• University of Edinburgh Featured Masters Courses
  • Ross University School of Veterinary Medicine Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Southampton Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
  • Anglia Ruskin University Featured Masters Courses
University of Manchester Featured Masters Courses
University of Reading Featured Masters Courses
Bocconi University Featured Masters Courses
Queen Mary University of London Featured Masters Courses
FindA University Ltd Featured Masters Courses
"signal" AND "transductio…×
0 miles

Masters Degrees (Signal Transduction)

We have 12 Masters Degrees (Signal Transduction)

  • "signal" AND "transduction" ×
  • clear all
Showing 1 to 12 of 12
Order by 
Programme description. The modern pharmaceutical industry encompasses the development of ‘biologics’ (for example antibodies or protein hormones), as much as it does traditional small-molecule drug discovery. Read more

Programme description

The modern pharmaceutical industry encompasses the development of ‘biologics’ (for example antibodies or protein hormones), as much as it does traditional small-molecule drug discovery.

You will study the design and potential uses of different families of proteins and will examine the experiences of successful entrepreneurs in the field who have been involved in the commercialisation of biopharmaceuticals.

Your research project will focus on the early phases of an industrial biologics design programme.

Online learning

Our award-winning online learning technology enables you to interact with our highly qualified teaching staff from the comfort of your home or workplace. You will have the same access to our staff as you would if you were on campus. Our online students not only have access to Edinburgh’s excellent resources but they get the opportunity to become part of a supportive online community.

Programme structure

You will learn through a variety of teaching methods, including online tuition, peer-to-peer discussion and individual study.

For the MSc, you will take 12 courses followed by a research project leading to a dissertation in your final year.

Individual courses can be taken for Continuing Professional Development purposes or you can study for a Postgraduate Certificate, Postgraduate Diploma or MSc.

We offer a fast-track option to complete the MSc in two years, or you can spread your programme over a maximum of six years, through intermittent study, allowing you to accommodate work and other commitments.

You can expect to spend seven to 13 hours a week on your studies, depending on your chosen schedule.

Courses

  • Professional Skills in Drug Discovery
  • Measuring Drug Binding
  • Structure Determination of Drug Targets
  • Introduction to Modelling Biological Systems
  • Systems Approach to Modelling Cell Signal Transduction
  • Molecular Modelling
  • High Throughput Drug Discovery
  • Commercial Aspects of Drug Discovery
  • Systems Approach to Modelling Cell Signal Transduction
  • In Silico Drug Discovery
  • Research Grant Proposal

Career opportunities

You will enhance your career prospects with marketable analytical and presentation skills.



Read less
This course offers both taught components and extensive research experience for students with backgrounds in biological, chemical and physical sciences. Read more
This course offers both taught components and extensive research experience for students with backgrounds in biological, chemical and physical sciences. It is particularly suitable for those who wish to gain both theoretical and practical research experience in the techniques of structural biology or biocomputing.

Our research areas include:

Molecular chaperones, amyloid fibrils, pore-forming toxins
M. tuberculosis, cytoskeletal proteins
Signal transduction, bacterial pathogenesis and DNA replication
Electron microscopy, cytoskeletal dynamics and function
Electron cryo-microscopy; electron tomography and image processing; development of methods for recognition and separation of heterogeneous molecular complexes; bacteriophage assembly; structural analysis of the transcription factor p53
Hsp90, the kinetochore
DNA repair
Protein folding and misfolding, in particular at the point of synthesis on intact ribosomes
Viral protein-nucleic acid interactions.

Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Stochastic Processes. Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Stochastic Processes: Theory and Application at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

The MRes in Stochastic Processes: Theory and Application is delivered through optional modules for the taught element followed by a large research project that contributes to the field in an explicit way, rather than merely applying existing knowledge.

The Department of Mathematics hosts one of the strongest research groups in probability theory, especially in stochastic processes, in the UK. The senior members of this group are world leaders in their fields.

The Department’s research groups include:

Algebra and Topology Group

Areas of interest include: Noncommutative geometry, Categorical methods in algebra and topology, Homotopy theory and homological algebra and others.

Analysis and Nonlinear Partial Differential Equations Group

Areas of interest include: Reaction-diffusion and reaction-diffusion-convection equations and systems, Navier–Stokes equations in fluid dynamic, Complexity in the calculus of variations and others.

Stochastic Analysis Group

Areas of interest include: Functional inequalities and applications, Lévy-type processes, Stochastic modelling of fractal, multi-fractal and multi-scale systems, Infinite dimensional stochastic analysis and others.

Mathematical Methods in Biology and Life Sciences Group

Areas of interest include: Mathematical pharmacology; heat and mass transfer models for plant cooling; modelling cellular signal transduction dynamics; mathematical oncology: multi-scale modelling of cancer growth, progression and therapies, and modelling-optimized delivery of multi-modality therapies; multi-scale analysis of individual-based models; spreading speeds and travelling waves in ecology; high performance computing.

Key Features

The Department of Mathematics hosts one of the strongest research groups in probability theory, especially in stochastic processes, in the UK. The senior members of this group are world leaders in their fields.

Course Content

As a student on the MRes Stochastic Processes programme you will study a range of topics for the taught element including:

Stochastic Calculus based on Brownian Motion

Levy processes and more general jump processes

The advanced Black-Scholes theory

Theory and numerics of parabolic differential equations

Java programming

The Stochastic Processes: Theory and Application course consists of a taught part (60 credits) and a research project (120 credits). Students will have a personal supervisor for their research project from the start of their studies.

Research projects could be of a theoretical mathematical nature, or they could be more applied, for example in financial mathematics or actuarial studies. Some of the research projects will be of an interdisciplinary character in collaboration with some of Swansea's world class engineers. For such projects it is likely that EPSRC funding would be available.

Facilities

The Aubrey Truman Reading Room, located in the centre of the Department of Mathematics, houses the departmental library and computers for student use. It is a popular venue for students to work independently on the regular example sheets set by their lecturers, and to discuss Mathematics together.

Our main university library, Information Services and Systems (ISS), contains a notably extensive collection of Mathematics books.

Careers

The ability to think rationally and to process data clearly and accurately are highly valued by employers. Mathematics graduates earn on average 50% more than most other graduates. The most popular areas are the actuarial profession, the financial sector, IT, computer programming and systems administration, and opportunities within business and industry where employers need mathematicians for research and development, statistical analysis, marketing and sales.

Some of our students have been employed by AXA, BA, Deutsche Bank, Shell Research, Health Authorities and Local Government. Teaching is another area where maths graduates will find plenty of career opportunities.

Research

The results of the Research Excellence Framework (REF) 2014 show that our research environment (how the Department supports research staff and students) and the impact of our research (its value to society) were both judged to be 100% world leading or internationally excellent.

All academic staff in Mathematics are active researchers and the department has a thriving research culture.



Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Mathematics at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Mathematics at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

As an MSc by Research in Mathematics student you will be guided by internationally leading researchers and will carry out a large individual research project.

You will be fully integrated into one of our established research groups and participate in research activities such as seminars, workshops, laboratories, and field work.

Key Features

Swansea is a research-led University and the Mathematics Department makes a significant contribution, meaning that as a postgraduate Mathematics student you will benefit from the knowledge and skills of internationally renowned academics.

In the Department of Mathematics at Swansea you will find friendly teaching staff that are fully committed to providing you with a supportive teaching and learning environment. This includes outstanding student support.

All postgraduate Mathematics programmes at Swansea will equip you with skills relevant for a rewarding career in a range of diverse fields. You will also further develop your communication, presentation and analytical skills.

The Mathematics Department’s research groups include:

Algebra and Topology Group

Areas of interest include: Noncommutative geometry, Categorical methods in algebra and topology, Homotopy theory and homological algebra and others.

Analysis and Nonlinear Partial Differential Equations Group

Areas of interest include: Reaction-diffusion and reaction-diffusion-convection equations and systems, Navier–Stokes equations in fluid dynamic, Complexity in the calculus of variations and others.

Stochastic Analysis Group

Areas of interest include: Functional inequalities and applications, Lévy-type processes, Stochastic modelling of fractal, multifractal and multiscale systems, Infinite dimensional stochastic analysis and others.

Mathematical Methods in Biology and Life Sciences Group

Areas of interest include: Mathematical pharmacology; heat and mass transfer models for plant cooling; modelling cellular signal transduction dynamics; mathematical oncology: multi-scale modelling of cancer growth, progression and therapies, and modelling-optimized delivery of multi-modality therapies; multi-scale analysis of individual-based models; spreading speeds and travelling waves in ecology; high performance computing

Employability

The ability to think rationally and to process data clearly and accurately are highly valued by employers. Mathematics graduates earn on average 50% more than most other graduates. The most popular areas are the actuarial profession, the financial sector, IT, computer programming and systems administration, and opportunities within business and industry where employers need mathematicians for research and development, statistical analysis, marketing and sales.

Facilities

The Aubrey Truman Reading Room, located in the centre of the Department of Mathematics, houses the departmental library and computers for student use, and is a popular venue for students to work independently on the regular exercise sheets set by their lecturers, and to discuss mathematics together.

The main university library, the Learning and Information Centre (LIC), contains a notably extensive collection of mathematics books.

As part of our expansion, we are building the Computational Foundry on our Bay Campus for computer and mathematical sciences. This development is exciting news for Swansea Mathematics who are part of the vibrant and growing community of world-class research leaders drawn from computer and mathematical sciences.

Research

The results of the Research Excellence Framework (REF) 2014 show that our research environment (how the Mathematics Department supports research staff and students) and the impact of our research (its value to society) were both judged to be 100% world leading or internationally excellent.

All academic staff in Mathematics are active researchers and the department has a thriving research culture.



Read less
Researchers in the School of Biological Sciences conduct cutting-edge research across a broad range of biological disciplines. genomics, biotechnology, cell biology, sensory biology, animal behaviour and evolution, population biology, host-disease interactions and ecosystem services, to name but a few. Read more
Researchers in the School of Biological Sciences conduct cutting-edge research across a broad range of biological disciplines: genomics, biotechnology, cell biology, sensory biology, animal behaviour and evolution, population biology, host-disease interactions and ecosystem services, to name but a few.

In 2014 the school relocated to a new £54 million, state-of-the-art Life Sciences building. Our new laboratory facilities are among the best in the world, with critical '-omics' technologies and associated computing capacity (bioinformatics) a core component. The new building is designed to foster our already strong collaborative and convivial environment, and includes a world-leading centre for evolutionary biology research in collaboration with key researchers from earth sciences, biochemistry, social medicine, chemistry and computer sciences. The school has strong links with local industry, including BBC Bristol, Bristol Zoo and the Botanic Gardens. We have a lively, international postgraduate community of about 150 research students. Our stimulating environment and excellent graduate school training and support provide excellent opportunities to develop future careers.

Research groups

The underlying theme of our research is the search for an understanding of the function, evolution, development and regulation of complex systems, pursued using the latest technologies, from '-omics' to nanoscience, and mathematical modelling tools. Our research is organised around four main themes that reflect our strengths and interests: evolutionary biology; animal behaviour and sensory biology; plant and agricultural sciences; and ecology and environmental change.

Evolutionary Biology
The theme of evolutionary biology runs through all our research in the School of Biological Sciences. Research in this theme seeks to understand organismal evolution and biodiversity using a range of approaches and study systems. We have particular strengths in evolutionary genomics, phylogenetics and phylogenomics, population genetics, and evolutionary theory and computer modelling.

Animal Behaviour and Sensory Biology
Research is aimed at understanding the adaptive significance of behaviour, from underlying neural mechanisms ('how', or proximate, questions) to evolutionary explanations of function ('why', or ultimate, questions). The approach is strongly interdisciplinary, using diverse physiological and biomechanical techniques, behavioural experiments, computer modelling and molecular biology to link from the genetic foundations through to the evolution of behaviour and sensory systems.

Plant and Agricultural Sciences
The global issue of food security unifies research in this theme, which ranges from molecular-based analysis of plant development, signal transduction and disease, to ecological studies of agricultural and livestock production systems. We have particular strengths in functional genomics, bioinformatics, plant developmental biology, plant pathology and parasite biology, livestock parasitology and agricultural systems biology. Our research is helped by the LESARS endowment, which funds research of agricultural relevance.

Ecology and Environmental Change
Research seeks to understand ecological relations between organisms (plant, animal or microbe) at individual, population and community levels, as well as between organisms and their environments. Assessing the effect of climate change on these ecological processes is also fundamental to our research. Key research areas within this theme include community ecology, restoration ecology, conservation, evolutionary responses to climate change and freshwater ecology. Our research has many applied angles, such as ecosystem management, wildlife conservation, environmental and biological control, agricultural practice and informing policy.

Careers

Many postgraduate students choose a higher degree because they enjoy their subject and subsequently go on to work in a related area. An Office of Science and Technology survey found that around three-quarters of BBSRC- and NERC-funded postgraduates went on to a job related to their study subject.

Postgraduate study is often a requirement for becoming a researcher, scientist, academic journal editor and for work in some public bodies or private companies. Around 60 per cent of biological sciences doctoral graduates continue in research. Academic research tends to be contract-based with few permanent posts, but the school has a strong track record in supporting the careers of young researchers by helping them to find postdoctoral positions or develop fellowship applications.

Read less
This online programme will provide you with the stimulus, guidance and knowledge to develop a career around new approaches to drug discovery. Read more

This online programme will provide you with the stimulus, guidance and knowledge to develop a career around new approaches to drug discovery.

You will study the challenges in developing novel drugs; the science underlying emerging fields of drug discovery; the application of new ideas to the field; how drug discovery relates to real-world health problems; the commercial aspects of drug discovery; and potential future developments. The programme offers a research-rich environment in which you can develop as a scientist and entrepreneur.

Online learning

Our award-winning online learning technology enables you to interact with our highly qualified teaching staff from the comfort of your home or workplace. You will have the same access to our staff as you would if you were on campus. Our online students not only have access to Edinburgh’s excellent resources but they get the opportunity to become part of a supportive online community.

Programme structure

You will learn through a variety of teaching methods, including online tuition, peer-to-peer discussion and individual study. You will take twelve taught courses followed by a research project leading to a dissertation in your final year.

Individual courses can be taken for Continuing Professional Development purposes or you can study for a Postgraduate Certificate, Postgraduate Diploma or MSc.

We offer a fast-track option to complete the MSc in two years, or you can spread your programme over a maximum of six years, through intermittent study, allowing you to accommodate work and other commitments.

You can expect to spend seven to 13 hours a week on your studies, depending on your chosen schedule.

Courses

  • Professional Skills in Drug Discovery
  • Measuring Drug Binding
  • Chemistry for Drug Discovery
  • Structure Determination of Drug Targets
  • Druggable Systems
  • Introduction to Modelling Biological Systems
  • Molecular Modelling
  • High Throughput Drug Discovery
  • Commercial Aspects of Drug Discovery
  • Systems Approach to Modelling Cell Signal Transduction
  • In Silico Drug Discovery
  • Modelling Metabolic Pathways

Career opportunities

You will enhance your career prospects with marketable analytical and presentation skills.



Read less
The Department of Immunology provides a common forum for investigators in many areas of the University of Toronto and an interdisciplinary research experience in immunology. Read more
The Department of Immunology provides a common forum for investigators in many areas of the University of Toronto and an interdisciplinary research experience in immunology. Members and students in the department are located at the Medical Sciences Building; the Ontario Cancer Institute; and the research institutes of Mount Sinai Hospital, Toronto General Hospital, Toronto Western Ho​spital, the Hospital for Sick Children, and Sunnybrook Hospital.

The Master of Science degree program is offered in two distinct fields of study: Applied Immunology and Fundamental Immunology. The Doctor of Philosophy degree program is offered in Fundamental Immunology.

These degrees cover a wide range of immunological sub-disciplines including molecular mechanisms of lymphocyte development and selection, T-cell and B-cell receptors, cell interactions, growth factor receptors, cytokine networks, antigen processing and presentation, signal transduction in lymphocytes, V(D)J recombination, anergy, apoptosis, transgenic and knock-out models, immuno-targeting and vaccine design, autoimmunity, AIDS, diabetes, and transplantation.

Read less
The Department of Molecular Genetics is administered from the Medical Sciences Building and has nearly 100 faculty members whose labs are located within… Read more
The Department of Molecular Genetics is administered from the Medical Sciences Building and has nearly 100 faculty members whose labs are located within the Medical Science Building, the Best Institute, the Donnelly Centre for Cellular and Biomolecular Research, the FitzGerald Building, the Hospital for Sick Children, Mount Sinai Hospital, the Ontario Institute for Cancer Research, and Princess Margaret Hospital.

The Master of Science and Doctor of Philosophy programs in Molecular Genetics offer research training in a broad range of genetic systems from bacteria and viruses to humans. Research projects include DNA repair, recombination and segregation, transcription, RNA splicing and catalysis, regulation of gene expression, signal transduction, interactions of host cells with bacteria and viruses, developmental genetics of simple organisms (worms and fruit flies) as well as complex organisms (mice), molecular neurobiology, molecular immunology, cancer biology and virology, structural biology, and human genetics and gene therapy.

Read less
The Department of Pharmacology and Toxicology offers graduate programs leading to the degrees of Master of Science and Doctor of Philosophy in Pharmacology. Read more
The Department of Pharmacology and Toxicology offers graduate programs leading to the degrees of Master of Science and Doctor of Philosophy in Pharmacology. Faculty conduct research in the following areas:
-Biochemical and molecular pharmacology
-Cardiovascular pharmacology
-Clinical pharmacology
-Drug addiction
-Drug metabolism, distribution, and pharmacokinetics
-Endocrine pharmacology
-Immunopharmacology
-Neuropharmacology
-Pharmacogenetics
-Psychopharmacology
-Receptor pharmacology
-Second messengers and signal transduction
-Toxicology

All MSc and PhD students are expected to undertake self-directed study and to demonstrate proficiency in pharmacological principles throughout the course of their graduate program.

Read less
Meet Elizabeth Walden, MSc candidate in Biochemistry. “The best parts of my graduate program are the opportunities to present my own research/proposal, as well as to learn about the work of others. Read more
Meet Elizabeth Walden, MSc candidate in Biochemistry

“The best parts of my graduate program are the opportunities to present my own research/proposal, as well as to learn about the work of others. I have had opportunities to attend research events within my own department, as well as more broadly through Schulich and across London. These opportunities provide an amazing atmosphere for research and learning.”

Visit the website: http://grad.uwo.ca/prospective_students/programs/program_NEW.cfm?p=15

Fields of Research

• Bioinformatics
• Genome Dynamics, Epigenetics, and Gene Expression
• Human Genetics and Clinical Biochemistry
• Macromolecular Structure and Dynamics
• Proteomics
• Signal Transduction and Intercellular Communication

How to apply

For information on how to apply, please see: http://grad.uwo.ca/prospective_students/applying/index.html

Financing your studies

As one of Canada's leading research institutions, we place great importance on helping you finance your education. It is crucial that you devote your full energy to the successful completion of your studies, so we want to ensure that stable funding is available to you.
For information please see: http://grad.uwo.ca/current_students/student_finances/index.html

Read less
This course provides a thorough, methodical and wide-ranging education in digital signal and image processing. The Degree course offers both core taught modules and a substantial individual research project. Read more
This course provides a thorough, methodical and wide-ranging education in digital signal and image processing. The Degree course offers both core taught modules and a substantial individual research project.

Teaching and learning

The course contains both compulsory core taught modules and a substantial individual research project. Four taught modules are delivered in the first semester from September to January, and four taught modules are delivered in the second semester from February to June. Each taught unit is assessed by coursework or laboratory report, with written examinations in January and June.
You will conduct your dissertation project work during summer and submit your final dissertation in September.

Course unit details

Typical course units include:
-Signals and data capture engineering
-Digital image processing
-Digital Communications engineering
-Sensing and transduction
-Digital image engineering
-Tomography engineering and applications

Career opportunities

Digital signals are part of almost every aspect of 21st technology. If you take this course, you will become expert in this area and expose yourself to a world of opportunity respecting careers. You will, for example, be able to perform biomedical signal processing, audio/visual/multimedia engineering, digital waveform synthesis and medical, industrial and military image processing. You will be able to work in the fields of imaging, medical physics, aerospace, telecommunications systems development, mechatronics, robotics, remote sensing and nondestructive testing. Your skills will be highly sought after in organisations that develop systems for these and many related state-of the art disciplines.

This course will not only make you very employable; it will be a very fulfilling and enriching experience.

Read less
The Master's in Cancer, Stem Cells and Developmental Biology guides you in exploring the mysteries of embryonic growth, stem cells, evolution and development in relation to health and disease. Read more

Cancer, Stem Cells and Developmental Biology

The Master's in Cancer, Stem Cells and Developmental Biology guides you in exploring the mysteries of embryonic growth, stem cells, evolution and development in relation to health and disease.

This Master's programme combines research in the fields of oncology,molecular developmental biology and genetics in animals and humans. During the major (9 months) and minor (6 months) research projects on topics of your own choice, you learn sophisticated modern techniques of genomics, proteomics and bioinformatics. It is possible to complete the minor research project in a laboratory of your choice abroad. During the two year research programme, you are required to take 10 weeks of theoretical courses in the areas grouped in five broad subject areas. You may choose your favourite courses from the list of courses organized by our programme, as well as by other programmes and institutes. Moreover, you are required to attend seminars that present research covering the full range of topics related to biomedical and life sciences.

A final Master's thesis, based on literature research on a relevant topic, completes your programme. It should present a clear overview of recent literature on the topic of interest and demonstrate your ability to critically evaluate hypotheses and results, present your own views and draw conclusions that may lead to the formulation of new research goals.

Read less

  • 1
Show 10 15 30 per page



Cookie Policy    X