• Birmingham City University Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • University of Northampton Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
De Montfort University Featured Masters Courses
Cranfield University Featured Masters Courses
University of Leeds Featured Masters Courses
Cranfield University Featured Masters Courses
University of Bath Featured Masters Courses
"seismology"×
0 miles

Masters Degrees (Seismology)

We have 16 Masters Degrees (Seismology)

  • "seismology" ×
  • clear all
Showing 1 to 15 of 16
Order by 
The international master program in Geophysics at KIT is research-oriented, has a strong focus on exploration and earthquake seismology and brings together theory and field experiments. Read more

The international master program in Geophysics at KIT is research-oriented, has a strong focus on exploration and earthquake seismology and brings together theory and field experiments. This provides our students the opportunity to cover the full range of geophysics from data acquisition to modelling, inversion and interpretation. The program is taught entirely in English.

Objective & Content

Students studying in the international master program in Geophysics benefit from the strong expertise in exploration and earthquake seismology for which the Geophysical Institute of KIT is known worldwide for more than 50 years.

In the international research-oriented master program we bring together our knowledge in theory as well as in field experiments and give our students the possibility to understand the full picture from data acquisition to modelling, inversion and interpretation.

Students take part in compulsory and elective courses within their 1st year covering different topics of seismology and proximate subjects. During their 2nd year, students will be fully integrated in one of the research groups working on their theses in order to have an optimum preparation for their future work in science and industry. For more details on the program structure see program structure above.

Recently, the concept of in situ lecturing was successfully established at KIT. In situ lectures are taught at the place which is being studied giving students the possibility to fully understand the dimensions and observe the whole range of parameters involved in the subject. Within the last years, in situ lectures have led our students to the Aeolian Islands, deep into potash mines in Thuringia, to the Gotthard base tunnel while it was built, and to seismically active regions in Germany and the Czech Republic.

International summer schools are conducted in cooperation with Bandung Institute of Technology and Australia National University. Since KIT is part of the Eucor universities 

Students can also choose lectures offered by our European partners.

Program Structure

Compulsory courses in the 1st year include Theory of Seismic Waves, Seismology, Physics of Seismic Instruments, Seismic Imaging, Seismic Modelling as well as Inversion and Tomography. In order to specialize, students can choose electives from Geophysics or proximate subjects. Lectures on Array Processing, Full Waveform Inversion, Geological Hazards and Risk, Induced Seismicity, Hazard and Risk Assessment of Mediterranean Volcanoes and a Winter School at the Black Forest Observatory are regularly offered.

During the 2nd year of the program students will be integrated in one of the research groups working on their thesis. We consider it as important to fully immerse into a project and work on it deeply over a longer period so that our students have an optimum preparation for their work in science and industry.

Requirements

Qualification for university entrance (e.g. Abitur, high school diploma, national test for university entrance, ...)

The Bachelor degree has to be completed with a minimum of 180 ECTS points or within a regular period of study of at least three years. If the Bachelor degree has not yet been conferred by the closing date for applications, but will be completed before the registration, you can apply with a preliminary transcript of records.

Profound knowledge of Geophysics, Mathematics and Physics (usually a minimum 20 credits each during the Bachelor studies). Missing credits in Geophysics can individually caught up for during the 1st year. For immediate success students without background in Geophysics can take part in an interactive convergence course covering the most important topics from Seismology and Seismics.

On request the following proofs can also be accepted: Bachelor degree of a university program taught in English University entrance qualification received in an English program Bachelor thesis written in English.

How to apply

Apply here: https://www.sle.kit.edu/vorstudium/master-geophysik.php  ;

Applications for the winter term (beginning in October) can be submitted until 15 July (Non-EU-Applicants) and until 30 September (German and EU-Applicants).

Due to the modular structure of the program, a start in the summer term (April) is also possible, but not recommended for students from abroad or students who do not hold a Bachelor degree in Geophysics.



Read less
Theoretically, experimentally, and observationally oriented Master of Science (M.Sc.), Master of Applied Science (M.A.Sc.), and Doctor of Philosophy (Ph.D.) programs are offered in a number of key areas of geophysics. Read more

Program Overview

Theoretically, experimentally, and observationally oriented Master of Science (M.Sc.), Master of Applied Science (M.A.Sc.), and Doctor of Philosophy (Ph.D.) programs are offered in a number of key areas of geophysics. Current interests include topics in observational and theoretical glaciology; climate variability; geodynamics of the crust, mantle, and core of Earth and other planets; geological fluid mechanics; volcanic processes; origin and structure of planetary magnetic fields; reflection seismology; time-series analysis and wavelet processing; inversion methodologies with application to reflection seismology, mineral exploration, and environmental studies; computational electrodynamics; seismology with observational programs in crustal and upper mantle studies; earthquake studies focused on understanding past and current tectonic processes in Western Canada; and theoretical model studies to investigate wave propagation in laterally heterogeneous media.

Program Requirements

Geophysics students who have not completed a course in physics of the Earth at either the senior undergraduate or graduate level will be required to register for EOSC 453. The M.A.Sc. program consists of a 12-credit thesis and 18 credits of coursework. A minimum of 24 credits must be at the 500-level and above.

Quick Facts

- Degree: Master of Applied Science
- Specialization: Geophysics
- Subject: Science
- Mode of delivery: On campus
- Program components: Coursework + Thesis required
- Faculty: Faculty of Science

Read less
Theoretically, experimentally, and observationally oriented Master of Science (M.Sc.), Master of Applied Science (M.A.Sc.), and Doctor of Philosophy (Ph.D.) programs are offered in a number of key areas of geophysics. Read more

Program Overview

Theoretically, experimentally, and observationally oriented Master of Science (M.Sc.), Master of Applied Science (M.A.Sc.), and Doctor of Philosophy (Ph.D.) programs are offered in a number of key areas of geophysics. Current interests include topics in observational and theoretical glaciology; climate variability; geodynamics of the crust, mantle, and core of Earth and other planets; geological fluid mechanics; volcanic processes; origin and structure of planetary magnetic fields; reflection seismology; time-series analysis and wavelet processing; inversion methodologies with application to reflection seismology, mineral exploration, and environmental studies; computational electrodynamics; seismology with observational programs in crustal and upper mantle studies; earthquake studies focused on understanding past and current tectonic processes in Western Canada; and theoretical model studies to investigate wave propagation in laterally heterogeneous media.

Program Requirements

Geophysics students who have not completed a course in physics of the Earth at either the senior undergraduate or graduate level will be required to register for EOSC 453. The M.Sc. program consists of a 12-credit thesis and 18 credits of coursework. A minimum of 24 credits must be at the 500-level and above.

Quick Facts

- Degree: Master of Science
- Specialization: Geophysics
- Subject: Science
- Mode of delivery: On campus
- Program components: Coursework + Thesis required
- Faculty: Faculty of Science

Read less
This course focuses on the physical processes that generate natural hazards through an advanced understanding of geological and environmental processes. Read more

Why take this course?

This course focuses on the physical processes that generate natural hazards through an advanced understanding of geological and environmental processes.

You will be fully trained by internationally recognised experts in hazard identification, terrain evaluation techniques as well as hazard modelling and risk assessment techniques. Providing you with the essential skills to monitor, warn and help control the consequences of natural hazards.

What opportunities might it lead to?

This course is accredited by the Geological Society of London. It offers advanced professional and scientific training providing an accelerated route for you to attain Chartered Status, such as Chartered Geologist (CGeol) and Chartered Scientist (CSci) on graduation.

Here are some routes our graduates have pursued:

Aid organisations
Environmental organisations
Offshore work
Civil sector roles
Mining
Insurance companies

Module Details

You can opt to take this course in full-time or part-time mode.

The course is divided into two parts. The first part comprises the lecture, workshop, practical and field work elements of the course, followed by a five-month independent research project. The course is a mixture of taught units and research project covering topics including site investigation, hazard modelling and mapping, soil mechanics and rock mechanics, contaminated land, flooding and slope stability.

Here are the units you will study:

Natural Hazard Processes: The topic of this unit forms the backbone of the course and give you an advanced knowledge of a broad range of geological and environmental hazards, including floods, landslides, collapsible ground, volcanoes, earthquakes, tsunamis, hydro-meteorological and anthropogenic hazards. External speakers are used to provide insights and expertise from an industry, regulatory and research perspective.

Numerical Hazard Modelling and Simulation: This forms an important part of the course, whereby you are trained in the application of computer models to the simulation of a range of geological and environmental hazards. You will develop skills in computer programming languages and use them to develop numerical models that are then used to simulate different natural hazard scenarios.

Catastrophe Modelling: On this unit you will cover the application of natural hazard modelling to better understand the insurance sector exposure to a range of geological and environmental hazards. It includes external speakers and sessions on the application of models for this type of catastrophe modelling.

Volcanology and Seismology: You will gain an in-depth knowledge of the nature of volcanism and associated hazards and seismology, associated seismo-tectonics and earthquake hazards. This unit is underpinned by a residential field course in the Mediterranean region that examines the field expression of volcanic, seismic and other natural hazards.

Flooding and Hydrological Hazards: These are a significant global problem that affect urban environments, one that is likely to increase with climate change. This unit will give you an in-depth background to these hazards and opportunities to simulate flooding in order to model the flood hazard and calculate the risk.

Hazard and Risk Assessment: This unit gives you the chance to study the techniques that are employed once a hazard has been identified and its likely impact needs to be measured. You will have advanced training in the application of qualitative and quantitative approaches to hazard and risk assessment and their use in the study of different natural hazards.

Field Reconnaissance and Geomorphological Mapping: These techniques are integral to the course and an essential skill for any graduate wishing to work in this area of natural hazard assessment. On this unit you will have fieldwork training in hazard recognition using techniques such as geomorphological mapping and walk-over surveys, combined with interpretation of remote sensing and aerial photography imagery.

Spatial Analysis and Remote Sensing: You will learn how to acquire and interpret aerial photography and satellite imagery, and the integration and analysis of spatial datasets using GIS – all key tools for hazard specialists.

Geo-mechanical Behaviour of Earth Materials: You will train in geotechnical testing and description of soils and rocks to the British and international standards used by industry.

Landslides and Slope Instability: This unit will give you an advanced understanding of landslide systems, types of slides in soils and rocks and methods for identification and numerical analysis.

Impacts and Remediation of Natural Hazards: You will cover a growing area of study, including the impact of hazardous events on society and the environment, and potential mitigation and remediation methods that can be employed.

Independent Research Project: This provides you with an opportunity to undertake an original piece of research to academic or industrial standards, typically in collaboration with research staff in the department or external industry partners. In addition to submission of a thesis report, you also present the results of your project at the annual postgraduate conference held at the end of September.

Programme Assessment

The course provides a balanced structure of lectures, seminars, tutorials and workshops. You will learn through hands-on practical sessions designed to give you the skills in laboratory, computer and field techniques. The course also includes extensive field work designed to provide field mapping and data collection skills.

Assessment is varied, aimed at developing skills relevant to a range of working environments. Here’s how we assess your work:

Poster and oral presentations
Project reports
Literature reviews
Lab reports
Essays

Student Destinations

This course provides vocational skills designed to enable you to enter this specialist environmental field. These skills include field mapping, report writing, meeting deadlines, team working, presentation skills, advanced data modelling and communication.

You will be fully equipped to gain employment in the insurance industry, government agencies and specialist geoscience companies, all of which are tasked with identifying and dealing with natural hazards. Previous destinations of our graduates have included major re-insurance companies, geological and geotechnical consultancies, local government and government agencies.

It also has strong research and analytical components, ideal if you wish to pursue further research to PhD level.

We aim to provide you with as much support as possible in finding employment through close industrial contacts, careers events, recruitment fairs and individual advice.

Read less
These courses explore the properties of soils and soft rocks in relation to civil engineering, the theory of geomechanics and practical geotechnical engineering. Read more

These courses explore the properties of soils and soft rocks in relation to civil engineering, the theory of geomechanics and practical geotechnical engineering.

All our MSc courses are career-oriented and cover both theoretical background and practical design considerations. Lectures are given mainly by full-time staff but important contributions are made by visiting professors and guest lecturers who are eminent industrialists.

Many of our students continue their studies to undertake research towards a PhD.

Choosing a stream

The MSc in Soil Mechanics and Engineering Seismology is concerned with the solution of engineering problems connected with the study of seismic ground movements, their effect on foundations and building materials and engineering structures. Course-specific modules are as follows:

  • Basic dynamics and analysis of strong motion data
  • Earthquake geotechnical engineering
  • Engineering seismology

The MSc in Soil Mechanics and Environmental Geotechnics meets the growing need for advanced specialist geo-environmental education, including a grounding in the relevant topics in chemistry and biology. Course-specific modules are as follows:

  • Contaminated land and groundwater
  • Landfill engineering

This MSc course offers the add-on module of business management, which comprises 120 hours of study as an alternative to the corresponding amount of engineering study.

This four-unit module equips you with the skills needed to work in competitive business environments in the civil engineering industry. It is suitable for those who wish to combine a technical competence in their chosen field with a grasp of the principles of business management, and is designed to complement core material in the MSc courses. 

Further information

For full information on this course, including how to apply, see: http://www.imperial.ac.uk/study/pg/civil-engineering/soil-mechanics/

If you have any enquiries you can contact our team at:



Read less
This MSc provides a broad introduction to geohazards, together with advanced courses in seismology, volcanology, hydrogeological hazards and meteorology. Read more

This MSc provides a broad introduction to geohazards, together with advanced courses in seismology, volcanology, hydrogeological hazards and meteorology. A key goal is to provide an essential grounding in quantitative modelling that can be widely applied to several fields, from pure research to the commercial sector.

About this degree

The programme provides an introduction to the spectrum and impact of geophysical hazards, and a focus on quantitative models for hazard forecasting and assessment. Selected case studies illustrate how these models are essential for improving decision-making during emergencies, for raising the awareness of vulnerable populations, and for evaluating and implementing mitigation strategies.

Students undertake modules to the value of 180 credits.

The programme consists of six core modules (120 credits) and a research dissertation (60 credits).

Core modules

  • Geological and Geotechnical Hazards
  • Meteorological Hazards
  • Research Methods
  • Earthquake Seismology and Earthquake Hazard
  • Physical Volcanology and Volcanic Hazard
  • Meteorological, Climate and Hydrogeological Hazard

Optional modules

There are no optional modules for this programme.

Dissertation/report

All students undertake an independent research project in geophysical hazards, which culminates in a dissertation of 15,000 words.

Teaching and learning

The programme is delivered through a combination of lectures, directed reading and practical exercises. There are excellent opportunities for field investigations in the UK and abroad. Assessment is through unseen written examinations, practical problem-solving exercises and essays. The independent research report is assessed through the dissertation and an oral presentation.

Fieldwork

Field sites for field trips are normally in Italy. The department pays for accommodation and transport in the field. Students pay to get to the field and subsistence.

Further information on modules and degree structure is available on the department website: Geophysical Hazards MSc

Careers

On graduation from this programme about one-third of students have followed careers in global insurance and re-insurance and another third have pursued research with a PhD in hazard-related studies. The remaining third have developed careers in a wide range of sectors, from non-governmental organisations, through teaching, to the fields of emergency planning and environmental management.

Recent career destinations for this degree

  • Aggregate and Catastrophe Modeller, Advent
  • Catastrophe Analyst, Talbot Underwriting
  • Graduate Trainee Reinsurance Broker, Aon
  • Catastrophe Model Analyst, Aon Benfield
  • Policy Adviser, Department for the Environment, Food and Rural Affairs

Employability

The MSc in Geophysical Hazards will provide essential training for careers in hazard assessment and risk evaluation, including: industry, from engineering to insurance; academic research; civil protection agencies and government organisations; and NGOs related to aid and development. 

Careers data is taken from the ‘Destinations of Leavers from Higher Education’ survey undertaken by HESA looking at the destinations of UK and EU students in the 2013–2015 graduating cohorts six months after graduation.

Why study this degree at UCL?

UCL Earth Sciences is engaged in world-class research into the processes at work on and within the Earth and planets.

Graduate students benefit from our lively and welcoming environment and world-class facilities. The department hosts UCL Hazard Centre, Europe's leading multidisciplinary hazard research centre, and engages in extensive collaborative work with the Royal Institution and the Natural History Museum.

This MSc aims to include a short field trip to locations that illustrate the impact of natural hazards. Previous trips have included the Neapolitan volcanic district, the Italian Alps and the Po Delta, and the Cádiz region in south-western Spain.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: Earth Sciences

92% rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less
Learning how to turn real-world data sets into tools and useful insights, with the help of software and algorithms. Data plays a role in almost every scientific discipline, business industry or social organisation. Read more

Learning how to turn real-world data sets into tools and useful insights, with the help of software and algorithms.

Data plays a role in almost every scientific discipline, business industry or social organisation. Medical scientists sequence human genomes, astronomers generate terabytes of data per hour with huge telescopes and the police employ seismology-like data models that predict where crimes will occur. And of course, businesses like Google and Amazon are shifting user preference data to fulfil desires we don’t even know we have. There is therefore an urgent need for data scientists in whole array of fields. In the Master’s specialisation in Data Science you’ll learn how to turn data into knowledge with the help of computers and how to translate that knowledge into solutions.

Although this Master’s is an excellent stepping-stone for students with ambitions in research, most of our graduates work as data consultants and data analysts for commercial companies and governmental organisations.

Why study Data Science at Radboud University?

- This specialisation builds on the strong international reputation of the Institute for Computing and Information Sciences (iCIS) in areas such as machine learning, probabilistic modelling, and information retrieval.

- We’re leading in research on legal and privacy aspects of data science and on the impact of data science on society and policy.

- Our approach is pragmatic as well as theoretical. As an academic, we don’t just expect you to understand and make use of the appropriate tools, but also to program and develop your own.

- Because of its relevance to all kinds of different disciplines, we offer our students the chance to take related courses at other departments like at language studies (information retrieval and natural language processing), artificial intelligence (machine learning for cognitive neuroscience), chemistry (pattern recognition and chemometrics) and biophysics (machine learning and optimal control).

- The job opportunities are excellent: some of our students get offered jobs before they’ve even graduated and almost all of our graduates have positions within six months after graduating.

- Exceptional students who choose this specialisation have the opportunity to study for a double degree in Computing Science together with the specialisation in Web and Language Interaction (Artificial Intelligence). This will take three instead of two years.

See the website http://www.ru.nl/masters/datascience

Admission requirements for international students

- A proficiency in English

In order to take part in the programme, you need to have fluency in English, both written and spoken. Non-native speakers of English without a Dutch Bachelor's degree or VWO diploma need one of the following:

- TOEFL score of >575(paper based) or >90 (internet based)

- IELTS score of >6.5

- Cambridge Certificate of Advanced English (CAE) or Certificate of Proficiency in English (CPE), with a mark of C or higher

Career prospects

A professional data scientist has fine problem-solving, analytical, programming, and communication skills. He or she applies those skills to analyse a problem in the light of the available real-world data:

- To come up with a creative and useful solution.

- To find or program the right tool to turn the data into knowledge.

- To communicate the obtained findings to others.

By combining data, computing power and human intellect, data scientists can make a real difference to help and improve our society.

The job perspective for our graduates is excellent. Industry desperately needs data science specialists at an academic level, and thus our graduates have no difficulty in find an interesting and challenging job. A few of our graduates decide to go for a PhD and stay at the university, but most of our students go for a career in industry. They then typically either find a job at a larger company as consultant or data analysis, or start up their own company in data analytics.

Examples of companies where our graduates end up include SMEs like Orikami, Media11 and FlexOne, and multinationals like ING Bank, Philips, ASML, Capgemini, Booking.com and perhaps even Google.

Our approach to this field

Data nowadays plays a role in almost every scientific discipline as well as industry and is rapidly becoming a key driver of scientific discoveries, business innovation, and solutions for societal challenges such as better healthcare. Medical scientists are sequencing and analysing human genomes to uncover clues to infections, cancer, and other diseases. With huge telescopes, astronomers generate terabytes of data per hour to study the formation of galaxies and the evolution of quasars. Businesses like Google and Amazon are sifting social networking and user preference data to fulfill desires we don't even know we have. Police employing seismology-like data models can predict where crimes will occur and prevent them from happening.

It is then with good reason that data science has been called the sexiest job of the 21st century. Many companies complain about the difficulty to find skilled data scientists and predict this to be even harder in the future. A professional data scientist has fine problem-solving, analytical, programming, and communication skills. He or she applies those skills to analyse a problem in the light of the available real-world data, to come up with a creative and useful solution, to find or program the right tool to turn the data into knowledge, and to communicate the obtained findings to others. By combining data, computing power and human intellect, data scientists can make a real difference to help and improve our society.

See the website http://www.ru.nl/masters/datascience



Read less
This comprehensive course provides training in the analysis, design and assessment of structures under seismic actions and other extreme loading conditions. Read more

This comprehensive course provides training in the analysis, design and assessment of structures under seismic actions and other extreme loading conditions.

The syllabus covers a comprehensive set of topics related to structural engineering, earthquake engineering, engineering seismology, soil dynamics and advanced numerical techniques.

All of our MSc courses are career-orientated and cover both theoretical background and practical design considerations. Lectures are given mainly by full-time staff but important contributions are made by visiting professors and guest lecturers who are eminent industrialists.

Many of our students continue their studies to undertake research towards a PhD.

Further information

For full information on this course, including how to apply, see: http://www.imperial.ac.uk/study/pg/civil-engineering/earthquake-engineering/

If you have any enquiries you can contact our team at:



Read less
This MSc is a uniquely broad and flexible programme that suits students' aspirations, background and experience. UCL Earth Sciences has strengths in geophysics, geochemistry, palaeobiology, mineral physics, geodynamics, geohazards, climate science, environmental geosciences and policy, and other areas. Read more

This MSc is a uniquely broad and flexible programme that suits students' aspirations, background and experience. UCL Earth Sciences has strengths in geophysics, geochemistry, palaeobiology, mineral physics, geodynamics, geohazards, climate science, environmental geosciences and policy, and other areas. Students choose from a wide range of optional modules from within the department and more widely across UCL, building an MSc tailored to their interests.

About this degree

The programme aims to integrate theoretical studies with essential practical skills in the Earth sciences, both in the field and in the laboratory. Students develop the ability to work on group projects, prepare written reports, acquire oral skills and gain training in the methods of scientific research.

Students undertake modules to the value of 180 credits.

The programme consists of three core modules (45 credits), six optional modules (75 credits) and a research dissertation (60 credits).

Core modules

  • Research Methods
  • Project Proposal
  • Earth and Planetary Systems Science

Optional modules

  • Earth and Planetary Materials
  • Melting and Volcanism
  • Physical Volcanology and Volcanic Hazard
  • Earthquake Seismology & Earthquake Hazard
  • Tectonic Geomorphology
  • Palaeoceanography
  • Palaeoclimatology
  • Biodiversity and Macroevolutionary Patterns
  • Deep Earth and Planetary Modelling
  • Geodynamics and Global Tectonics
  • Crustal Dynamics, Mountain Building and Basin Analysis
  • Advanced Biodiversity and Macroevolutionary Studies

Students can also choose relevant elective modules from UCL Geography.

Dissertation/report

All MSc students undertake an independent research project which culminates in a dissertation of approximately 10,000–12,000 words.

Teaching and learning

The programme is delivered through a combination of lectures, seminars, tutorials, and laboratory and fieldwork exercises. Student performance is assessed through coursework, written assignments, unseen written examination and the dissertation.

Fieldwork

Crustal Dynamics, Mountain Building and Basin Analysis is a fieldwork only module without a classroom element.

Further information on modules and degree structure is available on the department website: Geoscience MSc

Careers

Geoscience students have gone on to pursue careers in many varied areas, such as planning and surveying, governmental organisations, academic research.

Recent career destinations for this degree

  • PhD in Climatology, Cardiff University (Prifysgol Caerdydd)
  • PhD in Geoscience, UCL
  • Engineer, Geo-Info
  • Lecturer in Geology, University of Benin
  • Oil and Gas Analyst, EIC (Energy Industries Council)

Careers data is taken from the ‘Destinations of Leavers from Higher Education’ survey undertaken by HESA looking at the destinations of UK and EU students in the 2013–2015 graduating cohorts six months after graduation.

Why study this degree at UCL?

UCL Earth Sciences is engaged in world-class research into the processes at work on and within the Earth and planets.

Graduate students benefit from our lively and welcoming environment and world-class facilities, which include the UK's only NASA Regional Planetary Image Facility and access to the University of London Observatory in north London.

The department also hosts the UCL Hazard Research Centre, Europe's leading multidisciplinary hazard research centre, and engages in extensive collaborative work with the Royal Institution and the Natural History Museum.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: Earth Sciences

92% rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less
STUDY PROCESSES BELOW THE EARTH'S SURFACE. In the Master in Earth Structure and Dynamics programme, you will explore the composition, structure, and evolution of the Earth’s crust, mantle, and core. Read more

STUDY PROCESSES BELOW THE EARTH'S SURFACE

In the Master in Earth Structure and Dynamics programme, you will explore the composition, structure, and evolution of the Earth’s crust, mantle, and core. During this two-year programme, you will learn to link geological, geophysical, geochemical, and geodetic observations made at the Earth’s surface to physical processes operating within the planet.

Specialise in any aspect of Solid Earth Science

The programme combines geology, geophysics, mathematics, physics, chemistry and field studies to address how the solid Earth works. It allows you to specialise in virtually any aspect of solid Earth science, ranging from theoretical geophysics to pure geology or geochemistry. Many students choose a combined geology-geophysics focus.

Core areas of teaching and research

The main subject areas you will study consist of seismology, tectonophysics, mantle dynamics, structural geology, metamorphism, magmatic processes, basin evolution, hydrocarbon and mineral deposits, and the properties of Earth materials. You will examine processes ranging from slow geodynamic processes – such as mantle convection, plate tectonics, sedimentary basins formation and evolution, and mountain building – to those that can have an impact during a human lifetime. These include active crustal deformation, seismicity, and volcanism as well as subsidence, uplift induced seismicity and geo-resources.

In the programme, you will address questions such as:

  • How do mountain belts and sedimentary basins form? 
  • How can we image the internal structure of the crust and mantle? 
  • How does plate tectonics really work and how can we model it? 
  • What controls volcanic eruptions and earthquakes? 
  • Can CO2 be safely stored in reservoir rocks in the Earth’s crust? 

You can choose one of three specialisation tracks based on your interests in the field:

  • Earth Materials
  • Deformation and metamorphic and igneous processes operating in the crust and upper mantle
  • Physics of the Deep Earth and Planets
  • An in-depth geophysical approach to understand the deep interior of the Earth and other planets
  • Basins, Orogens, and the Crust-Lithosphere System
  • Understand the processes at the scale of the crust and lithosphere such as the formation and evolution of sedimentary basins or mountain chains. This is a combined track for a hybrid Geology-Geophysics (Solid Earth specialist) profile.  

PROGRAMME OBJECTIVE

  • The Earth Structure and Dynamics programme focuses on all aspects of the solid Earth as a key component of system Earth – and therefore of Earth system science. This encompasses the structure, dynamics, and evolution of the solid Earth over the full range of spatial and temporal scales as well as the role of solid Earth structure and processes in societally relevant issues such as energy, geo-resources, and geohazards. Examples include understanding the physics of tectonically – or human – induced earthquakes, volcanic hazards or petroleum, mineral, sustainable or unconventional resources. Knowledge of these aspects has direct relevance for professional profiles and future job opportunities.


Read less
This MSc examines the physical processes governing the behaviour of volcanoes. Read more
This MSc examines the physical processes governing the behaviour of volcanoes. The programme is taught by leading scientists who are working at the cutting edge of research into volcanoes, and will provide you with a strong background for independent research to PhD level or for a career in industry, the public sector or an NGO.

The programme is designed to equip you with knowledge of the physical processes of volcanoes, including both sub-surface and surficial behaviour, insights into important historical eruptions, understanding of risk and risk mitigation, and instruction and experiential learning on data gathering, handling analysis and presentation to publishable standard.

You will develop a wide range of skills, such as quantitative and computational skills, including the use of statistical and data handling software; proficiency in critical analysis of scientific material from a variety of sources, including primary research documents and original data; and the ability to synthesise concise and informative material produced for a variety of audiences.

Programme structure

Core units
-Physics of Volcanoes and Hazardous Flows
-Scientific Communication
-Literature Review (Volcanology)
-Research Methods in Volcanology

Optional units
-Frontiers in Earth Science
-Geophysical Fluid Dynamics
-Natural Hazards in Central America
-Natural Hazards in Central America (without fieldwork)
-Seismology
-Volcanic Hazards: Observation, Modelling and GIS

Research project
The final part of the programme consists of a research project. For further information on research projects, please see the School of Earth Sciences website: http://www.bristol.ac.uk/earthsciences/research/projects.html

Careers

The MSc in Volcanology prepares students for research-based careers. Most students then continue on one of three paths, using the skills they have acquired at Bristol. About 40 per cent of graduating students continue on to study for a PhD at a range of institutions in the UK, Europe, North America, Australia and Singapore. Most overseas students return to their home country to work for government agencies in hazard management.

Other graduates choose to work in the commercial sector for either geotechnical companies (who manage assets for large multinationals) or risk management and reinsurance companies, typically in London where we have a burgeoning presence within that community.

The volcanology programme is rigorous and quantitative, and prepares students for settings where both domain-specific knowledge and the ability to conduct independent research are highly valued.

Read less
Your programme of study. Read more

Your programme of study

If you have an interest in the earth in relation to minerals extraction Geophysics has plenty of scope to get involved in the profession itself and expertise required to explore different types of terrain but in a newly evolving landscape of assistive technology companies offering the latest methods of discovering production and risk issues beneath the earths surface. You learn these latest methods of finding out data to understand risk and potential engineering issues in difficult to reach places. Signal processing uses the latest advances in sensor development to set up an alert system to monitor specific areas which are normally difficult to reach. Seismic processing looks at how the earth moves not only in times of earthquakes but natural movement from chemical reactions beneath the surface of the earth.

Borehole extraction is used in mineral extraction but also to determine if reserves are live or loading is safe and much and more. The skills you learn apply equally to current and future mineral extraction as they do to land and sea where extraction has historically taken place and where there is application for a different use from a remediated coal mine for example where loading can be critical to risk for future use. The programme equips you with skills in hydrocarbon, minerals and associated industries or research. You understand structure from near surface to deep interior learning from geophysical data analysis and interpretation.

Courses listed for the programme

Semester 1

  • Earth Physics, Structure and Processes
  • Seismic Reflection Processing, Imaging and Quantitative Interpretation
  • Time Series Analysis and Signal Processing
  • Geophysical Inverse Theory and Statistics

Semester 2

  • Seismology and Earth Imaging
  • Field Geophysical Data Acquisition
  • Borehole Geophysics', Including Petrophysics and Well- Log Analysis
  • Topics in Advanced Applied Geophysics

Semester 3

  • Project in Geophysics

Find out more detail by visiting the programme web page

Why study at Aberdeen?

  • You will gain hands on experience within our facilities with a large range of relevant equipment
  • Join the Aberdeen Geological Society for guest lectures and learning and networking opportunities
  • Study in a department ranked no 1 in Scotland for Earth Sciences
  • We research Earth Science over time, with strengths in Geology, Sedimentology, Geochemistry and more.

Where you study

  • University of Aberdeen
  • Full time
  • 12 Months
  • September start

International Student Fees 2017/2018

Find out about international fees:

Find out more about fees on the programme page

*Please be advised that some programmes also have additional costs.

Scholarships

View all funding options on our funding database via the programme page and the latest postgraduate opportunities

Living in Aberdeen

Find out more about:

Your Accommodation

Campus Facilities

Find out more about living in Aberdeen and living costs



Read less
Graduates in Civil Engineering work in the field of constructions and infrastructures. The subjects taught in the Master’s Degree Program aim at strengthening the basic preparation of the students, providing them, at the same time, with an adequately deepened knowledge of topics central to Civil Engineering. Read more

Mission and goals

Graduates in Civil Engineering work in the field of constructions and infrastructures. The subjects taught in the Master’s Degree Program aim at strengthening the basic preparation of the students, providing them, at the same time, with an adequately deepened knowledge of topics central to Civil Engineering. Students can choose their field of specialization in one of the following areas: Geotechnics, Hydraulics, Transportation infrastructures, Structures. Suggested study plans help students define their curriculum. Additionally, a General curriculum is also proposed, aimed at students preferring a wider spectrum formation in Civil Engineering.
The programme includes two tracks taught in English.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/civil-engineering/

Career opportunities

Engineers having obtained the Master’ degree can find career opportunities in the following areas:
1. companies involved in the design and maintainance of civil structures, plants and infrastructures;
2. universities and higher education research institutions;
3. public offices in charge of the design, planning, management and control of urban and land systems;
4. businesses, organizations, consortia and agencies responsible for managing and monitoring civil works and services;
5. service companies for studying the urban and land impact of infrastructures.

They can also work as self-employed professionals.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Civil_Engineering_02.pdf
Civil Engineers deal with structures (e.g. buildings, bridges, tunnels, dams) and infrastructures (such as roads, railways, airports, water supply systems, etc.). The two-year Master of Science in Civil Engineering provides students with a sound preparation on these topics, allowing them to choose a curriculum (or ‘track’) among the five available: General, Geotechnics, Hydraulics, Transport Infrastructures and Structures. The ‘General’ curriculum aims at training civil engineers with a broader range of expertise in the design, implementation and management of civil works of various kinds. ‘Geothecnics’ is devoted to the study of engineering problems involving geomaterials (i.e., soil and rock) and their interaction with civil structures (foundations, tunnels, retaining walls).
‘Hydraulics’ deals with problems concerning water storage, transportation and control (pipelines, sewers, river and coastal erosion control, reservoirs). ‘Transport Infrastructures’ covers various subjects of transportation engineering (road and railway design, airport and harbor design, modeling of transport fluxes). ‘Structures’ is devoted to the analysis and design of civil and industrial structures
(steel and concrete buildings, bridges, etc.). The tracks ‘Geotechnics’ and ‘Structures’ are taught in English.

Subjects

1st year subjects
- Common to the two curricula:
Numerical methods for Civil Engineering; Computational mechanics and Inelastic structural analysis; Theory of structures and Stability of structures; Dynamics of Structures; Advanced Structural design*; Reinforced and prestressed concrete structures*; Advanced computational mechanics*; Mechanics of materials and inelastic constitutive laws*; Fracture mechanics*

- Curriculum Geotechnics:
Groundwater Hydraulics; Engineering Seismology

- Curriculum Structures:
Steel structures*; Computational Structural Analysis*

2nd year subjects
- Common to the two curricula:
Foundations; Geotechnical Modelling and Design; Underground excavations; 1st year subjects marked by * may also be chosen;

- Curriculum Geotechnics:
Slope Stability

- Curriculum Structures:
Earthquake Resistant Design; Bridge Theory and Design; Structural rehabilitation; Precast structures; 1st year subjects marked by * may also be chosen

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/civil-engineering/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/civil-engineering/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
Risk and disaster reduction, particularly within the contexts of dealing with uncertainty and increasing resilience, are high on local, national and international agendas. Read more

Risk and disaster reduction, particularly within the contexts of dealing with uncertainty and increasing resilience, are high on local, national and international agendas. Academic study can underpin much needed professionalisation and application of evidence and research-based theory to this area. This MSc programme aims to meet the growing need for experts trained to analyse and provide solutions to complex risk and disaster resilience issues.

About this degree

Students will learn about and explore the characterisation, quantification, management and reduction of risk, disasters, and their associated impacts, from a broad range of scientific, technical, socio-economic, political, environmental, ethical and cultural perspectives. Through this multidisciplinary approach, students gain expertise in analysing complex challenges, enabling them to become future leaders who drive policy change and innovation. 

Students undertake modules to the value of 180 credits.

The programme consists of six core modules (90 credits), two optional modules (to the combined value of 30 credits) and an independent research project (60 credits).

A Postgraduate Diploma (120 credits, six core modules and two optional modules, but no independent project), full-time nine months, part-time two years, is also offered.

Core modules

All 6 core modules must be taken.

  • Integrating Science into Risk and Disaster Reduction
  • Natural and Anthropogenic Hazards and Vulnerability
  • Emergency and Crisis Planning
  • Emergency and Crisis Management
  • Risk and Disaster Reduction Research Tools
  • Research Proposal and Appraisal

Optional modules

Choose two options (to the combined value of 30 credits) from a list which may include the following:

  • Conflict, Humanitarianism and Disaster Risk Reduction
  • Post Disaster Recovery
  • Adapting Cities to Climate Change
  • Disaster Risk Reduction in Cities
  • Earthquake Seismology and Earthquake Hazards
  • Decision and Risk (Statistics)
  • Risk and Contingency Planning (Security and Crime Science)
  • Risk Power and Uncertainty (Anthropology)
  • The Variable Sun: Space Weather and You
  • Climate Risks to Hydro-Ecological Systems
  • Perspectives on Terrorism (Security and Crime Science)

Dissertation/report

All students undertake an independent research project of 10,000-12,000 words which culminates in a research project and poster presentation.

Teaching and learning

The programme is delivered through a combination of lectures, directed reading and practical problem-solving exercises and a real-time disaster scenario event, with an emphasis on hands-on learning and tutorial-style dialogue between students and lecturers. Assessment is by independent and group oral presentations, written examination, coursework essays, and the independent project. Practical applications of critical and creative problem-solving will be encouraged and assessed throughout.

Fieldwork

A series of one-day UK-based field trips are available.

Further information on modules and degree structure is available on the department website: Risk, Disaster and Resilience MSc

Funding

For a comprehensive list of the funding opportunities available at UCL, including funding relevant to your nationality, please visit the Scholarships and Funding website.

Careers

This programme provides excellent training towards careers in fields including research, public policy, business continuity, (re)insurance, catastrophe modelling, finance, risk management, international development, emergency services, consultancy, and humanitarian assistance. The IRDR runs a careers and opportunities fair for students, which is attended by insurance companies, catastrophe modelling firms, NGOs, academic institutions, policy and local government bodies, and head hunters in the field of risk and disaster reduction. Several students have found opportunities through contacts made and positions advertised during this event.

Recent career destinations for this degree

  • Disaster Management Administrator, Plan International
  • Project Officer, University of Hong Kong

Employability

Whether you wish to start a new career in risk and disaster reduction or you already have experience in this sector, we are here to support you. With an MSc in Risk, Disaster and Resilience, you will have excellent academic credibility coupled with practical and analytical skills.

Careers data is taken from the ‘Destinations of Leavers from Higher Education’ survey undertaken by HESA looking at the destinations of UK and EU students in the 2013–2015 graduating cohorts six months after graduation.

Why study this degree at UCL?

The UCL Institute for Risk and Disaster Reduction (IRDR), where teaching for this programme is based, leads and co-ordinates multidisciplinary research, knowledge exchange and advanced teaching in risk and disaster reduction across UCL.

UCL is uniquely well placed to lead research and teaching in this field; in addition to at least 70 academics across 12 departments and seven faculties involved in world-class research, the IRDR has established links with non-governmental organisations, industry and government departments based in and around London.

Teaching and project supervision will be provided by active researchers, practitioners and policy-makers, all of whom are leaders in their respective fields.



Read less
Our aim is to produce the next generation of leaders in earthquake engineering and natural disaster risk management who want to make an impact on the design of the built environment, the mitigation of seismic loss and the protection of human life. Read more
Our aim is to produce the next generation of leaders in earthquake engineering and natural disaster risk management who want to make an impact on the design of the built environment, the mitigation of seismic loss and the protection of human life. This specialist MSc combines the training of earthquake, structural and geotechnical engineering with design, assessment and management of infrastructure.

This discipline demands world-class facilities and at Bristol you will benefit from studying in the UK’s flagship centre for earthquake engineering. Here, you will have access to the state-of-the-art BLADE/EQUALS laboratory, including one of the most advanced earthquake shaking tables in Europe.

Throughout the programme you will work together with expert staff and international partners, exposing you to real-world challenges engineers face. Industry links are integral to the programme and our graduates are highly sought after by major UK and international employers.

One of the many highlights of the year is a field trip to an earthquake affected area in south-east Europe. You will have the opportunity to visit structures designed with innovative methods to resist earthquake forces or inspect the damage of a recent aftermath by using modern tools for non-destructive material testing and remote imaging.

Programme structure

Subject areas are aligned with two main strands relevant to structural/geotechnical earthquake engineering and disaster risk reduction. A strong set of core units (structural dynamics, earthquake engineering, reliability for engineers, soil-structure interaction and engineering seismology) is followed by 10-credit specialist units, depending on the strand chosen.

Students following the structural/geotechnical earthquake engineering strand will take units relevant to the analysis and design to Eurocode 8, laboratory testing of structures and soils, foundation engineering and soil dynamics. Students who choose to pursue the disaster risk management strand will focus on engineering for international development, disaster risk reduction, hazards and infrastructure and environmental modelling.

Cross references are carefully designed among the units of the two strands to make sure that all graduates obtain a uniform level of background knowledge and appropriate specialisation.

You are also required, as part of your course, to attend a field trip to an earthquake affected region, typically in a Mediterranean country. You may visit recently damaged areas and/or major engineering projects designed to resist earthquake forces. A series of seminars will also give you the opportunity to learn, as part of a distinct unit, the most recent advances in earthquake engineering innovation from distinguished invited experts.

Having successfully completed these units, you will prepare a 60-credit MSc thesis during the summer term, to be submitted at the end of the academic year.

Read less

Show 10 15 30 per page



Cookie Policy    X