• Jacobs University Bremen gGmbH Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of Leeds Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses

Postgrad LIVE! Study Fair

Birmingham | Bristol | Sheffield | Liverpool | Edinburgh

University of Nottingham in China Featured Masters Courses
University College London Featured Masters Courses
University of Cambridge Featured Masters Courses
Nottingham Trent University Featured Masters Courses
Newcastle University Featured Masters Courses
"shale"×
0 miles

Masters Degrees (Shale)

We have 5 Masters Degrees (Shale)

  • "shale" ×
  • clear all
Showing 1 to 5 of 5
Order by 
The programme offers a new and unique approach to energy issues and does not teach how to produce more energy but how to use energy more efficiently! The curriculum provides education in alternative energy materials science and engineering with a strong technology component with specialisations on either materials or processes in sustainable energetics. Read more

The programme offers a new and unique approach to energy issues and does not teach how to produce more energy but how to use energy more efficiently! The curriculum provides education in alternative energy materials science and engineering with a strong technology component with specialisations on either materials or processes in sustainable energetics. The goal of this programme is to educate specialists who are able to design, develop and improve materials for use in sustainable energy systems.

The programme offers a joint degree from two of the biggest and most respected universities in Estonia: Tallinn Tech and the University of Tartu

Key features

  • Integrating lectures, laboratory, theoretical classes and experience in industries
  • Professors of the programme are highly recognised scientists. In 2013 Professor Enn Mellikov received the Estonian National Science Award in the field of solar energy
  • Specialisation in Materials will concentrate on solar panels and fuel cells
  • Specialisation in Processes will teach all about the different ways to produce energy: oil shale, wind energy, water, etc.

Course outline

The goal of the programme is to educate engineers and material scientists in the field of sustainable energetics. For that reason there are two specializations to choose between:

  • Specialization on Materials will concentrate on solar panels and fuel cells
  • Specialization on Processes will teach all about the different ways to produce energy: oil shale, wind energy, water etc. It also gives an overview about how to analyse different methods and how to combine them

Master's programme is connected to the industry and will offer experience in the Estonian Energy Company already during the studies.

The main aim of the curriculum is to educate engineers able to solve or minimize problems connected first of all with the utilization but also with the conversion, transportation and storage of energy. The curriculum provides education in alternative energy materials science and engineering at MSc level with a strong technology component.

The curriculum offers an integrated approach towards current and long term materials and energetics issues, focusing on technologies and concepts in sustainable development of industrial production and use of energy.

The courses will be taught both, in Tallinn University of Technology and University of Tartu in compact courses integrating lectures, laboratory and theoretical classes blocked to just several days duration enabling also the integration of foreign visiting students.

Energy is becoming more and more a major cost factor for all the players in the energy business due to increased worldwide consumption on the one hand and on the other hand a need to restrict the production of greenhouse gases.

By 2030, the world's energy needs are expected to be 50% greater than today. Nowadays, much of this energy comes from non-renewable sources, such as fossil fuels- coal, oil and gas. These fuels are being used faster rate than they are produced and may be unavailable for future generations. At the same time, there is a need for a 25% reduction in greenhouse gas emissions by 2050 to avoid serious changes in the Earth's climate system.

In 2009 Tallinn University of Technology launched in cooperation with University of Tartu a joint master programme „Materials and Processes of Sustainable Energetics“ which teaches different sustainable energy methods.

Keywords such as solar energyfuel cellsbiomass, and wind energy are just the tip of the iceberg to describe the programme. Student can choose specialization either in materials of sustainable energetics or processes of sustainable energetics. Specialization on materials of sustainable energetics will give the student knowledge about solar panels and fuel cells- there is already a spin-off company Crystalsol which specializes on building solar panels. Students who choose to study processes of sustainable energetics will learn different ways how to produce and combine sustainable energy- solar, wind, biomass, etc.

Volume of the programme is 2 years and graduates will be awarded with the Master of Science in Engineering.

Curriculum

Structure of curriculum

Future career options

Since the beginning of the programme, almost 50% of the graduates have continued their studies at PhD level in Tallinn University of Technology or in other universities in Europe or America. This has the result of many career possibilities as a researcher in the field of fuel cells and solar panels for material specialisation students whereas processes students are demanded in industries related to sustainable energetics.



Read less
Our geochemistry research includes specific areas of expertise. applied and fundamental aspects of geochemistry; environmental sustainability; climate change; and biosphere/geosphere interactions. Read more
Our geochemistry research includes specific areas of expertise: applied and fundamental aspects of geochemistry; environmental sustainability; climate change; and biosphere/geosphere interactions. Through working with academics who are leaders in their field, you will be supported and guided to produce research of an international standard.

The School of Civil Engineering and Geosciences enjoys an international reputation for using the latest science to solve problems of global importance. For geochemistry we have MPhil and PhD supervision in the following areas:

Petroleum-related geological research
-Reservoir and source-rock geochemistry
-Microbial deep biosphere of petroleum reservoirs
-Origin, significance and maturation of molecular biomarker compounds in the sedimentary record
-Physico-chemical properties and behaviour of mudstone sequences
-Shale gas
-Geological sequestration of CO2
-Palynofacies and organic facies of ancient and modern sediments

Environment-related research
-Geomicrobiology
-Mineral science
-Molecular microbial ecology
-Molecular palaeontology
-Soil biogeochemistry
-Waste management
-Bioremediation of polluted soils and waters
-Biogeochemical cycling of elements through Earth history
-Climate change during past greenhouse conditions
-Processes of carbon cycling and export across the land–ocean transition

Delivery

We offer the MPhil and PhD on a full time or part time basis. You will work with research-active academics who will provide advice and support throughout your research project. You will receive formal training in research skills and methods and discipline-specific training is provided where appropriate.

The first three months of study involve intensive theoretical and practical tuition to ensure that you have the study skills to plan your project and can use the equipment and software related to your research. You are encouraged to attend our weekly research seminar series and to present your work at our annual postgraduate research conference, group seminars and relevant international conferences.

Facilities

The School of Civil Engineering and Geosciences has an exceptional range of laboratories equipped with a wide range of analytical instrumentation supporting our research, teaching and contract research projects.
-Chemical and Biological Research Laboratories
-Geotechnics and Structures Research Laboratories

Read less
There is still a shortage of qualified engineering specialists in the oil and gas sector, with skilled professionals enjoying competitive salaries. Read more

About the course

There is still a shortage of qualified engineering specialists in the oil and gas sector, with skilled professionals enjoying competitive salaries.

This programme trains specialist engineers in oilfield structural design, fabrication and installation. It is aimed both at engineering and physical science graduates who are interested in working in the oil and gas industry and practising professionals who wish to specialise in the design, analysis and construction of oil and gas installations.

Aims

With high demand for qualified oil and gas engineers, graduates enter a global job market and can expect exciting career prospects - a trend that looks likely to continue for years to come.

As the industry now seeks the rapid drilling and commissioning of new wells to meet energy demands, along with major investment in heavy oils and shale oil and gas, skilled engineers who can rapidly design and commission oilfield installations will be the backbone for growth in this industry. It is precisely this type of engineer that Brunel’s programme will develop.

A distinguishing feature of the course is its ambition to instil systems thinking, by treating structures and their operating environment holistically as a system – helping graduates develop the skills to address a wide range of complex engineering problems rapidly.

Course Content

The programme duration will be 12 months for full-time study, or 24 months for part-time.

The taught part of the programme will take place during the Autumn and Spring terms over 24 weeks. Students will be encouraged to start planning their dissertation at the beginning of the programme. During the Summer term, students will be expected to focus their effort on their dissertation project, researching the dissertation topic full-time. Part-time students will be allowed an extended period to execute their dissertation project in line with the overall programme duration. However, they will be expected to devote an equivalent of at least one day per week on their dissertation project.

This programme has been developed with extensive consultation with the industry. It will be delivered by Brunel staff members and by industrial specialists. The programme structure is shown below and comprises two parts:

Core modules: The taught part of the course (Part 1) worth 120 credits. This includes a set of compulsory modules that provides fundamentals of structural and process engineering, and focuses on providing an understanding of how to design oil and gas structures such as pipelines, offshore and onshore to withstand internal loading induced by complex internal flows of oil and gas and also external loads such as waves and wind. Throughout fundamental mathematical, computational, experimental, testing and inspection techniques as well as codes of practice are taken into account. Civil engineering and construction aspects are also taught.

Dissertation: Your dissertation project forms Part 2 of the programme and is worth 60 credits.

Full-time (12 months) MSc and PGDip modules include:

Petroleum Production Fundamentals
Applied Engineering Mathematics
Structural Materials
Structural Integrity and FEA
Multiphase Flow Fundamentals and Flow Assurance
Dynamics of Petroleum Structures
Design and Construction of Installations
Reliability Engineering and Risk Management

Term Three (MSc Only):

Dissertation
Students will conduct a major piece of research (c. 30,000 words) in an area of oil and gas engineering.

Delivery will take place in block mode teaching with each module requiring a week-long teaching schedule. Laboratory sessions will take place at specialist facilities in the week following the module delivery and will last for up to three days each.

Part-time (24 months) MSc and PGDip:

In the part-time mode, four taught modules are taken each year with the completion of the dissertation following in term three of the second year.

Full-time and part-time (12 and 24 months) PGCert:

Students must take the Design and Construction Installations and Petroleum Production Fundamentals modules and select any other two modules.

Work Placements

Brunel has a purpose built award-winning Professional Development Centre with over 30 staff, including specialist industry consultants. The Placement service includes CV writing, one-to-one guidance and mock interviews. Brunel was named ‘Best University Placement Service’ at the Rate My Placement Awards in 2012.

Teaching

Students are introduced to subject material, including key concepts, information and approaches, through a mixture of standard lectures and seminars, laboratory practicals, self-study and individual research reports. Supporting material is available online. The aim is to challenge students and inspire them to expand their own knowledge and understanding.

Preparation for work is achieved through the development of 'soft' skills such as communication, planning, management and team work.
In addition, guest speakers from industries will provide a valuable insight into the real world of the oil and gas sector.

Many elements of coursework involve, and reward, the use of initiative and imagination. Some of the projects may be linked with research in the College's research institutes.

Assessment

Each module is assessed either by formal examination, written assignments and laboratories or a combination of these. Cut-off dates for receipt of assignments are specified at the beginning of the academic year. Examinations are normally taken in December and May.

Special Features

Students will be able to access laboratory facilities at the recently formed NSIRC site which are extensive, modern and well equipped.

Although we recruit a large number of highly qualified students to our undergraduate, postgraduate and research degrees each year, we don’t forget that you are an individual. From the beginning of your time here, you are allocated a personal tutor who will guide you through academic and pastoral issues.

The College is research intensive as our academics are actively involved in cutting-edge research. Much of this research is undertaken with collaborators outside the University, including leading oil and gas companies, construction companies, water utilities, and other leading industrial firms. We work with universities in China, Poland, Egypt, Turkey, Italy, Denmark and Japan. This research is fed directly into our courses, providing a challenging investigative culture and ensuring that you are exposed to up-to-date and relevant material throughout your time at Brunel.

We have excellent links with business and industry in the UK and overseas. This means:
Brunel degrees are designed to meet the needs of industry and the market-place;
The latest developments in the commercial world feed into your course;
You have greater opportunity at the dissertation stage of conducting a dissertation in industry;
We have more contacts to help you find a job when you graduate.

Accreditation

This course has been designed and developed in close consultation with industry and the Oil and Gas Engineering MSc is accredited by the Institute of Materials, Minerals and Mining (IOM3). We are seeking accreditation with the following professional bodies:

Institution of Mechanical Engineers
Society of Petroleum Engineers
Institution of Chemical Engineers

Read less
This MSc will prepare students for highly skilled, multidisciplinary managerial roles in the natural resources sector across the globe. Read more

This MSc will prepare students for highly skilled, multidisciplinary managerial roles in the natural resources sector across the globe. The programme is transcontinental (offered by UCL and the University of South Australia (UniSA)), is delivered by UCL Chemical Engineering, UCL Earth Sciences, UCL School of Management, and the Future Industries Institute at UniSA, and designed with significant input from industry.

About this degree

Students develop knowledge of geology, geosciences, geochemistry and the chemical processes used to transform raw materials into commmodities; managerial skills; and an understanding of the relationship between limited natural resources, economic forces, and the implications for society. The first two terms are spent at UCL in London and the third term and summer at UniSA in Adelaide.

Students undertake modules to the value of 180 credits.

The programme consists of eight core modules (120 credits) and a dissertation (60 credits).

Core modules

  • Business Sustainability
  • Decision and Risk Analysis
  • Earth Resources and Sustainability
  • Geology for Global Managers and Engineers
  • Minerals Usage, Extraction and Processing
  • Natural Gas Processing
  • Prevention and Remediation of Environmental Contamination
  • Social Licensing

Optional modules

There are no optional modules for this programme.

Dissertation/report

All students undertake a dissertation of 6,000 words based on an individual research project, field trip and executive summary. They must also complete an oral examination of 20 minutes maximum.

Teaching and learning

The programme is delivered through a combination of lectures, seminars, site visits, independent reading and research as well as online material. Some of the modules taught in London will be co-taught by experts at UniSA via remote teaching methods. Assessment is by examination, coursework, process design, oral presentation, online quizzing, reports and writing executive summaries, with some components involving group work.

Further information on modules and degree structure is available on the department website: Global Management of Natural Resources MSc

Careers

The Global Management of Natural Resources MSc will prepare graduates for highly skilled, multidisciplinary managerial jobs in the natural resources sector. Recent university graduates who apply will gain a global perspective on the natural resources sector. Mid-career professionals already employed will expand their range of expertise. 

Our graduates will also be equipped for further postgraduate research in relevant disciplines.

Employability

Successful graduates will have wide knowledge of the energy and natural resources industries, have strong managerial and communication skills, be aware and respectful of social responsibilities, and operate within national and international constraints.

Why study this degree at UCL?

UCL is consistently placed in the global top 20 in a wide range of world rankings and in the latest Research Excellence Framework (REF 2014) UCL was the top-rated UK university for research strength. This MSc has developed from the European-funded research project ShaleXenvironmenT (in which UCL was an academic partner) and anticipates increasing demand for managerial professionals in existing and developing natural resources fields. UniSA is one of Australia’s leading universities for interdisciplinary research.

Our programme aims to produce global citizens and offers networking opportunities in London and Adelaide. We offer career advice throughout the programme and foster transferable skills through our multidisciplinary environment.

The programme includes a field trip to explore sedimentary formations similar to shale plays in either Spain or the UK. There is another field trip to a copper, gold or uranium mine in South Australia.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: Chemical Engineering

90% rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less
From air pollution to the spread of vector-borne diseases, changes in our environment can have profound repercussions for human health. Read more

From air pollution to the spread of vector-borne diseases, changes in our environment can have profound repercussions for human health.

The Health and the Global Environment Option of the MSc Environmental Technology is offered in collaboration with a highly qualified network of practitioners encompassing Imperial’s Centre for Environmental Policy, School of Public Health, the MRC-PHE Centre for Environment and Health, and the Grantham Institute - Climate Change and the Environment. The option focusses on building students’ knowledge and understanding of the key issues that link human and environmental health.  

This is a highly dynamic and stimulating environment in which to study, where you will interact with a range of academics, staff scientists and policy analysts working on the most pressing environmental and health issues both locally and globally. 

Context

Human health is fundamentally linked to our environment. Environmental factors contribute significantly to the global disease burden, with an estimated 25% of death and disease globally linked to environmental hazards. In developing contexts, this figure can be much higher, reaching 35% in regions such as sub-Saharan Africa.

Crucially, many of these hazards are created or exacerbated by human activities, so managing health for the environment and the environment for health is a growing priority on the environment, public and global health agendas.

Content

The Health and the Global Environment Option is designed to develop students’ knowledge and understanding of the key issues in environment and health. The emphasis throughout the course is on the understanding of the principles of exposure assessment, epidemiology, toxicology, health risk assessment and health protection, and their application in the field of environment and health, including:

  • field sampling and laboratory analysis for direct determination of contaminants within environmental systems;
  • practical experience of the use of key methods to assess environmental impacts on health;
  • exposure to major global public health challenges, and the stakeholders involved in tackling these issues.

The Option content covers four main themes:

Theme 1: Managing the Environment for Health

Considers the causes of environmental perturbation, its impacts on health, and approaches to resource management that may benefit health in a global context.

Theme 2: Environmental Decision-Making and Tools

Introduces important policy tools and techniques to assist in robust and transparent decision-making.

Theme 3: Quantifying Exposure and Health Impacts

Develops understanding of the principles and tools for qualitatively and/or quantitatively characterising health risks and impacts related to environmental sources.

Theme 4: Health and the Global Environment

Introduces key concepts in global health and global environmental change, their interactions and impacts, and identifies opportunities for co-management.


Fieldwork

Students complete two assessed pieces of coursework. The first is undertaken in collaboration with the Environmental Analysis & Assessment and Water Management options of the MSc, and provides a "real-world" case study looking at contaminated land and water on Hounslow Heath, near Heathrow Airport, in close collaboration with the London Borough of Hounslow Council.

The other is a client-based case study specific to the Health and Global Environment option, and provides the opportunity for students to apply their developing knowledge to an emerging problem within the field of health and the global environment. These projects vary from year to year, with past topics and clients including:

  • Waste Electrical and Electronic Equipment and Health (International Solid Waste Association)
  • Public health and environmental issues associated with shale gas extraction (Public Health England)
  • Evaluating the effectiveness of current heat wave interventions (Committee on Climate Change)

Careers

The ultimate aim of the Health and Global Environment option is to prepare students for employment in consultancies, regulatory agencies, industry, research or non-governmental organisations where a systems-based understanding of environment and health issues is vital. Our alumni have found employment in government departments, consultancies, universities and NGOs.

“The experience I gained while studying the Health and Global Environment option really advantaged me in my career as a Health Impact Assessment consultant. Understanding the key concepts relating to topics covered such as epidemiology and exposure assessment is vital when linking health with planning. Although my focus is in the UK, one of the major benefits of the option is that it covers public health issues and management techniques in both the developed and developing world, giving students the opportunity to work anywhere.” Tara Barratt, Assistant Consultant, RPS Planning & Development

"The main strength of the health option is the opportunity to meet people from a wide variety of professions who lecture on different topics within the course. This brings the real world into the class room, giving the theory a more practical element. I am now a research associate in Occupational Health at the University of Birmingham and my knowledge of the industry from talking to visiting lecturers gives me extra confidence when talking to others at company meetings." Joanna Pope, University of Birmingham

"The whole health option course provided me with a sound knowledge of the broad area of health and the environment. Specifically, the training I received in the principles of exposure assessment, toxicology and epidemiology served me excellently in my summer project, which I undertook in Romania. The generic project skills which I learnt throughout the duration of the course have given me the resources to draw upon as a freelance environmental consultant." James Grellier, Environmental Resources Management (ERM) Ltd



Read less

  • 1
Show 10 15 30 per page



Cookie Policy    X