• Aberystwyth University Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Northumbria University Featured Masters Courses
De Montfort University Featured Masters Courses
Southampton Solent University Featured Masters Courses
Anglia Ruskin University Featured Masters Courses
University of Bedfordshire Featured Masters Courses
University of Nottingham Featured Masters Courses
"sedimentary"×
0 miles

Masters Degrees (Sedimentary)

We have 16 Masters Degrees (Sedimentary)

  • "sedimentary" ×
  • clear all
Showing 1 to 15 of 16
Order by 
EXPLORE PROCESSES AFFECTING THE EARTH'S LIFE AND ITS ENVIRONMENT. In our Master's programme in Earth, Life, and Climate, you will explore the fundamental processes which regulate the past, present, and future dynamics of sedimentary systems, biodiversity, and climate, as well as their evolution. Read more

EXPLORE PROCESSES AFFECTING THE EARTH'S LIFE AND ITS ENVIRONMENT

In our Master's programme in Earth, Life, and Climate, you will explore the fundamental processes which regulate the past, present, and future dynamics of sedimentary systems, biodiversity, and climate, as well as their evolution. This two-year programme will provide you with the knowledge you need to understand climate change and its impact on natural environments such as soils, sediments, lakes, groundwater, wetlands, estuaries, and oceans.

The main topics you will study include the evolution of life, the development of sedimentary basins, carbon sources and sinks, biogeochemical and geochemical fingerprinting of sedimentary processes/environments, and climate reconstruction.

You can choose one of four tracks based on your specific interests:

SOCIETAL AND SCIENTIFIC CHALLENGES

On this programme, you will learn state-of-the-art reconstruction methods, modelling techniques, and laboratory experiments used in a wide range of earth and beta science disciplines. These disciplines include biogeology, palaeontology, palynology, sedimentology, stratigraphy, environmental geochemistry, organic geochemistry, hydrology, physical geography, geology, biology, climate dynamics, marine sciences and palaeoceanography. You will utilise these skills in your own research project or on the traineeships you can take in preparation for an international career in applied or fundamental research. 

The programme focuses on the following societal and scientific questions:

  • How does the Earth’s climate system respond to higher levels of atmospheric CO2?
  • How fast do ice sheets respond to global warming?
  • How are regional patterns of precipitation controlled by changes in monsoon strength or El Niño?
  • How resilient is the ocean to chemical perturbations?
  • How sensitive are ecosystems and biodiversity to environmental change?
  • How and when did life originate on Earth?
  • How are resources, such as fossil fuels and metal deposits, formed?


Read less
STUDY PROCESSES BELOW THE EARTH'S SURFACE. In the Master in Earth Structure and Dynamics programme, you will explore the composition, structure, and evolution of the Earth’s crust, mantle, and core. Read more

STUDY PROCESSES BELOW THE EARTH'S SURFACE

In the Master in Earth Structure and Dynamics programme, you will explore the composition, structure, and evolution of the Earth’s crust, mantle, and core. During this two-year programme, you will learn to link geological, geophysical, geochemical, and geodetic observations made at the Earth’s surface to physical processes operating within the planet.

Specialise in any aspect of Solid Earth Science

The programme combines geology, geophysics, mathematics, physics, chemistry and field studies to address how the solid Earth works. It allows you to specialise in virtually any aspect of solid Earth science, ranging from theoretical geophysics to pure geology or geochemistry. Many students choose a combined geology-geophysics focus.

Core areas of teaching and research

The main subject areas you will study consist of seismology, tectonophysics, mantle dynamics, structural geology, metamorphism, magmatic processes, basin evolution, hydrocarbon and mineral deposits, and the properties of Earth materials. You will examine processes ranging from slow geodynamic processes – such as mantle convection, plate tectonics, sedimentary basins formation and evolution, and mountain building – to those that can have an impact during a human lifetime. These include active crustal deformation, seismicity, and volcanism as well as subsidence, uplift induced seismicity and geo-resources.

In the programme, you will address questions such as:

  • How do mountain belts and sedimentary basins form? 
  • How can we image the internal structure of the crust and mantle? 
  • How does plate tectonics really work and how can we model it? 
  • What controls volcanic eruptions and earthquakes? 
  • Can CO2 be safely stored in reservoir rocks in the Earth’s crust? 

You can choose one of three specialisation tracks based on your interests in the field:

  • Earth Materials
  • Deformation and metamorphic and igneous processes operating in the crust and upper mantle
  • Physics of the Deep Earth and Planets
  • An in-depth geophysical approach to understand the deep interior of the Earth and other planets
  • Basins, Orogens, and the Crust-Lithosphere System
  • Understand the processes at the scale of the crust and lithosphere such as the formation and evolution of sedimentary basins or mountain chains. This is a combined track for a hybrid Geology-Geophysics (Solid Earth specialist) profile.  

PROGRAMME OBJECTIVE

  • The Earth Structure and Dynamics programme focuses on all aspects of the solid Earth as a key component of system Earth – and therefore of Earth system science. This encompasses the structure, dynamics, and evolution of the solid Earth over the full range of spatial and temporal scales as well as the role of solid Earth structure and processes in societally relevant issues such as energy, geo-resources, and geohazards. Examples include understanding the physics of tectonically – or human – induced earthquakes, volcanic hazards or petroleum, mineral, sustainable or unconventional resources. Knowledge of these aspects has direct relevance for professional profiles and future job opportunities.


Read less
What is the Master of Geology all about?. You will gain much from the strong emphasis on research in this programme. Read more

What is the Master of Geology all about?

You will gain much from the strong emphasis on research in this programme. Besides enhancing knowledge and skills in numerous specialised courses, including a field-mapping course, you will conduct your own master’s thesis project within a research team (professor(s), postdoc(s), PhD-student(s)) and at the same time develop important scientific skills, such as reporting and presenting, needed in your future career. 

This is an initial Master's programme and can be followed on a full-time or part-time basis.

Structure

The master’s programme offers 4 different majors: Geodynamics and Georesources, Surface Processes and Paleoenvironments, Geology of Basins and Soil and Groundwater.

  • In Geodynamics and Georesources, you will study rock-forming processes and mineral resources in the subsurface. The interaction between various physico-chemical processes in the Earth forms the core of this major. You will develop the ability to analyse and explain the complexity of the various interacting physical and chemical rock-forming processes and apply this knowledge to the exploration of natural resources.
  • In Surface Processes and Paleoenvironments, you will study the interaction between the geosphere, hydrosphere, atmosphere and biosphere. The focus is on understanding present-day and past processes and placing these processes in a context of global change on various time scales. You will develop the ability to analyse and explain the complex interaction of surface processes relating to the variability of various aspects of the Earth’s surface.
  • In Geology of Basins, you will study the processes steering the genesis and evolution of sedimentary basins and the surrounding areas. Special attention is given to sedimentary fluxes, the spatial organisation of basins, the evolution of the paleoenvironment, dating of events and exploration strategies. You will develop the ability to analyse and explain the complexity of interacting processes that determine the evolution of sedimentary basins.
  • In Soil and Groundwater, you will study hydrogeological and pedological characteristics and processes with a focus on fundamental and applied aspects of soils and groundwater, including the response to external influences and aimed at sustainable management and protection of these resources. You will develop the attitude to analyse and explain the complexity of physical and chemical processes influencing soil and groundwater, and to come up with remedial measures. 

Departments

The programme is firmly rooted in the research of the Department of Earth and Environmental Sciences (KU Leuven) and the Department of Geology (Ghent University). Both departments continuously develop and maintain innovative and widely recognised research programmes on fundamental and applied aspects of geoscience. These generally involve collaborative efforts in various international research networks.

Career perspectives

As a Master in Geology you may be involved in development tasks, research or management functions. In consultancy, you are likely to find a job in environmental geology, hydrogeology or geotechnology. In industry, you will be involved in exploration, exploitation andtreatment of natural resources. In governmental agencies and research institutions, you may be responsible for the inventory, management, research and use of the subsurface or for environmental issues.

If you dream of an academic career, you can start by embarking on a PhD-project in Leuven, Ghent, or elsewhere.



Read less
This MSc is a full-time one-year course, consisting of 9 months taught course and 3 months research project, and assessed by coursework and examinations. Read more
This MSc is a full-time one-year course, consisting of 9 months taught course and 3 months research project, and assessed by coursework and examinations. The course provides theoretical and practical training in measuring, quantifying and understanding the physical processes within the geological marine environment. It provides a sound scientific basis on which to decide how best to design and execute marine surveys, be they geophysical, sedimentological or geological, for the required purpose.

The MSc in Applied Marine Geoscience evolved from its predecessor, the Marine Geotechnics course which boasted a 30 year pedigree.

A series of modules have been designed to explain the processes that form and characterise a wide variety of sedimentary environments, from the littoral zone to the deep ocean. Those controls range from the dynamical, chemical, climatic to geological; all are inter-related. The student also gains knowledge and understanding of survey techniques in order to map these environments and thereby gain a better understanding of the processes that shape them. The final facet of the course involves an explanation of how these sedimentary materials react to imposed loads - how they behave geotechnically.

From past experience it is found that students on completion of the course will find employment in the offshore hydrocarbons industry, geophysical contract companies (both offshore and terrestrial), geotechnical engineering companies, river and harbour boards or government establishments. The course may also lead students to further academic research studies.

Aims of the course
The aim of the course is to provide the world with people who

understand the inter-relationships between the forces which shape the marine geological environment,
have mastered the practical and analytical techniques necessary to study those controls and survey the geological settings
can critically analyse their findings and present them at a standard and in a form required by end-users, be they commercial or academic.
Whilst the form and style of presentation of work may differ, the skills required by doctoral students and those by potential employers (the marine geoservices industry) overlap to a large extent. Specifically identifying aspects of the course in this light, we aim to enable the students to:

be skilled in planning and acquiring good quality data in the laboratory and in the field in a safe manner
be able to work as a team in the acquisition of larger data-sets
appreciate the importance of recognising the limitations of model-based interpretation of data
review and critically analyse previous work both before and after undertaking data acquisition or modelling
understand the fundamental workings of the offshore geoservices industry
In a more general sense, the course is designed to act as a conversion course for a physical scientist who wants to hone their research skills whilst at the same time getting a grasp of how those skills are applied to solve both academic and commercially based problems. An important part of the course philosophy is the idea that the challenges that face marine geoscientists can often only be solved by taking a multi-disciplinary approach and we instil this idea of wider thought into our graduates.

The course aims to place the student in a strong position to go on to doctoral studies on issues such as palaeoclimatology, geophysics or sedimentology; or enter directly into the offshore industry e.g. to geohazard analysis, or offshore renewable energy exploitation.

Read less
The MRes in Geological Sciences is a full-time programme running over 12 months from the date of first registration for the programme. Read more
The MRes in Geological Sciences is a full-time programme running over 12 months from the date of first registration for the programme. Applications will be accepted for a start date in October or January. The programme consists of (a) a major research thesis and (b) taught modules on generic and transferable skills, with an emphasis on scientific writing, oral presentations, and general research skills. Part-time study for this programme is not available.

Prospective students are advised to contact the Programme Coordinator (Prof. Andy Wheeler in advance of application via http://www.pac.ie (PAC code CKS82) to discuss possible project areas.

Visit the website: https://www.ucc.ie/en/bees/courses/postgrad/

Course detail

Students undertake a total workload equivalent to 90 credits over the 12 month programme, the principal element of which is the completion of a major research thesis of approximately 25,000 words. In parallel, students must take and pass taught modules to the value of 20 credits.

Modules

Students take 20 credits from the following available modules:

GL6002 Igneous and Metamorphic Terrain Mapping (10 credits)
GL6003 Coal Exploration (5 credits)
GL6005 Basin Analysis and Sedimentary Fancies Analysis (10 credits)
GL6006 Geotechnical Investigations of Soils and Rocks (5 credits)
GL6007 Practical Offshore Geological Exploration (5 credits)
GL6008 Geological Application of Geographical Information Systems (5 credits)
GL6010 Field Exploration Methods and Professional Development (5 credits)
GL6011 Structural Geology for Hydrocarbon Exploration (5 credits)
GL6012 Structural Geology for Mineral Exploration (5 credits)
GL6013 Geology of Ore Deposits (5 credits)
GL4002 Petroleum Geology and Basin Analysis (5 credits)
GL4003 Applied Geophysics (5 credits)
GL4004 Advanced Igneous Processes (5 credits)
GL4011 Economic Geology (5 credits)
GL4024 Exceptional Glimpses of Ancient Life (5 credits)
GL4027 Geochemistry (5 credits)

Students may elect to take other, relevant modules (subject to availability) that are offered by the University that are not listed above to fulfil the elective requirement with approval from the MRes coordinator, research supervisor and Head of School of Biological, Earth and Environmental Science.

Students will also undertake independent research towards completion of a research thesis to a student workload equivalent of 70 credits on a selected topic in Geological Science.

Current projects

- Palynology and palynofacies of the Booley Bay Formation of Co.Wexford
- Palaeoenvironments recorded in the Lias of Northern Ireland
- Taphonomy of insects in the Daohuguo Konservat-Lagerstätte (Jurassic, Inner Mongolia)
- Characterising deformation in unconsolidated sediments
- Early tectonic fabric development in sedimentary rocks
- Petrological and structural mapping of the Fanad Lineament, Co. Donegal
- Quantifying the climate-controlled Pleistocene erosion of the Irish landmass (over the last 2.5 ma)

Programme Learning Outcomes

On successful completion of this programme, students should be able to:

- Carry out an independent and original research project to address an emerging question in Geological Sciences.
- Prepare and write a dissertation of their research project in a critical, logical and systematic manner, in keeping with the standards of postgraduate research.
- Display advanced theoretical knowledge and practical understanding within a research area of Geological Science.
- Understand the basis and application of field and laboratory methods used in Geological Science and a knowledge of their limitations
- Avail of relevant workshops or modules to increase scientific technical skills
- Source, review, critically assess and evaluate relevant primary literature and summarize material for presentation to peers and for inclusion within the research dissertation.
- Design, write and defend a scientific research proposal based on their current research topic or a proposed topic.
- Evaluate their skill set and identify skills that should be acquired.
- Develop professional practice skills including team-work, negotiation, time-management, scientific writing and oral communication.

How to apply

MRes Animal and Plant Science Brochure: https://www.ucc.ie/en/media/academic/schoolofbees/documents/MResinAnimalandPlantScience.pdf

Prospective students should also consult the following guide to procedures realting to applying for the MRes Animal and Plant Science: https://www.ucc.ie/en/media/academic/schoolofbees/documents/MResinANimalandplantscience-Studentguidetoproceduresbeforeandafterentrytotheprogramme24March2016.pdf

Read less
This course is one of the premier international applied petroleum geoscience courses. Since the inception of the course in 1985 its graduates have an unparalleled employment record in the petroleum industry both in the UK and worldwide. Read more

This course is one of the premier international applied petroleum geoscience courses. Since the inception of the course in 1985 its graduates have an unparalleled employment record in the petroleum industry both in the UK and worldwide. In addition our graduates are highly sought after for further PhD research in the petroleum geosciences.

● Recognised by NERC - 5 MSc studentships each year covering fees, fieldwork and maintenance.

● Recognised by Industry - Industry scholarships

● We offer highly focused teaching and training by internationally recognised academic experts as well as by visiting staff from the petroleum industry.

The course covers the applications of basin dynamics and evolution to hydrocarbon exploration and production. The course is modular in form providing intensive learning and training in geophysics, tectonics and structural geology, sequence stratigraphy and sedimentology, hydrocarbon systems, reservoir geology, remote sensing and applied geological fieldwork.

The MSc course provides ‘state of the art’ training in -

● 3D seismic interpretation and 3D visualization;

● Fault analysis and fault-sealing;

● Seismic sequence stratigraphy;

● Applied sedimentology;

● Well log analysis;

● Remote sensing analysis of satellite and radar imagery;

● Analysis of gravity and magnetic data;

● Numerical modelling of sedimentation and tectonics;

● Applied structural geology;

● Geological Fieldwork.

● Transferable skills learned during the course include

project planning, presentation techniques, report writing and compilation, team working skills, spreadsheet and statistical analyses, GIS methods as well as graphics and visualization techniques.

● The full time MSc course runs for 50 weeks. The first half comprises one and two week course modules as well as group projects and fieldwork. The second half of the MSc course consists of an individual research project usually carried out in conjunction with the petroleum industry or related institutions such as international geological surveys.

● Part time study over 24 months is also available

● Each year independent projects are arranged with new data sets from industry – some students work in the offices of the company whereas other may use our excellent in-house facilities. All independent projects are supervised by faculty members with additional industry supervision where appropriate.

Facilities include –

● Dedicated Modern Teaching Laboratories

● 14 Dual Screen Unix Seismic Workstations

● PC and Macintosh Workstations

● Internationally Recognised Structural Modelling Laboratories

● Advanced Sedimentological Laboratories

The MSc course also greatly benefits from dynamic interaction with internationally recognised research groups within the Geology Department including –

● Project EAGLE – Evolution of the African and Arabian rift system – Professor Cindy Ebinger

● Southeast Asia Research Group – Tectonic Evolution and Basin Development in SE Asia – Professor Robert Hall

● Numerical Modelling Research Group – Numerical Modelling of Tectonics and Sedimentation – Dr Dave Waltham

● Fault Dynamics Research Group – Dynamics of Fault Systems in Sedimentary Basins – Professor Ken McClay

The 2005 MSc graduates went on to employment with Shell, BP, Amerada Hess, Gaz de France, OMV (Austria), Star Energy, First Africa Oil, Badley Ashton, ECL, PGS, Robertsons, PGL, Aceca, and to PhD research at Royal Holloway and Barcelona.

Since 2001, 85% of our graduates have gone in to work in the oil industry, 10% into geological research and 5% into environmental/engineering jobs.

Accommodation is available on campus in en-suite study bedrooms grouped in flats of eight, each with a communal kitchen and dining space.

Subsistence Costs ~£9,000 pa (including Hall of Residence fees of c. £4,500 for a full year)

APPLICATIONS can be made on line at http://www.rhul.ac.uk/Registry/Admissions/applyonline.html



Read less
This is one of the premier international applied MSc courses with a focus on petroleum exploration and production. It is run in parallel with the Basin Evolution and Dynamics MSc in Petroleum Geocsience but with a greater emphasis on tectonics and structural geology. Read more
This is one of the premier international applied MSc courses with a focus on petroleum exploration and production. It is run in parallel with the Basin Evolution and Dynamics MSc in Petroleum Geocsience but with a greater emphasis on tectonics and structural geology. In addition to successful employment in the international petroleum industry graduates from this course are employed in the international mining industry as well as being highly sought after for further PhD research in the geosciences.

● Recognised by Industry - Industry scholarships

● We offer highly focused teaching and training by internationally recognised academic experts as well as by visiting staff from the petroleum and remote sensing industries.

The course covers the applications of tectonics and structural geology to hydrocarbon exploration and production as well as to applied structural geology research in different terranes. The course is modular in form providing intensive learning and training in tectonics, applied structural geology, seismic interpretation of structural styles, tectonostratigraphic analysis, section balancing and reconstruction, remote sensing, crustal fluids and hydrocarbon systems, reservoir geology, and applied geological fieldwork.

The MSc course provides ‘state of the art’ training in –
● Plate tectonics and terrane analysis;
● Applied structural analysis;
● 3D seismic interpretation and 3D visualization of structural styles;
● Fault analysis and fault-sealing;
● Tectonostratigraphic analysis;
● Scaled analogue modelling;
● Numerical modelling of structures;
● Remote sensing analysis of satellite and radar imagery;
● Analysis of gravity and magnetic data;
● Section balancing and reconstruction;
● Applied structural fieldwork.

● Transferable skills learned during the course include
project planning, presentation techniques, report writing and compilation, team working skills, spreadsheet and statistical analyses, GIS methods as well as graphics and visualization techniques.

● The full time MSc course runs for 50 weeks. The first half comprises one and two week course modules as well as group projects and fieldwork. The second half of the MSc course consists of an individual research project usually carried out in conjunction with the petroleum industry or related institutions such as international geological surveys.

● Part time study over 24 months is also available

● Each year independent projects are arranged with new data sets from industry – some students work in the offices of the company whereas other may use our excellent in-house facilities. All independent projects are supervised by faculty members with additional industry supervision where appropriate.

Facilities include –
● Dedicated Modern Teaching Laboratories
● Internationally Recognised Structural Modelling Laboratories
● 14 Dual Screen Unix Seismic Workstations
● PC and Macintosh Workstations
● Advanced Sedimentological Laboratories

The MSc course also greatly benefits from dynamic interaction with internationally recognised research groups within the Geology Department including –

● Project EAGLE – Evolution of the African and Arabian rift system – Professor Cindy Ebinger
● Southeast Asia Research Group – tectonic evolution and basin development in SE Asia – Professor Robert Hall
● Numerical Modelling Research Group – Numerical modelling of tectonics and sedimentation – Dr Dave Waltham
● Fault Dynamics Research Group – Dynamics of Fault Systems in Sedimentary Basins – Professor Ken McClay

Our Tectonics MSc graduates have gained employment with Shell, BP, ECL, PGS, Sipetrol, PGL, Codelco, and to PhD research in a range of universities including Trieste, Barcelona, and Ulster universities.
Since 2001, 85% of our Petroleum Geosciences MSc graduates have gone in to work in the oil industry, 10% into geological research and 5% into environmental/engineering jobs.

Accommodation is available on campus in en-suite study bedrooms grouped in flats of eight, each with a communal kitchen and dining space.

Subsistence Costs ~£9,000 pa (including Hall of Residence fees of c. £4,500 for a full year)

APPLICATIONS can be made on line at http://www.rhul.ac.uk/Registry/Admissions/applyonline.html

Read less
Our geochemistry research includes specific areas of expertise. applied and fundamental aspects of geochemistry; environmental sustainability; climate change; and biosphere/geosphere interactions. Read more
Our geochemistry research includes specific areas of expertise: applied and fundamental aspects of geochemistry; environmental sustainability; climate change; and biosphere/geosphere interactions. Through working with academics who are leaders in their field, you will be supported and guided to produce research of an international standard.

The School of Civil Engineering and Geosciences enjoys an international reputation for using the latest science to solve problems of global importance. For geochemistry we have MPhil and PhD supervision in the following areas:

Petroleum-related geological research
-Reservoir and source-rock geochemistry
-Microbial deep biosphere of petroleum reservoirs
-Origin, significance and maturation of molecular biomarker compounds in the sedimentary record
-Physico-chemical properties and behaviour of mudstone sequences
-Shale gas
-Geological sequestration of CO2
-Palynofacies and organic facies of ancient and modern sediments

Environment-related research
-Geomicrobiology
-Mineral science
-Molecular microbial ecology
-Molecular palaeontology
-Soil biogeochemistry
-Waste management
-Bioremediation of polluted soils and waters
-Biogeochemical cycling of elements through Earth history
-Climate change during past greenhouse conditions
-Processes of carbon cycling and export across the land–ocean transition

Delivery

We offer the MPhil and PhD on a full time or part time basis. You will work with research-active academics who will provide advice and support throughout your research project. You will receive formal training in research skills and methods and discipline-specific training is provided where appropriate.

The first three months of study involve intensive theoretical and practical tuition to ensure that you have the study skills to plan your project and can use the equipment and software related to your research. You are encouraged to attend our weekly research seminar series and to present your work at our annual postgraduate research conference, group seminars and relevant international conferences.

Facilities

The School of Civil Engineering and Geosciences has an exceptional range of laboratories equipped with a wide range of analytical instrumentation supporting our research, teaching and contract research projects.
-Chemical and Biological Research Laboratories
-Geotechnics and Structures Research Laboratories

Read less
Study for a prestigious MSc in Petroleum Geoscience. by distance learning. Read more

Study for a prestigious MSc in Petroleum Geoscience

by distance learning

Primarily suited to hydrocarbon industry professionals who wish to further develop their knowledge and skills while working, this online version of the well-established Royal Holloway MSc course has an international reputation for excellence in the petroleum industry.

Finding new reserves is becoming ever more challenging and the enhanced recovery of reserves from existing fields is becoming increasingly important. Well-trained Petroleum Geoscientists with the ability to integrate geological and geophysical data, and to apply it on a variety of scales, have a vital role to play.

Practical and technical skills

This MSc in Petroleum Geoscience provides training in the practical and technical skills to address a range of exploration and production challenges, from predicting the likely distribution of hydrocarbons in a frontier sedimentary basin, to quantifying the complex structural, stratigraphic and sedimentological architecture of individual reservoirs.

Royal Holloway, University of London is one of the leading centres for Earth Science research in the UK. It has excellent links with the international oil industry and a strong programme of industry-funded petroleum geology research, which ensures that this Masters is up-to-date, focused and commercially relevant.

Royal Holloway staff provide tutorial support for each module, plus guidance for your dissertation and for project work, which is based on industry data.

Features of the programme

- Comprehensive learning materials delivered via a dedicated web portal: video clips, animations, audiovisual presentations, fully illustrated manuals, self-assessment quizzes, exercises and computer-based practicals including examples of subsurface data such as seismic and well-log data

- A field trip and intensive study seminars held in the UK as part of the final module on the course

- Option to be awarded a Postgraduate Diploma in Petroleum Geoscience if you choose not to undertake the project.

Prestige

The programme has been developed by academics within the Department of Earth Sciences at Royal Holloway using the material and experience from the campus-based Petroleum Geoscience MSc course that has been running since 1985. The Royal Holloway Earth Sciences Department achieved an 'excellence' rating for teaching quality and 70% of our research was graded as world-leading or internationally excellent in the 2008 Research Assessment Exercise.

Career progression

Many graduates of the campus-based MSc are now well-established, successful industry professionals with careers ranging from national oil companies to geoscience IT and consultancy to academia.

Your time commitment

This course is offered online with each module running with tutor support for a three month period during the academic year, and available the rest of the time for preview and revision. This online structure enables you to fit your studies around work and family commitments. To complete an MSc in a three year period you will need to study an average of 20 hours per week during the academic session.

Excellent support

Fully supported by a Virtual Learning Environment, you will have the opportunity for interaction with online tutors to discuss course material and exercises; a virtual student cafe allows you to interact and network with other students.

Contact us

If you have any questions, please contact our Student Advice Centre.



Read less
The course is aimed at graduates from a variety of Geoscience backgrounds who wish to gain expertise in Micropalaeontology and Petroleum Geosciences. Read more

The course is aimed at graduates from a variety of Geoscience backgrounds who wish to gain expertise in Micropalaeontology and Petroleum Geosciences.

Applicants should ideally have a first degree in Geology or a closely related subject. Early Applications are encouraged as places on the course may be limited.

Course details

Key features:

  • Comprehensive coverage of the key microfossil groups used in hydrocarbon exploration
  • Focus on the role of microfossils in understanding major changes in global climate
  • Course taught by both academic staff and industrial partners
  • Opportunity to experience working with geological consultancies as well as an academic research environment
  • Individual research project tailored to your own skills and goals
  • The course has received financial support from BG Group, BP, Petrostrat and Shell.

Learning and teaching

The first semester is preceded by a short UK-based field trip to collect samples, and delivered through a series of modules focussing on the key microfossil groups and their applications. In the second semester, students will normally take courses to broaden their understanding of petroleum geology and sedimentary basin analysis while undertaking independent research projects.

Employablity

  • The course is primarily designed to prepare students for work in the hydrocarbon industry and related service sector; this may involve both onshore and offshore work in the UK, Europe and Worldwide.
  • The research skills acquired will also provide a strong foundation for those wishing to undertake further postgraduate study towards the award of a PhD.


Read less
This MSc will prepare students for highly skilled, multidisciplinary managerial roles in the natural resources sector across the globe. Read more

This MSc will prepare students for highly skilled, multidisciplinary managerial roles in the natural resources sector across the globe. The programme is transcontinental (offered by UCL and the University of South Australia (UniSA)), is delivered by UCL Chemical Engineering, UCL Earth Sciences, UCL School of Management, and the Future Industries Institute at UniSA, and designed with significant input from industry.

About this degree

Students develop knowledge of geology, geosciences, geochemistry and the chemical processes used to transform raw materials into commmodities; managerial skills; and an understanding of the relationship between limited natural resources, economic forces, and the implications for society. The first two terms are spent at UCL in London and the third term and summer at UniSA in Adelaide.

Students undertake modules to the value of 180 credits.

The programme consists of eight core modules (120 credits) and a dissertation (60 credits).

Core modules

  • Business Sustainability
  • Decision and Risk Analysis
  • Earth Resources and Sustainability
  • Geology for Global Managers and Engineers
  • Minerals Usage, Extraction and Processing
  • Natural Gas Processing
  • Prevention and Remediation of Environmental Contamination
  • Social Licensing

Optional modules

There are no optional modules for this programme.

Dissertation/report

All students undertake a dissertation of 6,000 words based on an individual research project, field trip and executive summary. They must also complete an oral examination of 20 minutes maximum.

Teaching and learning

The programme is delivered through a combination of lectures, seminars, site visits, independent reading and research as well as online material. Some of the modules taught in London will be co-taught by experts at UniSA via remote teaching methods. Assessment is by examination, coursework, process design, oral presentation, online quizzing, reports and writing executive summaries, with some components involving group work.

Further information on modules and degree structure is available on the department website: Global Management of Natural Resources MSc

Careers

The Global Management of Natural Resources MSc will prepare graduates for highly skilled, multidisciplinary managerial jobs in the natural resources sector. Recent university graduates who apply will gain a global perspective on the natural resources sector. Mid-career professionals already employed will expand their range of expertise. 

Our graduates will also be equipped for further postgraduate research in relevant disciplines.

Employability

Successful graduates will have wide knowledge of the energy and natural resources industries, have strong managerial and communication skills, be aware and respectful of social responsibilities, and operate within national and international constraints.

Why study this degree at UCL?

UCL is consistently placed in the global top 20 in a wide range of world rankings and in the latest Research Excellence Framework (REF 2014) UCL was the top-rated UK university for research strength. This MSc has developed from the European-funded research project ShaleXenvironmenT (in which UCL was an academic partner) and anticipates increasing demand for managerial professionals in existing and developing natural resources fields. UniSA is one of Australia’s leading universities for interdisciplinary research.

Our programme aims to produce global citizens and offers networking opportunities in London and Adelaide. We offer career advice throughout the programme and foster transferable skills through our multidisciplinary environment.

The programme includes a field trip to explore sedimentary formations similar to shale plays in either Spain or the UK. There is another field trip to a copper, gold or uranium mine in South Australia.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: Chemical Engineering

90% rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less
Coordinated by the . School of Earth Sciences. , the Master of Science (Earth Sciences) program offers two streams. Atmospheric Science. Read more

Coordinated by the School of Earth Sciences, the Master of Science (Earth Sciences) program offers two streams:

  • Atmospheric Science
  • Geology

The program includes collaboration between Earth Sciences/Geosciences departments from at least two other institutions (originally Monash and La Trobe universities, under our Victorian Institute of Earth and Planetary Sciences or ‘VIEPS’ legal agreement and partnership) expanding in the last decade to involve cooperation between several institutions (including Melbourne). Cooperation at this national level provides students from all participating institutions with the opportunity to access the best and broadest array of advanced coursework in the Earth Sciences discipline.                  

The School of Earth Sciences is home to diverse research activities that are well supported by equipment and technology both in the lab and field. Our research interests include: the solid Earth, the fluid Earth (including our atmosphere and oceans), and processes that operate at the interface between these regions. Current research activities in the School include: climate variability and change, sedimentary geology, palaeontology and the physics and chemistry of the Earth’s deep interior.

Students in the Master of Science (Earth Sciences) who have a weighted average mark of 80% or higher in the prerequisite undergraduate major, are eligible for consideration for the Graduate Research Program in Science. This is a five-year course of study comprising the Master of Science and the Doctor of Philosophy (PhD)

Upon completion of this course, students should have:

  • Discipline-specific knowledge and expertise appropriate for post-graduate research in the Earth Sciences field;
  • Critical judgement;
  • Ability to undertake rigorous and independent thinking; 
  • A problem-solving approach to new and unfamiliar tasks.


CAREER OUTCOMES

As a graduate of this program, one can find a rewarding career in government organisations, research institutions, environmental consultancies, and the oil, gas and mining industries. 

As a graduate, you may find a rewarding career as a:

  • Climatologist
  • Energy specialist
  • Environmental consultant
  • Environmental geologist
  • Exploration geologist
  • Mine geologist
  • Researcher
  • Resources geologist
  • State geological surveyor
  • Weather forecaster


Read less

Show 10 15 30 per page



Cookie Policy    X