practical experience

All students will have opportunities to gain industrial and practical experiences. Teaching visits will be made to the Plant Health Inspectorate in Cornwall to see quarantine management of Phytophthora, and to a local LEAF farm to review the challenges and approaches to food production in integrated farm management systems. You will gain specialised experience in practical science or policy making through a dissertation or project placement with external agencies. Defra and Fera, for example, are offering five dissertation and/or project placements annually.

Programme structure

The programme is made up of modules. The list of modules may include the following; Professional Skills; Research Project; Sustainable Land Use in Grassland Agriculture; Crop Security; Sustainable Livestock and Fisheries; Political Economy of Food and Agriculture and Research and Knowledge Transfer for Food Security and Sustainable Agriculture

The modules listed here provide examples of what you can expect to learn on this degree course based on recent academic teaching. The precise modules available to you in future years may vary depending on staff availability and research interests, new topics of study, timetabling and student demand. Please see the website for an up to date list (http://www.exeter.ac.uk/postgraduate/taught/biosciences/foodsecurity/#Programme-structure)

Addressing a skills shortage to tackle global food security

The MSc Food Security and Sustainable Agriculture curriculum has been designed in collaboration with the agricultural industry to tackle the skills shortage that exists in this vital interdisciplinary area. This programme will provide the highly skilled individuals required in government agencies, agriculture and food industries for critical roles in scientific research, advice, evaluation, policy development and implementation tackling the challenges of food security.

Global horizons

With food security and sustainable agriculture a global concern, opportunities for specialists in the areas of agronomy, plant pathology, plant disease and plant improvement will be worldwide. By combining expertise across the natural, social and political sciences, this programme provides valuable interdisciplinary knowledge and skills in both arable and pastureland systems. Graduates will be prepared to take on the global challenges of food security and sustainable agriculture, being able to adapt to farming systems across the world and identify cross-disciplinary solutions to local agricultural problems.

Learning enhanced by industry

The programme is enriched by expert contributions from a broad cross-section of the industry, with specialist lectures, teaching visits to observe the practical application of techniques, and industrial placement opportunities for project work or dissertations in practical science or policy making.

Read less
Effective use of renewable energy and improvements in the efficiency of power generation facilities will enable better energy management in the future and help reduce environmental impact. Read more

Why take this course?

Effective use of renewable energy and improvements in the efficiency of power generation facilities will enable better energy management in the future and help reduce environmental impact. This course responds to an urgent need for specialists in energy and power systems management, as well as a growing skills shortage of people with core knowledge in this field.

The course provides relevant, up-to-date skills that will equip both graduates and working professionals in the advanced concepts of sustainable electrical power and energy generation. It offers skills for operation, control, design, regulation and management of power systems and networks of the future. You will also receive training in and understanding of energy production, delivery, consumption and efficiency.

What will I experience?

On this course you will:

Benefit from experts in the industry who will deliver part of the course as visiting lecturers, bringing professional expertise and industry-relevant material
Be encouraged to reach a level of competence and professionalism where you can effectively integrate your technical and non-technical knowledge to solve a range of problems of a complex nature
Learn in a challenging and stimulating study environment
Develop a range of key skills by means of opportunities provided in the study units
Being an MSc course, you are encouraged and expected to be able to reach a level of competence and professionalism where you can effectively integrate your technical and non-technical knowledge to solve a range of problems of a complex nature.

What opportunities might it lead to?

The course will help to maximise your career potential in this field and equips you to work as an engineer, at an advanced level, in the fields of energy and power systems management.

Module Details

You will study several key topics and complete a four-month individual project in which you apply your knowledge to a significant, in-depth piece of analysis or design. Projects are tailored to your individual interests and may take place in our own laboratories or, by agreement, in industry. Experts from Industry (STS Nuclear) deliver part of the course as visiting lecturers, bringing professional expertise and industry-relevant material to the programme.

Here are the units you will study:

Power Systems Technology: This unit provides an in-depth overview of contemporary electrical power systems. It covers the elements of electrical power systems including generation, transmission and distribution in the mixed energy source paradigm.

Electrical Machines and drives: Provides an in-depth overview of the operational principles and physical design of DC and AC electrical machines as well as broad understanding of concepts of power electronics and power electronic converters, so that you can describe their application and selection criteria. You will develop an understanding of the issues present in converter design, including the impact of physical layout and heat dissipation.

Energy Systems: Focuses on the techniques and principles of operation of thermodynamics and combustion systems, as well as the provision and management of energy. It also focuses on power generation and combined systems, BioMass processers application of heat and fluid transfer.

Renewable and Alternative Energy: Provides an in-depth coverage of the principles of renewable and alternative energy systems: Winds, Solar, BioMass, Geothermal, Fuel Cells, Hydrogen Technologies and Nuclear Energy.

Nuclear Technology: A study of nuclear engineering including the theory of atomic and nuclear physics, methods and benefits of generating electricity from nuclear power plants, and the effects of ionising radiation. The nuclear fuel cycle and the associated environmental impacts are also considered. The development of international guidance on nuclear and radiological safety and a comparison of national regulatory structures are analysed. The importance of safety cultures, safety behaviours and safety cases is a key element throughout this module.

Energy Management: The unit is specifically designed to provide the students with the basic of economical analysis and evaluation of energy projects and asset management as well as risk and hazard assessment, comprising legislation, hazard identification and quantification, quantified risk analyses, methods of elimination/mitigation, economic appraisal of integrated renewable, and petroleum projects; with numerous pertinent case studies.

Programme Assessment

You will be taught through a mixture of lectures, seminars, tutorials (personal and academic), laboratory sessions and project work. The course has a strong practical emphasis and you will spend a significant amount of time in our Energy, Power systems and Electronic laboratories.

A range of assessment methods encourages a deeper understanding of engineering and allows you to develop your skills. Here’s how we assess your work:

Written examinations
Coursework
Laboratory-based project work
A major individual project/dissertation

Student Destinations

This course is designed to respond to a growing skills shortage of people with core knowledge in energy and power systems management. It is an excellent preparation for a successful career in this ever expanding and dynamic field.

On successful completion of the course, you will have gained the skills and knowledge that will make you attractive to a wide variety of employers with interests ranging from overall system design to the more detailed development of subsystems. You will acquire the ability to critically evaluate methodologies, analytical procedures and research methods in energy and power systems management and in the use of state-of-the-art computational tools, the design of sustainable electrical power systems and networks and regulatory frameworks. For practicing engineers with professional business experience, the course is an opportunity to update your knowledge of current design practice and also to familiarise themselves with developments in codes and methods of analysis.

Read less
The MSc in Computational and Data Journalism is a cutting-edge programme based at the UK’s leading Journalism School (Guardian’s University Guide 2016). Read more
The MSc in Computational and Data Journalism is a cutting-edge programme based at the UK’s leading Journalism School (Guardian’s University Guide 2016). It is jointly delivered by the School of Journalism, Media and Cultural Studies and the School of Computer Science and Informatics.

This programme provides the perfect vantage point from which to succeed in digital journalist and allows you to develops skills in both data journalism and newsroom development. No previous knowledge of computing is necessary and the programme is open to graduates from any discipline.

This MSc is ideal for recent graduates looking for specialist skills in digital journalism and coding that are proven to be in demand by leading organisations. We also work with working journalists looking to develop their skills in this growing area of the industry.

As a hands-on programme, it focuses on the development of knowledge and skills through research-informed practical learning in journalism, data science, computer coding and digital development.

During this one-year, full-time Master's degree, you will benefit from a combination of lectures, seminars and workshops to develop your skills in an open, discussion-driven environment.

You will develop a solid foundation in journalism and computing, before specialising in your areas of interest and finally completing a practical and research-based dissertation project using the unique skills that you have acquired.

This programme is the perfect foundation for a career at the forefront of digital journalism. It has been designed to respond to a shortage in skills reported by employers and built to develop professional writing and editorial skills. In addition, it delivers specialist training to understanding data, coding and web application development.

Distinctive features

• This innovative programme is the first of its kind in the UK and is supported by leading industry bodies such as the Financial Times, the BBC and the Office for National Statistics

• Specialist modules include science reporting, sport, business journalism, crisis reporting, visual communication and information design

• The course has a strong focus on practical application of the skills acquired

Structure

This is a year-long, full-time course. It is taught through a mix of formal lectures, demonstrations, and practical exercises as well as individual and team projects but always with a focus on applying the skills in the real world.

The course is structured in three phases – foundation, application and specialisation, dissertation - to support you in the development of skills and knowledge in the key aspects of the course.

You will initially gain a solid foundation in journalism and computing before specialising in your areas of interest and finally, completing a practical and research-based dissertation project using the unique skills that you have acquired.

Core modules:

Information Processing in Python
Web Application Development
Reporters and the Reported
Digital Investigation
Data Journalism
Data Journalism
Dissertation Project

Optional modules:

Computer Science Topic 1: Web and Social Computing
Human Centric Computing
Visual Communication and Information Design
Reporting Business, Finance & Economics
Global Crisis Reporting
Reporting Health and Science
Managing Print Media in a Digital World
Motoring Journalism
Business and Financial Journalism
Lifestyle & Consumer Journalism
Political Reporting
Sports Journalism
Data Journalism
Yr Agenda Cymreig

Teaching

You will be taught through a variety of formal lectures, practical exercises, and individual or group projects which replicate an industry environment.

You will benefit from a dedicated programme of seminars to complement your skills and understanding across the two different disciplines and to bring together the issues arising from the existing teaching modules.

You will also attend a cross-computing/journalism set of workshops and seminars, which support early application and development of the skills developed through each of the subject areas.

Assessment

You will be assessed through a wide range of formative and summative assessments throughout the course. These range from practical class room activities to academic essays and examinations.

Career prospects

The skills taught by this MSc are in demand with employers. Students from the course have gone on to work as data journalists with national news organisations. Students on this programme have also included working journalists looking to specialise in this important area of growth within the media.

Read less
Electronic engineering is a discipline at the forefront of advances for modern-day living and continues to push forward technological frontiers. Read more

Why take this course?

Electronic engineering is a discipline at the forefront of advances for modern-day living and continues to push forward technological frontiers.

This course provides relevant, up-to-date skills that will enhance your engineering competencies. You will broaden your knowledge of electronic engineering and strengthen your ability to apply new technologies in the design and implementation of modern systems.

What will I experience?

On this course you can:

Focus on the practical application and design aspects of electronic systems rather than intensive analytical detail
Experiment with our range of control applications including helicopter development kits and walking robots
Access a wide range of powerful and modern multimedia computational facilities, with the latest industry software installed

What opportunities might it lead to?

This course has been accredited by the Institution of Engineering and Technology (IET) and meets the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC). It will provide you with some of the underpinning knowledge, understanding and skills for eventual registration as an Incorporated (IEng) or Chartered Engineer (CEng).

Here are some routes our graduates have pursued:

Professional electronics
Design
Research and development
Product manufacture
Project management

Module Details

You will study several key topics and complete a four-month individual project in which you apply your knowledge to a significant, in-depth piece of analysis or design. Projects are tailored to your individual interests and may take place in our own laboratories or, by agreement, in industry.

Here are the units you will study:

VHDL and Digital Systems Design: This unit covers the use of a hardware description language (VHDL) to capture and model the design requirement - whilst programmable logic devices enable an implementation to be explored and tested prior to moving into manufacture. The learning will have a practical bias such that experience as well as theory is gained in completing this unit.

Advanced DSP Techniques: This unit aims to introduce you to the fundamentals of statistical signal processing, with particular emphasis upon classical and modern estimation theory, parametric and nonparametric modelling, time series analysis, least squares methods, and basics of adaptive signal processing.

Mixed Signal Processors: This unit focuses on both control and signal processing hardware, how it works, how to interface to it, and software - how to design it and debug it.

Sensors and Measurement Systems: This unit proposes to introduce you to the technologies underpinning measurements including sensors both in terms of hardware and software. It also aims to provide you with an opportunity to apply classroom knowledge in a practical setting and gain an appreciation of modern day requirements in terms of measurement.

Microwave and Wireless Technology: The unit combines team working via a project based learning activity relating to a significant circuit simulation and design problem with lectures aimed at analysing and applying the characteristics of a range of devices used in the microwave and wireless industries.

Communication System Analysis: This unit focuses on basic principles in the analysis and design of modern communication systems, the workhorses behind the information age. It puts emphasis on the treatment of analogue communications as the necessary background for understanding digital communications.

Programme Assessment

You will be taught through a mixture of lectures, seminars, tutorials (personal and academic), laboratory sessions and project work. The course has a strong practical emphasis and you will spend a significant amount of time in our electronic, communications and computer laboratories.

A range of assessment methods encourages a deeper understanding of engineering and allows you to develop your skills. Here’s how we assess your work:

Written examinations
Coursework
Laboratory-based project work
A major individual project/dissertation

Student Destinations

This course is designed to respond to a growing skills shortage of people with core knowledge in advanced electronic engineering. It is an excellent preparation for a successful career in this ever expanding and dynamic field of modern electronics.

On successful completion of the course, you will have gained the skills and knowledge that will make you attractive to a wide variety of employers with interests ranging from overall system design to the more detailed development of subsystems.

Roles our graduates have taken on include:

Electronics engineer
Product design engineer
Aerospace engineer
Application engineer

Read less
The training provided by the Radiopharmaceutics & PET Radiochemistry MSc programme will equip you to work as a radiopharmaceutical scientist in a PET radiochemistry centre (cyclotron unit) or a conventional radiopharmacy, to provide diagnostic and therapeutic radiopharmaceuticals to nuclear medicine centres or to study for a PhD. Read more
The training provided by the Radiopharmaceutics & PET Radiochemistry MSc programme will equip you to work as a radiopharmaceutical scientist in a PET radiochemistry centre (cyclotron unit) or a conventional radiopharmacy, to provide diagnostic and therapeutic radiopharmaceuticals to nuclear medicine centres or to study for a PhD.

Key benefits

- The only MSc level course in PET Radiochemistry subject worldwide.

- Includes a one-week work experience placement in a hospital, PET centre or industrial cyclotron centre.

- Multidisciplinary programme open to graduates in various science disciplines: chemists, bio-scientists, physicists, pharmacists.
Located in the heart of London.

Visit the website: http://www.kcl.ac.uk/study/postgraduate/taught-courses/radiopharmaceutics-and-pet-radiochemistry-msc-pg-dip-pg-cert.aspx

Course detail

- Description -

The MSc in Radiopharmaceutics & PET Radiochemistry at King's College London is unique, not only in the UK but worldwide. Radiopharmaceutics is a growing international industry facing a major skills shortage - graduates from this programme are in demand - whether in hospitals, preparing radiopharmaceuticals for cancer patients, in research in universities or industry or in the drug industry which is increasingly using PET (Positron Electron Tomography) as a major drug development tool.

The programme provides opportunities for students to develop their knowledge, understanding and skills in the principles and practice of radiopharmaceutical science; manufacturing and quality assurance of radiopharmaceuticals; appreciation of the design and operation of accelerator machines including cyclotrons; synthesis of radiopharmaceuticals from cyclotron-produced radionuclides; application of radiopharmaceuticals in biomedical research and clinical nuclear medicine.

- Course purpose -

To educate, train and equip students from a chemistry, pharmacy or related background to enter employment as radiopharmaceutical scientists in a PET radiochemistry centre (cyclotron unit) or in a conventional radiopharmacy, to provide diagnostic and therapeutic radiopharmaceuticals to nuclear medicine centres or specialised commercial centres, or to study for PhD in this field.

- Course format and assessment -

The programme is assessed by a variety of mechanisms including: written examinations; practical laboratory work and reports; case studies and oral presentations; workshops; audio-visual presentations; and laboratory- or library-based research projects.

Career prospects

Expected destinations are the NHS and commercial nuclear medicine services, the pharmaceutical industry or PhD research.

How to apply: http://www.kcl.ac.uk/study/postgraduate/apply/taught-courses.aspx

About Postgraduate Study at King’s College London:

To study for a postgraduate degree at King’s College London is to study at the city’s most central university and at one of the top 20 universities worldwide (2015/16 QS World Rankings). Graduates will benefit from close connections with the UK’s professional, political, legal, commercial, scientific and cultural life, while the excellent reputation of our MA and MRes programmes ensures our postgraduate alumni are highly sought after by some of the world’s most prestigious employers. We provide graduates with skills that are highly valued in business, government, academia and the professions.

Scholarships & Funding:

All current PGT offer-holders and new PGT applicants are welcome to apply for the scholarships. For more information and to learn how to apply visit: http://www.kcl.ac.uk/study/pg/funding/sources

Free language tuition with the Modern Language Centre:

If you are studying for any postgraduate taught degree at King’s you can take a module from a choice of over 25 languages without any additional cost. Visit: http://www.kcl.ac.uk/mlc

Read less
Our groundbreaking MSc has been developed in response to a pressing need to offer a high quality postgraduate programme serving the industries of computer games and entertainment, with an emphasis on programming, maths and graphics, business, IP, entrepreneurship, team management, 3D animation, AI and physics in games- http://www.gold.ac.uk/pg/msc-computer-games-entertainment/. Read more
Our groundbreaking MSc has been developed in response to a pressing need to offer a high quality postgraduate programme serving the industries of computer games and entertainment, with an emphasis on programming, maths and graphics, business, IP, entrepreneurship, team management, 3D animation, AI and physics in games- http://www.gold.ac.uk/pg/msc-computer-games-entertainment/

The computer games and entertainment business is a fast growing multi-billion dollar worldwide business, with games platforms ranging from Playstation 4, Xbox One, Nintendo Wii U, mobile and handhelds including iPhone, iPad and Android phones, PC-based, and massively multiplayer online games (MMOG) involving tens of thousands of people.

With ongoing strong demand for graduate computer games programmers from the UK and abroad, this MSc will produce graduates who are well positioned to get a job in this exciting worldwide industry. Potential employers include EA, Ubisoft, Sony, Activision, Microsoft, Cinesite, Framestore, and many more.

The programme is delivered by a mix of professionals from the industry and from the research world. We work closely with industry leaders to offer internships at studios including Sega and Sony.

In a wider sense, the influence of computer games programming is spreading to other digital media industries outside games, including gamification and the medical sector, games based learning, new forms of social networking and the interactive visualisation of scientific and live financial business data. Computer games are starting to fundamentally change the way people interact with computerised systems.

Partnership: Sony‌‌

‌Our MSc in Computer Games & Entertainment is part of the PlayStation®First Academic Partnership Programme offered by Sony Computer Entertainment Europe (SCEE) uk.playstation.com. Our course provides students with unique access to PlayStation® professional development hardware (dev kits) and software (SDK) to equip students with industry relevant game development skills across PlayStation®3 and PlayStation® Vita. http://www.worldwidestudios.net/london

Placement: Supermassive Games

"Following two years of successful placements at Supermassive Games, which resulted in full time jobs, we are looking forward to inviting Goldsmiths students to take part in our internship assessment day again this year."
Jonathan Amor, Director of Technology, Supermassive Games

Placement: Reflections - a Ubisoft studio

"We are delighted to announce that Reflections, a Ubisoft studio, will be taking on two Goldsmiths MSc Computer Games and Entertainment Programming students for Internship."
Dr Chris Jenner, Expert Programmer

Placement: Rebellion

"Having now placed four interns from Goldsmiths here at Rebellion, two of which have gone on to become permanent members of staff, we are very much looking forward to future applications from talented and creative Goldsmiths MSc Computer Games students”
Jason Kingsley OBE, CEO and Creative Director of Rebellion

Rebellion is one of Europe’s largest independent game developer-publishers, with their own state of the art cross-platform games engine and toolset. Rebellion’s latest number one hit was Sniper Elite 3, and they also publish the legendary 2000AD comic featuring Judge Dredd.

Placement: The Creative Assembly (SEGA)

Following two continuous years of The Creative Assembly (SEGA) successfully taking Goldsmiths MSc Games Programming Students on placements we are pleased to announce that we have reserved a minimum of three placements for Goldsmiths MSc students starting the course in September 2013, on site during the period May to September 2014. Subject to interview/ portfolio process”. Martin Servantes Director of Operations & Finance

Leading UK Developer Creative Assembly is the developer of the hit game series Total War. They are currently working on a new cross-platform title based on the Alien IP. Based in Horsham.

Placement: Jagex Games Studio

"Jagex Games Studio in Cambridge is looking forward to receiving applications from Goldsmiths’ talented MSc Games and Entertainment students for their summer internships in 2014”.
Sue Stather, Graduate Recruitment Specialist, Jagex Games Studio (RuneScape and Transformers Universe MMO Development Studio)

Placement: Roll 7

Roll7 is a New Cross-based indie video games developer and has been offering placements to Goldsmiths MSc Games students for three years. Roll7 is just about to release its first console title OlliOll, exclusively for PSVita, and we are looking for another 1 or 2 Goldsmiths programming interns for 2014 to work on a Sony backed PS4/Vita cross-play title.

Contact the department

If you have specific questions about the degree, contact the Department of Computing.

Structure

Final Project & Dissertation
During this final project, you will undertake a project towards your dissertation, typically over the Spring-Summer period (May to September). We offer three options to our students:

Individual research project:

This is based on a research theme selected by you and agreed upon by the lecturing team. Recent examples include:
Building a cheap kinect-like gesture tracking system
AI (rule-based) platform for game level design
Software development for our mobile technology projects (iPhone based)
Assessment
Mainly based on coursework (involving programming), essays, final project and dissertation; some lecturers may also conduct exams/quizzes.

Attendance

The taught programme is organised into three terms (full-time). The Autumn term runs from early October to mid-December, the Winter/Spring term from mid-January to the end of March, and the Summer term runs, typically, from late April to mid-September. Taught modules are given during the Autumn and Winter/Spring terms, while the Final Project takes place during a Summer term (in the second year for part-time students).

This programme is focused on providing you with the skills and experience needed to secure a job in the computer games industry.

Skills

You'll develop excellent games programming skills. These skills are highly transferrable, as games programming is viewed by other industries as being very demanding and requiring a high level of technical ability.

Careers

The global computer games industry is valued at 60 billion USD and is predicted to continuously grow in years to come. It's a mature industry with companies such as EA, Ubisoft, and Blizzard Activision giving long-term career prospects, shares, and benefits. There is a big skills shortage in this growing sector.

Placements provided by our industry partners

Asylum Entertainment
Climax Studios
The Creative Assembly
Geomerics
IdeaWorks Game Studio (Now Marmalade Game Studio)
Playmob
Rebellion
Reflections - a Ubisoft studio
Roll7
SEGA Sports Interactive
Sony Computer Entertainment Europe

Alumni

See what some of our graduates have gone on to do on our alumni news page.

100% employment

All of the graduates from the 2012/13 MSc in Computer Games & Entertainment course have secured placements at UK computer games companies.

Funding

Please visit http://www.gold.ac.uk/pg/fees-funding/ for details.

Read less
This course aims to create reflective practitioners in quantity surveying who have a knowledge and understanding of procurement and financial management and recognise the significance of process, technology and people to the success of mechanical and electrical projects. Read more
This course aims to create reflective practitioners in quantity surveying who have a knowledge and understanding of procurement and financial management and recognise the significance of process, technology and people to the success of mechanical and electrical projects. You will critically examine existing practice through implementing process measurement and evaluate alternative strategies for process improvement.

Learn how to:

• Organise and plan the procurement and financial management of construction projects
• Very effectively manage and administer construction contracts
• Lead and work effectively with project teams and communicate effectively in a variety of forms.

Key benefits:

• The full Masters degree is accredited by the Royal Institution of Chartered Surveyors
• Organise and plan mechanical and electrical projects
• Follow a programme designed for those wanting to specialise in this area of quantity surveying.

Visit the website: http://www.salford.ac.uk/pgt-courses/quantity-surveying-mechanical-and-electrical

Suitable for

Practising quantity surveyors and/or senior construction professionals (e.g. construction/project managers and civil engineers) who want to develop and formalise their skills in this area.

Programme details

Upon graduation, you will be a mechanical and electrical specialist. The programme of study will equip you with a professional understanding of procurement, financial and risk management, and lifecycle cost management, as they apply to the construction industry.

In addition to formalising your knowledge of traditional quantity surveying, you’ll receive a solid grounding in cutting-edge developments applying to mechanical and electrical works.

Format

Studying by distance learning, you’ll enjoy access to an internet-based learning environment backed-up by intensive tutor support. Weekly online tutorials are led by tutors with student interaction. Our online repository of learning material enables you to undertake self-directed study at your own convenience. Learning is driven by real-world problems with application to your workplace and job role.

Module titles

• Procurement in Construction and Property
• Quantity Surveying in Mechanics and Electrics
• Process and Project Systems
• Financial and Risk Management
• Dissertation

Assessment

You will be assessed through:

• Written coursework (100%)
• Continuous informal assessment by your tutors

Career potential

As a qualified mechanical and electrical quantity surveyor, you could find employment in the building sector or specialist fields including nuclear power.

There is currently a severe skills shortage in the UK for quantity surveyors with expertise in mechanics and electrics.
Consequently, this course has a 100% graduate employment record.

How to apply: http://www.salford.ac.uk/study/postgraduate/applying

Read less
Take advantage of one of our 100 Master’s Scholarships to study Power Engineering and Sustainable Energy at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Read more
Take advantage of one of our 100 Master’s Scholarships to study Power Engineering and Sustainable Energy at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Postgraduate loans are also available to English and Welsh domiciled students. For more information on fees and funding please visit our website.

The Master's course in Power Engineering and Sustainable Energy places strong emphasis on state-of-the-art semiconductor devices and technologies, advanced power electronics and drives, and advanced power systems. The Power Engineering and Sustainable Energy course also covers conventional and renewable energy generation technologies. Exciting new developments such as wide band gap electronics, energy harvesting, solar cells and biofuels are discussed and recent developments in power electronics are highlighted.

Key Features of MSc in Power Engineering and Sustainable Energy

The College of Engineering has an international reputation for electrical and electronics research for energy and advanced semiconductor materials and devices.

Greenhouse gas emission and, consequently, global warming are threatening the global economy and world as we know it. A non-rational use of electrical energy largely contributes to these.

Sustainable energy generation and utilisation is a vital industry in today’s energy thirsty world. Energy generation and conversion, in the most efficient way possible, is the key to reducing carbon emissions. It is an essential element of novel energy power generation system and future transportation systems. The core of an energy conversion system is the power electronics converter which in one hand ensures the maximum power capture from any energy source and on another hand controls the power quality delivered to grid. Therefore the converter parameters such as efficiency, reliability and costs are directly affecting the performance of an energy system.

Transmission and distribution systems will encounter many challenges in the near future. Decentralisation of generation and storage systems has emerged as a promising solution. Consequently, in the near future, a power grid will no longer be a mono-directional energy flow system but a bi-directional one, requiring a much more complex management.

The MSc in Power Engineering and Sustainable Energy is modular in structure. Students must obtain a total of 180 credits to qualify for the degree. This is made up of 120 credits in the taught element (Part One) and a project (Part Two) that is worth 60 credits and culminates in a written dissertation. Power Engineering and Sustainable Energy students must successfully complete Part One before being allowed to progress to Part Two.

Part-time Delivery mode

The part-time scheme is a version of the full-time equivalent MSc in Power Engineering and Sustainable Energy scheme, and as such it means lectures are spread right across each week and you may have lectures across every day. Due to this timetabling format, the College advises that the scheme is likely to suit individuals who are looking to combine this with other commitments (typically family/caring) and who are looking for a less than full-time study option.

Those candidates seeking to combine the part-time option with full-time work are unlikely to find the timetable suitable, unless their job is extremely flexible and local to the Bay Campus.

Modules

Modules on the MSc Power Engineering and Sustainable Energy course can vary each year but you could expect to study:

Advanced Power Electronics and Drives
Power Semiconductor Devices
Advanced Power Systems
Energy and Power Engineering Laboratory
Power Generation Systems
Modern Control Systems
Wide Band-Gap Electronics
Environmental Analysis and Legislation
Communication Skills for Research Engineers
Optimisation

Facilities

The new home of MSc in Power Engineering and Sustainable Energy is at the innovative Bay Campus provides some of the best university facilities in the UK, in an outstanding location.

Engineering at Swansea University has extensive IT facilities and provides extensive software licenses and packages to support teaching. In addition the University provides open access IT resources.

Our new WOLFSON Foundation funded Power Electronics and Power System (PEPS) laboratory well-appointed with the state-of the-art equipment supports student research projects.

Careers

Employment in growing renewable energy sector, power electronic and semiconductor sector, electric/hybrid vehicle industry.

The MSc Power Engineering and Sustainable Energy is for graduates who may want to extend their technical knowledge and for professional applicants be provided with fast-track career development. This MSc addresses the skills shortage within the power electronics for renewable energy sector.

Links with industry

BT, Siemens, Plessey, GE Lighting, Schlumberger, Cogsys, Morganite, Newbridge Networks, Alstom, City Technology, BNR Europe, Philips, SWALEC, DERA, BTG, X-Fab, ZETEX Diodes, IQE, IBM, TSMC, IR, Toyota, Hitachi.

As a student on the MSc Power Engineering and Sustainable Energy course, you will learn about numerical simulation techniques and have the opportunity to visit electronics industries with links to Swansea.

Research

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.

The REF assesses the quality of research in the UK Higher Education sector, assuring us of the standards we strive for.

World-Leading Research

The REF shows that 94% of research produced by our academic staff is of World-Leading (4*) or Internationally Excellent (3*) quality. This has increased from 73% in the 2008 RAE.

Research pioneered at the College of Engineering harnesses the expertise of academic staff within the department. This ground-breaking multidisciplinary research informs our world-class teaching with several of our staff leaders in their fields.

With recent academic appointments strengthening electronics research at the College, the Electronic Systems Design Centre (ESDC) has been re-launched to support these activities.

The Centre aims to represent all major electronics research within the College and to promote the Electrical and Electronics Engineering degree.

Best known for its research in ground-breaking Power IC technology, the key technology for more energy efficient electronics, the Centre is also a world leader in semiconductor device modelling, FEM and compact modelling.

Read less
There are excellent prospects for roles within global IT Service Management as it is an expanding sector with a skills shortage. Read more
There are excellent prospects for roles within global IT Service Management as it is an expanding sector with a skills shortage. Professional bodies in this area (i.e. itSMF and the SFIA Council) recognise the need for quality and standards in the provision of IT Services underpinning IT Service Management and the quality and skills of staff employed in this profession.

This course has been designed to meet the need for competent and qualified staff that can enable organisations to maximise the value of Information Communications Technology (ICT) and IT Services. It is suitable for any student wishing to move into IT Service Management, and is particularly relevant to business strategic planning, service delivery and support, continuity planning, application and infrastructure management, quality management, project and change management.

Our online learning programmes are flexible and designed so you can balance study with your commitments at work and home. The programme structure and learning materials enable you to study at your own convenience and develop your own study schedule while offering opportunities for you to engage with your peers.

Northampton Integrated Learning Environment (NILE) is a dedicated online university learning space for students. Your tutors will use NILE to engage with you, and you will use NILE to access course materials, assessment information, virtual classrooms and discussion boards. Your assessed work will be submitted and graded online, so you will be able to see your grades and feedback wherever you are in the world. The system that underpins NILE is Blackboard and access to this system is through nile.northampton.ac.uk. We also have a mobile app so you can stay connected to the University of Northampton wherever you are; iNorthampton is available for Android and Apple mobile devices.

Course content

The rationale for the course is based on the recognition that the effectiveness of all IT Services is a vital aspect to the prosperity of any organisation. The course embraces best practice from leading service providers, and by continual reassessment, ensures all material is relevant to today’s computing and management expectations.

The course encompasses IT Service Management through a series of progressive units developing the student’s knowledge from fundamental concepts, through to units addressing IS strategy. Subjects covered include: management information, quality management, application development, infrastructure, service support and delivery, continuity planning, people and operational issues of implementing IT Service Management Best Practice. The course addresses current standards for IT Service Management, such as ISO20000 and ITIL®.

Core learning will be delivered electronically and you will be encouraged to engage with your fellow students and tutors online. Studying online will give you the flexibility to study at your convenience* without the need to travel or physically attend classes, whilst enhancing your employment opportunities. You will be supported throughout the process by our great teaching staff that are professionally qualified and have industry and academic experience to share with you.

Studying this programme will give you an opportunity to undertake PRINCE2 qualifications.

*Modules are delivered within trimester periods so you will need to complete them in specified times.

What you will study

This programme is 30 months in duration. The academic year is split into trimesters. For a September start you will study as follows;
-Trimester one – September to December
-Trimester two – January to April
-Trimester three – May to July

Year One
Trimester one – September to December
You will study one module; Quality and IT Management.
Trimester two – January to April
You will study two modules; Change Management and Project Management.
Trimester three – May to July
You will study one module; Service Improvement.

Year Two
Trimester four – September to December
You will study two modules; Service Transition and Service Operations.
Trimester five – January to April
You will study two modules; Strategic Management of IS and Research Methods and Dissertation. You will commence work on your Dissertation.
Trimester six – May to July
You will study one module; Information Systems Methods and commence work on your Dissertation.
Trimester seven – September to December
You will complete your Dissertation.

February start information available soon.

For further information on course content and modules please refer to the NILE site: https://nile.northampton.ac.uk/webapps/blackboard/content/listContent.jsp?course_id=_27700_1&content_id=_1027153_1&mode=reset%E2%80%8B

Course modules (16/17)

-Quality and IT Management
-Information Systems Methods
-Service Improvement
-Service Transition Management
-Service Operation Management
-Strategic Management of IS
-Change Management
-Project Management
-Dissertation and Research Methods

Assessments

The course has a mixture of assessment involving reports, case studies, portfolios, oral presentations as well as examinations. The emphasis is on assessment by coursework and in the final year an applied research project is a key element of the course.

Read less
What if your smartphone could recognise that it was you before switching on, and could sense your mood by recognising your facial expressions? What if you… Read more
What if your smartphone could recognise that it was you before switching on, and could sense your mood by recognising your facial expressions? What if you could use a real thumbs-up for 'liking' things on Facebook? How can you play games on an Xbox using only your body gestures? How can you equip cars with in-vehicle technology that could automatically read road signs? These are just some of the fascinating questions that you will strive to answer on this programme.

This programme is intended to respond to a growing skills shortage in research and industry for engineers with a high level of training in the analysis and interpretation of images and video. It covers both low-level image processing and high-level interpretation using state-of-the-art machine learning methodologies. In addition, it offers high-level training in programming languages, tools and methods that are necessary for the design and implementation of practical computer vision systems.

Modules Can Include:
Advanced Transform Methods
Machine Learning
Introduction to Computer Vision
Computer Graphics
Artificial Intelligence
Techniques for Computer Vision
High Performance Computing
C++ for Image Processing
Project

Read less
The aim of this course is to train data and business analytics professionals who can help their employers climb the pyramid of analytical literacy. Read more
The aim of this course is to train data and business analytics professionals who can help their employers climb the pyramid of analytical literacy. It will also equip recent graduates with the skills to gain competitive advantage based on analytical insight into business, scientific and other types of data.

It is an ideal second degree for recent graduates in maths or physics, who need to convert their skills and knowledge into a recognised Master's qualification that will allow them to enter the highly paid profession of data analysis. The skills shortage in this field was highlighted in a recent McKinsey report, which predicted that the United States alone faces a shortage of 140,000 to 190,000 people with analytical expertise, and 1.5 million managers and analysts with the skills to understand and make decisions.

Read less
The UK has a significant legacy of contaminants as a consequence of a long history of industrial activity. These pollutants can pose a major risk to human health and the environment. Read more

Why take this course?

The UK has a significant legacy of contaminants as a consequence of a long history of industrial activity. These pollutants can pose a major risk to human health and the environment.

This course is designed to provide you with the particular expertise required for dealing with contaminated sites. Such expertise is essential to ensuring we maintain habitable, safe and sustainable communities.

What will I experience?

On this course you can:

Use our state-of-the-art geological and geotechnic labs for practical work
Get hands-on experience of using instruments such as GPS, Total Stations and 3D laser scanners
Be taught by recognised experts with extensive knowledge in groundwater hydrology, environmental geology and contaminated land

What opportunities might it lead to?

We will give you the knowledge and practical skills to ensure an interesting and rewarding career in the specialist area of contaminated land consultancy, regulation and remediation, both in the UK and overseas.

Here are some routes our graduates have pursued:

Environmental organisations
Geotechnical consultancies
Mining companies
Local authorities
Government agencies

Module Details

You can opt to take this course in full-time or part-time mode. The course is divided into three parts. The first two comprise the taught units of the course covering the key conceptual, institutional and applied bases of the subject. The third focuses on your dissertation.

This course covers a mixture of topics including: groundwater hydrology, geochemistry, site investigation, geotechnics and contaminated land assessment.

Here are the units you will study:

Soil Mechanics: This unit is fundamental to understanding how contaminants behave and migrate in the ground. You will gain an advanced understanding of the geo-mechanical behaviour of soils, including the description and testing of soils to UK and international standards.

Desk Studies and Ground Models: These are an integral part of any contaminated land assessment. You will have training in the development of geological ground models and geomorphological terrain models through desk studies, walk-over surveys and site investigation.

Ground Investigation Techniques: You will gain advanced knowledge of ground investigation using invasive techniques, in-situ tests and geophysical methods.

Contaminated Land Risk Assessments: You will learn key techniques for site assessment, analytical testing and risk assessment.

Field Reconnaissance and Walk-Over Survey: This unit covers techniques which are integral to the course and an essential skill for any graduate wishing to work in this area. You will have fieldwork training in techniques such as walk-over surveys combined with interpretation of remote sensing and aerial photography imagery.

Spatial Analysis and Remote Sensing: You will learn integration and analysis of spatial datasets using GIS and interpretation of aerial photography and satellite imagery - key tools for terrain evaluation.

Independent Research Project: This provides an opportunity for you to undertake an original piece of research to academic or industrial standards, typically in collaboration with research staff in the department or external industry partners. In addition to submission of a thesis report, you also present the results of your project at the annual postgraduate conference held at the end of September.

Programme Assessment

The course provides a balanced structure of lectures, workshops and practical laboratory work. You will generally be taught in small classes, providing an informal, friendly and supportive atmosphere for your studies.

Assessment is varied, aimed at developing skills relevant to a range of working environments. Here’s how we assess your work:

Poster and oral presentations
Project reports
Essays
Laboratory reports

Student Destinations

Contaminated land is listed as one of the key areas in which the UK has a skills shortage. This fact, combined with the vocational nature of this course, means that you will be in high demand from employers looking for newly qualified contaminated land specialists. You will find the majority of such roles in the environmental consultancy sector.

This course will provide you with a variety of transferable skills such as project planning, literature and data reviewing, report writing, along with the more general skills of presentation, communication and so on. It also has strong research and analytical components, ideal if you wish to pursue further research to PhD level.

We aim to provide you with as much support as possible in finding employment through close industrial contacts, careers events, recruitment fairs and individual advice.

Read less
This programme provides state-of-the-art education in the fields of sustainable energy generation, distribution and consumption. It is intended to respond to a growing skills shortage for engineers with a high level of training in renewable energy, smart grids and sustainability. Read more
This programme provides state-of-the-art education in the fields of sustainable energy generation, distribution and consumption. It is intended to respond to a growing skills shortage for engineers with a high level of training in renewable energy, smart grids and sustainability.

By the time you graduate, you will have a thorough understanding of sustainability standards, various renewable energies, smart grid and power electronics for renewable energy and energy use management in buildings, urban design and other areas. Research on sustainable energy technology has opened up many job opportunities in industry, government institutions and research centres.

What are benefits of the programme?

• studying at international university recognised throughout the world
• close cooperation with world-famous universities and research centres to solve major technical challenges including energy crises and environmental pollution
• excellent research opportunities, using advanced experimental equipment including a network analyser, power analyser, Dspace controller, wind turbine and PV testing system
• continuous development of core modules to meet the requirement of industrial innovation
• cutting-edge research in the intelligent and efficient utilisation of solar, wind energy and other renewable energy sources

Lab Facilities

Power electronics laboratory equipped with advanced experimental equipment
• Sustainable energy laboratory equipped with advanced experimental equipment including a 600W wind turbine, two 270W solar modules, batteries, an inverter with sinusoidal output and main controller
• Electric machine and power system laboratory

Modules

• Sustainable Energy and Environment
• Nuclear Energy Technology
• Power System Network and Smart Grid
• Integration of Energy Strategies in the Design of Buildings
• Photovoltaic Energy Technology
• Renewable Kinetic Energy Technologies
• Power Electronics and Applications for Renewable Energy
• Sustainable Urban Planning Strategies
• Msc Project

What are my career prospects?

Graduates of this programme will typically work on professional tasks including the implementation of sustainable energy technologies within existing or new systems, and modelling and evaluation of the impact on ecosystems, economics and society. Graduates may be employed as electric power system engineers, electric power system consultants, sustainable technology consultants, electric power projects managers, sustainable cities and building design consultants, managers and team leaders in government.

Read less
We offer a suite of Masters programmes at Stirling. This is a one year, full time taught MSc. designed to lead to a job in data science or analytics. Read more

Introduction

We offer a suite of Masters programmes at Stirling.
This is a one year, full time taught MSc. designed to lead to a job in data science or analytics.
Big Data skills are in high demand and they attract high salaries. The MSc Big Data at the University of Stirling is a taught advanced Master's degree covering the technology of Big Data and the science of data analytics.
The course is taught in the beautiful Stirling campus in the heart of Scotland with support from companies who recruit data scientists.
The course covers Big Data technology, advanced analytics and industrial and scientific applications. The syllabus includes:
- Mathematics for Big Data
- Python scripting
- Big Data theory and computing foundations
- Big databases and NoSQL
- Analytics, machine learning and data visualisation
- Optimisation and heuristics for big problems
- Hadoop and MapReduce
- Scientific and commercial applications
- Student projects

Key information

- Degree type: MSc
- Duration: One year
- Start date: September
- Course Director: Kevin Swingler

Course objectives

- An understanding of the issues of scalability of databases, data analysis, search and optimisation
- The ability to choose the right solution for a commercial task involving big data, including databases, architectures and cloud services
- An understanding of the analysis of big data including methods to visualise and automatically learn from vast quantities of data
- An appreciation of the size of search spaces in large problems and the ability to choose an appropriate heuristic to find a near optimal solution
- The programming skills to build simple solutions using big data technologies such as MapReduce and scripting for NoSQL, and the ability to write parallel algorithms for multi processor execution.

English language requirements

If English is not your first language you must have one of the following qualifications as evidence of your English language skills:
- IELTS: 6.0 with 5.5 minimum in each skill
- Cambridge Certificate of Proficiency in English (CPE): Grade C
- Cambridge Certificate of Advanced English (CAE): Grade C
- Pearson Test of English (Academic): 54 with 51 in each component
- IBT TOEFL: 80 with no subtest less than 17

For more information go to English language requirements https://www.stir.ac.uk/study-in-the-uk/entry-requirements/english/

If you don’t meet the required score you may be able to register for one of our pre-sessional English courses. To register you must hold a conditional offer for your course and have an IELTS score 0.5 or 1.0 below the required standard. View the range of pre-sessional courses http://www.intohigher.com/uk/en-gb/our-centres/into-university-of-stirling/studying/our-courses/course-list/pre-sessional-english.aspx .

Structure and content

Our Big Data MSc is a mix of practical technology such as Hadoop, NoSQL, and Map-Reduce, important maths and computing theory, and advanced computational techniques. The course will teach you what you need to know to collect, manage and analyse big, fast moving data for science or commerce

REF2014

In REF2014 Stirling was placed 6th in Scotland and 45th in the UK with almost three quarters of research activity rated either world-leading or internationally excellent.

Strengths

Stirling is a member of The Data Lab, which is an Innovation Centre with the aim of developing the data science talent and skills required by industry in Scotland. The data lab with facilitate industry involvement and collaboration and provide funding and resources for students.
The Stirling MSc in Big Data has been developed in partnership with global and local companies who employ data scientists. HSBC have a development centre in Stirling and have provided some very interesting Big Data projects to our students. Amazon’s development centre in Scotland is close by in Edinburgh. The course features a long summer project, generally in partnership with a company or technology provider, that provides students with a showcase of their skills to take to employers or launch online.
We also have a programme of invited speakers from industry who give the students a chance to ask questions of people who are doing data science every day. Recent companies have included MongoDB, SkyScanner and HSBC.

Career opportunities

Demand for people with big data skills is projected to grow rapidly in the coming years. Average salaries are higher in Big Data jobs than the IT average and the skills shortage will make that gap bigger.
The Stirling Big Data MSc is run in partnership with industry and is designed to produce graduates with the skills that companies need.
e-Skills UK estimate that:
- The number of Big Data jobs in the UK rose by 41% from 2012 - 2013
- By 2020 there will be 56,000 Big Data jobs in the UK alone
- Big Data professionals earn on average 31% more than other IT professionals
- 77% of companies say it is difficult to recruit people with the Big Data skill they need

Read less
Structural engineers help to make, shape and maintain the built environment. They are professionals who enjoy innovation, a challenge, opportunities, responsibility and, excitement in a varied and very satisfying career. Read more

About the course

Structural engineers help to make, shape and maintain the built environment. They are professionals who enjoy innovation, a challenge, opportunities, responsibility and, excitement in a varied and very satisfying career.

The MSc programme in Structural Engineering is designed to attract both international and home students, who wish to pursue their career in civil and structural engineering. To meet the increasing demand for structural engineers to design more safe, economic and environmental friendly buildings, the programme content has specifically been designed to give a thorough grounding on current practice with regards to dealing with structural fire and earthquake resistances and design of carbon neutral buildings.

A particular feature of the course content lies with the emphasis on the performance-based, structural design philosophy. The strong focus on these aspects will appeal to any students who intend to become the next generation of structural engineers after graduation.

Aims

Structural engineering is a profession that provides a tremendous opportunity to make a real difference to people's lives and their environment. In the current century, climate change is an increasingly important issue which needs to be tackled - and the role of the structural engineer in tackling climate change is immense.

To meet these challenges, structural engineers need to combine traditional structural engineering expertise with an understanding of a wide range of issues related to design of zero carbon buildings. There is a significant shortage of structural engineers with the requisite knowledge, skills, and experience to deal efficiently with complex issues for designing structurally sound, elegantly simple and environmentally sustainable buildings. The skills shortage and its effects on the construction industry will be further exacerbated by the huge demand from some rising economic powers.

This new MSc programme has been developed in response to this growing need for graduates aware of current challenges in structural engineering. The primary aim of this programme is to create master’s degree graduates with qualities and transferable skills for demanding employment in the construction and civil engineering sector. The graduates will have the independent learning ability required for continuing professional development and acquiring new skills at the highest level.

Course Content

The programme is currently taken full-time, over 12 months. Each taught module will count for 15 credits, approximating to 150 learning hours. The modules will be taught over the first eight months and during the final four months, students will conduct an individual research project worth 60 credits (Dissertation).

Compulsory Modules:

Nonlinear Structural Analysis & Finite Element Method
Structural Dynamics & Seismic Design
Advanced Construction Materials and Structural Retrofitting Technology
Advanced Reinforced and Prestressed Concrete Design
Advanced Steel Design
Case Studies of Modern Structures and Sustainable Structural Design
Research Methods and Professional Studies
Msc Civil Engineering Dissertation

Optional Modules:

Structural Design for Fire
Foundation, Earthworks and Pavement Design and Construction

Teaching

Our Philosophy

The philosophy behind the teaching and learning strategy we use is largely underpinned by high quality and accessible learning opportunities developing over the years by the University and the College, which are highly acclaimed standards and practices for learning and teaching.

In addition to teaching, the academics staff of this MSc programme are active in research. Teaching is therefore informed by research, giving you the opportunity to learn about the latest developments in structural engineering from leading experts in their chosen fields of specialisation.

Contact between students and academic staff is relatively high at around 20 hours per week initially to assist you in adjusting to university life. As the programme progresses the number of contact hours is steadily reduced as you undertake more project-based work. You will be taught by various approaches that complement each other in achieving the set learning outcomes.

How you will be taught

Lectures: These provide a broad overview of the main concepts and principles you need to understand, give you with a framework on which to build and expand your knowledge on through private studies.
Laboratories: Practical’s are generally two or three-hour sessions in which you can practice your observational and analytical skills, and develop a deeper understanding of theoretical concepts.

Design Studios: In a studio you will work on individual and group projects with guidance from members of staff. You may be required to produce a design or develop a solution to an engineering problem. These sessions allow you to develop your intellectual ability and practice your teamwork skills.

Computer Sessions: These allow for the opportunity to develop knowledge and experience of structural analysis and design software packages and apply them to structural engineering problems. Students have access to computers outside scheduled sessions to allow them to develop their transferable skills and learn at their own pace and time as well.

One-to-one Tutoring: On registration for the course you will be allocated a personal tutor who will be available to provide academic and pastoral support during your time at university. You will get one-to-one supervision on all project work.

Input from Guest Lecturers: Industry practitioners are invited to present lectures on the real structural engineering projects at regular seminars. The seminars are designed to facilitate informal interactions between students and guest lecturers, encouraging student active engagement in the discussions.

Site Visits: Learning from real-world examples is an important part of the course. You will visit sites featuring a range of structural engineering approaches. This exposure will provide you with invaluable experience including opportunities to debate on the real projects.

Assessment

Each of the taught modules is assessed either by formal examination, an assignment, or a balanced combination of two. Methods of assessing assignments include essay, individual/group report, oral presentation and class test.

Information on assignments in terms of the aims, learning outcomes, assessment criteria and submissions requirements are clearly specified at the beginning of the academic year. Detailed feedback on assignments is provided to students to assist them in achieving the required learning outcomes. The research project is assessed by dissertation and oral presentation.

Special Features

Emphasis on safety and sustainability: This MSc programme is distinctive because of its emphasis on building safety and sustainability and disaster mitigation of civil structures – with four taught modules totalling 60 credits. The dissertation projects will also be closely linked to ongoing research in these areas.

Industry support: Brunel has a very active Industrial Liaison Panel, which is immensely supportive of our programmes. The Panel and the companies have also shown keen interest in offering industrial support for the new programme through assistance such as support with project dissertations and site visits.

Guest speakers: Our strong contact with industry is also used to invite experienced industry practitioners to come and give talks on specialist topics at regularly organised seminars. The seminars also serve as a platform for student project presentations, which goes to build their confidence level because of the recognition and value their project gains through such dissemination.

Supporting professional development: Under a professional development module, you will be required to actively pursue your personal development planning through continuously recording and record keeping of progress being made throughout the course duration. Personal tutors will offer support to their tutees by regularly checking these records (i.e. a Personal Development Log (PDL) and discussing any relevant issues with the aim of supporting them to find solutions.

Women in Engineering and Computing Programme

Brunel’s Women in Engineering and Computing mentoring scheme provides our female students with invaluable help and support from their industry mentors.

Accreditation

This new course has been designed in close consultation with industry and we are currently in the process of seeking accreditation for it from the major professional institutions (JBM). Related courses in the College of Engineering, Design and Physical Sciences are already accredited.

To ensure the programme addresses current industry concerns, it was developed in compliance with international standards, using Civil Engineering Body of Knowledge as a guide. The programme also satisfies the requirements of the major civil engineering professional bodies (JBM) as stipulated in their guidelines on coverage given to the teaching of structural engineering.

Read less

Show 10 15 30 per page



Cookie Policy    X