• University of Derby Online Learning Featured Masters Courses
  • New College of the Humanities Featured Masters Courses
  • Coventry University Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Glasgow Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
  • St Mary’s University, Twickenham Featured Masters Courses
London School of Hygiene & Tropical Medicine Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
Imperial College London Featured Masters Courses
Coventry University Featured Masters Courses
FindA University Ltd Featured Masters Courses
"sediment" AND "transport…×
0 miles

Masters Degrees (Sediment Transport)

  • "sediment" AND "transport" ×
  • clear all
Showing 1 to 13 of 13
Order by 
In recent years, there has been a growing world-wide concern about environmental water management issues, including concerns about coastal and estuarine water pollution, river flooding and urban drainage, wetland and mangrove management, and ecological aspects of lakes and reservoirs, to mention but a few. Read more
In recent years, there has been a growing world-wide concern about environmental water management issues, including concerns about coastal and estuarine water pollution, river flooding and urban drainage, wetland and mangrove management, and ecological aspects of lakes and reservoirs, to mention but a few. In addressing these and other environmental challenges, engineers and environmental managers are using sophisticated numerical models for predicting complex hydrodynamic, water quality and sediment transport processes. These models are increasingly complemented with decision support software systems and a wide range of related hydroinformatics software tools.

The MSc in Civil and Water Engineering will offer you the knowledge and expertise that you need for a career as a consulting water engineer within this specialist professional area of civil engineering. The course aims to complement a relevant undergraduate degree by introducing you to hydroinformatics, computational hydraulics and environmental hydraulics, including water quality indicators and sediment transport processes in coastal, estuarine and inland waters.

The MSc is aimed at graduates in Civil Engineering, Earth Sciences, Environmental Sciences and Bio-Sciences. Good mathematical skills are an advantage. The degree programme is also aimed at engineers/scientists working in relevant areas wishing to upgrade or refresh their qualifications.

Distinctive features

• The School of Engineering received the highest rating in the UK for its research and its research impact in the Government’s latest Research Excellence Framework (REF 2014).

• The course lecturers have considerable experience of working on a wide range of practical environmental hydraulics project and their models have been mounted by over 35 companies for over 80 world-wide EIA projects and by over 45 universities in 17 countries.

• The MSc in Civil and Water Engineering is accredited by the ICE, IStructE, IHT and IHIE, as meeting the requirements for Further Learning for a Chartered Engineer under the provisions of UK-SPEC for intakes 2014-2018 inclusive, for candidates that have already acquired a CEng accredited BEng (Hons) undergraduate first degree or an IEng accredited BSc (Hons) undergraduate first degree.

Structure

The MSc in Civil and Water Engineering is run by the School of Engineering and is designed to provide specialised, postgraduate training in environmental water engineering whilst having a measure of flexibility to permit some study of related subjects in Civil and Geoenvironmental Engineering.

The aim of the programme is to enhance your engineering skills and the completion of an extended project within one of the water engineering fields forms a major part of the programme. Thus, the MSc in Civil and Water Engineering aims to complement an undergraduate degree in Civil Engineering, or similar, by introducing you to hydroinformatics, computational hydraulics and environmental hydraulics, including water quality indicator and sediment transport processes in coastal, estuarine and inland waters. You will have the opportunity to work with some of these models in an extended project. The degree programme is available on a one-year full-time basis or on a three-year part-time basis.

For a list of modules for the FULL-TIME route, please see website:

http://www.cardiff.ac.uk/study/postgraduate/taught/courses/course/civil-and-water-engineering-msc

For a list of the modules for the PART-TIME route, please see website:

http://www.cardiff.ac.uk/study/postgraduate/taught/courses/course/civil-and-water-engineering-msc-part-time

Teaching

A wide range of teaching styles will be used to deliver the diverse material forming the curriculum of the programme. You will attend lectures and participate in examples classes. You must complete 120 credits in Stage 1 in order to progress to the dissertation, for which you will be allocated a supervisor from among the teaching staff. Dissertation topics are normally chosen from a range of project titles proposed by academic staff, usually in areas of current research interest, although you will be encouraged to put forward your own project ideas.

Assessment

Assessment is conducted via coursework and examinations.

You will be required to undertake an individual research project in a specialist area of Water Engineering, leading to the preparation of a dissertation. Project work is undertaken under the direct supervision of a member of staff in one of the three participating departments.

Career prospects

The record of employment of graduates of the Cardiff University MSc in Civil and Water Engineering is excellent, with the majority of graduates joining engineering consultancies. A small number of graduates each year go on to further study, typically a PhD.

Read less
This flexible MSc programme is suitable for individuals who already have an accredited undergraduate civil engineering degree and who are seeking to further their engineering skills and achieve chartered status. Read more
This flexible MSc programme is suitable for individuals who already have an accredited undergraduate civil engineering degree and who are seeking to further their engineering skills and achieve chartered status.

The course is accredited by the Joint Board of Moderators as meeting the requirements for further learning for a chartered engineer (CEng) for candidates who already have an accredited CEng (partial) BEng(Hons) or an accredited IEng (full) BEng/BSc(Hons) undergraduate first degree.

You will study a range of advanced civil engineering subjects linked to cutting-edge research. These include earthquake engineering dynamics and design, advanced geotechnics and rock mechanics, bridge engineering and advanced hydraulics. You will also develop the skills demanded in civil engineering consultancy offices around the world.

On the course, you will have the opportunity to use state-of-the-art laboratories and advanced technical software for numerical modelling.

The course is flexible and allows you to combine advanced civil engineering with related subjects including water environmental management, construction management and sustainable construction.

All of the taught modules are delivered by research-active staff and pave the way for a career at the forefront of ambitious civil engineering projects.

Scholarships

Scholarships are available for this course. Please click the link below for more information.
https://www.brighton.ac.uk/studying-here/fees-and-finance/postgraduate/index.aspx

Course structure

Our courses are under continual review. If you have already applied you can find more information on the applicant portal.

The course has an emphasis on practical applications of advanced civil engineering concepts. You will make use of our advanced laboratories, modern computer facilities and technical software.

The MSc requires successful completion of six modules together with a dissertation on an agreed technical subject; a dissertation is not required, however, for the PGDip.

The taught component of the course comprises six core modules, and you can either take all six of these modules or choose four with an additional two approved modules from other MSc courses in the School of Environment and Technology. You can use this flexibility to study related subjects including water and waste-water treatment technology, construction management and sustainable construction.

Core modules cover geotechnical earthquake engineering, dynamics of structures with earthquake engineering applications, seismic design of reinforced concrete members, random vibrations of structures, bridge loads and analysis, rock mechanics, hydrogeology, coastal engineering and wave loading.

Areas of study

• Coastal Engineering and Wave Loading

This module provides a basic understanding of different wave theories and their applications in coastal engineering practice.

You will develop an understanding of the coastal sediment transport processes and the means to deal with issues associated with coastal protection and sea defence.

• Geotechnical Earthquake Engineering

This module provides an understanding of advanced geotechnical design methods with an emphasis on seismic design. It focuses on current design methods for soil and rock structures and foundation systems subject to complex loading conditions.

You will gain experience in using a variety of commercial software.

• Rock Mechanics

The module gives you an understanding of the behaviour of rocks and rock mass and enables you to evaluate the instability of rock slopes and tunnels in order to design reinforcements for unstable rock.

• Dynamics of Structures with Earthquake Engineering Applications

You will be introduced to the fundamental concepts of dynamics of structures. The module then focuses on analytical and numerical methods used to model the response of civil engineering structures subjected to dynamic actions, including harmonic loading, blast and impact loading, and earthquake ground motion.

• Random Vibration of Structures

The module gives you the confidence to model uncertainties involved in the design of structural systems alongside a framework to critically appraise probabilistic-based Eurocode approaches to design.

Stochastic models of earthquake ground motion, wind and wave loading are explored. Probabilistic analysis and design of structures is undertaken through pertinent random vibration theory.

You will become confident with the probabilistic analysis for the design against earthquake, wind and wave loadings through various checkable calculations.

• Repair and Strengthening of Existing Reinforced Concrete Structures

The module gives you an understanding of the types and causes of damage to reinforced concrete structures. It then focuses on current techniques for repair and strengthening of existing structures.

Employability

The course is particularly appropriate for work in structural, geotechnical and coastal engineering.

Graduates have gone on into roles as structural engineers and civil engineers in a number of structural design offices around the world.

Others have been motivated by the research component of the course and followed a PhD programme after graduation.

Read less
River basins are of fundamental importance to the world’s population. Research training in water dynamics and management are demanded by both industry and academia. Read more

Overview

River basins are of fundamental importance to the world’s population. Research training in water dynamics and management are demanded by both industry and academia. The University has a world-class reputation for water-related research and GIS development in an environmental context. This programme builds on that success.

Core components are river basin hydrology and basic environmental GIS. Students choosing a RB pathway gain advanced knowledge and skills in channel hydraulics and sediment transport, river ecology and environmental assessment. Students on a GIS pathway gain advanced knowledge and skills in GIS for environment, GIS programming and digital image analysis and remote sensing.

This highly practical course advocates learning by doing and is assessed 100% by coursework. We host guest lecturers from business, industry and academia, visit work places and conduct a series of field-, laboratory- and PC-based practicals. You also have the chance to take a work placement module.

More information

The programme offers a detailed understanding of the principles of water resource management and an appreciation of the institutional and legal frameworks impacting on river basin management. You learn to formulate important research questions and design methodological approaches to answer them; and to develop quantitative analyses skills.

This programme is available part time, allowing you to combine study with other commitments. You can work to fund your studies, or gain a new qualification without giving up an existing job. We aim to be flexible in helping you to put together a part-time course structure that meets your academic goals while recognising the constraints on your study time.

You can also study this subject at Postgraduate Diploma level. We also offer some of the modules on this programme as standalone Continuing Professional Development modules.

Read less
We have a broad range of civil engineering water resource research. Our expertise ranges from climate modelling to developing practical responses to global change challenges. Read more
We have a broad range of civil engineering water resource research. Our expertise ranges from climate modelling to developing practical responses to global change challenges. Our research has global consequences and our academics are leaders in their field.

Our School of Civil Engineering and Geosciences has a successful research group that focuses on water resources. Our mission is to foster, promote and conduct research of international quality. This means that we attract high quality graduates and researchers and train them to international standards.

Our research themes include:
-Catchment hydrology and sustainable management
-Flood risk and coastal management
-Climate change impacts and adaptation

We supervise MPhil and PhD students in the following areas:
-Flow and transport processes in surface and subsurface systems. This includes river mechanics and contaminant and sediment transport
-Planning and control of hydraulic networks
-Sustainable management of the water environment, including urban, rural agricultural and forestry environments
-Climate change impact assessment, including flood risk
-Environmental hazard assessment and mitigation, including landslide hazard
-Integrated surface and groundwater pollution controls
-Integrated assessment of coupled natural, technological and human systems

Our research has access to facilities and centres within the Newcastle Institute for Sustainability:
-Water Resource Systems Research Laboratory
-Centre for Earth Systems Engineering Research (CESER)
-Centre for Land Use and Water Resources Research (CLUWRR)

Delivery

We offer the MPhil and PhD on a full time and part time basis. You will have formal training in research skills and methods. Discipline-specific training is available if you need it. You may be able to undertake paid laboratory demonstrating to gain teaching experience.

Read less
A country's physical land resources are a fundamental pillar of support for human life and welfare. Read more
A country's physical land resources are a fundamental pillar of support for human life and welfare. Worldwide, population pressures and severe degradation, pollution and desertification problems are threatening this - for several countries relatively scarce - natural resource, and cause competition between agricultural or industrial purposes, urban planning and nature conservation. To guarantee a proper use and management of this for a nation basic commodity, well trained specialists with a thorough knowledge of the properties and characteristics of this natural resource, and a solid insight in factors and measures that may alter its actual state and value are warranted and call for a high standard scientific and practical education.

The main subject in Land Resources Engineering offers training in non-agricultural use and application of soil, and includes geotechnical aspects (use of soil as a building material or for foundations, slope stability and stability of excavations), the role of soil- and groundwater for water management and supply, soil management in relation to environment and land use (erosion, sediment transport, coastal development and protection).

Structure

The Master of Science degree programme in Physical Land Resources is a two year, full time course. The first year provides a fundamental basis in physical land resources, with a main subject in either Soil Science or Land Resources Engineering. The second year offers specialised courses in one of the two main subjects. The students have to prepare a master dissertation in the second year. Successful completion of the programme leads to the award of an Master of Science degree in Physical Land Resources. The course curriculum of the first year, and of the main subject in soil science of the second year is organised at the Ghent University, whereas all courses of the main subject in Land Resources Engineering of the second year are lectured at "Vrije Universiteit Brussel".

The academic year starts the last week of September. However students are advised to arrive in Ghent in the first week of September to follow the preparatory summer course.

Teaching methods
A wide variety of teaching methods are used in the PLR programme. All course units, except for “Internship” and “Master Dissertation” include lectures. Lectures are fundamental to provide students with the necessary basic knowledge in order to acquire the requested competences. Besides lectures the following teaching methods are very frequently used: practical classes, PC-room classes and coached exercises. Teaching methods like guided self-study, group work and microteaching are occasionally used. Field work and excursions are naturally an important component of the Physical Land Resources programme, especially in the first year.

Learning outcomes

The Master of Science in Physical Land Resources is organized at both UGent and VUB and aims to contribute to an increased knowledge in Physical Land Resources both in terms of quantity (more experts with a broad knowledge) and of quality (knowledge and its use at an advanced scientific level). The incoming students have diverse backgrounds in geology-related sciences, civil engineering or agronomy and the large majority of students originate from developing countries.
-Possesses a broad knowledge at an advanced level in basic disciplines (soil physics, soil chemistry, soil mineralogy, meteorology and climatology) that provide a polyvalent scientific understandinga. needed to evaluate land potential for agricultural and environmental applications, understand the evolution of soils under natural and human-impacted conditions, and contribute to sustainable land use planning and integrated management of land and water (Soil Science); or in non-agricultural applications of land, such as geotechnical aspects, the role of soil and groundwater in water resources management and water supplies, and of land management in relation to other environmental and land use aspects (Land Resources Engineering).
-Possesses the basics to conduct field work (soil survey, soil profile description, soil sampling), interpret analytical data, classify the soil, and manage and interpret existing cartographic and remote sensing data using modern equipment, informatics and computer technology.
-Characterize soil physico-chemically and mineralogically with advanced techniques to understand soil processes, translate this to soil quality and assess the influences by and on natural and anthropogenic factors.
-Recognize interaction with other relevant science domains and identify the need to integrate them within the context of more advanced ideas and practical applications and problem solving.
-Demonstrate critical consideration of and reflection on known and new theories, models or interpretation within the specialty.
-Plan and execute target orientated experiments or simulations independently and critically evaluate the collected data.
-Develop and execute original scientific research and/or apply innovative ideas within research units.
-Formulate hypotheses, use or design experiments to test these hypotheses, report on the results, both written and orally, and communicate findings to experts and the general public.

Other admission requirements

The applicant must be proficient in the language of the course or training programme, i.e. English. The English language proficiency can be met by providing a certificate (validity of 5 years) of one of the following tests: (TOEFL/IELTS predictive tests and TOEIC will not be accepted)
-TOEFL IBT 80.
-TOEFL PBT 550.
-ACADEMIC IELTS 6,5 overall score with a min. of 6 for writing.
-CEFR B2 Issued by a European university language centre.
-ESOL CAMBRIDGE English CAE (Advanced).

Read less
The Master’s specialisation in Transnational Ecosystem-based Water Management (TWM) is partly taught at Radboud University and partly at the University of Duisburg-Essen in Germany. Read more
The Master’s specialisation in Transnational Ecosystem-based Water Management (TWM) is partly taught at Radboud University and partly at the University of Duisburg-Essen in Germany. At each University you will take different courses concering for example Water governance and Spatial Planning.

-Compulsory courses at Radboud University

Orientation in Biology and Environmental Sciences (3 EC)
Ecological and Environmental Concepts (3 EC)
Management of Ecosystems (3 EC)
Biodiversity and Ecological Assessment (3 EC)
Ecological and Environmental Modelling (3 EC)
Water Governance and Spatial Planning (3 EC)
Integrated Water Management (3 EC)
Environmental Economics for Water Management (3 EC)
Social Aspects of Water Management (3 EC)
Philosophy of water management (3 EC)

-Compulsory courses at the University of Duisburg-Essen

Hydroclimatology and Sustainable Water Management (2 EC)
Hydrogeology and Application (4 EC)
Hydraulics and Sediment Transport (3 EC)
Ecology and Protection of Freshwater Ecosystems and Aquatic Organisms (5 EC)
Field Trips (2 EC)
Water-borne Diseases (2 EC)
Basics in Hydraulic Planning and Facility Design (3 EC)
Waste Water Treatment (3 EC)
Flood Management (3 EC)
River Basin Management (3 EC)

Furthermore, you’ll profit from the expertise at two universities and become familiar with different cultures and research approaches. And after successful completion of the programme, you'll receive a German and a Dutch diploma. With that broad background, our graduates often find a job as manager or project leader, with an all-encompassing view in national or international water-related projects.

Read less
Are you interested in working on solutions for these and other environmental issues? The Wageningen University Master Earth & Environment was born from the necessity of helping the next generations of scientists find solutions for the issues confronting the way we look after our planet, now and in the future. Read more

MSc Earth and Environment

Are you interested in working on solutions for these and other environmental issues? The Wageningen University Master Earth & Environment was born from the necessity of helping the next generations of scientists find solutions for the issues confronting the way we look after our planet, now and in the future. Within the programme you can specialise in Hydrology and Water Resources, Meteorology and Air Quality, Biology and Chemistry of Soil and Water or Soil Geography and Earth Surface Dynamics.

Programme summary

Planet Earth is a complex, interactive and fascinating system. Protected by a thin layer of atmosphere, it provides all the essentials needed to sustain life and support living organisms. Natural processes and human needs often clash, leading to a wide range of environmental issues. Water scarcity and quality, soil degradation , food supply , loss of biodiversity, vulnerability to severe weather, and climate change are just a few examples of key issues that need to be addressed urgently.

As a Wageningen University geoscientist, you study Planet Earth and its ability to sustain life. Using tools from physics, chemistry, biology and mathematics, you build a quantitative understanding of the composition, structures and processes of the Earth and its atmosphere; as well as its resources and the influence of human activity. Thus, you have an important role to play in improving natural resource management and in removing obstacles to sustainable development.

Your study of the Earth system largely focuses on gaining an understanding of the interdependent physical, chemical and biological processes, and developing models that describe these processes on relevant scales. You develop scenarios that describe expected local, regional and/or global changes and the time scale on which they will occur. The Wageningen MEE focuses on the Earth’s ‘Critical Zone’ -including the atmospheric boundary layer, where flows of energy and matter determine the conditions for sustaining life; hence its name: Earth and Environment.

Specialisations

• Hydrology and Water Resources
The focus of this specialisation is to study the effects of climate change and other influences on the water balance of catchments to support optimal land management when dealing with hydrological extremes.

• Meteorology and Air Quality
Would you like to contribute to further understanding of atmospheric processes and their relevance for weather and climate? In this specialisation you learn about physical-chemical processes, the composition of the atmosphere and the exchange between the atmosphere and earth's surface and meteorology.

• Biology and Chemistry of Soil and Water
This specialisation allows you to develop an in-depth understanding of chemical and biological processes and their interactions in soils and natural waters, and their role in the functioning of terrestrial and aquatic ecosystems in a world that faces increasing anthropogenic pressures. You learn how these insights can contribute to develop effective strategies for the preservation and restoration of soil and water quality, biodiversity, and the functioning of natural ecosystems and the services they provide.

• Soil Geography and Earth Surface Dynamics
This specialisation allows you to explore the spatial and temporal processes that are active in soils, landscapes and the wider earth system. It uses an integrative approach that combines biophysical and human elements to gain insight in past, present and future system dynamics.

The combination of specific discipline training and the Earth System approach prepares you for working on the scientific and societal questions of the future. You can also choose from a selection of elective courses, and we also offer a special variant in preparation for a PhD.

Your future career

The MSc Earth and Environment programme offers our graduate scientists excellent opportunities to develop their career in research or as a science professional at universities, research institutes and consultancies. Our graduates can be found all over the world, working as meteorologists, hydrologists, water quality scientists or soil scientists, to name but a few disciplines.

Are you interested in working on solutions for these and other environmental issues? The master programme was born from the necessity of helping the next generations of scientists find solutions for the issues confronting the way we look after our planet, now and in the future.

Alumnus Nick Gorski.
NIck Gorski came from Canada to Wageningen because of the excellent reputation the Netherlands has in the field of water. He conducted two thesis research projects during his time here. The first dealt with the fluxes of sediment-bound contaminants in a river basin in southwestern Turkey. The second involved the development of a new modelling methodology for heterogeneous flow and solute transport in unsaturated soils. “I had the opportunity to take classes, do field work and research in other countries. It was an excellent way to put theory into practice.” After graduating Nick went on to work for the KWR Watercycle Research Institute in Nieuwegein, the Netherlands.

Related programmes:
MSc Biology
MSc Climate Studies
MSc Environmental Sciences
MSc International Land and Water Management
MSc Plant Sciences.

Read less
USA. Our teaching is invigorated by work from several interdisciplinary research groups, like the Sheffield Centre for International Drylands Research, the Urban and Regional Policy Research Institute and the Sheffield Institute for International Development. Read more

About the course

USA. Our teaching is invigorated by work from several interdisciplinary research groups, like the Sheffield Centre for International Drylands Research, the Urban and Regional Policy Research Institute and the Sheffield Institute for International Development.

How we teach

Our staff are active researchers at the cutting-edge of their fields. That research informs our masters courses. As well as the usual lectures and seminars, there are practicals, lab classes, field trips and research projects.

Facilities and equipment

A new £1m Sediment-Solute Systems lab enables geochemical analysis of aqueous and solid phases, especially in the context of biogeochemistry. We have equipment for chromatography, UV spectrometry and flow injection/auto analysis.

Our sample preparation facilities enable digestion, pre-concentration by evaporation under vacuum, and tangential flow filtration. There are alpha and gamma counters, a laser particle sizer and a luminescence dating lab. Field equipment includes automatic water samplers, weather stations, data loggers and environmental process characterisation sensors.

We have high-quality petrological microscopes for examining geological samples. We have labs for spectrometry and for palaeontological preparation, and you’ll also have access to specialist facilities in other departments at the University.

Laptops, camcorders, tape recorders and transcribers are available for your fieldwork. Our postgraduate computer labs have networked workstations for GIS research and climate modelling, ARC/INFO, ERDAS software and specialist software for remote sensing. GIS facilities are also provided by the £5m Informatics Collaboratory for the Social Sciences.

Our new postgraduate media GIS suite has facilities for Skype, video conferencing, web design, video editing and creative media.

Fieldwork

Most of our courses involve fieldwork. The MPH, MSc and MA International Development take students on a 10-day field trip where they put their research skills into practice. Recent classes visited the West Pokot region of Kenya, urban and rural areas of Nepal, the suburbs of Cairo and India.

Core modules

Quantitative Analysis 1; Applications of GIS; Open Source GIS and Spatial Data Analysis; Research Proposal for Applied GIS; Advanced GIS Methods; The Professional GIS Project.

Examples of optional modules

Quantitative Analysis 2; Urban and Regional Inequalities;Transport Planning; Issues in Housing; Regional Governance.

Teaching and assessment

There are seminars, lectures, workshops and reading groups. You’ll be assessed on your coursework assignments and a dissertation.

Read less
Guelph’s Water Resource Engineering program is the first of its kind in North America and with the number of prestigious NSERC chairs awarded to our faculty, it is also the most well recognized and respected of its kind. Read more
Guelph’s Water Resource Engineering program is the first of its kind in North America and with the number of prestigious NSERC chairs awarded to our faculty, it is also the most well recognized and respected of its kind. The School of Engineering is excited to offer you two new Graduate Diplomas:
• Modelling Applications in Water Resources Engineering
• Engineering Design of Sustainable Water Resource Systems

The diploma is an opportunity for:
• Canadian Engineering graduates who require further education to facilitate a change in their professional career
• Landed immigrants in Canada with an engineering background looking for Canadian educational experience

The new Graduate Diplomas are unique because they draw upon specializations in the existing Water Resources Engineering program at the University of Guelph. Water Resources Engineering research involves investigations and design of systems for control and utilization of land and water resources as part of management of urban and rural watersheds. Research topics include:
• Water quality control and safety
• Resource use and ground water quality
• Hydrologic modelling
• Design and planning of urban water and sewage infrastructure,
• Rural waste treatment systems,
• Erosion control,
• Non-point source pollution control,
• Sediment and contaminant transport,
• Irrigation and drainage modeling

Read less

  • 1
Show 10 15 30 per page



Cookie Policy    X