• Northumbria University Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
University of London Featured Masters Courses
University of the West of England, Bristol Featured Masters Courses
Staffordshire University Featured Masters Courses
EURECOM Featured Masters Courses
Plymouth Marjon University (St Mark & St John) Featured Masters Courses
"satellite" AND "communic…×
0 miles

Masters Degrees (Satellite Communication)

We have 38 Masters Degrees (Satellite Communication)

  • "satellite" AND "communication" ×
  • clear all
Showing 1 to 15 of 38
Order by 
Our Masters programme in Satellite Communications Engineering is designed to give you the specialist multidisciplinary skills required for careers in the satellite and space industries. Read more

Our Masters programme in Satellite Communications Engineering is designed to give you the specialist multidisciplinary skills required for careers in the satellite and space industries.

We have an exceptional concentration of academic staff experienced in the satellite area, in addition to well-established contacts with all the major satellite manufacturers, operators and service providers.

Industry participates in the MSc programme in both lecturing and projects, and facilitates excellent engagement for our students. Graduation from this programme will therefore make you very attractive to the relevant space-related industries that employ over 6,500 people in the UK alone.

Read about the experience of a previous student on this course, Thanat Varathon.

Programme structure

This programme is studied full-time over one academic year and part-time students must study at least two taught technical modules per academic year. It consists of eight taught modules and a project.

Example module listing

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Facilities, equipment and support

Through consistent investment, we have built up an impressive infrastructure to support our students and researchers. The University of Surrey hosts Surrey Space Centre – a unique facility comprising academics and engineers from our own spin-out company, Surrey Satellite Technology Ltd.

Our mission control centre was designed and developed by students to support international CubeSat operations as part of the GENSO network, and it also supports the development of the University’s own educational satellites.

Our teaching laboratories provide ‘hands-on’ experience of satellite design and construction through the use of EyasSAT nano-satellite kits. They also house meteorological satellite receiving stations for the live reception of satellite weather images.

Elsewhere, our fully equipped RF lab has network analyser, signal and satellite link simulators. The Rohde and Schwartz Satellite Networking Laboratory includes DVBS2-RCS generation and measurement equipment, and roof-mounted antennas to communicating live with satellites.

A security test-bed also exists for satellite security evaluation. We have a full range of software support for assignments and project work, including Matlab, and you will be able to access system simulators already built in-house.

Satellite Communications Engineering students can also make use of SatNEX, a European Network of Excellence in satellite communications supported by ESA; a satellite platform exists to link the 22 partners around Europe. This is used for virtual meetings and to participate in lectures and seminars delivered by partners.

Our own spin-out company, Surrey Satellite Technology Ltd, is situated close by on the Surrey Research Park and provides ready access to satellite production and industrial facilities. In addition, we have a strategic relationship with EADS Airbus Europe-wide and several other major communications companies.

Technical characteristics of the pathway

This programme in satellite communications engineering. provides detailed in-depth knowledge of theory and techniques applicable to radio frequency (RF) and microwave engineering.

The programme includes core modules in both RF and microwave covering all ranges of wireless frequencies and a number of application devices including radio frequency identification (RFID), broadcasting, satellite links, microwave ovens, printed and integrated microwave circuits.

Additional optional modules enable the student to apply the use of RF and microwave in subsystem design for either mobile communications, satellite communications, nanotechnology or for integration with optical communications.

The teaching material and projects are closely related to the research being carried out in the Department’s Advanced Technology Institute and the Institute for Communication Systems.

Global opportunities

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.



Read less
This programme addresses the great shortage of skilled radio frequency (RF) and microwave engineers, and the growing demand for conceptually new wireless systems. Read more

This programme addresses the great shortage of skilled radio frequency (RF) and microwave engineers, and the growing demand for conceptually new wireless systems.

You will learn about a range of modern theories and techniques, accompanied by topics on wireless frequencies and sizes of RF and microwave devices.

This ranges from the lowest frequencies used in radio frequency identification (RFID) systems through to systems used at mm wave frequencies that can have applications in satellite communication systems and fifth generation wireless communication systems.

Theoretical concepts established in lectures are complemented by practical implementation in laboratory sessions, with direct experience of industry-standard computer-aided design (CAD) software.

Read about the experience of a previous student on this course, Uche Chukwumerije.

Programme structure

This programme is studied full-time over one academic year and part-time students must study at least two taught technical modules per academic year. It consists of eight taught modules and a project.

Example module listing

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Academic support

We provide solid academic support through the taught modules and into the project period. You will be assigned a personal tutor with whom you can discuss both academic and general issues related to the programme.

When you move into the project phase of the programme, you will be assigned a project supervisor who you will meet, usually on a weekly basis, to discuss the progress of your project.

The individual taught modules also feature strong academic support, usually through a tutorial programme. All of the RF and microwave modules have tutorial sheets to support the lectures.

Although completing the tutorials is not part of the formal assessment, you have the option of using the tutorials to receive individual feedback on your progress in the modules.

Facilities and equipment

The combined facilities of the RF teaching laboratories and the Advanced Technology Institute provide MSc students with an exceptionally wide range of modern fabrication and measurement equipment.

Furthermore a wide variety of RF test and measurement facilities are available through Surrey Space Centre and the 5G Innovation Centre, which also involve work in the RF and microwave engineering domain.

Equipment includes access to CAD design tools, anechoic chamber, spectrum analysers, network analysers, wideband channel sounder, circuit etching and circuit testing.

Industrial and overseas links

The 5G Innovation Centre and Advanced Technology Institute within the Department have a range of active links with industry, both in the UK and overseas. During the past few years we have had students taking the MSc through the part-time route and completing their projects in industry.

Examples of industrial projects range from looking at new microwave measurement techniques at the National Physical Laboratory (NPL), to antenna design and construction at the Defence Science and Technology Laboratory (Dstl).

We have also sent students overseas to complete their projects, funded through the Erasmus scheme, which is a European programme that provides full financial support for students completing their project work at one of our partner universities in mainland Europe.

Students taking advantage of this opportunity not only enhance their CVs with a European perspective, but also produce excellent project dissertations.

Technical characteristics of the pathway

This programme in Microwave Engineering and Wireless Subsystem Designrf and microwavengineering provides detailed in-depth knowledge of theory and techniques applicable to radio frequency (RF) and microwave engineering.

The programme includes core modules in both RF and microwave covering all ranges of wireless frequencies and a number of application devices including radio frequency identification (RFID), broadcasting, satellite links, microwave ovens, printed and integrated microwave circuits.

Additional optional modules enable the student to apply the use of RF and microwave in subsystem design for either mobile communications, satellite communications, nanotechnology or for integration with optical communications.

The teaching material and projects are closely related to the research being carried out in the Department’s Advanced Technology Institute and the Institute for Communication Systems.

Global opportunities

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.



Read less
Mobile communications provide terrestrial coverage in densely populated areas, while satellite communications enable wireless communication in regions where mobile networking is not cost-effective. Read more

Mobile communications provide terrestrial coverage in densely populated areas, while satellite communications enable wireless communication in regions where mobile networking is not cost-effective. The programme gives you an in-depth understanding of the engineering aspects of these important current and future technologies.

Read about the experience of a previous student on this course, Gideon Ewa.

Programme structure

This programme is studied full-time over one academic year and part-time students must study at least two taught technical modules per academic year, until a total of eight is reached. It consists of eight taught modules and a project.

Example module listing

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Educational aims of the programme

The programme aims to:

  • Attract well-qualified entrants, with a background in Electronic Engineering, Physical Sciences, Mathematics, Computing & Communications, from the UK, Europe and overseas
  • Provide participants with advanced knowledge, practical skills and understanding applicable to the MSc degree
  • Develop participants' understanding of the underlying science, engineering, and technology, and enhance their ability to relate this to industrial practice
  • Develop participants' critical and analytical powers so that they can effectively plan and execute individual research/design/development projects
  • Provide a high level of flexibility in programme pattern and exit point
  • Provide students with an extensive choice of taught modules, in subjects for which the Department has an international and UK research reputation

Intended capabilities for MSc graduates:

  • Underpinning learning– know, understand and be able to apply the fundamental mathematical, scientific and engineering facts and principles that underpin mobile and satellite communications
  • Engineering problem solving - be able to analyse problems within the field of mobile and satellite communications and more broadly in electronic engineering and find solutions
  • Engineering tools - be able to use relevant workshop and laboratory tools and equipment, and have experience of using relevant task-specific software packages to perform engineering tasks
  • Technical expertise - know, understand and be able to use the basic mathematical, scientific and engineering facts and principles associated with the topics within mobile and satellite communications
  • Societal and environmental context - be aware of the societal and environmental context of his/her engineering activities
  • Employment context - be aware of commercial, industrial and employment-related practices and issues likely to affect his/her engineering activities
  • Research & development investigations - be able to carry out research-and- development investigations
  • Design - where relevant, be able to design electronic circuits and electronic/software products and systems

Technical characteristics of the pathway

This Programme in Mobile and Satellite Communications reflects the importance of mobile telephony, mobile data communications and satellite-based communications as complementary technologies.

Students will gain a detailed knowledge of the fundamentals and advanced concepts involved in communications and 3G/4G/5G mobile technology, and satellite-based communications and networking.

This material is complemented by study in areas such as mobile applications and web services, mobile app software development, RF design, the Internet of Things, and network management.

The teaching material and projects are closely related to the research being carried out in the EE Department's Institute for Communications Systems.

Global opportunities

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.



Read less
Taught jointly by UCL’s Space & Climate Physics and UCL’s Electronic & Electrical Engineering Departments by expert researchers and engineers in… Read more

Taught jointly by UCL’s Space & Climate Physics and UCL’s Electronic & Electrical Engineering Departments by expert researchers and engineers in the field, this MSc programme aims to provide a broad understanding of the basic principles of space technology and satellite communications together with specialised training in research methods and transferable skills, directly applicable to a career in the public and private space sectors.

About this degree

The Space Technology pathway is focussed on the application of space technology in industrial settings, and therefore has as its main objective to provide a sound knowledge of the underlying principles which form a thorough basis for careers in space technology, satellite communications and related fields. Students develop a thorough understanding of the fundamentals of:

  • spacecraft, satellite communications, the space environment, space operations and space project management
  • the electromagnetics of optical and microwave transmission, and of communication systems modelling
  • a range of subjects relating to spacecraft technology and satellite communications.

Students undertake modules to the value of 180 credits.

The programme consists of three core modules (45 credits), four optional modules (60 credits), a Group Project (15 credits) and an Individual research Project (60 credits).

Core modules

  • Space Science, Environment and Satellite Missions
  • Space Systems Engineering
  • Communications Systems Modelling Type
  • Group Project

Optional modules

  • At least one module from the following:
  • Spacecraft Design – Electronic Sub-systems
  • Mechanical Design of Spacecraft
  • Antennas and Propagation
  • Radar Systems
  • Space-based Communication Systems

  • At least one module from:
  • Space Instrumentation and Applications
  • Space Plasma and Magnetospheric Physics
  • Principles and Practice of Remote Sensing
  • Global Monitoring and Security
  • Space Data Systems and Processing

Dissertation/report

All MSc students undertake an Individual research Project, which normally involves attachment to a research group, and culminates in a report of 10,000–12,000 words.

Teaching and learning

The programme is delivered through a combination of lectures, coursework problem tasks, team-based coursework exercises, presentations and tutorials. Student performance is assessed through unseen written examinations, coursework, and the individual and group projects.

Further information on modules and degree structure is available on the department website: Space Science and Engineering: Space Technology MSc

Funding

STFC and NERC studentships may be available.

For a comprehensive list of the funding opportunities available at UCL, including funding relevant to your nationality, please visit the Scholarships and Funding website.

Careers

The programme aims to prepare students for careers in space research or the space industry, or further research degrees.

Recent career destinations for this degree

  • Chief Executive Officer (CEO), Pushtribe
  • Signal Processing Engineer, Thales UK
  • Junior Consultant, BearingPoint
  • Satellite Communication Engineer, National Space Agency of Kazakhstan

Careers data is taken from the ‘Destinations of Leavers from Higher Education’ survey undertaken by HESA looking at the destinations of UK and EU students in the 2013–2015 graduating cohorts six months after graduation.

Why study this degree at UCL?

UCL Space & Climate Physics, located at the Mullard Space Science Laboratory, is a world-leading research organisation and is the largest university space science group in the UK.

It offers a unique environment at the forefront of space science research, where scientists and research students work alongside top engineers building and testing instruments for space as well as studying the data from these and other spaceborne and ground-based instruments.

The close contact that the laboratory enjoys with space agencies such as ESA and NASA and with industrial research teams encourages the development of transferable skills which enhance job prospects in industrial and research centres in the public and private space sectors.



Read less
With the launch of 4G wireless networks (LTE), industry vendors are competing to recruit graduates with unique combination of skills and knowledge in both wireless and broadband networking fields. Read more
With the launch of 4G wireless networks (LTE), industry vendors are competing to recruit graduates with unique combination of skills and knowledge in both wireless and broadband networking fields. This course offers an integrated approach to transmission technologies, signal processing techniques, broadband network design, wireless networking techniques and modelling simulation skills.

The unique features of this course are the integration of latest wireless communications and broadband networking engineering which are at the forefront of modern telecommunication systems in the industry today.

Engineering employers have expressed their need for engineers with a solid grasp of the business requirements that underpin real engineering projects. Our course incorporates a management-related module focused on entrepreneurship and project management. This management module develops our graduates' commercial awareness and ensures that they have the skill-set valued by industry employers.

As a student here you'll benefit from well-equipped telecommunications lab and Cisco equipment.

See the website http://www.lsbu.ac.uk/courses/course-finder/telecommunication-wireless-engineering-msc

Modules

- Technical, research and professional skills
This module provides training for the skills that are necessary for successful completion of the MSc studies in the near future and for professional development in the long-term future. More specifically, the course teaches how to search and gather relevant technical information, how to extract the essence from a piece of technical literature, how to carry out a critical review of a research paper, how to write a feasibility report, how to give presentations and put your thoughts across effectively, and how to manage a project in terms of time and progress in a group project environment. These are designed to enhance the technical and analytical background that is necessary for the respective MSc stream.

- Computer network design
This module provides a broad understanding of the principles of computer networks and approaches of network design. It starts from standard layered protocol architecture and each layer of the TCP/IP model. Then it will focus on a top-down approach for designing computer networks for an enterprise.

- Wireless communication and satellite systems
This module provides understanding of main aspects of wireless communication technologies, various radio channel models, wireless communication networks and satellite communication systems. Particular emphasis will be given to current wireless technologies and architectures, design approaches and applications.

- Technology evaluation and commercialisation
In this module you'll follow a prescribed algorithm in order to evaluate the business opportunity that can be created from a technology's unique advantages. You will be guided towards identifying a technology project idea that you will evaluate for its business potential. To do this you'll conduct detailed research and analysis following a prescribed algorithmic model, in order to evaluate the business potential of this technology idea. The outcomes from this will serve as the basis for implementation of the selected technology in the business sense. Thus you'll develop the appropriate commercialisation strategy and write the business plan for your high-tech start-up company.

- Optical and microwave communications
This module provides a comprehensive approach to teach the system aspects of optical and microwave communications, with the emphasis on applications to Fibre-to-the Home (FTTH)/Fibre-to-the Business (FTTB) or Fibre-to-the Curb (FTTC), radio over fibre (RoF), optical-wireless integration, high-capacity photonic switching networks, wired and wireless broadband access systems, and high-speed solutions to last-mile access, respectively.

- Smart receivers and transmission techniques
This module provides a further in-depth study of some advanced transmission and receiver processing techniques in wireless communication systems. The module focuses on various current topics such as evolution and challenges in wireless and mobile technologies, smart transceivers, processing, coding and possible future evolutions in mobile communication systems. This module also aims to provide you with in-depth understanding and detailed learning objectives related the current mobile wireless industry trends and standards for key design considerations in related wireless products.

- Final project
This module requires you to undertake a major project in an area that is relevant to your course. You'll chose your projects and carry it out under the guidance of their supervisor. At the end of the project, you are required to present a dissertation, which forms a major element of the assessment. The dissertation tests the your ability to integrate information from various sources, to conduct an in-depth investigation, to critically analyse results and information obtained and to propose solutions. The other element of the assessment includes an oral presentation. The Individual Project carries 60 credits and is a major part of MSc program.

Employability

Engineers who keep abreast of new technologies in telecommunications, wireless and broadband networking are increasingly in demand.

There are diverse employment opportunities in this expanding field. Graduates could work for an equipment manufacturer, network infrastructure provider or a service provider, carrying out research, or working on the design and development projects, or production of data networks, broadband networking, optical fibre and microwave communications, wireless and mobile communications, cellular mobile networks or satellite systems. You could also pursue PhD studies after completing the course.

LSBU Employability Services

LSBU is committed to supporting you develop your employability and succeed in getting a job after you have graduated. Your qualification will certainly help, but in a competitive market you also need to work on your employability, and on your career search. Our Employability Service will support you in developing your skills, finding a job, interview techniques, work experience or an internship, and will help you assess what you need to do to get the job you want at the end of your course. LSBU offers a comprehensive Employability Service, with a range of initiatives to complement your studies, including:

- direct engagement from employers who come in to interview and talk to students
- Job Shop and on-campus recruitment agencies to help your job search
- mentoring and work shadowing schemes.

Professional links

The School of Engineering has a strong culture of research and extensive research links with industry through consultancy works and Knowledge Transfer Partnerships (KTPs). Teaching content on our courses is closely related to the latest research work.

Read less
Our Masters in Space Engineering programme is designed to give you the specialist multidisciplinary knowledge and skills required for a career working with space technology and its applications. Read more

Our Masters in Space Engineering programme is designed to give you the specialist multidisciplinary knowledge and skills required for a career working with space technology and its applications.

Surrey students have access to all aspects of the design and delivery of spacecraft and payloads, and as a result are very attractive to employers in space-related industries.

As we develop and execute complete space missions, from initial concept to hardware design, manufacturing and testing, to in orbit operations (controlled by our ground station at the Surrey Space Centre), you will have the chance to be involved in, and gain experience of, real space missions.

Programme structure

This programme is studied full-time over one academic year and part-time students must study at least two taught technical modules per academic year. It consists of eight taught modules and a project.

Example module listing

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Educational aims of the programme

Our philosophy is to integrate the acquisition of core engineering and scientific knowledge with the development of key practical skills (where relevant). To fulfil these objectives, the programme aims to:

  • Attract well-qualified entrants, with a background in Electronic Engineering, Physical Sciences, Mathematics, Computing & Communications, from the UK, Europe and overseas
  • Provide participants with advanced knowledge, practical skills and understanding applicable to the MSc degree
  • Develop participants' understanding of the underlying science, engineering, and technology, and enhance their ability to relate this to industrial practice
  • Develop participants' critical and analytical powers so that they can effectively plan and execute individual research/design/development projects
  • Provide a high level of flexibility in programme pattern and exit point
  • Provide students with an extensive choice of taught modules, in subjects for which the Department has an international and UK research reputation

Intended capabilities for MSc graduates:

  • Underpinning learning– know, understand and be able to apply the fundamental mathematical, scientific and engineering facts and principles that underpin space engineering.
  • Engineering problem solving - be able to analyse problems within the field of mobile and satellite communications and more broadly in electronic engineering and find solutions
  • Engineering tools - be able to use relevant workshop and laboratory tools and equipment, and have experience of using relevant task-specific software packages to perform engineering tasks
  • Technical expertise - know, understand and be able to use the basic mathematical, scientific and engineering facts and principles associated with the topics within space engineering.
  • Societal and environmental context - be aware of the societal and environmental context of his/her engineering activities
  • Employment context - be aware of commercial, industrial and employment-related practices and issues likely to affect his/her engineering activities
  • Research & development investigations - be able to carry out research-and- development investigations
  • Design - where relevant, be able to design electronic circuits and electronic/software products and systems

Technical characteristics of the pathway

This programme in Space Engineering aims to provide a high-level postgraduate qualification relating to the design of space missions using satellites. Study is taken to a high level, in both theory and practice, in the specialist areas of space physics, mechanics, orbits, and space-propulsion systems, as well as the system and electronic design of space vehicles.

This is a multi-disciplinary programme, and projects are often closely associated with ongoing space projects carried out by Surrey Satellite Technology, plc.

This is a large local company that builds satellites commercially and carries out industrially-sponsored research. Graduates from this programme are in demand in the UK and European Space Industries.

Global opportunities

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.



Read less
We have a wide range of testbeds available for projects, including wireless networking, wireless sensors, satellite networking, and security testbeds, future internet testbed and cloud infrastructure. Read more

We have a wide range of testbeds available for projects, including wireless networking, wireless sensors, satellite networking, and security testbeds, future internet testbed and cloud infrastructure.

We also have a wide range of software tools for assignments and project work, including OPNET, NS2/3, Matlab, C, C++ and various system simulators. Some projects can offer the opportunity to work with industry.

Read about the experience of a previous student on this course, Paulo Valente Klaine.

Programme structure

This programme is studied full-time over one academic year and part-time students must study at least two taught technical modules per academic year, until a total of eight is reached. It consists of eight taught modules and a standard project.

Example module listing

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Educational aims of the programme

The taught postgraduate Degree Programmes of the Department are intended both to assist with professional career development within the relevant industry and, for a small number of students, to serve as a precursor to academic research.

Our philosophy is to integrate the acquisition of core engineering and scientific knowledge with the development of key practical skills (where relevant).

To fulfil these objectives, the programme aims to:

  • Attract well-qualified entrants, with a background in Electronic Engineering, Physical Sciences, Mathematics, Computing & Communications, from the UK, Europe and overseas
  • Provide participants with advanced knowledge, practical skills and understanding applicable to the MSc degree
  • Develop participants' understanding of the underlying science, engineering, and technology, and enhance their ability to relate this to industrial practice
  • Develop participants' critical and analytical powers so that they can effectively plan and execute individual research/design/development projects
  • Provide a high level of flexibility in programme pattern and exit point
  • Provide students with an extensive choice of taught modules, in subjects for which the Department has an international and UK research reputation

Intended capabilities for MSc graduates:

  • Underpinning learning– know, understand and be able to apply the fundamental mathematical, scientific and engineering facts and principles that underpin mobile and satellite communications
  • Engineering problem solving - be able to analyse problems within the field of mobile and satellite communications and more broadly in electronic engineering and find solutions
  • Engineering tools - be able to use relevant workshop and laboratory tools and equipment, and have experience of using relevant task-specific software packages to perform engineering tasks
  • Technical expertise - know, understand and be able to use the basic mathematical, scientific and engineering facts and principles associated with the topics within mobile and satellite communications
  • Societal and environmental context - be aware of the societal and environmental context of his/her engineering activities
  • Employment context - be aware of commercial, industrial and employment-related practices and issues likely to affect his/her engineering activities
  • Research & development investigations - be able to carry out research-and- development investigations
  • Design - where relevant, be able to design electronic circuits and electronic/software products and systems

Technical characteristics of the pathway

This programme in Mobile Communication Systems reflects the importance and ubiquity of mobile telephony and mobile data communications throughout the world.

Students will gain a detailed knowledge of the fundamentals and advanced concepts involved in communications and 3G/4G/5G mobile technology together with the principles, algorithms and protocols that underpin Internet-based mobile backbone networks.

This material is complemented by study in areas such as mobile applications and web services, mobile app software development, the Internet of Things, network management, and satellite communications.

The teaching material and projects are closely related to the research being carried out in the EE Department's Institute for Communications Research.

Global opportunities

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.



Read less
This programme is suitable for recent graduates and engineers with experience of microelectronics who have good mathematical ability. Read more
This programme is suitable for recent graduates and engineers with experience of microelectronics who have good mathematical ability. It provides a thorough knowledge of the principles and techniques of this exciting field and has been developed in consultation with industry advisors to ensure it is relevant to today’s workplace.

Modules are block taught so can also be studied separately by working engineers as continuous professional development either to enhance their knowledge in particular subject fields or to widen their portfolio.

Core study areas include ASIC engineering, sensors and actuators, technology and verification of VLSI systems, embedded software development and an individual project.

Optional study areas include communication networks, information theory and coding, solar power, wind power, systems architecture, advanced FPGAs, DSP for software radio, advanced photovoltaics, mobile network technologies and advanced applications.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/eese/electronic-electrical-engineering/

Programme modules

Compulsory Modules:
• ASIC Engineering
• Sensors and Actuators for Control
• Embedded Software Development
• Individual Project

Optional Modules (Choose five):
• Communication Networks
• Fundamentals of Digital Signal Processing
• Solar Power 1
• Wind Power 1
• Communications Channels
• DSP for Software Radio
• Imagineering
• Mobile Networks
• Advanced FPGAs
• Engineering Applications
• Systems Modelling for Control Engineering – new for 2015
• Radio Frequency and Microwave Integrated Circuit Design – new for 2015

Block-taught, individual modules are also highly suitable as CPD for professional engineers needing to fill a skills gap.

How you will learn

Compulsory modules provide a comprehensive understanding of modern microelectronics, embedded electronic systems, emerging technologies and their uses while the individual research project offers the chance to pursue a specialism in-depth. You’ll have access to advanced research knowledge and state of the art laboratories using industry standard software (Altera, Cadence, Mentor, Xilinx) so that you are prepared to enter a wide range of industry sectors on graduation.

- Assessment
Examinations are held in January and May, with coursework and group work assessments throughout the programme. The high practical content of this course is reflected in the inclusion of laboratory assessments and practical examinations. The individual research project is assessed by written report and viva voce in September.

Facilities

You’ll have access to laboratories, industry standard software (Altera, Cadence, Mentor Graphics, Xilinx) and hardware including equipment provided by Texas Instruments.

Careers and further study

Consultation with industry to craft the syllabus ensures that you’ll have an advantage in the job market. The in-depth knowledge acquired can be applied wherever embedded electronic systems are found including mobile phones (4/5G), acoustics, defence, medical instrumentation, radio and satellite communication and networked systems, control engineering, instrumentation, signal processing and telecommunications engineering.

Scholarships and bursaries

Scholarships and bursaries are available each year for UK/EU and international students who meet the criteria for award.

Why choose electronic, electrical and systems engineering at Loughborough?

We develop and nurture the world’s top engineering talent to meet the challenges of an increasingly complex world. All of our Masters programmes are accredited by one or more of the following professional bodies: the IET, IMechE, InstMC, Royal Aeronautical Society and the Energy Institute.

We carefully integrate our research and education programmes in order to support the technical and commercial needs of society and to extend the boundaries of current knowledge.

Consequently, our graduates are highly sought after by industry and commerce worldwide, and our programmes are consistently ranked as excellent in student surveys, including the National Student Survey, and independent assessments.

- Facilities
Our facilities are flexible and serve to enable our research and teaching as well as modest preproduction testing for industry.
Our extensive laboratories allow you the opportunity to gain crucial practical skills and experience in some of the latest electrical and electronic experimental facilities and using industry standard software.

- Research
We are passionate about our research and continually strive to strengthen and stimulate our portfolio. We have traditionally built our expertise around the themes of communications, energy and systems, critical areas where technology and engineering impact on modern life.

- Career prospects
90% of our graduates were in employment and/or further study six months after graduating. They go on to work with companies such as Accenture, BAE Systems, E.ON, ESB International, Hewlett Packard, Mitsubishi, Renewable Energy Systems Ltd, Rolls Royce and Siemens AG.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/eese/electronic-electrical-engineering/

Read less
About the course. Study the key design aspects of a modern wireless communication system, in particular cellular mobile radio systems. Read more

About the course

Study the key design aspects of a modern wireless communication system, in particular cellular mobile radio systems.

There is a current shortage of communications engineers with a comprehensive appreciation of wireless system design from RF through baseband to packet protocols.

Our graduates are in demand

Many go to work in industry as engineers for large national and international companies, including ARUP, Ericsson Communications, HSBC, Rolls-Royce, Jaguar Land Rover and Intel Asia Pacific.

Real-world applications

This is a research environment. What we teach is based on the latest ideas. The work you do on your course is directly connected to real-world applications.

We work with government research laboratories, industrial companies and other prestigious universities. Significant funding from UK research councils, the European Union and industry means you have access to the best facilities.

How we teach

You’ll be taught by academics who are leaders in their field. The 2014 Research Excellence Framework (REF) puts us among the UK top five for this subject. Our courses are centred around finding solutions to problems, in lectures, seminars, exercises and through project work.

First-class facilities

Semiconductor Materials and Devices

LED, laser photodetectors and transistor design, a high-tech field-emission gun transmission electron microscope (FEGTEM), a focused ion beam (FIB) milling facility, and electron beam lithographic equipment.

Our state-of-the-art semiconductor growth and processing equipment is housed in an extensive clean room complex as part of the EPSRC’s National Centre for III-V Technologies.

Our investment in semiconductor research equipment in the last 12 months totals £6million.

Electrical Machines and Drives

Specialist facilities for the design and manufacture of electromagnetic machines, dynamometer test cells, a high-speed motor test pit, environmental test chambers, electronic packaging and EMC testing facilities, Rolls-Royce University Technology Centre for Advanced Electrical Machines and Drives.

Communications

Advanced anechoic chambers for antenna design and materials characterisation, a lab for calibrated RF dosimetry of tissue to assess pathogenic effects of electromagnetic radiation from mobile phones, extensive CAD electromagnetic analysis tools.

Core modules

  • Advanced Signal Processing
  • Advanced Communication Principles
  • Antennas, Propagation and Satellite Systems
  • Mobile Networks and Physical Layer Protocols
  • Broadband Wireless Techniques
  • Wireless Packet Data Networks and Protocols
  • Major Research Project

Examples of optional modules

  • Data Coding Techniques for Communication and Storage
  • Optical Communication Devices and Systems
  • Computer Vision
  • Electronic Communication Technologies
  • Data Coding Techniques for Communication and Storage

Teaching and assessment

Research-led teaching and an individual research project. Assessment is by examinations, coursework and a project dissertation with poster presentation.



Read less
The Master's degree in Aerospace Science and Technology provides advanced training in the sciences and technology that are currently most widely used and applied in the fields of aeronautics and space exploration. Read more

The Master's degree in Aerospace Science and Technology provides advanced training in the sciences and technology that are currently most widely used and applied in the fields of aeronautics and space exploration. Graduates of this master’s degree will have been trained in an interdisciplinary area of knowledge that includes the study of theoretical and practical groundwork, techniques, methods and processes, and will be skilled at promoting, defining and managing innovative research projects.

The whole program consists of a total of 90 ECTS credits distributed in three semesters of 30 credits each. Students may enrol the program in September (mostly recommended) or February. Fall semester is devoted to mandatory courses and spring semester to elective courses. Once students have completed 60 credits in courses, the Master Thesis (30 credits) is performed at a University department or at an aerospace company.

Graduates from this Master's degree will be experts qualified to work in:

- University departments, institutes or research centers in order to produce a doctoral thesis.

- R&D&I departments in industry in the aerospace field or similar.

This Master is organized by the UPC Castelldefels School of Telecommunication and Aerospace Engineering (EETAC) with the collaboration of the Centre National d'Études Spatiales (CNES), the European Space Agency (ESA), and the Universitat Autònoma de Barcelona (UAB).

Professional opportunities

Graduates from this master’s degree will be experts qualified to work in:

· University departments, institutes or research centers in order to produce a doctoral thesis.

· R&D&I departments in industry in the aerospace field or similar.

Competencies

Generic competencies

Generic competencies are the skills that graduates acquire regardless of the specific course or field of study. The generic competencies established by the UPC are capacity for innovation and entrepreneurship, sustainability and social commitment, knowledge of a foreign language (preferably English), teamwork and proper use of information resources.

Specific competencies

On completion of the course, students will be able to:

  • Demonstrate in-depth knowledge of the theoretical and experimental tools used in different areas within the aerospace field.
  • Use scientific programming techniques and basic and advanced numerical methods competently.
  • Demonstrate advanced knowledge of the most relevant physical aspects of aerospace systems.
  • Demonstrate in-depth knowledge of the different types of materials used in the construction of aerospace vehicles.
  • Demonstrate knowledge of the tools, devices and systems that enable the analogue or digital conditioning of signals.
  • Demonstrate an up-to-date awareness of the main characteristics of international aerospace research.
  • Demonstrate broad knowledge of R&D&I activities in the companies in the sector in this region.
  • Define the context and the variables that affect research projects.
  • Approach research problems consistently and with good scientific working methods.
  • Show initiative and originality in considering new approaches to an open problem and in considering new problems.
  • Produce a doctoral thesis.
  • Understand the dynamic of the artificial satellites orbiting the Earth and have a detailed and objective vision of the capacities of very low-mass satellites.
  • Calculate interplanetary trajectories.
  • Understand the concepts of analysis and design of controllers for uncertain systems.
  • Demonstrate detailed knowledge of the basic structure of the data bus of artificial satellites and the atmospheric phenomena that most affect aerial operations.
  • Demonstrate knowledge of the differences in behavior of materials on a macro- and a nanoscale and identify the specific characteristics of nanoscale processes for the conceptual design of sensors, materials and support systems for life in space.
  • Understand the characteristics of platforms for obtaining microgravity and the behaviour of different physical systems in microgravity.
  • Design an experiment to carry out in parabolic flight.
  • Understand the operation of UAVs and the rigorous formulation of measurement algorithms and how to guarantee their quality.
  • Design and implement automatic measuring systems and show knowledge of the tools, devices and systems that enable the conditioning of analogue and digital signals.
  • Demonstrate knowledge of the systems that support human life on inter-planetary missions and the main elements of the design of a life support system.
  • Design electronic on-board equipment in which microtechnologies play an important role.
  • Categorise satellite communication systems and demonstrate knowledge of the characteristics of DVB-S, DVB-S2 and DVB-RCS systems. 


Read less
Our MSc in Communications, Networks and Software covers the key aspects of the changing Internet environment, in particular the convergence of computing and communications underpinned by software-based solutions. Read more

Our MSc in Communications, Networks and Software covers the key aspects of the changing Internet environment, in particular the convergence of computing and communications underpinned by software-based solutions.

Some of our students undertaking their project are able to work on one of our wide range of testbeds, such as internet technologies, wireless networking, network management and control, and internet-of-things (IoT) applications.

We also have specialist software tools for assignments and project work, including OPNET, NS2/3, and various system simulators.

Read about the experience of a previous student on this course, Efthymios Bliatis.

Programme structure

This programme is studied full-time over 12 months or part-time from 24 to 60 months. It consists of eight taught modules and a project.

Example module listing

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Educational aims of the programme 

The taught postgraduate degree programmes of the Department are intended both to assist with professional career development within the relevant industry and, for a small number of students, to serve as a precursor to academic research.

Our philosophy is to integrate the acquisition of core engineering and scientific knowledge with the development of key practical skills (where relevant).

To fulfil these objectives, the programme aims to:

  • Attract well-qualified entrants, with a background in Electronic Engineering, Physical Sciences, Mathematics, Computing and Communications, from the UK, Europe and overseas
  • Provide participants with advanced knowledge, practical skills and understanding applicable to the MSc degree
  • Develop participants' understanding of the underlying science, engineering, and technology, and enhance their ability to relate this to industrial practice
  • Develop participants' critical and analytical powers so that they can effectively plan and execute individual research/design/development projects
  • Provide a high level of flexibility in programme pattern and exit point
  • Provide students with an extensive choice of taught modules, in subjects for which the Department has an international and UK research reputation

A graduate from this MSc Programme should:

  • Know, understand and be able to apply the fundamental mathematical, scientific and engineering facts and principles that underpin communications, networks and software
  • Be able to analyse problems within the field of communications, networks and software and more broadly in electronic engineering and find solutions
  • Be able to use relevant workshop and laboratory tools and equipment, and have experience of using relevant task-specific software packages to perform engineering tasks
  • Know, understand and be able to use the basic mathematical, scientific and engineering facts and principles associated with the topics within communications, networks and software
  • Be aware of the societal and environmental context of his/her engineering activities
  • Be aware of commercial, industrial and employment-related practices and issues likely to affect his/her engineering activities
  • Be able to carry out research-and-development investigations
  • Be able to design electronic circuits and electronic/software products and systems

Facilities, equipment and support

We have a full range of software support for assignments and project work, including:

  • Matlab/Simulink, C, C++ and up-to-date toolboxes, systemsview, OPNET and NS2/3 (you will be able to access system simulators already built in-house, including 3GPP, BGAN, DVB-S2-RCS, GSM, UMTS, DVB-SH, WCDMA, GPRS, WiMAX, LTE, HSPA and HSDPA)
  • Our Rohde and Schwartz Satellite Networking Laboratory includes DVBS2-RCS generation and measurement equipment and roof-mounted antennas to pick up satellites (a security test-bed also exists for satellite security evaluation)
  • A fully equipped RF lab with network analyser, signal and satellite link simulations
  • A small anechoic chamber for antenna measurements (a wideband MIMO channel sounder is available for propagation measurements)
  • SatNEX is a European Network of Excellence in satellite communications, and a satellite platform exists to link the 22 partners around Europe (this is used for virtual meetings and to participate in lectures and seminars delivered by our partners)
  • A fully equipped UHF/VHF satellite ground-station facility is located on campus, which is being expanded to S-band and is supported by the ESA GENSO project (at present, the station tracks amateur satellites and CubeSats)
  • Our wide coverage experimental wireless network test-bed is based on IPv4, and IPv6 for testing new networking protocols for mobility, handover, security, cognitive radio and networking can be carried out (most networking protocol projects use this test-bed, with the help of PhD students and staff)
  • We are the only university in the UK that has an IP-Multimedia Subsystem (IMS) test-bed for developing and experimenting with advanced mobile/wireless services/applications – you can use this to carry out your services and application-based projects for mobile multimedia, such as multi-mode user interface, service mobility, service discovery and social networking services
  • Our wireless sensor test-bed is unique; advanced routing protocols, middleware architectures, air interface and networking protocols for wireless sensor networks can be developed and tested

Global opportunities

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.



Read less
This course enables students to understand the fundamentals of information theory and apply appropriate performance and quality measures to engineer enhanced data communication systems. Read more
This course enables students to understand the fundamentals of information theory and apply appropriate performance and quality measures to engineer enhanced data communication systems.

Students design state-of-the-art networks using legacy as well as emerging optical and wireless technologies, developing the students’ ability to define and apply appropriate analytic, algorithmic and a mix of simulation and hardware tools for reliable data transfer.

Students will cover subject specific subjects such as Digital Mobile Communication Systems and Optical Communication Technologies alongside cohort taught subjects to develop their management skills and their employability.

The successful postgraduates of the course will acquire the knowledge and understanding, intellectual, practical and transferable skills necessary for the analysis and synthesis of problems in engineering and manufacturing through a combination of experimental, simulation, research methods and case studies. They can expect to gain work in a range of disciplines within a variety of industries from specialist technical roles to positions of management responsibility.

Why choose this course?

Students who undertake this course will gain knowledge and understanding of the advanced theoretical issues and their practical implementations that underlie recent developments in Communications and Information Engineering.

Students will be able to explore, explain the engineering challenges inherent in a variety of data communication applications.

Supported by the School which has over 25 years' experience of teaching electronic engineering and has established an excellent international reputation in this field.

We offer extensive lab facilities for engineering students, including the latest software packages.

Careers

Communications engineers prepare and maintain communications systems and the marketplace increasingly relies on highly advanced communications systems, so communications engineering is a valued field. Careers may be sought in telecommunications or related fields that use computer networking and satellite, digital TV, Internet or radio technology.

Graduates may therefore expect employment across a very wide range of engineering companies.

Teaching methods

Our enthusiastic staff is always looking for new ways to enhance your learning experience and over recent years, we have won national awards for our innovative teaching ideas. In addition, our staff are active in research and useful elements of it are reflected on the learning experience.

The School of Engineering and Technology has a reputation for innovation in teaching and learning, where nearly all MSc modules are delivered through a combination of traditional face-to-face teaching and backup tutorial's using the University's StudyNet web based facility. StudyNet allows students to access electronic teaching and learning resources, and conduct electronic discussions with staff and other students.

A heavy emphasis is placed on theory and practice, and the School of Engineering and Technology has a policy of using industrial standard software wherever possible.

Structure

Core Modules
-Broadband Networks and Data Communications
-Digital Mobile Communication Systems
-Information Theory and DSP in Communications
-MSc Project
-MSc Projects
-Multicast and Multimedia Networking
-Operations Management
-Operations Management
-Operations Research
-Operations Research
-Optical Communication Technologies
-Wireless, Mobile and Ad-hoc Networking

Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Geographic Information and Climate Change at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Geographic Information and Climate Change at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

The MSc Geographic Information and Climate Change course provides cross-disciplinary training in the scientific basis of Geographic Information Systems (GIS), Satellite Remote Sensing and Earth System Modelling alongside aspects of climate change.

The Geographic Information and Climate Change course places particular emphasis on the technical aspects of Geographic Information Systems (GIS) and Earth Observation as well as the past, present and future global and regional environmental and climatic change.

Graduates from the Geographic Information and Climate Change course will develop hands-on technical knowledge in Geographic Information Systems and Remote Sensing together with a broad knowledge of the current scientific issues underpinning climate change, and the practical problem solving, ICT and communication skills required for a successful career in either industry or regulating bodies.

It is envisaged that graduates from the MSc Geographic Information and Climate Change course will enter careers in utilities, county councils, the environmental service industry or regulating body, or indeed be well prepared for a future career in academia.

Key Features

Students of the Geographic Information and Climate Change programme will benefit from exceptional computing facilities that include fifteen dual-processor workstations for Earth Observation, a 20-node multiprocessor Beowulf cluster, and the Department’s IBM ‘Blue Ice’ supercomputer, used mainly for climate and glaciological modelling.

Graduates from the MSc Geographic Information and Climate Change course will have broad knowledge of the current scientific issues underpinning climatic change and environmental and ecosystem dynamics, and the practical problem solving, ICT and communication skills required for a successful career in the environmental service industry, regulating bodies or academia.

Aims:

To provide advanced training in understanding the scientific issues associated with environmental dynamics and climatic change,

To provide graduates entering the environmental service industry or a regulating body with the required practical problem solving, ICT and communication skills; as well as a basic knowledge of current climate policy and environmental management,

To provide graduates continuing their academic career with the required subject specific and transferable skills.

Modules

Please Visit our website for a full description of modules for the Geographic Information and Climate Change MSc.

Fieldwork

The Stackpole residential field course introduces students taking the “Principles of Environmental Dynamics” to some of the major themes of the module: environmental systems, sea-level change and human impact on the environment, in a congenial setting in Pembrokeshire. The environmental issues facing the Stackpole Estate are discussed and placed into a historical perspective through lectures and the analysis of long term environmental records.

Research

We aim to be one of the foremost international centres for research in human and physical geography, and to provide our students with excellent teaching and superb facilities in a friendly atmosphere.

The results of the Research Excellence Framework (REF) 2014 show that Geography at Swansea University is ranked joint 9th in the UK for research impact and 11th in the UK for research environment.

Research groups include:

Environmental Dynamics

Glaciology

Global Environmental Modelling and Earth Observation

Migration, Boundaries and Identity

Social Theory and Urban Space

Facilities

The Department of Geography is well-resourced to support research: there are two dedicated computer laboratories: One of 24 computers in conjunction with Library and Information Services (LIS) providing general IT software and programmes dedicated to Geographic Information Systems (GIS) and Remote Sensing; One of 10 high-performance Linux workstations delivering software tools for advanced GIS and remote sensing applications.

We have specialist laboratory suites for: stable-isotope ratio analysis; tree ring analysis; extraction and identification of organic compounds; pollen extraction and analysis; rainfall simulation; tephra analysis; soil and sediment characterisation.

In addition, we have recently spent £1.8million on state-of-the-art teaching spaces, including IT facilities, laboratories and flexible teaching spaces.

Student profiles

“I chose to study MSc Geographic Information and Climate Change at Swansea as I had already enjoyed my undergraduate degree here. I really enjoyed that the course is quite full on, with a lot of independent work but a willingness from lecturers to help with any issues you have. Anyone considering this course I would advise to come to the university and speak with the lecturers about the potential interests they have. You get out what you put in. I want to go into a field that requires some expertise, although I feel as though I will need more experience once in or looking for a job, Swansea has provided the stepping stone for my future career. The lecturers helped me because they take a back seat, but I understand that they are there to support me when I need it. They have allowed me to be independent.”

Alice Nolan, MSc Geographic Information and Climate Change

After completing his MSc in Geographic Information and Climate Change, Thomas went on to earn a position at the Associated British Ports Marine Environmental Research. He said of his time at Swansea – “I chose MSc Geographic Information and Climate Change at Swansea University because of the funding Available (Access to Master's Scheme) and specific course content (Climate Change and GIS modules). I enjoyed studying topics in greater depth than at undergraduate level, and the opportunity to undertake my dissertation in partnership with an external organisation. The lecturers were highly approachable throughout the course, and were always available for advice outside of lectures and seminars. Studying at Master's level in Swansea provided the opportunity to build upon the knowledge and skills I acquired as an undergraduate. For example, completing my Master's dissertation in partnership with an external company enabled development of my communication and organisational skills, as well as my ability to synthesize research. These skills have been vital for development of my career in the marine consulting sector.”

Thomas Perks, MSc Geographic Information and Climate Change



Read less
Supported by Aberystwyth University’s internationally renowned Centre for Glaciology, this unique MSc programme is designed to provide students with a range of skills appropriate for the practical and theoretical challenges of glaciological research. Read more

About the course

Supported by Aberystwyth University’s internationally renowned Centre for Glaciology, this unique MSc programme is designed to provide students with a range of skills appropriate for the practical and theoretical challenges of glaciological research. Graduates of this course emerge equipped fora wide range of career paths both within Physical Geographical/Earth Science contexts and beyond.

Why study MSc Glaciology at Aberystwyth University?

Aberystwyth University’s Centre for Glaciology is a leading British research group whose interests cover contemporary and palaeo-glacial processes and products across the world.

Opportunity to study in an internationally-renowned research institute and to be taught by lectures and researchers who are at the cutting edge of their disciplines.

Conduct fieldwork in a glacierised environment - this course commences with a 6 day field course in the European Alps.
Aberystwyth is located in a high quality outdoor physical environment and comprises a multi-national community

The Department of Geography and Earth Science (DGES) is top in Wales, with 78% of its research classified as either ‘world leading’ or ‘internationally excellent’ in the most recent research assessment - REF 2014

DGES is in the top ten of UK Geography departments with regards to research power, which provides a measure of the quality of research, as well as of the number of staff undertaking research within the department

Engage with research that aims to further human knowledge at a delicate stage in global affairs

DGES receives funding from organisations such as United Nations, WHO, NERC and the European Research Council

Benefit from a superb variety of outside and in-class learning environments, and state-of-the-art teaching facilities.

Course content and structure

In the first two semesters, you will undertake a number of core and optional modules that will give you a strong theoretical understanding of glaciology and will also convert the purely academic theory of glaciological research and data collection into the proven know-how of experience. At the beginning of the course, as part of the module Glaciological Field Techniques, you will undertake a 6 day field course to the European Alps on a data-collection expedition.

In the final semester, you will undertake a 60 credit 15,000 word master’s dissertation, through which you will be able to prove your mastery of your chosen topic and directly contribute to the knowledge base of DGES.

Core modules:

Advanced Research Skills 1: science communication and data analysis
Advanced Research Skills 2: research design and data acquisition
Approaches to Glaciology
Glacial Processes and Products
Glaciological Field Techniques
Research Dissertation in Glaciology

Optional modules:

Fundamentals of Remote Sensing and GIS

Contact Time

Approximately 8-10 hours a week in the first two semesters.

Assessment

The taught part of the course (Part1) is delivered and assessed through lectures, student seminars, practical exercises, case studies, course work and formal examinations. The subsequent successful submission of a 12,000 word research dissertation (Part 2) leads to the award of an MSc.

Skills

This course will empower you to:

- Engage with the practical and theoretical challenges of glaciological research
- Master the latest technological tools available for glaciologists
- Get to grips with an impressive array of systems and technologies including GIS, SDI, satellite imaging and remote sensing
- Gain subject-specific expertise, field skills, and technical experience
- Develop study and research skills, as well as a professional work ethic
- Enhance your presentation and communication skills
- Develop your ability to work independently and in a team-setting
- Improve your critical analysis and evaluation
- Develop and sustain a self-initiated programme of study underpinned by good time management skills
- Enhance your project management skills to deliver a demanding combination of research, analysis, communication and presentation

Careers

Our graduates have gone on to work for/as/within:

- The Met. Office
- The European Space Agency
- National parks
- Field technicians
- Geologists
- Explorationists
- Environmental consultancy
- Oil and gas exploration and development
- Research work alongside prominent institutions/initiatives - REDD+ initiative, Norwegian Space Centre
- Policy advocacy work in the energy sector
- PhD researchers, post-doctoral researchers and lecturers in Higher Education.
- Other pathways our graduates have taken include:
- Management
- Commercial & Quality Assurance
- Strategic Research Consultancy
- Marketing and Strategy Development
- Planning roles across various market sectors
- Local and national government
- UK Parliament
- International, investment, and private banking
- Education

Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Environmental Dynamics and Climate Change at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Environmental Dynamics and Climate Change at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

The MSc in Environmental Dynamics and Climate Change course places particular emphasis on recent global and regional environmental and climatic change, the scientific basis and limitations of models and data collection techniques. It combines the international research strengths of staff within the Departments of Geography and Biosciences around environmental and climate dynamics (processes and mechanisms involved in stability and change), marine and ecosystem biology, and environmental management and sustainable development.

Graduates from the Environmental Dynamics and Climate Change course will have extensive knowledge of the current scientific issues underpinning climate change and environmental and ecosystem dynamics, and the practical problem solving, ICT and communication skills required for a successful career in the environmental service industry, regulating bodies or academia.

Students of the MSc Environmental Dynamics and Climate Change at Swansea will benefit from exceptional computing facilities that include fifteen dual-processor workstations for Earth Observation, a 20-node multiprocessor Beowulf cluster, and the Department’s IBM ‘Blue Ice’ supercomputer, used mainly for climate and glaciological modelling.

The aims of the Environmental Dynamics and Climate Change programme are:

To provide advanced training in understanding the scientific issues associated with environmental dynamics and climatic change,

To provide graduates entering the environmental service industry or a regulating body with the required practical problem solving, ICT and communication skills; as well as a basic knowledge of current climate policy and environmental management,

To provide graduates continuing their academic career with the required subject specific and transferable skills.

Modules

Modules of the MSc Environmental Dynamics and Climate Change ‌programme include:

Climate Change

Core Science Skills

Satellite Remote Sensing

Principles of Environmental Dynamics and Climatic Change

Please visit our website for a full description of modules for the Environmental Dynamics and Climate Change MSc.

Fieldwork

The Stackpole residential field course introduces Environmental Dynamics and Climatic Change programme students taking the “Principles of Environmental Dynamics” to some of the major themes of the module: environmental systems, sea-level change and human impact on the environment, in a congenial setting in Pembrokeshire. The environmental issues facing the Stackpole Estate are discussed and placed into a historical perspective through lectures and the analysis of long term environmental records.

Research

The Department of Geography aima to be one of the foremost international centres for research in human and physical geography, and to provide our students with excellent teaching and superb facilities in a friendly atmosphere.

The results of the Research Excellence Framework (REF) 2014 show that Geography at Swansea University is ranked joint 9th in the UK for research impact and 11th in the UK for research environment.

Research groups include:

Environmental Dynamics

Glaciology

Global Environmental Modelling and Earth Observation

Migration, Boundaries and Identity

Social Theory and Urban Space

We host a large community of postgraduate researchers studying for PhD degrees, and run one-year MRes, MSc and MA courses.

Facilities

The Department of Geography is well-resourced to support research: there are two dedicated computer laboratories: One of 24 computers in conjunction with Library and Information Services (LIS) providing general IT software and programmes dedicated to Geographic Information Systems (GIS) and Remote Sensing; One of 10 high-performance Linux workstations delivering software tools for advanced GIS and remote sensing applications.

We have specialist laboratory suites for: stable-isotope ratio analysis; tree ring analysis; extraction and identification of organic compounds; pollen extraction and analysis; rainfall simulation; tephra analysis; soil and sediment characterisation.

In addition, we have recently spent £1.8million on state-of-the-art teaching spaces, including IT facilities, laboratories and flexible teaching spaces.

Student profiles

I originally came to Swansea University to study for a BSc in Geography. Although this course covered a wide range of both human and physical topics that were all very interesting and provided a broad spectrum of skills from GIS and remote sensing to environmental modelling, my main interest was in the physical aspects. I graduated in 2007 with a 1st Class BSc (Hons) in Geography and wanted to continue my studies into the field of climate change. I decided that the MSc in Environmental Dynamics and Climate Change would be an appropriate route to take in order to pursue this field. The MSc in Environmental Dynamics and Climate Change focused on many characteristics of the global environment, like impacts on ecosystems, and how the varying processes associated with climate change can be monitored, measured and modelled. This choice of topics was complimented by the fact that the modules were run by lecturers working at the cutting-edge of global environmental change. The culmination of what I learned over the course of the year was put into practice with the dissertation, which allowed me to focus on an area of particular interest. The group of friends that I had on the course were brilliant and I will take away a lot of fond memories of our time together at Swansea. Now, after finishing the MSc in Environmental Dynamics and Climate Change I have a job working for the National Oceanography Centre in Southampton".

David Hamersley, MSc Environmental Dynamics and Climate Change



Read less

Show 10 15 30 per page



Cookie Policy    X