• Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Cambridge Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Anglia Ruskin University Featured Masters Courses
  • Ross University School of Veterinary Medicine Featured Masters Courses
  • Durham University Featured Masters Courses
King’s College London Featured Masters Courses
Cranfield University Featured Masters Courses
Cass Business School Featured Masters Courses
University of Reading Featured Masters Courses
Aberdeen University Featured Masters Courses
"seaweed"×
0 miles

Masters Degrees (Seaweed)

We have 3 Masters Degrees (Seaweed)

  • "seaweed" ×
  • clear all
Showing 1 to 3 of 3
Order by 
IT Tralee is currently seeking to recruit ahigh calibre and suitably qualified science graduate to undertake this Master by Research programme in the Department of Biological and Pharmaceutical Sciences at IT Tralee. Read more

IT Tralee is currently seeking to recruit ahigh calibre and suitably qualified science graduate to undertake this Master by Research programme in the Department of Biological and Pharmaceutical Sciences at IT Tralee. Graduates holding a relevant Level 8 Honours Degree (second class honours or higher) are invited to submit an application. The successful applicants will be awarded a stipend of €700 per month for a maximum period of 18 months and the Institute will waive full fees for this funding period. Postgraduate students are expected to complete their studies full-time at the Institute.

Biography of Principle Supervisor

Mr Quille received his Degree in Chemistry of Pharmaceutical Compounds from University College Cork in 2007. He has since completed an M.Sc in Biotechnology in the Shannon ABC laboratories at IT Tralee on a project entitled: The preparation of an alginate with a hydrophobic moiety that retains its biocompatibility and immunosuppressive properties while remaining suitable for cellular encapsulation. He has previously worked in Astellas as a Process Technician and in Shannon ABC as a Biochemical Technician. He currently holds the role of Research Scientist with Shannon ABC. Previous projects include developing a commercial focus to the use of bioassays in the assessment of different components of seaweed and the impact of seasonality. He has worked on the FP7 funded project NatuCrop where he oversaw extensive tomato growth room, glasshouse and field trials. Results of his work have been presented at a number of conferences all over Europe and in Brazil. He is currently working on a Horizon 2020 project. 

Research Project Abstract

Crop productivity relies heavily on nitrogen fertilisation which in itself requires huge amounts of energy to produce. Also excess applications of nitrogen to the land is detrimental to the environment therefore increasing plant nitrogen use efficiency (NUE) is essential in the promotion of sustainable agriculture. The use of seaweed and seaweed extracts in agriculture is well documented. The most popular and well researched type of seaweed extract commercially available is an Ascophyllum Nodosum extract (ANE). Ascophyllum is a brown seaweed that is native to the waters of Ireland as it grows best in the North Atlantic basin. Seaweed extracts have been described to enhance seed germination and establishment, improve plant growth, yield, flower set and fruit production, increase resistance to biotic and abiotic stresses, and improve postharvest shelf life. Previously a seaweed extract when combined with a fertiliser regime increased the productivity and oil content and accelerated maturation (colour and firmness) of the olive fruits from olive trees. Oil-Seed Rape (OSR; Brassica napus) is a member of the Brassicaceae family that is grown for its oil content. It requires extensive nitrogen fertilisation, however it has a poor N-harvest index meaning a lot of nitrogen is lost in the straw rather than transported to the pod. The aim or our study is to apply 4 commercially available ANE’s to winter and spring crops of OSR (different varieties) in a controlled growth room and glasshouse and finally in a field setting under different fertiliser regimes. Treatments will be assessed by comparing fresh weight, dry weight, and seed/oil yield and oil quality. Plant tissue will also be saved in order to assess other parameters such as flavonol accumulation, nitrate reductase, gene expression (NRT2) and photosynthetic parameters.

Research Context (Technical Merit & Impact)

600,000 Ha of OSR is planted in the UK and Ireland alone every year, recommended input of nitrogen is 200 kg (0.2 tonnes) per Ha meaning 120,000 tonnes of nitrogen every year. As OSR only has an N-harvest index of 0.6, representing 48,000 tonnes lost, which is a massive financial loss as well as potentially environmentally detrimental. In determining the effect of ANE’s on NUE current research focuses on the outcome, i.e. is yield increased, rather than investigate the method by which the yield has increased. This research is aimed a filling some void of knowledge here by linking phenotypic differences to biochemical and genetic data of treated plants in order to assign a potential mode of action.

Research Methodology

While ANE’s have been shown to increase nitrogen assimilation, extensive growth trials, especially in economically important crops (such as OSR) which investigate their role in affecting NUE are scarce and are only seemingly becoming popular in recent years. However considering the increased price of nitrogen, the additional interest in biostimulants (ANE’s in particular), the need to feed a growing population and coupled to the environmental damage of excess nitrogen this can be considered a ‘hot topic’. Plant (glasshouse and field setting) trials will be conducted and analysed for phenotypic data (photosynthetic measurements, yield). Materials from these plant trials must then be harvested, extracted and saved for biochemical and genetic determination. Lab-based techniques employed include protein extraction, western blotting and spectrophotometry, RT-PCR and HPLC. This 3 pronged approach from assessing phenotype to the biochemical level and finally to the gene level will provide evidence on mode of action of the ANE’s potential impact on NUE in OSR.



Read less
Take your skills in chemistry further with a course that prepares you with the cutting-edge knowledge required for a career in the manufacturing or product development industries. Read more
Take your skills in chemistry further with a course that prepares you with the cutting-edge knowledge required for a career in the manufacturing or product development industries.

Formulation is a vital activity central to manufacturing in a wide range of industries. The course encompasses polymer and colloid science, building understanding of the physical and chemical interactions between multiple components in complex formulations, leading to a competitive advantage in product development and quality control.

You'll learn the trade secrets behind successful formulation,dealing with issues such as product stability, controlling flocculation, rheology and compatibility issues with multi-component systems. Whichever industry sector you're interested in working within, you'll develop the skills to deign formulations for a wealth of scenarios, for example food, cosmetics, pharmaceuticals and more.

Key Course Features

-You will develop skills to design formulations for a wealth of industrial scenarios - from food, cosmetics and personal care, pharmaceuticals, paper production, inks and coatings, oil drilling and mining to name just a few.
-In your research project you will interface with specialists from manufacturing industries and undertake a programme of experiments designed to develop the skills you want to learn.
-On this course you will learn the trade secrets behind successful formulation - dealing with issues such as product stability (stabilising emulsions and dispersions), controlling flocculation, rheology (flow properties, mouthfeel, gelation), and overcoming compatibility issues with multi component systems. You'll be introduced to modelling, new trends in processing and high throughput formulation.

What Will You Study?

The course comprises 6 x 20 credit modules of taught content and a 60 credit Research Project. The taught element is delivered by a varied programme including lectures, seminars, and practical classes and may be studied on a full time or part time basis to suit you.

There is a strong emphasis on development of hands-on practical skills using a wide variety of advanced instrumentation.

TAUGHT MODULES
-Advanced Materials Science
-Chemistry & Technology of Water Soluble Polymers
-Formulation Science
-Research Methods
-Structure and Function of Industrial Biopolymers

The lectures and workshops are designed to train you in understanding interactions between polymer, solvent, and surfactant molecules with particles and surfaces. You will:
-Review the range of formulation types found in various industrial sectors, and their components.
-Master analytical techniques used to optimise product formulation, including measurement of molar mass distribution using gel permeation chromatography with multi angle laser light scattering (GPC-MALLS) and particle sizing techniques such as digital imaging and laser diffraction (to measure aggregates, flocs and emulsion droplets)
-Discover Green Chemistry and eco-formulation- exploring a whole range of biopolymers extracted from natural resources….including antimicrobial polymers from shellfish waste, gelling agents from seaweed, and oligosaccharides from locally grown grasses.
-Learn about man-made polymers and importantly, chemically modified biopolymers.
-Measure the viscosity and rheology of liquid formulations and see how this can be interpreted to yield structural information on thickened systems and gels, and particulate systems including fillers, additives and dispersants.

A module in Research Methods provides training in all aspects of undertaking research, from project management, through data analysis and statistics to communicating your results and writing your dissertation to ensure you are well quipped to undertake your project.

RESEARCH PROJECT
The course culminates in an industry-focused Research Project. For full-time students this may be partly or wholly undertaken within a local manufacturing company. For part-time students the project provider may be your current employer. The Research Project gives you the opportunity to undertake a piece of novel research, and will often be based around solving a formulation problem for the project provider. It allows you to put into practice the knowledge and skills gained in the taught elements of the course.

Because of the individual nature of the research projects, no two projects are the same. Below are some of the titles of previous research projects undertaken by previous masters students in our department:
-Aspects of Adhesive Bonding of Low Energy Polymers
-The Effects of Surfactants on the Rheological Properties of Hydrophobically Modified Cellulose
-Extensional Rheometry and Dynamic Light Scattering of Telechelic Associating Polymer Solutions
-Simple chemical syntheses of polymer/silver nanocomposites
-Phase Separation of Gum Arabic and Hyaluronan in Aqueous Solution
-Shear and extensional Rheology of Electron Beam (EB) Curable Paint

The information listed in this section is an overview of the academic content of the programme that will take the form of either core or option modules. Modules are designated as core or option in accordance with professional body requirements and internal academic framework review, so may be subject to change.

Assessment and Teaching

Assessment of the taught modules is intended to allow the learner to demonstrate skills that cover the entire breadth of the programme aims – knowledge and understanding, key practical skills, intellectual skills in planning experiments/interpreting data and communication of information in writing and verbally.

The research project is examined by a final dissertation.

Read less
This course trains graduates with a chemistry background specifically for a career as a polymer or biopolymer scientist. Read more
This course trains graduates with a chemistry background specifically for a career as a polymer or biopolymer scientist. The content reflects global interest in sustainably-derived polymers which are increasing in demand in a variety of applications including food and beverages, pharmaceutical, cosmetics, personal care, paints and inks.

Our specialist course will equip you with the knowledge to understand the behaviour of both naturally occurring and synthetic water soluble polymers at the molecular level, and how this influences their bulk behaviour. Lectures are reinforced and expanded by study of real-life polymer systems in the laboratory.

You'll learn about the vital roles played by polymers in a rage of products, gain knowledge of biopolymer modification, polymer synthesis and a range of specialist characterisation techniques. During your research project you'll work with specialists from manufacturing industries and perform a programme of experiments designed to help you develop your skills.

Key Course Features

-You will learn about the vital roles played by polymers in a diverse range of high value products – e.g in mayonnaise, sun tan lotion, wound gels, liquid pharmaceuticals, paper, ink, water based paints and flotation aids in mining to name just a few.
-You’ll gain first-hand knowledge of biopolymer modification, polymer synthesis, and a wide range of specialist characterisation techniques.
-In your research project you will interface with specialists from manufacturing industries and undertake a programme of experiments designed to develop the skills you want to learn.
-Through case studies and your research project you will learn how to apply acquired knowledge in real world industrial scenarios, leading the way to success in subsequent employment.

What Will You Study?

The course comprises 6 x 20 credit modules of taught content and a 60 credit research project. The taught element is delivered by a varied programme including lectures, seminars, practical classes and may be studied on a full time or part time basis to suit you. There is a strong emphasis on development of hands-on practical skills using a wide variety of advanced instrumentation.

TAUGHT MODULES
-Advanced Materials Science
-Chemistry & Technology of Water Soluble Polymers
-Formulation Science
-Polymer Characterisation Case Study
-Structure and Function of Industrial Biopolymers

The lectures and workshops are designed to train you in understanding polymer molecules themselves, and the way they interact with each other, and with solvents, surfactants, particles and surfaces.

You will:
-Study the basic principles of polymer characterisation through a range of analytical techniques including FT-IR, UV-vis, NMR, ESR and fluorescence spectroscopy.
-Master the measurement of molar mass distribution using gel permeation chromatography with multi angle laser light scattering (GPC-MALLS), and gel electrophoresis.
-Use particle sizing techniques such as digital imaging and laser diffraction to measure aggregates, flocs and emulsion droplets.
-Discover Green Chemistry - exploring a whole range of biopolymers extracted from natural resources….including antimicrobial polymers from shellfish waste, gelling agents from seaweed, and oligosaccharides from locally grown grasses.
-Learn about man-made polymers and importantly, chemically modified biopolymers.
-Measure the viscosity and rheology of liquid formulations and see how this can be interpreted to yield structural information on thickened systems and gels.
-A module in research methods provides training in all aspects of undertaking research, from project management, through data analysis and statistics to communicating your results and writing your dissertation to ensure you are well equipped to undertake your project.

RESEARCH PROJECT
The course culminates in an industry-focussed Research Project. For full-time students this may be partly or wholly undertaken within a local manufacturing company. For part-time students the project provider may be your current employer. The Research Project gives you the opportunity to undertake a piece of novel research, and will often be based around solving a polymer application /characterisation problem for the project provider. It allows you to put into practice the knowledge and skills gained in the taught elements of the course.

Because of the individual nature of the research projects, no two projects are the same. Below are some of the titles of previous research projects undertaken by previous Masters students in our department:
-Aspects of Adhesive Bonding of Low Energy Polymers
-The effects of Surfactants on the Rheological Properties of Hydrophobically Modified Cellulose
-Extensional Rheometry and Dynamic Light Scattering of Telechelic Associating Polymer Solutions
-Simple chemical syntheses of polymer/silver nanocomposites
-Phase separation of Gum Arabic and Hyaluronan in Aqueous Solution
-Shear and extensional Rheology of Electron Beam (EB) Curable Paint

The information listed in this section is an overview of the academic content of the programme that will take the form of either core or option modules. Modules are designated as core or option in accordance with professional body requirements and internal academic framework review, so may be subject to change.

Assessment and Teaching

Assessment of the taught modules is intended to allow the learner to demonstrate skills that cover the entire breadth of the programme aims – knowledge and understanding, key practical skills, intellectual skills in planning experiments/interpreting data and communication of information in writing and verbally.

The research project is examined by a final dissertation.

Career Prospects

The EU is the leading chemical production area in the world and the chemical industry is the UK's largest manufacturing export sector.

MSc Polymer and Biopolymer Science combines delivery of key theoretical knowledge with hands-on application in extraction, modification and testing of polymers / biopolymers.

You’ll learn how to develop experiments at bench scale through to processes at pilot and manufacturing scale. A Masters degree in Polymer & Biopolymer Science from Glyndwr University gives you the skills employers are looking for.

You'll be ready to step confidently into a world of manufacturing with a wealth of information and skills to offer. The course provides excellent career opportunities across a wide range of industrial sectors. Graduates can expect to obtain a research and development position in areas related to biomedical devices, pharmaceutical formulation, food and beverages, petroleum recovery, agrochemicals, functional polymers/speciality chemicals, inks, paints and coatings or cosmetics and personal care products.

The course also provides a direct route to doctoral study, for those wishing to undertake further research training or pursue an academic career.

The Careers & Zone at Wrexham Glyndŵr University is there to help you make decisions and plan the next steps towards a bright future. From finding work or further study to working out your interests, skills and aspirations, they can provide you with the expert information, advice and guidance you need.

Read less

  • 1
Show 10 15 30 per page



Cookie Policy    X