• Northumbria University Featured Masters Courses
  • University of Leeds Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • University of Edinburgh Featured Masters Courses

Postgrad LIVE! Study Fair

Birmingham | Bristol | Sheffield | Liverpool | Edinburgh

University of London International Programmes Featured Masters Courses
King’s College London Featured Masters Courses
Southampton Solent University Featured Masters Courses
Imperial College London Featured Masters Courses
Teesside University Featured Masters Courses
"sensing"×
0 miles

Masters Degrees (Sensing)

We have 230 Masters Degrees (Sensing)

  • "sensing" ×
  • clear all
Showing 1 to 15 of 230
Order by 
This highly interdisciplinary Masters course will expose you to the cutting edge of understanding in Remote Sensing and GIS. Read more

About the course

This highly interdisciplinary Masters course will expose you to the cutting edge of understanding in Remote Sensing and GIS. Administered by the Department of Geography and Earth Sciences, but accessing interdepartmental expertise, this course will provide you with both a strong theoretical and conceptual background and vocational training in Remote Sensing and GIS. You will be taught by lecturers who are active researchers working at the cutting edge of their disciplines, and will benefit from being taught the latest geographical theories and techniques. Graduates of this course progress to a wide range of employment positions in both the industry and academia.

Why study MSc Remote Sensing and GIS at Aberystwyth University?

• Study in a high quality outdoor physical environment and multi-national community

• The Department of Geography and Earth Science is top in Wales, with 78% of its research classified as either ‘world leading’ or ‘internationally excellent’ - REF 2014

• Aberystwyth DGES is in the top ten of UK Geography departments with regards to research power, which provides a measure of the quality of research, as well as of the number of staff undertaking research within the department

• DGES receives funding from organisations such as United Nations, WHO and the European Research Council

• Students have access to a dedicated computer laboratory for research in GIS and remote sensing which is fully equipped with the latest software platforms.

• Masters students have the opportunity to participate in significant meetings and conferences, such as the Remote Sensing and Photogrammetry Society Annual Conference

• This course has a strong vocational aspect and offers an integration of cutting-edge theory and practical application

• Remote Sensing Masters are offered through the collaboration of three world-class institutes at the university, giving students access to this collective expertise and experience as well as to superb departmental facilities

Course structure and content

In the first two semesters you will undertake a number of core modules, worth a total of 120 credits. This includes modules on Remote Sensing Issues and the Fundamentals of Remote Sensing and GIS, alongside modules on Advanced Research Skills, Skills in Remote Sensing, and Work Experience in Geographical Information Systems/Remote Sensing.

In the third semester, students will undertake the independent research component of the course, and will complete a 60 credit Research Dissertation in Geographical Information Systems/Remote Sensing.

Core modules:

Advanced Research Skills 1: science communication and data analysis
Advanced Research Skills 2: research design and data acquisition
Fundamentals of Remote Sensing and GIS
Remote Sensing Issues
Research Dissertation in Geographical Information Systems/Remote Sensing
Skills in Remote Sensing
Work Experience in Geographical Information Systems/Remote Sensing

Contact Time

Approximately 8-10 hours a week in the first two semesters. During semester three you will arrange your level of contact time with your assigned supervisor.

Assessment

The taught part of the course (Part 1) is delivered and assessed through lectures, student seminars, practical exercises, case studies, course work and formal examinations. The subsequent successful submission of your research dissertation (Part 2) leads to the award of MSc.

Careers

Our alumni have taken positions with UK and international government bodies, private enterprises and leading research establishments. This MSc in Remote Sensing and GIS will open up a diverse range of careers for its students.

By studying this course, you will be a highly competent contributor to any work relating to:

• climate change
• human impacts on terrestrial ecosystems
• glaciology
• hydrology
• forestry
• coastal change
• carbon cycle science
• biodiversity
• consultancy

Skills through this programme you will enhance your:

• Presentation and communication skills
• Research and study skills
• Field expertise and data collection skills
• Critical analysis and evaluation
• Academic and practical knowledge
• Understanding of scientific processes and advanced technical tools
• Confidence with GIS and remote sensing software systems, technologies and programming languages
• Project management skills

Field Trip

As a highly practical Masters course, it offers also the opportunity for students to gain hands-on experience in the use of field equipment and the collection of ground truth data to support the interpretation and analysis of remote sensing and GIS datasets. This will allow you to covert the academic theory of research and data collection into the proven know-how of experience.

Read less
The Remote Sensing and Geographic Information Systems Master of Science Program at UAE University is the first of its kind in the region. Read more
The Remote Sensing and Geographic Information Systems Master of Science Program at UAE University is the first of its kind in the region. It is designed to provide you with the theoretical background and practical skills to start or advance your career in remote sensing and GIS. Our curriculum has been specifically developed to suit students from diverse academic backgrounds and professional occupations. No prior remote sensing or GIS experience is required to excel in the program. (Total credit hours is 30 for theses and 34 for no-theses). For more details on this program, click here: http://www.chss.uaeu.ac.ae/en/rsgis/index.shtml

Program Objectives

‌•Discuss the theoretical background and practical skills for a career in Remote Sensing or GIS.
‌•Identify the recent advances in Remote Sensing, GIS and GNSS relating that with scientific research and its role in the society.
‌•Apply analytical and spatial thinking skills needed for successful use of remote sensing and GIS in solving spatial problems.

Program Learning Outcomes

‌•Upon successful completion of this program, students will be able to:
‌•Discuss the theoretical principles of remote sensing and GIS and their role in modeling and solving environmental, urban and social issues.
‌•Recognize advanced analysis and interpretation skills needed in remote sensing and GIS.
‌•Apply practical remote sensing and GIS procedures for assessing and solving environmental, urban, geologic and societal problems.
‌•Communicate remote sensing and GIS related ideas and results both orally and in writing.
‌•Develop remote sensing and GIS project management, team work and leadership skills.
‌•Produce scientific research related to the applications of remote sensing and GIS.

Program Structure

‌•Required Courses (18.00 hours)
‌•Principles of Remote Sensing
‌•Fundamentals of GIS
‌•Digital Image Processing in RS
‌•Spatial Analysis Using GIS
‌•Local & Web Based Services GIS
‌•Database Management Systems
‌•Seminar on Management Issues in RS&GIS
‌•Geo-Statistics

Elective Courses - 6CH for Thesis option and 12CH for Non-Thesis option (12.00 hours)

‌•Coastal Management
‌•Spatial Data Collection
‌•Advanced Remote Sensing
‌•Satellite Positioning
‌•Software Engineering for GIS
‌•Selected Topics
‌•Project Management
‌•Transport Applications of GIS
‌•Urban and Environmental Applications of Remote sensing and GIS
‌•Remote Sensing and GIS for Petroleum

Thesis or Capstone

Required Courses (Min CH:4 and Max CH:6) (6.00 hours)

‌•Capstone
‌•Thesis

Read less
Given the wider development of Citizen GIS and an increased public awareness and knowledge of the power and value of spatial data, vastly increased amounts of such data from different sources are now available to researchers. Read more

Overview

Given the wider development of Citizen GIS and an increased public awareness and knowledge of the power and value of spatial data, vastly increased amounts of such data from different sources are now available to researchers. However, in order to turn these data into useful information, they must be efficiently managed, processed and analysed before being displayed in a comprehensible format. Geographical Information Systems and the associated field of Remote Sensing greatly aid us in such tasks. The course is equally split between both parts - GIS and Remote Sensing - with four core module introducing the theory and practice of both subject at an introductory and advanced level. Geographical Information Systems or GIS as they are better known, are widely used in a wide variety of subject fields across the physical and social sciences and even in the humanities, with applicability in everything from archaeology and astronomy to geomorphology and globalisation to soil science and social planning. Remote Sensing – the analysis and interpretation of aerial and satellite imagery – has transformed the manner in which we view the Earth. The synoptic view of the Earth that it has given us has greatly improved our understanding of atmospheric and oceanic processes, sustained environmental management and the interaction of humans with the natural world. It is now a standard research tool in many fields such as geology, geography, pollution control, agriculture and climatology. Additional optional modules in Programming, Spatial Databases and Remote Sensing of the Subsurface are also available to students who want to develop the technical side more fully, though the course has a strong applied flavour throughout. In addition, all students complete a work placement in the Summer months which allows them to gain valuable practical experience to test and develop the skills learnt across the course.

Aims of the Course:
- To provide highly qualified, motivated graduates who have been trained in Geographical Information Systems, Remote Sensing and Digital Image Processing and who can apply the information technology skills they obtain.

- To produce marketable graduates who will make significant contributions to GIS and RS application areas including; industry, government, academia, the community and voluntary sector and other public and private bodies.

- To provide an understanding of Geographical Information Systems and Remote Sensing, the technology involved and its applications for specific investigations.

Course Structure

The course consists of 6 modules, 5 of which are compulsory. Two of these cover the theoretical concepts underpinning GIS and Remote Sensing. Two other modules involve gaining the theoretical and technical skills necessary to become proficient in the management and analysis of spatial data. A fifth module involves an assessed work placement during the summer months. Modules include work placement, theoretical remote sensing, digital image processing and advanced remote sensing, introductory GIS systems and science and GIS in practice with optional programming, spatial databases and geophysics modules.

Career Options

The MSc in GIS and Remote Sensing is first and foremost a course to skill students for work in a wide range of employment areas. These include a wide range of government and semi-state agencies, local authorities and the voluntary sector, especially in areas associated with the environment and planning. In addition, graduates have worked in a wide range of private sector organisations and businesses, where the ability to work with and critically managed big spatial data is increasingly valued. Successful students have also proceeded to PhD level research and gained employment in academia.

How To Apply

Online application only http://www.pac.ie/maynoothuniversity

PAC Code
MHN58
The following information should be forwarded to PAC, 1 Courthouse Square, Galway or uploaded to your online application form:

Certified copies of all official transcripts of results for all non-Maynooth University qualifications listed MUST accompany the application. Failure to do so will delay your application being processed. Non-Maynooth University students are asked to provide two academic references and a copy of birth certificate or valid passport.

Find information on Scholarships here https://www.maynoothuniversity.ie/study-maynooth/postgraduate-studies/fees-funding-scholarships

Read less
The degree is the leading Master's programme in remote sensing and environmental mapping available in the UK. Read more

The degree is the leading Master's programme in remote sensing and environmental mapping available in the UK. It offers the opportunity to study at an advanced level the ways in which remote sensing from ground-based to spaceborne platforms may be used to collect environmental information about the terrestrial biosphere, atmosphere, oceans and cryosphere at a range of scales and across wavelengths.

About this degree

Students develop an all-round knowledge of remote sensing, mapping and data analysis. including fundamental principles, current technological developments and applications to local, regional and global problems. They gain highly developed, marketable practical skills to enable them to take leading roles in academic, government and industrial sectors.

Students undertake modules to the value of 180 credits.

The programme consists of four core modules in term one (60 credits), four optional modules in term two (60 credits) and a research project in term three (60 credits).

A Postgraduate Certificate (60 credits), full-time 12 weeks, flexible study up to two years is offered.

Core modules

  • Analytical and Numerical Methods
  • Scientific Computing
  • Geospatial Science* subject to approval
  • Principles and Practice of Remote Sensing

Optional modules

  • Terrestrial Carbon: Modelling and Monitoring
  • Global Monitoring of Environment and Society
  • Airborne Data Acquisition
  • Image Understanding
  • Ocean and Coastal Zone Management
  • Terrestrial Data Acquisition
  • Climate Modelling

Dissertation/report

All students undertake an individual research project. The department has links with industry, and projects may be carried out in collaboration with organisations outside UCL.

Teaching and learning

The programme is delivered through a combination of lectures, demonstrations, individual and group coursework, and compulsory computer training. Student learning is supported by tutorials, transferable skills training and research supervision throughout the year. Assessment is through unseen written examinations, coursework, dissertation and an oral presentation.

Further information on modules and degree structure is available on the department website: Remote Sensing and Environmental Mapping MSc

Funding

For a comprehensive list of the funding opportunities available at UCL, including funding relevant to your nationality, please visit the Scholarships and Funding website.

Careers

Graduates find jobs in diverse companies: from consultancies carrying out environmental and spatial analysis through to major international geospatial companies, or government and government-affiliated agencies. The programme is also suitable training for those wishing to undertake higher level work as a prelude to a PhD in a quantitative environmental discipline.

Recent career destinations for this degree

  • Remote Sensing Analyst, British Antarctic Survey
  • Remote Sensing Service Provider, Jacques Malaprade.
  • Research Scientist, National Physical Laboratory
  • Image Analyst, Civil Service
  • PhD in Geography, University of Cambridge

Employability

The range of generic, transferable skills provided by the degree programme are attractive to a range of employers. Students gain a fundamental understanding of the key principles of remote sensing, mapping, environmental data handling and analysis, as well as the ability to communicate their ideas. Such skills and knowledge are applicable across a wide range of careers. The long heritage of the programme - over 30 years - and its interdisciplinary, intercollegiate nature provides students with a unique perspective, not just from UCL, but across the wider world of remote sensing, mapping and environmental science.

Careers data is taken from the ‘Destinations of Leavers from Higher Education’ survey undertaken by HESA looking at the destinations of UK and EU students in the 2013–2015 graduating cohorts six months after graduation.

Why study this degree at UCL?

The MSc is run by UCL Geography, which enjoys an outstanding reputation for its research and teaching, and has a long pedigree in producing highly employable graduates for industry, research, policy and many other areas.

A distinctive feature of the programme is its intercollegiate nature which exposes students to a range of university departments and expertise across fields including terrestrial vegetation and carbon stocks, solid earth and geology, fire impacts, new sensor technology and ocean processes.

The degree is integrated with other Geography MSc programmes providing greater flexibility when choosing optional modules.



Read less
This innovative, interdisciplinary programme combines the areas of remote sensing and spatial analysis to provide a broad overview of the subject, with scope for specialisation. Read more

This innovative, interdisciplinary programme combines the areas of remote sensing and spatial analysis to provide a broad overview of the subject, with scope for specialisation.

Introducing your course

If you have an interest in utilising computer technology to apply geographical knowledge in order to address key societal and environmental issues then our MSc in Applied Geographical Information Systems and Remote Sensing (AGIS&RS) is tailor made for you. You will develop the understanding and technical skills required to analyse geospatial data in order to address real-world problems in diverse areas such as public health, food security or to improving our understanding of the carbon cycle. Combining cutting edge research in Geographical Information Systems (GIS) and satellite remote sensing, this innovative master’s degree can open the door to successful careers in environmental consultancy firms, software companies, government research institutes and post-graduate research degrees to help you fulfil your ambition.

Overview

Our MSc in Applied Geographical Information Systems and Remote Sensing has three distinctive features:

  • It focuses on ‘real world’ problems by applying the technology to areas such as public health and environmental management
  • It combines the study of two key technologies – remote sensing and geographical information systems – within a single programme
  • It is characterised by strong external links outside the University

The programme will develop your knowledge of the subject area in order to enhance employment opportunities within earth observation and GIS communities, consultancies, private and public sectors.

View the programme specification document for this course



Read less
This exciting, two year MSc programme is concerned with a wide range of biomedical imaging and sensing science and technology. Biomedical Imaging and Sensing is, in a broad sense, a set of competencies from engineering and sciences to support future quantitative biology and personalised medicine. Read more
This exciting, two year MSc programme is concerned with a wide range of biomedical imaging and sensing science and technology. Biomedical Imaging and Sensing is, in a broad sense, a set of competencies from engineering and sciences to support future quantitative biology and personalised medicine.

It will provide you with theoretical and practical knowledge to develop methods and systems for disease understanding, diagnosis, prognosis and therapeutics where imaging and sensing play a key role.

Core modules

Interdisciplinary Seminars in Biomedical Imaging and Sensing
Mathematics of Imaging Sciences
Scientific Software Development for Biomedical Imaging

Departmental optional modules

Advanced Signal Processing
Computer Vision, Biomedical Signals and Systems
Physiological Signals and Sensing; Physics of Light Microscopy of Cells and Tissues
Physics of Medical Imaging with Ionising Radiation
Physical Principles of Imaging: Radiation-Matter Interaction
Medical Image Computing
Biomaging with Light and Sound
Microscopy Image Analysis
Magnetic Resonance Imaging and Spectroscopy

Interdisciplinary optional modules

The programme allows you to explore some elective modules from interdisciplinary domains that relate to anatomy, physiology, cell biology, physics of the senses, and vision and neurosciences, among others.

Teaching and assessment

Research-led teaching from our department, and various interdisciplinary modules from other departments from the Faculty of Engineering and the Faculty of Medicine, Health and Dentistry.

Individual support for your research project and dissertation.

Assessment is by examination, a project, and coursework in the first year with future examinations and dissertation in your second year.

Read less
MSc Geo-Information Science. Do you want to contribute to solving multidisciplinary and complex issues using Geo- information science, geo-informatics and remote sensing? Then the master's Geo- Information Science is a perfect match for you!. Read more

MSc Geo-Information Science

Do you want to contribute to solving multidisciplinary and complex issues using Geo- information science, geo-informatics and remote sensing? Then the master's Geo- Information Science is a perfect match for you!

The increasing complexity of our society demands for specialists who can collect, manage, analyse and present spatial data using state-of-the-art methods and tools. At Wageningen University & Research we offer a unique, top-quality programme that blends geo-information science methods, technologies and applications within environmental and life sciences for a changing world. Our Geo-information Science graduates usually have a job waiting for them on graduation. Read more about the background of the programme

Specialisations

There are no formal specialisations in the Geo-Information Science programme. You can specialise by taking advanced courses in GIS and/or Remote Sensing, and by selecting courses in a range of application fields or geo-information technology. Furthermore, you develop your Geo-information Science profile by completing a major research thesis in one of the following research fields:

Your choice of internship location is another factor in developing your profile and specialisation.

Your future career

The increasing demand for digital geographical information has resulted in a phenomenal growth in the discipline of Geo-Information Science. The demand for geo-information is the result of an increase in environmental problems and the need to manage the natural and the social environment.The increasing demand for digital geographical information has resulted in a phenomenal growth in the discipline of Geo-Information Science.

The overview below provides more detailed information about the fields and positions taken by our alumni on graduation:

In Research

  • PhD
  • Researcher
  • Research Assistant

In Consultancy

  • Remote Sensing Specialist
  • Consultant
  • GIS adviser
  • Geo-information Manager
  • Geo-information Analist

In Education

  • Lecturer

Read more about career perspectives and opportunities after finishing the programme.

Related programmes:

MSc Geographical Information Management and Applications

MSc Forest and Nature Conservation 

MSc Landscape Architecture and Planning

MSc Environmental Sciences 

MSc Biosystems Engineering



Read less
The MSc in Geoinformatics addresses the growing need for science-trained postgraduates who are technically aware and competent to work in the field of geoinformatics, particularly as applied to environmental and resource management. Read more
The MSc in Geoinformatics addresses the growing need for science-trained postgraduates who are technically aware and competent to work in the field of geoinformatics, particularly as applied to environmental and resource management. This twelve month full-time course of study covers both the theoretical and practical aspects of geoinformatics, including Geographical Information Systems (GIS), Remote Sensing (RS), satellite navigation systems, cartography, visualisation, programming and web services.

The course consists of 60 credits of taught modules, followed by independent research towards a dissertation worth 30 credits. In addition to the taught modules, you will have the opportunity to meet practitioners through regular seminars led by experts in the discipline from Ireland and abroad, visits to local geoinformatics enterprises and attendance at relevant Irish conferences. With an MSc in GIS and RS, you will be highly sought after by employers on graduation.

Visit the website: http://www.ucc.ie/en/ckr09/

Course Detail

The course introduces you to the foundational concepts of GIS, RS and cartography in the first teaching period, with lectures and practical classes which explore the underlying principles of the subjects. These skills are developed in the second teaching period with more advanced digital image processing, spatial analysis and computer programming, again taught through lectures and practical classes.

Running throughout both teaching periods are modules which develop your research skills and explore the applications, technologies and systems of geoinformatics. These modules are taught through a variety of methods which include workshops, seminars, fieldtrips, conferences, site visits, group projects and independent study.

Leading national and international geoinformatics practitioners are invited to lead seminars highlighting industrial, commercial and governmental applications and, where applicable, to demonstrate different equipment used in the discipline. You are encouraged to explore your own interests in geoinformatics through self-directed studies, oral presentations, networking with professional researchers and attending the annual national GIS and RS conferences held each autumn.

One of the highlights of the teaching period is the weekend field trip which allows students to gain hands-on experience with a variety of different instruments and to experience the complete data acquisition, processing, evaluation and presentation chain.

When you complete the taught modules you are eligible to undertake the research project in an area of your own choice within the geoinformatics discipline over a four month period from May to September. This research may be undertaken in the university or with the support of a commercial placement organised by you and culminates in a 15,000 word thesis. All students have a dedicated computer in the masters’ lab in the Department of Geography and are provided with student copies of relevant software as well as access to departmental equipment as necessary for research projects.

Further details on the content and modules are available on the Postgraduate College Calendar - http://www.ucc.ie/calendar/postgraduate/Masters/science/page05.html#geographical

Format

During the two teaching periods, there are daily classes that typically consist of one to two hours of morning lectures followed by two to three hours of afternoon practical sessions in the computer lab. For every hour of taught classes, students are expected to spend two to three hours on self-directed study. An overnight stay may be required for attendance at the national conferences, depending on their location, but the weekend field trip is within easy travelling distance of Cork. Students are made aware of the dates of these events at the earliest opportunity and they are a compulsory part of the course.

Placement and Study Abroad Information

While there are no compulsory placement requirements as part of the course, you are actively encouraged to seek opportunities to develop your skills in a commercial environment as part of the independent research project. Several successful partnerships have been developed in this way, resulting in students having access to data and knowledge not available in-house and enabling them to undertake novel and innovative research that directly supports the work of a commercial or government enterprise.

Assessment

Because of the very practical nature of the subject, there is a large element of coursework with some of the taught modules assessed entirely through computer-based exercises, written reports, projects and practical activities. Some modules are also assessed through a combination of coursework and examination at the end of each of the two teaching periods. Students are assessed on valuable transferable skills that include written, mathematical, problem-solving and oral assignments, many of which are completed individually or in small groups.

Careers

You will gain a wide variety of technical skills on this programme, including computer-based activities and use of field instruments. You are also made aware of the importance of theoretical concepts, policy initiatives and commercial constraints and limitations which impact on the use of geoinformatics in the workplace. Many transferable skills are also fostered through different learning approaches, including critical thinking, problem-solving, report writing, oral presentations, statistical analysis, independent research and time management.

How to apply: http://www.ucc.ie/en/study/postgrad/how/

Funding and Scholarships

Information regarding funding and available scholarships can be found here: https://www.ucc.ie/en/cblgradschool/current/fundingandfinance/fundingscholarships/

Read less
Jointly run by the University of Salford and Manchester Metropolitan University, UNIGIS is a three year programme, with the first two years comprising taught units, and a final year to complete a dissertation. Read more
Jointly run by the University of Salford and Manchester Metropolitan University, UNIGIS is a three year programme, with the first two years comprising taught units, and a final year to complete a dissertation.

The Geographical Information Systems (GIS) pathway aims to provide students with a broadly based postgraduate qualification in the field of GIS. Importantly, it offers students choice in the selection of their application area (with a range of units available). The pathway helps students to develop an in-depth knowledge of the issues involved in applying GIS to solving spatial problems with an understanding of the constraints imposed by the application area(s) and the interactions between data, methods, people, and technology.

The first year of study (equivalent to PgC in GIS) involves three core units:

Foundations of GIS -
This unit provides an introduction to Geographical Information Systems (GIS) from conceptual, theoretical, and practical perspectives. Students will learn about the different methods used in geographic encoding and spatial data modelling before employing such datasets in a software environment. The unit concludes with a review of contemporary issues in GIS. Key elements of the curriculum include: Origins of GIS; Representation, Modelling and Geovisualisation; Software Skills; GIS: Today and Tomorrow.

Spatial Data Infrastructures -
Spatial data is key to any GIS project. This unit investigates how spatial data is sourced and also aims to provide students with the requisite knowledge and practical skills to identify and evaluate, against recognised national and international quality standards, spatial data for use in GI-based projects. Key elements of the curriculum include: Spatial Data; Data Standards and Infrastructures; Sourcing Spatial Data; Data Quality; Evaluating Fitness for Purpose.

Databases -
GIS are fundamentally information systems which provide specialist facilities for the creation, storage and manipulation of spatial and attribute data. Much of the functionality offered by GIS software is shared with conventional database software. Indeed, most GIS - at their core - have a conventional database management system (DBMS) around which spatial functionality has been wrapped. It is essential that GIS specialists have a thorough understanding of database theory, design and implementation. Key elements of the curriculum include: Why Databases?; Relational Databases; Critiquing Relational Databases; Implementation and Interrogation.

The second year of study (equivalent to the PgD in GIS) involves one core and two elective units:

Methods in GIS (core) -
The concepts, theories and methods behind the application of GIS are examined in detail. The unit explores research design, data analysis and interpretation and presentation. Special focus is given to methods of spatial analysis and their implementation using GIS software. Key elements of the curriculum include: Research Design; Qualitative and Quantitative Techniques; Fundamentals of Spatial Analysis; Recent Advances in Spatial Analysis.

Two elective units are chosen from:

Distributed GIS -
This unit discusses the most vibrant and rapidly developing area of geospatial technology. Desktop GIS packages are increasingly looking like the specialist packages for serious users that, in truth, they always were. Now, for the very large majority of people who really only want to look at the location of things, we can offer WebGIS systems that deliver what they need directly into their web-browsers. This unit explains the concepts and methods of Internet GIS, development and its applications. Key elements of the curriculum include: From Desktop to Distributed GI Services; Technologies in Distributed GIS; Building the GeoWeb; Tutorials.

Environmental Applications of GIS -
GIS and related technologies such as remote sensing have been widely employed in environmental applications for almost forty years. The advent of satellite remote sensing allowed reliable synoptic data to be available to scientists who have developed numerous models. This together with the decision-making tools and spatially-referenced framework of GIS offers significant support to researchers investigating different environmental phenomena. Data from remote sensing, GPS and other sources provide a valuable input into GIS models for environmental monitoring, modelling and prediction. This unit introduces case study examples of how GIS and related technologies can be used in environmental applications and seeks to critically evaluate their potential value. Key elements of the curriculum include: Applicability and benefits of GIS; Practical Problem Solving and Evaluation using techniques such as Terrain Analysis, Multicriteria Evaluation, Landscape Metrics etc.

Remote Sensing for GIS Applications -
This unit provides students with an introduction to the principles of remote sensing and explores its role in data gathering/information extraction for GIS applications. Key elements of the curriculum include: Principles of Remote Sensing; Satellite Systems; Quantitative Data; GIS Integration.

Social Applications of GIS -
Where an investigation into social, economic, political, and cultural characteristics and phenomena is required, GIS provides a powerful tool. For social applications such as crime mapping and healthcare resource management, GIS can be used effectively to help model, monitor and enable (spatial) decision making based on existing criteria. Social systems are often highly organised and complex - GIS allows this complexity to be effectively distilled into an abstraction representing the most causally related behaviour. This unit introduces case tudy examples of how GIS can be used in social applications and seeks to critically evaluate their potential value. Key elements of the curriculum include: Exemplars of GIS use in Social Applications, e.g. health, crime and urban transportation; Evaluation of the Benefits of GIS; Practical Problem Solving techniques.

Spatial Databases and Programming -
The importance of programming and GIS as part of a larger system, which involves spatial databases, software development and programme coding, has been increasingly realised in GIS practice. This unit aims to develop your geospatial skills in building enterprise oriented databases (e.g. geo-database and server) and creating application-oriented GIS models through programming. This unit also helps you to critically evaluate the issues and trends in enterprise GIS and GIS application development from the perspective of software engineering and geospatial technology. Key elements of the curriculum include: Spatial Databases; Design and Quality; Programming; Tutorials.

The final year of study (the MSc stage) requires the student to design and undertake a substantial and unique independent research project, to be presented as an academic dissertation (max. of 15,000 words).

Read less
Jointly run by the University of Salford and Manchester Metropolitan University, UNIGIS is a three year programme, with the first two years comprising taught units, and a final year to complete a dissertation. Read more
Jointly run by the University of Salford and Manchester Metropolitan University, UNIGIS is a three year programme, with the first two years comprising taught units, and a final year to complete a dissertation.

The Applied Geographical Information Systems (Applied GIS) pathway aims to develop students in-depth knowledge of GIS-based methods for monitoring the social/human and natural environments. It will also help develop the student's understanding of the spatial interaction of social/human and environmental factors. Importantly, it seeks to increase the student's capability to extract social/human and/or environmental information from a variety of sources, such as remotely sensed data, and to undertake analysis and assessment using appropriate methods within a GIS framework.

The first year of study (equivalent to PgC in GIS) involves three core units:

Foundations of GIS -
This unit provides an introduction to Geographical Information Systems (GIS) from conceptual, theoretical, and practical perspectives. Students will learn about the different methods used in geographic encoding and spatial data modelling before employing such datasets in a software environment. The unit concludes with a review of contemporary issues in GIS. Key elements of the curriculum include: Origins of GIS; Representation, Modelling and Geovisualisation; Software Skills; GIS: Today and Tomorrow.

Spatial Data Infrastructures -
Spatial data is key to any GIS project. This unit investigates how spatial data is sourced and also aims to provide students with the requisite knowledge and practical skills to identify and evaluate, against recognised national and international quality standards, spatial data for use in GI-based projects. Key elements of the curriculum include: Spatial Data; Data Standards and Infrastructures; Sourcing Spatial Data; Data Quality; Evaluating Fitness for Purpose.

Databases -
GIS are fundamentally information systems which provide specialist facilities for the creation, storage and manipulation of spatial and attribute data. Much of the functionality offered by GIS software is shared with conventional database software. Indeed, most GIS - at their core - have a conventional database management system (DBMS) around which spatial functionality has been wrapped. It is essential that GIS specialists have a thorough understanding of database theory, design and implementation. Key elements of the curriculum include: Why Databases?; Relational Databases; Critiquing Relational Databases; Implementation and Interrogation.

The second year of study (equivalent to the PgD in GIS) involves one core and two elective units:

Methods in GIS (core) -
The concepts, theories and methods behind the application of GIS are examined in detail. The unit explores research design, data analysis and interpretation and presentation. Special focus is given to methods of spatial analysis and their implementation using GIS software. Key elements of the curriculum include: Research Design; Qualitative and Quantitative Techniques; Fundamentals of Spatial Analysis; Recent Advances in Spatial Analysis.

Two elective units are chosen from:

Environmental Applications of GIS -
GIS and related technologies such as remote sensing have been widely employed in environmental applications for almost forty years. The advent of satellite remote sensing allowed reliable synoptic data to be available to scientists who have developed numerous models. This together with the decision-making tools and spatially-referenced framework of GIS offers significant support to researchers investigating different environmental phenomena. Data from remote sensing, GPS and other sources provide a valuable input into GIS models for environmental monitoring, modelling and prediction. This unit introduces case study examples of how GIS and related technologies can be used in environmental applications and seeks to critically evaluate their potential value. Key elements of the curriculum include: Applicability and benefits of GIS; Practical Problem Solving and Evaluation using techniques such as Terrain Analysis, Multicriteria Evaluation, Landscape Metrics etc.

Remote Sensing for GIS Applications -
This unit provides students with an introduction to the principles of remote sensing and explores its role in data gathering/information extraction for GIS applications. Key elements of the curriculum include: Principles of Remote Sensing; Satellite Systems; Quantitative Data; GIS Integration.

Social Applications of GIS -
Where an investigation into social, economic, political, and cultural characteristics and phenomena is required, GIS provides a powerful tool. For social applications such as crime mapping and healthcare resource management, GIS can be used effectively to help model, monitor and enable (spatial) decision making based on existing criteria. Social systems are often highly organised and complex - GIS allows this complexity to be effectively distilled into an abstraction representing the most causally related behaviour. This unit introduces case tudy examples of how GIS can be used in social applications and seeks to critically evaluate their potential value. Key elements of the curriculum include: Exemplars of GIS use in Social Applications, e.g. health, crime and urban transportation; Evaluation of the Benefits of GIS; Practical Problem Solving techniques.

The final year of study (the MSc stage) requires the student to design and undertake a substantial and unique independent research project, to be presented as an academic dissertation (max. of 15,000 words).

Read less
Jointly run by the University of Salford and Manchester Metropolitan University, UNIGIS is a three year programme, with the first two years comprising taught units, and a final year to complete a dissertation. Read more
Jointly run by the University of Salford and Manchester Metropolitan University, UNIGIS is a three year programme, with the first two years comprising taught units, and a final year to complete a dissertation.

The Geographical Information Systems (GIS) pathway aims to provide students with a broadly based postgraduate qualification in the field of GIS. Importantly, it offers students choice in the selection of their application area (with a range of units available). The pathway helps students to develop an in-depth knowledge of the issues involved in applying GIS to solving spatial problems with an understanding of the constraints imposed by the application area(s) and the interactions between data, methods, people, and technology.

The first year of study (equivalent to PgC in GIS) involves three core units:

Foundations of GIS -
This unit provides an introduction to Geographical Information Systems (GIS) from conceptual, theoretical, and practical perspectives. Students will learn about the different methods used in geographic encoding and spatial data modelling before employing such datasets in a software environment. The unit concludes with a review of contemporary issues in GIS. Key elements of the curriculum include: Origins of GIS; Representation, Modelling and Geovisualisation; Software Skills; GIS: Today and Tomorrow.

Spatial Data Infrastructures -
Spatial data is key to any GIS project. This unit investigates how spatial data is sourced and also aims to provide students with the requisite knowledge and practical skills to identify and evaluate, against recognised national and international quality standards, spatial data for use in GI-based projects. Key elements of the curriculum include: Spatial Data; Data Standards and Infrastructures; Sourcing Spatial Data; Data Quality; Evaluating Fitness for Purpose.

Databases -
GIS are fundamentally information systems which provide specialist facilities for the creation, storage and manipulation of spatial and attribute data. Much of the functionality offered by GIS software is shared with conventional database software. Indeed, most GIS - at their core - have a conventional database management system (DBMS) around which spatial functionality has been wrapped. It is essential that GIS specialists have a thorough understanding of database theory, design and implementation. Key elements of the curriculum include: Why Databases?; Relational Databases; Critiquing Relational Databases; Implementation and Interrogation.

The second year of study (equivalent to the PgD in GIS) involves one core and two elective units:

Methods in GIS (core) -
The concepts, theories and methods behind the application of GIS are examined in detail. The unit explores research design, data analysis and interpretation and presentation. Special focus is given to methods of spatial analysis and their implementation using GIS software. Key elements of the curriculum include: Research Design; Qualitative and Quantitative Techniques; Fundamentals of Spatial Analysis; Recent Advances in Spatial Analysis.

Two elective units are chosen from:

Distributed GIS -
This unit discusses the most vibrant and rapidly developing area of geospatial technology. Desktop GIS packages are increasingly looking like the specialist packages for serious users that, in truth, they always were. Now, for the very large majority of people who really only want to look at the location of things, we can offer WebGIS systems that deliver what they need directly into their web-browsers. This unit explains the concepts and methods of Internet GIS, development and its applications. Key elements of the curriculum include: From Desktop to Distributed GI Services; Technologies in Distributed GIS; Building the GeoWeb; Tutorials.

Environmental Applications of GIS -
GIS and related technologies such as remote sensing have been widely employed in environmental applications for almost forty years. The advent of satellite remote sensing allowed reliable synoptic data to be available to scientists who have developed numerous models. This together with the decision-making tools and spatially-referenced framework of GIS offers significant support to researchers investigating different environmental phenomena. Data from remote sensing, GPS and other sources provide a valuable input into GIS models for environmental monitoring, modelling and prediction. This unit introduces case study examples of how GIS and related technologies can be used in environmental applications and seeks to critically evaluate their potential value. Key elements of the curriculum include: Applicability and benefits of GIS; Practical Problem Solving and Evaluation using techniques such as Terrain Analysis, Multicriteria Evaluation, Landscape Metrics etc.

Remote Sensing for GIS Applications -
This unit provides students with an introduction to the principles of remote sensing and explores its role in data gathering/information extraction for GIS applications. Key elements of the curriculum include: Principles of Remote Sensing; Satellite Systems; Quantitative Data; GIS Integration.

Social Applications of GIS -
Where an investigation into social, economic, political, and cultural characteristics and phenomena is required, GIS provides a powerful tool. For social applications such as crime mapping and healthcare resource management, GIS can be used effectively to help model, monitor and enable (spatial) decision making based on existing criteria. Social systems are often highly organised and complex - GIS allows this complexity to be effectively distilled into an abstraction representing the most causally related behaviour. This unit introduces case tudy examples of how GIS can be used in social applications and seeks to critically evaluate their potential value. Key elements of the curriculum include: Exemplars of GIS use in Social Applications, e.g. health, crime and urban transportation; Evaluation of the Benefits of GIS; Practical Problem Solving techniques.

Spatial Databases and Programming -
The importance of programming and GIS as part of a larger system, which involves spatial databases, software development and programme coding, has been increasingly realised in GIS practice. This unit aims to develop your geospatial skills in building enterprise oriented databases (e.g. geo-database and server) and creating application-oriented GIS models through programming. This unit also helps you to critically evaluate the issues and trends in enterprise GIS and GIS application development from the perspective of software engineering and geospatial technology. Key elements of the curriculum include: Spatial Databases; Design and Quality; Programming; Tutorials.

The final year of study (the MSc stage) requires the student to design and undertake a substantial and unique independent research project, to be presented as an academic dissertation (max. of 15,000 words).

Read less
This industry-focused programme - run jointly by the universities of Edinburgh and Glasgow - focuses on the principles, methods, techniques and technologies that underpin a vast range of needs in applications spanning from research to industry to medicine. Read more

This industry-focused programme - run jointly by the universities of Edinburgh and Glasgow - focuses on the principles, methods, techniques and technologies that underpin a vast range of needs in applications spanning from research to industry to medicine.

The programme is designed for students looking to develop the skills and knowledge that will open up opportunities in the many companies developing sensor and image based solutions.

Sensing and sensor systems are essential for advances in research across all fields of physics, engineering and chemistry and can be enhanced when multiple sensing functions are combined into arrays to enable imaging.

Industrial applications of sensor systems are ubiquitous: from mass-produced sensors found in modern smartphones and cars to the state-of-the-art, specialist high-value sensors routinely used in oil and gas recovery, scientific equipment, machine tools, medical equipment and environmental monitoring.

Programme structure

This programme is run over 12 months. The first semester of taught courses is run at the University of Glasgow and the second at the University of Edinburgh. The taught courses are followed by a research project, carried out at either university, leading to the production of your masters thesis.

Semester 1

Semester 1 is delivered at the University of Glasgow.

  • Sensing and Imaging
  • Imaging and Detectors
  • Detection and Analysis of Ionising Radiation
  • Circuits and Systems
  • Optional course in physics or engineering

Semester 2

Semester 2 is delivered at the University of Edinburgh.

Two compulsory courses:

  • Applications of Sensor and Imaging Systems
  • Research Project Preparation

Two to four (depending on course weighting) optional courses in engineering and/or chemistry:

  • Biophysical Chemistry
  • Physical Techniques in Action
  • BioSensors and Instrumentation
  • Lab-on-Chip Technologies
  • Microfabrication Techniques
  • Electronic Product Design and Manufacture
  • Technology & Innovation Management

Career opportunities

Sensor and imaging systems (SIS) underpin a vast range of societal, research and industrial needs. Sensing is essential for advances in capability across all fields of physics, engineering and chemistry and is enhanced when individual sensing units are configured in arrays to enable imaging and when multiple sensing functions are integrated into a single smart system.



Read less
Programme description. This interdisciplinary programme will equip you with the analytical and communication skills to work in this important and growing field. Read more

Programme description

This interdisciplinary programme will equip you with the analytical and communication skills to work in this important and growing field.

This programme suit students with a background in environmental or geographical sciences who have already come across remote sensing, or those with a background in physics, computer science or engineering looking for a career in an applied area.

Graduates from the programme will be well prepared to pursue a research degree or find relevant employment. This programme builds on the successful Edinburgh Geographical Information Science (GIS) degree, which was the first of its type in the world, with a heritage of almost 30 years.

Applicants who applied after 12 December 2016 receiving an offer of admission, either unconditional or conditional, may be required to pay a tuition fee deposit. Please see the fees and costs section for more information.

Programme structure

This programme consists of two semesters of taught courses followed by individual dissertation project work.

Compulsory courses typically will be:

  • Spatial Modelling and Analysis
  • Research Practice and Project Planning
  • Passive Earth Observation or
  • Active Remote Sensing
  • Dissertation

Option courses may include:

  • Principles and Practice of Remote Sensing
  • Atmospheric Quality and Global Change
  • Object Orientated Software Engineering: Spatial Algorithms*
  • Principles of Geographical Information Science
  • Sustainable Energy Technologies 4
  • Marine Systems and Policies
  • Technologies for Sustainable Energy
  • Introduction to Three Dimensional Climate Modelling
  • Geology for Earth Resources
  • Encountering Cities
  • Soil Protection and Management
  • Understanding Environment and Development
  • Advanced Spatial Database Methods
  • Data Integration and Exchange
  • Data Mining and Exploration
  • Environmental Impact Assessment
  • Forests and Environment
  • ICT for Development
  • Land Use/Environmental Interactions
  • Querying and Storing XML
  • Water Resource Management
  • Participation in Policy and Planning
  • Introduction to Environmental Modelling
  • Management of Sustainable Development
  • Communicable Disease Control and Environmental Health
  • Political Ecology
  • Epidemiology for Public Health

Courses are offered subject to timetabling and availability and are subject to change.

In addition, this programme typically includes a residential field-skills weekend in Scotland.

*Please note, Principles and Practice of Remote Sensing would usually be a prerequisite for Passive Earth Observation and Active Remote Sensing unless equivalent background knowledge is demonstrated.

Career opportunities

Graduates have entered employment with well-known organisations such as Amey Infrastructure Services, British Airways, ESRI, General Electric, Google, Hewlett-Packard, Intergraph, Microsoft, Oracle, Royal Bank of Scotland, Scottish Water, Sopra Group, SLR Consulting, Food and Agricultural Organisation of the United Nations and the World Bank, as well as continuing in academia. Graduates will benefit from our proven track record in placing students with such a diverse range of employers.

Student experience

Would you like to know what it’s really like to study at the School of GeoSciences?

Visit our student experience blog where you can find articles, advice, videos and ask current students your questions.



Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Environmental Dynamics and Climate Change at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Environmental Dynamics and Climate Change at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

The MSc in Environmental Dynamics and Climate Change course places particular emphasis on recent global and regional environmental and climatic change, the scientific basis and limitations of models and data collection techniques. It combines the international research strengths of staff within the Departments of Geography and Biosciences around environmental and climate dynamics (processes and mechanisms involved in stability and change), marine and ecosystem biology, and environmental management and sustainable development.

Graduates from the Environmental Dynamics and Climate Change course will have extensive knowledge of the current scientific issues underpinning climate change and environmental and ecosystem dynamics, and the practical problem solving, ICT and communication skills required for a successful career in the environmental service industry, regulating bodies or academia.

Students of the MSc Environmental Dynamics and Climate Change at Swansea will benefit from exceptional computing facilities that include fifteen dual-processor workstations for Earth Observation, a 20-node multiprocessor Beowulf cluster, and the Department’s IBM ‘Blue Ice’ supercomputer, used mainly for climate and glaciological modelling.

The aims of the Environmental Dynamics and Climate Change programme are:

To provide advanced training in understanding the scientific issues associated with environmental dynamics and climatic change,

To provide graduates entering the environmental service industry or a regulating body with the required practical problem solving, ICT and communication skills; as well as a basic knowledge of current climate policy and environmental management,

To provide graduates continuing their academic career with the required subject specific and transferable skills.

Modules

Modules of the MSc Environmental Dynamics and Climate Change ‌programme include:

Climate Change

Core Science Skills

Satellite Remote Sensing

Principles of Environmental Dynamics and Climatic Change

Please visit our website for a full description of modules for the Environmental Dynamics and Climate Change MSc.

Fieldwork

The Stackpole residential field course introduces Environmental Dynamics and Climatic Change programme students taking the “Principles of Environmental Dynamics” to some of the major themes of the module: environmental systems, sea-level change and human impact on the environment, in a congenial setting in Pembrokeshire. The environmental issues facing the Stackpole Estate are discussed and placed into a historical perspective through lectures and the analysis of long term environmental records.

Research

The Department of Geography aima to be one of the foremost international centres for research in human and physical geography, and to provide our students with excellent teaching and superb facilities in a friendly atmosphere.

The results of the Research Excellence Framework (REF) 2014 show that Geography at Swansea University is ranked joint 9th in the UK for research impact and 11th in the UK for research environment.

Research groups include:

Environmental Dynamics

Glaciology

Global Environmental Modelling and Earth Observation

Migration, Boundaries and Identity

Social Theory and Urban Space

We host a large community of postgraduate researchers studying for PhD degrees, and run one-year MRes, MSc and MA courses.

Facilities

The Department of Geography is well-resourced to support research: there are two dedicated computer laboratories: One of 24 computers in conjunction with Library and Information Services (LIS) providing general IT software and programmes dedicated to Geographic Information Systems (GIS) and Remote Sensing; One of 10 high-performance Linux workstations delivering software tools for advanced GIS and remote sensing applications.

We have specialist laboratory suites for: stable-isotope ratio analysis; tree ring analysis; extraction and identification of organic compounds; pollen extraction and analysis; rainfall simulation; tephra analysis; soil and sediment characterisation.

In addition, we have recently spent £1.8million on state-of-the-art teaching spaces, including IT facilities, laboratories and flexible teaching spaces.

Student profiles

I originally came to Swansea University to study for a BSc in Geography. Although this course covered a wide range of both human and physical topics that were all very interesting and provided a broad spectrum of skills from GIS and remote sensing to environmental modelling, my main interest was in the physical aspects. I graduated in 2007 with a 1st Class BSc (Hons) in Geography and wanted to continue my studies into the field of climate change. I decided that the MSc in Environmental Dynamics and Climate Change would be an appropriate route to take in order to pursue this field. The MSc in Environmental Dynamics and Climate Change focused on many characteristics of the global environment, like impacts on ecosystems, and how the varying processes associated with climate change can be monitored, measured and modelled. This choice of topics was complimented by the fact that the modules were run by lecturers working at the cutting-edge of global environmental change. The culmination of what I learned over the course of the year was put into practice with the dissertation, which allowed me to focus on an area of particular interest. The group of friends that I had on the course were brilliant and I will take away a lot of fond memories of our time together at Swansea. Now, after finishing the MSc in Environmental Dynamics and Climate Change I have a job working for the National Oceanography Centre in Southampton".

David Hamersley, MSc Environmental Dynamics and Climate Change



Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Geographic Information and Climate Change at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Geographic Information and Climate Change at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

The MSc Geographic Information and Climate Change course provides cross-disciplinary training in the scientific basis of Geographic Information Systems (GIS), Satellite Remote Sensing and Earth System Modelling alongside aspects of climate change.

The Geographic Information and Climate Change course places particular emphasis on the technical aspects of Geographic Information Systems (GIS) and Earth Observation as well as the past, present and future global and regional environmental and climatic change.

Graduates from the Geographic Information and Climate Change course will develop hands-on technical knowledge in Geographic Information Systems and Remote Sensing together with a broad knowledge of the current scientific issues underpinning climate change, and the practical problem solving, ICT and communication skills required for a successful career in either industry or regulating bodies.

It is envisaged that graduates from the MSc Geographic Information and Climate Change course will enter careers in utilities, county councils, the environmental service industry or regulating body, or indeed be well prepared for a future career in academia.

Key Features

Students of the Geographic Information and Climate Change programme will benefit from exceptional computing facilities that include fifteen dual-processor workstations for Earth Observation, a 20-node multiprocessor Beowulf cluster, and the Department’s IBM ‘Blue Ice’ supercomputer, used mainly for climate and glaciological modelling.

Graduates from the MSc Geographic Information and Climate Change course will have broad knowledge of the current scientific issues underpinning climatic change and environmental and ecosystem dynamics, and the practical problem solving, ICT and communication skills required for a successful career in the environmental service industry, regulating bodies or academia.

Aims:

To provide advanced training in understanding the scientific issues associated with environmental dynamics and climatic change,

To provide graduates entering the environmental service industry or a regulating body with the required practical problem solving, ICT and communication skills; as well as a basic knowledge of current climate policy and environmental management,

To provide graduates continuing their academic career with the required subject specific and transferable skills.

Modules

Please Visit our website for a full description of modules for the Geographic Information and Climate Change MSc.

Fieldwork

The Stackpole residential field course introduces students taking the “Principles of Environmental Dynamics” to some of the major themes of the module: environmental systems, sea-level change and human impact on the environment, in a congenial setting in Pembrokeshire. The environmental issues facing the Stackpole Estate are discussed and placed into a historical perspective through lectures and the analysis of long term environmental records.

Research

We aim to be one of the foremost international centres for research in human and physical geography, and to provide our students with excellent teaching and superb facilities in a friendly atmosphere.

The results of the Research Excellence Framework (REF) 2014 show that Geography at Swansea University is ranked joint 9th in the UK for research impact and 11th in the UK for research environment.

Research groups include:

Environmental Dynamics

Glaciology

Global Environmental Modelling and Earth Observation

Migration, Boundaries and Identity

Social Theory and Urban Space

Facilities

The Department of Geography is well-resourced to support research: there are two dedicated computer laboratories: One of 24 computers in conjunction with Library and Information Services (LIS) providing general IT software and programmes dedicated to Geographic Information Systems (GIS) and Remote Sensing; One of 10 high-performance Linux workstations delivering software tools for advanced GIS and remote sensing applications.

We have specialist laboratory suites for: stable-isotope ratio analysis; tree ring analysis; extraction and identification of organic compounds; pollen extraction and analysis; rainfall simulation; tephra analysis; soil and sediment characterisation.

In addition, we have recently spent £1.8million on state-of-the-art teaching spaces, including IT facilities, laboratories and flexible teaching spaces.

Student profiles

“I chose to study MSc Geographic Information and Climate Change at Swansea as I had already enjoyed my undergraduate degree here. I really enjoyed that the course is quite full on, with a lot of independent work but a willingness from lecturers to help with any issues you have. Anyone considering this course I would advise to come to the university and speak with the lecturers about the potential interests they have. You get out what you put in. I want to go into a field that requires some expertise, although I feel as though I will need more experience once in or looking for a job, Swansea has provided the stepping stone for my future career. The lecturers helped me because they take a back seat, but I understand that they are there to support me when I need it. They have allowed me to be independent.”

Alice Nolan, MSc Geographic Information and Climate Change

After completing his MSc in Geographic Information and Climate Change, Thomas went on to earn a position at the Associated British Ports Marine Environmental Research. He said of his time at Swansea – “I chose MSc Geographic Information and Climate Change at Swansea University because of the funding Available (Access to Master's Scheme) and specific course content (Climate Change and GIS modules). I enjoyed studying topics in greater depth than at undergraduate level, and the opportunity to undertake my dissertation in partnership with an external organisation. The lecturers were highly approachable throughout the course, and were always available for advice outside of lectures and seminars. Studying at Master's level in Swansea provided the opportunity to build upon the knowledge and skills I acquired as an undergraduate. For example, completing my Master's dissertation in partnership with an external company enabled development of my communication and organisational skills, as well as my ability to synthesize research. These skills have been vital for development of my career in the marine consulting sector.”

Thomas Perks, MSc Geographic Information and Climate Change



Read less

Show 10 15 30 per page



Cookie Policy    X