• Anglia Ruskin University Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of Southampton Featured Masters Courses
  • University of Cambridge Featured Masters Courses
  • Ross University School of Veterinary Medicine Featured Masters Courses
De Montfort University Featured Masters Courses
Barcelona Executive Business School Featured Masters Courses
Leeds Beckett University Featured Masters Courses
Plymouth Marjon University (St Mark & St John) Featured Masters Courses
Bath Spa University Featured Masters Courses
"signal" AND "integrity"×
0 miles

Masters Degrees (Signal Integrity)

We have 8 Masters Degrees (Signal Integrity)

  • "signal" AND "integrity" ×
  • clear all
Showing 1 to 8 of 8
Order by 
Our MSc in Electronic Engineering offers content that is different to many other similarly-titled courses. It equips you with a skill set that is in demand by industry worldwide, allowing you to maximise your employability by taking a course that is broad in scope but challenging in detail. Read more

About the course

Our MSc in Electronic Engineering offers content that is different to many other similarly-titled courses. It equips you with a skill set that is in demand by industry worldwide, allowing you to maximise your employability by taking a course that is broad in scope but challenging in detail.

Electronic Engineering provides a broad master’s-level study of some of the most important aspects of electronic engineering today. It builds on your undergraduate knowledge of core aspects of electronics, supported by a module in Engineering Business Environment and Energy Policies, which provides you with an understanding of the context of engineering in the early 21st Century.

The course embraces a number of themes in areas identified as being generally under-represented in many other courses, such as power electronics and electromagnetic compatibility, providing you with as wide a range of employment opportunities as possible – whether this is in industry or continuing in research at university.

The course has achieved accreditation by the Institution of Engineering and Technology (IET) to CEng level for the full five year period.

Reasons to study

• Accredited by the Institution of Engineering and Technology (IET) to CEng level
offering a streamlined route to professional registration

• Industry placement opportunity
you can chose to undertake a year-long work placement, gaining valuable experience to enhance your practical and professional skills further

• Graduate employability
Our graduates have gone on to work in a variety of specialist roles in diverse industries, including; embedded systems, electronic design and biomedical monitoring

• Access to superb professional facilities
such as general electronics and assembly, digital electronics and microprocessor engineering, power electronics, control systems and communications engineering

• Study a wide range of specialist modules
course content is regularly reviewed and modules have been specifically developed to address skills gaps in the industry

• Academic and research expertise
benefit from teaching by experienced academic and research-based staff, including those from DMU’s dedicated Centre for Electronic and Communications Engineering, who are actively involved in international leadership roles in the sector.Programme

Course Structure

First semester (September to January)

• Digital Signal Processing
• Physics of Semiconductor Devices
• Engineering Business Environment and Energy Policies
• Control and Instrumentation

Second semester (February to May)

• Embedded Systems
• Research Methods
• Electromagnetic Compatibility and Signal Integrity
• Power Electronics

Third semester (June to September)

This is a major research-based individual project

Optional placement
We offer a great opportunity to boost your career prospects through an optional one year placement as part of your postgraduate studies. We have a dedicated Placement Unit which will help you obtain this. Once on your placement you will be supported by your Visiting Tutor to ensure that you gain maximum benefit from the experience. Placements begin after the taught component of the course has been completed - usually around June - and last for one year. When you return from your work placement you will begin your dissertation.

Teaching and Assessment

Modules are delivered through a mixture of lectures, tutorials and laboratories. The methodology ensures a good balance between theory and practice so that real engineering problems are better understood, using strong theoretical and analytical knowledge translated into practical skills.

Contact and learning hours

You will normally attend 4 hours of timetabled taught sessions each week for each module undertaken during term time, for full time study this would be 16 hours per week during term time. You are expected to undertake around 212 further hours of independent study per 30 credit modules. Alternate study modes and entry points may change the timetabled session available, please contact us for details.

Industry Accreditation

he course is fully accredited by the Institution of Engineering and Technology (IET) which is one of the world’s leading professional societies for the engineering and technology community, with more than 150,000 members in 127 countries.

IET accreditation recognises the high standard of the course and confirms the relevance of its content. In order to achieve IET accreditation the course has had to reach a certain standard in areas such as the course structure, staffing, resourcing, quality assurance, student support and technical depth.

The benefits of an IET accredited course include increased opportunities, being looked on favourably by employers and completing the first step in your journey to achieving professional Chartered Engineer (CEng) status which can be applied for following a period of suitable industrial experience after graduation.

This degree has been accredited by IET under licence from the UK regulator, the Engineering Council. Accreditation is a mark of assurance that the degree meets the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC). An accredited degree will provide you with some or all of the underpinning knowledge, understanding and skills for eventual registration as an Incorporated (IEng) or Chartered Engineer (CEng). Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.

Facilities

You will have flexible access to our laboratories and workshops which include: electrical and electronic experimental facilities in general electronics and assembly, digital electronics and microprocessor engineering, power electronics, control systems and communications engineering. Each area is equipped with the latest experimental equipment appropriate to the corresponding areas of study and research. An additional CAD design suite provides access to computing facilities with specialist electronics CAD tools including OrCAD and PSpice. A specialised area incorporating a spacious radio frequency reverberation chamber and Faraday cage allows for experimentation in radio frequency engineering and electromagnetics, while our digital design suite is equipped with the latest 8 and 32-bit embedded microprocessor platforms together with high-speed programmable logic development environments. Power generation and conversion, industrial process control and embedded drives are provided while our communications laboratory is additionally equipped for RF engineering.

To find out more

To learn more about this course and DMU, visit our website:
Postgraduate open days: http://www.dmu.ac.uk/study/postgraduate-study/open-evenings/postgraduate-open-days.aspx

Applying for a postgraduate course:
http://www.dmu.ac.uk/study/postgraduate-study/entry-criteria-and-how-to-apply/entry-criteria-and-how-to-apply.aspx

Funding for postgraduate students:
http://www.dmu.ac.uk/study/postgraduate-study/postgraduate-funding-2017-18/postgraduate-funding-2017-18.aspx

Read less
A higher degree by research involves training in research methods and systematic, high level study of a research project. The nature of the work and the time it takes to finish the research means a research degree is demanding and needs great commitment. Read more

A higher degree by research involves training in research methods and systematic, high level study of a research project. The nature of the work and the time it takes to finish the research means a research degree is demanding and needs great commitment.

You must present your results in a thesis, explain the methods used in your research and defend them in an oral examination.

To get an MPhil you must critically investigate and evaluate an approved topic and display an understanding of suitable research methods.

Materials and Engineering Research Institute (MERI)

MERI is a multi-disciplinary research institute encompassing four research centres each with their own specialist groups operating within them. We undertake high quality academic research across a range of disciplines and apply this research knowledge in a commercial and industrial context. Research areas include • polymers and composites • solar energy • structural integrity and corrosion • functional coatings • simulation and modelling • robotics.

In the 2008 Research Assessment Exercise we were the leading post–92 university in metallurgy and materials (UoA29). 75 per cent of our staff were judged to be internationally leading and we obtained a Times Higher Education average score of 2.15 reflecting the quality of our work and world class staff.

Our staff include • chemists • materials scientists • physicists • computer scientists • mechanical, electronic and electrical engineers, all working on individual or collaborative projects shared between research centres. Supported by a £6m equipment base, which will shortly undergo a £4m refurbishment, this inter-disciplinary approach enables us to solve complex problems ranging from fracture of artificial implants through to designing surfaces that can withstand frictional temperatures in excess of 1,000 degrees centigrade. Solutions to these kinds of problems put MERI at the top in terms of industrial collaboration.

The Materials Research and Analysis Service (MARS) is also a key strength in the research institute, established to provide regional business with access to research facilities and analysis, which enhances the capability of companies in terms of new and improved products.

Evidence of MERI’s research strength is reflected in the patent portfolio that currently consists of 22 granted patents with another 17 applications in progress.

MERI is made up of five centres of excellence

  1. The Thin Films Research Centre
  2. The Centre for Automation and Robotics Research
  3. The Polymers Nanocomposites and Modelling Research Centre
  4. The Structural Materials and Integrity Research Centre
  5. Materials Analysis and Research Services, Centre for Industrial Collaboration (MARS) (CIC)

Course structure

Training and development

An extensive range of training and development opportunities are available to doctoral researchers through the doctoral skills training series and MERI-based training.

MERI training:

Skills training for postgraduate research

This course will comprise 4 main sessions:

  • getting the most out of supervision
  • development needs analysis and personal development plans
  • research integrity and intellectual property
  • getting the most out of conferences

All of the sessions are mandatory for all MERI research students.

Weekly seminar programme

Speakers are invited weekly to discuss their latest research with our staff and students.

Research ethics

This session introduces you to the principle of research ethics and the Sheffield Hallam procedures for ethical clearance. It will also involve you doing an initial ethic checklist for your research project and introduce the online EPIGIUM module ethics 1, which all Sheffield Hallam research students must complete.

RefWorks

RefWorks is a web-based bibliographic system with which you can build up a database of all of your reference material. It is flexible and very powerful, particularly when it comes to outputting reference lists for papers and thesis.

Introduction to bibliographic databases

As a researcher it is vital to be able to access relevant high level information. Here you learn more sophisticated information retrieval skills and see how to use subject specific databases relevant to your research area.

Health and safety for postgraduate research

The session aims to provide clear health and safety guidelines for new postgraduate researchers around personal safety and safety of others within the university environment, including and laboratories & workshops.

Advanced measurement techniques

This module aims to equip you with the skills and knowledge to make informed decisions on experimental materials analysis techniques. A number of techniques are demonstrated, the emphasis being on what each can achieve and the potentials for synergy from combining results obtained using from different techniques. This promotes effective decision making in research planning and operation, as well as a broad understanding of what different approaches can be used for.

MATLAB

MATLAB is a powerful programming language for numerical computations. It is employed in a range of industrial and academic environments. MATLAB has numerous built-in functions for engineering, physical, graphical, mathematical and computing applications. Besides this it has a variety of specialised toolboxes for specific applications, such as control systems, machine vision, signal processing and many others. MATLAB also has the symbolic toolbox that allows operating on symbolic expressions. In the first sessions we will cover MATLAB fundamentals, and the following sessions will be tailored to the specific research needs of attendees.

MERI research symposium event

The MERI Research Symposium is an excellent opportunity for both staff and students who are either active researchers, or who are interested in engaging in research, to meet with colleagues from across the faculty, to raise awareness of current research projects. The event will incorporate talks from academic staff and second year MERI PhD students, with poster presentations from final year undergraduate engineering students and first year MERI students.

Poster preparation

This course is aimed at first year students to give tips and techniques on how to prepare for the MERI Research Symposium Event, at which they will present a poster.

Talk preparation

All second year students are required to give a talk at the MERI Research Symposium Event.

Assessment

Thesis followed by oral examination

Employability

Research degrees are a vital qualification for most academic careers, and for professional specialisation and development in an existing or planned career. The rigorous analytical thinking they involve also demonstrates ability to potential employers in all areas of work.



Read less
Mechatronics is a unique study area that integrates mechanical, electronic and control engineering to create the complex systems that underpin modern automated processes. Read more
Mechatronics is a unique study area that integrates mechanical, electronic and control engineering to create the complex systems that underpin modern automated processes. The course provides coherent and up to date coverage of Mechatronics with specialist modules available in Mechanical, Electronic and Robotics areas. The approach spans specification and design to realisation, with particular emphasis on the application of industry standard CAD tools and DSP devices to develop solutions to practical engineering problems.

NOTE Are you a student from outside the EU? If you are we have designed a version of this award especially for you! It is called the Extended International Master in Mechatronics. It includes an extra semester of preliminary study to prepare you for postgraduate learning in the UK. We strongly recommend that all international students take this option as it is proven to improve your chances of success.

Course content

The course consists of a taught programme followed by an individual project. The taught programme is based on eight modules. Normally these modules are taken over two semesters for the full time route. The individual project is then studied over a further semester to complete the Masters Award.

Semester 1 runs from September to January and Semester 2 from February to June. Study of the MSc normally commences in September. This course has an industrial placement route.

Core modules are:
-Design Technologies for Master
-Research Methods & Project Management
-Embedded Real Time Systems
-MSc Project

Option Modules are:
-Energy Management
-Photovoltaic Technology
-Digital Electronic Systems
-Digital Signal Processing
-Applied Structural Integrity
-Structural Integrity
-Control Systems
-Advanced Engineering Materials
-Sustainable Design & Manufacture

“This course can be completed within 1 year. However this timescale is dependent on students starting the course in September, passing all modules, undertaking their project during the summer semester and experiencing no other delays (such as health issues). Many students choose to delay their project start and enjoy a well-deserved summer break to ‘re-charge their batteries’ which also has academic benefits. In this case a more realistic duration is 15 months for September starters and 18 months for January starters.”

Employment opportunities

Future option for graduates include employment in local, national and international industries normally initially in Research and Development roles although many progress to management positions. Alternatively graduates may choose to pursue further academic qualifications and register for a PhD programme.

Read less
This Masters programme trains graduates of engineering, science or related disciplines in general and specialist process systems engineering subjects. Read more

This Masters programme trains graduates of engineering, science or related disciplines in general and specialist process systems engineering subjects.

Such areas are not generally covered in engineering and science curricula, and BSc graduates tend to be ill prepared for the systems challenges they will face in industry or academia on graduation.

Programme structure

This programme is studied full-time over one academic year and part-time students must study at least two taught technical modules per academic year. It consists of eight taught modules and a dissertation.

Example module listing

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Facilities, equipment and academic support

Modules related to the different groups are taught by a total of six full-time members of staff and a number of visiting lecturers.

As part of their learning experience, students have at their disposal a wide range of relevant software needed to support the programme material dissertation projects. In recent years, this work included the design of various knowledge-based and business systems on the internet, the application of optimisation algorithms, and semantic web applications.

Numerous laboratory facilities across the Faculty and the University are also available for those opting for technology-based projects, such as the process engineering facility, a control and robotics facility and signal processing labs.

The work related to the MSc dissertation can often be carried out in parallel with, and in support of, ongoing research. In the past, several graduates have carried on their MSc research to a PhD programme.

Career prospects

Engineers and scientists are increasingly expected to have skills in information systems engineering and decision-support systems alongside their main technical and/or scientific expertise.

Graduates of this programme will be well prepared to help technology-intensive organisations make important decisions in view of vast amounts of information by adopting, combining, implementing and executing the right technologies.

Educational aims of the programme

The programme aims to provide a highly vocational education which is intellectually rigorous and up-to-date. It also aims to provide the students with the necessary skills required for a successful career in the process industries.

This is achieved through a balanced curriculum with a core of process systems engineering modules supplemented by a flexible element by way of elective modules that permit students to pursue an element of specialisation relevant to their backgrounds, interests and/or career aspirations.

An integrated approach is taken so as to provide a coherent view that explores the interrelationships between the various components of the programme. The programme draws on the stimulus of the Faculty’s research activities.

The programme provides the students with the basis for developing their own approach to learning and personal development.

Programme learning outcomes

Knowledge and understanding

  • State-of- the-art knowledge in process systems engineering methods, in the areas of: modelling and simulation of process systems, mathematical optimization and decision making, process systems design, supply chain management, process and energy integration, and advanced process control technologies
  • Advanced level of understanding in technical topics of preference, in one or more of the following aspects: renewable energy technologies, refinery and petrochemical processes, biomass processing technologies, and knowledge-based systems

Intellectual / cognitive skills

The programme aims to strengthen cognitive skills of the students, particularly in the aspects of problem definition, knowledge and information acquiring, synthesis, and creativity, as collectively demonstrable through the successful completion of the research dissertation. The key learning outcomes include the abilities to:

  • Select, define and focus upon an issue at an appropriate level
  • Collect and digest knowledge and information selectively and independently to support a particular scientific or engineering enquiry
  • Develop and apply relevant and sound methodologies for analysing the issue, developing solutions, recommendations and logical conclusions, and for evaluating the results of own or other’s work

Professional practical skills

The programme primarily aims to develop skills for applying appropriate methods to analyse, develop, and assess process systems and technologies. The key learning outcomes include the abilities to:

  • Assess the available systems in the process industries
  • Design and/or select appropriate system components, and optimise and evaluate system design
  • Apply generic systems engineering methods such as modelling, simulation, and optimization to facilitate the assessment and development of advanced process technologies and systems

Key / transferable skills

The programme aims to strengthen a range of transferable skills which are relevant to the needs of existing and future professionals in knowledge intensive industries irrespective of their sector of operation. The key learning outcomes include the further development of the skills in the following areas:

  • Preparation and delivery of communication and presentation
  • Report and essay writing
  • Use of general and professional computing tools
  • Collaborative working with team members
  • Organising and planning of work
  • Research into new areas, particularly in the aspect of literature review and skills acquisition

Global opportunities

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.



Read less
Created in the context of the rapid advancement of the renewable-energy industry, this Masters programme investigates both renewable energy and systems technologies. Read more

Created in the context of the rapid advancement of the renewable-energy industry, this Masters programme investigates both renewable energy and systems technologies.

It is designed to build your competence and confidence in the R&D and engineering tasks that are demanded of scientific engineers in the renewable and sustainable-development sector.

Programme structure

This programme is studied full-time over one academic year and part-time students must study at least two taught technical modules per academic year. It consists of eight taught modules and a dissertation.

Example module listing

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Facilities, equipment and academic support

Modules related to the different groups are taught by a total of six full-time members of staff and a number of visiting lecturers.

As part of their learning experience, students have at their disposal a wide range of relevant software needed to support the programme material dissertation projects. In recent years, this work included the design of various knowledge-based and business systems on the internet, the application of optimisation algorithms, and semantic web applications.

Numerous laboratory facilities across the Faculty and the University are also available for those opting for technology-based projects, such as the process engineering facility, a control and robotics facility and signal processing labs.

The work related to the MSc dissertation can often be carried out in parallel with, and in support of, ongoing research. In the past, several graduates have carried on their MSc research to a PhD programme.

Career prospects

Engineers and scientists are increasingly expected to have skills in information systems engineering and decision-support systems alongside their main technical and/or scientific expertise.

Graduates of this programme will be well prepared to help technology-intensive organisations make important decisions in view of vast amounts of information by adopting, combining, implementing and executing the right technologies.

Educational aims of the programme

This programme investigates both renewable energy and systems technologies in order to produce scientific researchers and engineers who are competent in the R&D and engineering tasks applicable to the renewable energy and sustainable development sectors.

Its primary aims lie in developing a global understanding of the major types of renewable energy technologies, in-depth knowledge of the technology for biomass-based renewable energy, and knowledge and skills in systems modelling and optimisation.

A balanced curriculum will be provided with a core of renewable energy and systems engineering modules supplemented by a flexible element by way of elective modules that permit students to pursue an element of specialisation relevant to their backgrounds, interests and/or career aspirations.

An integrated approach is taken so as to provide a coherent view that explores the interrelationships between the various components of the programme.

Programme learning outcomes

Knowledge and understanding

The programme aims to develop the knowledge and understanding in both renewable energy and systems engineering. The key learning outcomes include:

  • State-of- the-art knowledge in renewable energy technologies, in terms of: the sources, technologies, systems, performance, and applications of all the major types of renewable energy; approaches to the assessment of renewable energy technologies; the processes, equipment, products, and integration opportunities of biomass-based manufacturing
  • State-of- the-art knowledge in process systems engineering methods, in the areas of: modelling and simulation of process systems; mathematical optimization and decision making; process systems design
  • Advanced level of understanding in technical topics of preference, in one or more of the following aspects: process and energy integration, economics of the energy sector, sustainable development, supply chain management

Intellectual / cognitive skills

The programme aims to strengthen cognitive skills of the students, particularly in the aspects of problem definition, knowledge and information acquiring, synthesis, and creativity, as collectively demonstrable through the successful completion of the research dissertation. The key learning outcomes include the abilities to:

  • Select, define and focus upon an issue at an appropriate level
  • Collect and digest knowledge and information selectively and independently to support a particular scientific or engineering enquiry
  • Develop and apply relevant and sound methodologies for analysing the issue, developing solutions, recommendations and logical conclusions, and for evaluating the results of own or other’s work

Professional practical skills

The programme primarily aims to develop skills for applying appropriate methods to analyze, develop, and assess renewable technologies and systems. The key learning outcomes include the abilities to:

  • Assess the available renewable energy systems
  • Design and select appropriate collection and storage, and optimise and evaluate system design
  • Apply generic systems engineering methods such as modelling, simulation, and optimization to facilitate the assessment and development of renewable energy technologies and systems

Key / transferable skills

The programme aims to strengthen a range of transferable skills which are relevant to the needs of existing and future professionals in knowledge intensive industries irrespective of their sector of operation. The key learning outcomes include the further development of the skills in the following areas:

  • Preparation and delivery of communication and presentation
  • Report and essay writing
  • Use of general and professional computing tools
  • Collaborative working with team members
  • Organizing and planning of work
  • Research into new areas, particularly in the aspect of literature review and skills acquisition

Global opportunities

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.



Read less
The MSc Information and Process Systems Engineering programme is aimed at graduates of traditional engineering, science and related disciplines. Read more

The MSc Information and Process Systems Engineering programme is aimed at graduates of traditional engineering, science and related disciplines.

Graduates from non-IT or related disciplines tend to be ill-prepared for the information and knowledge-related challenges and demands of today’s business environments.

We offer a wide selection of modules spanning process engineering, information systems, business and management. All taught modules are delivered by qualified experts in the topics and academic staff, assisted by specialist external lecturers.

Programme structure

This programme is studied full-time over one academic year. Part-time students must study at least two taught technical modules per academic year. The programme consists of eight taught modules and a dissertation.

Example module listing

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Facilities, equipment and academic support

Modules related to the different groups are taught by a total of six full-time members of staff and a number of visiting lecturers.

An extensive library is available for individual study. It stocks more than 85,000 printed books and e-books, and more than 1,400 (1,100 online) journal titles, all in the broad area of engineering. The library support can be extended further through inter-library loans.

As part of their learning experience, students have at their disposal a wide range of relevant software needed to support the programme material dissertation projects.

In recent years, this work included the design of various knowledge-based and business systems on the internet, the application of optimisation algorithms, and semantic web applications, as well as modelling of process systems.

Numerous laboratory facilities across the Faculty and the University are also available for those opting for technology-based projects, such as the process engineering facility, a control and robotics facility and signal processing labs.

The work related to the MSc dissertation can often be carried out in parallel with, and in support of, on-going research. In the past, several graduates have carried on their MSc research to a PhD programme.

Research

Process integration and systems analysis for sustainability of resources and energy efficiency are carried out within our well-established Centre for Process and Information Systems Engineering (PRISE).

Career prospects

Engineers and scientists are increasingly expected to have skills in information systems engineering and decision support systems alongside their main technical and/or scientific expertise.

Graduates of these programmes will be well prepared to help technology-intensive organisations make important decisions in respect of vast amounts of information, by adopting, combining, implementing and executing the right technologies.

Educational aims of the programme

The primary aims are achieved through a balanced, multi-disciplinary curriculum with a core of information systems engineering modules and decision-making and process systems engineering modules as well as a flexible element by way of elective modules that permit students to pursue an element of specialisation relevant to their backgrounds, interests and/or career aspirations.

An integrated approach is taken so as to provide a coherent view that explores the interrelationships between the various components of the programme.

The programme draws on the stimulus of recent research activities in the Faculty of Engineering and Physical Sciences. The programme provides the students with the basis for developing their own approach to learning and personal development.

Global opportunities

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.

Learn more about opportunities that might be available for this particular programme by using our student exchanges search tool.



Read less
Study at the forefront of ground-breaking innovation with word-leading researchers. We’ll equip you to think adventurously, overcome problems and be part of the process of enabling society to advance. Read more
Study at the forefront of ground-breaking innovation with word-leading researchers. We’ll equip you to think adventurously, overcome problems and be part of the process of enabling society to advance. You’ll test your practical skills in our brand new industry standard workshop.

You’ll gain an in-depth understanding of advanced design and analysis techniques, the use of modern materials and manufacturing technology. We’ll expand your knowledge in a wide range of mechanical engineering areas and related fields, giving you the scope to be creative and scientific in equal measure.

Our course will equip you with transferrable skills, including IT and management as well as data analysis. As a result you’ll be highly employable in the mechanical engineering marketplace, with a choice of different careers available to you.

Full-time - January start, 15 months. September start, 12 months.
Part-time - January start, 33 months. September start, 28 months.

See the website http://www.anglia.ac.uk/study/postgraduate/mechanical-engineering

Careers

Our course will help you find your career in engineering, or give you an additional skills boost if you’re already working in the industry. You may want to work directly in engineering and design or use this degree as a step towards a career in a related area, such as consultancy. You’re also in the perfect position to continue your academic career and move up to our Mechanical Engineering PhD.

Core modules

Computer Aided Engineering Analysis
Biomechanics
Automation and Robotics
Computational Fluid Dynamics
Innovative Product Design and Manufacture
Advanced Materials and Structural Integrity
Research Design and Methods
Dissertation

Assessment

You’ll be assessed in a variety of ways, including written assignments, portfolios, presentations, examinations and a dissertation.

Your faculty

The Faculty of Science & Technology is one of the largest of five faculties at Anglia Ruskin University. Whether you choose to study with us full- or part-time, on campus or at a distance, there’s an option whatever your level – from a foundation degree, to a BSc, MSc, PhD or professional doctorate.

Whichever course you pick, you’ll gain the theory and practical skills needed to progress with confidence. Join us and you could find yourself learning in the very latest laboratories or on field trips or work placements with well-known and respected companies. You may even have the opportunity to study abroad.

Everything we do in the faculty has a singular purpose: to provide a world-class environment to create, share and advance knowledge in science and technology fields. This is key to all of our futures.

Specialist facilities

Studying at our Chelmsford campus, you’ll have access to a comprehensive range of engineering facilities. These include our CADCAM centre, industrial scale CNC milling machine, CNC lathe, rapid prototyping machine, scanning electronic microscope, Instron bi-axial fatigue testing machine, tensile testing machine, material preparation facilities, welding equipment, various mechanical machines, various electronic testing and measuring equipment such as oscilloscopes, and signal generating/ testing facilities. You’ll also be able to access our materials lab and our computer aided engineering lab, our libraries, and open access computer suites.

Read less

  • 1
Show 10 15 30 per page



Cookie Policy    X