• University of Cambridge Featured Masters Courses
  • Anglia Ruskin University Featured Masters Courses
  • University of Southampton Featured Masters Courses
  • Ross University School of Veterinary Medicine Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Durham University Featured Masters Courses
De Montfort University Featured Masters Courses
Institute for Advanced Architecture of Catalonia Featured Masters Courses
University of Leeds Featured Masters Courses
Cranfield University Featured Masters Courses
Swansea University Featured Masters Courses
"satellite" AND "communic…×
0 miles

Masters Degrees (Satellite Communication)

We have 41 Masters Degrees (Satellite Communication)

  • "satellite" AND "communication" ×
  • clear all
Showing 1 to 15 of 41
Order by 
This programme addresses the great shortage of skilled radio frequency (RF) and microwave engineers, and the growing demand for conceptually new wireless systems. Read more

This programme addresses the great shortage of skilled radio frequency (RF) and microwave engineers, and the growing demand for conceptually new wireless systems.

You will learn about a range of modern theories and techniques, accompanied by topics on wireless frequencies and sizes of RF and microwave devices.

This ranges from the lowest frequencies used in radio frequency identification (RFID) systems through to systems used at mm wave frequencies that can have applications in satellite communication systems and fifth generation wireless communication systems.

Theoretical concepts established in lectures are complemented by practical implementation in laboratory sessions, with direct experience of industry-standard computer-aided design (CAD) software.

Read about the experience of a previous student on this course, Uche Chukwumerije.

Programme structure

This programme is studied full-time over one academic year and part-time students must study at least two taught technical modules per academic year. It consists of eight taught modules and a project.

Example module listing

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Academic support

We provide solid academic support through the taught modules and into the project period. You will be assigned a personal tutor with whom you can discuss both academic and general issues related to the programme.

When you move into the project phase of the programme, you will be assigned a project supervisor who you will meet, usually on a weekly basis, to discuss the progress of your project.

The individual taught modules also feature strong academic support, usually through a tutorial programme. All of the RF and microwave modules have tutorial sheets to support the lectures.

Although completing the tutorials is not part of the formal assessment, you have the option of using the tutorials to receive individual feedback on your progress in the modules.

Facilities and equipment

The combined facilities of the RF teaching laboratories and the Advanced Technology Institute provide MSc students with an exceptionally wide range of modern fabrication and measurement equipment.

Furthermore a wide variety of RF test and measurement facilities are available through Surrey Space Centre and the 5G Innovation Centre, which also involve work in the RF and microwave engineering domain.

Equipment includes access to CAD design tools, anechoic chamber, spectrum analysers, network analysers, wideband channel sounder, circuit etching and circuit testing.

Industrial and overseas links

The 5G Innovation Centre and Advanced Technology Institute within the Department have a range of active links with industry, both in the UK and overseas. During the past few years we have had students taking the MSc through the part-time route and completing their projects in industry.

Examples of industrial projects range from looking at new microwave measurement techniques at the National Physical Laboratory (NPL), to antenna design and construction at the Defence Science and Technology Laboratory (Dstl).

We have also sent students overseas to complete their projects, funded through the Erasmus scheme, which is a European programme that provides full financial support for students completing their project work at one of our partner universities in mainland Europe.

Students taking advantage of this opportunity not only enhance their CVs with a European perspective, but also produce excellent project dissertations.

Technical characteristics of the pathway

This programme in Microwave Engineering and Wireless Subsystem Designrf and microwavengineering provides detailed in-depth knowledge of theory and techniques applicable to radio frequency (RF) and microwave engineering.

The programme includes core modules in both RF and microwave covering all ranges of wireless frequencies and a number of application devices including radio frequency identification (RFID), broadcasting, satellite links, microwave ovens, printed and integrated microwave circuits.

Additional optional modules enable the student to apply the use of RF and microwave in subsystem design for either mobile communications, satellite communications, nanotechnology or for integration with optical communications.

The teaching material and projects are closely related to the research being carried out in the Department’s Advanced Technology Institute and the Institute for Communication Systems.

Global opportunities

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.



Read less
In consultation with industry, the MSc Telecommunications Engineering is designed to give you the relevant practical skills and expert knowledge that you need to succeed in the telecommunications industry. Read more
In consultation with industry, the MSc Telecommunications Engineering is designed to give you the relevant practical skills and expert knowledge that you need to succeed in the telecommunications industry.

It is a fantastic training solution for industry professionals who need the skills to implement, advise, purchase, sell and manufacture wireless system technologies. Study the Telecommunications Engineering masters and you will cover mobile telephony, satellite communication systems, optical systems and networks, and digital communications. By the end of the course you will be able to successfully design and manage telecommunication systems and services.

This course attracts applicants from a wide range of sectors including telecommunications, networking, communication systems, remote instrumentation, remote data logging, signal processing, and software development.

This course has several different available start dates and study methods - for more information, please view the relevant web-page:
SEPTEMBER 2017 (Part Time) - http://www.gcu.ac.uk/ebe/study/courses/details/index.php/P02624-1PTA-1718/Telecommunications_Engineering_(Part-time)?utm_source=ZZZZ&utm_medium=web&utm_campaign=courselisting

JANUARY 2017 (Part Time) - http://www.gcu.ac.uk/ebe/study/courses/details/index.php/P02624-1PTAB-1617/Telecommunications_Engineering_(January)?utm_source=ZZZZ&utm_medium=web&utm_campaign=courselisting

JANUARY 2018 (Full Time) - http://www.gcu.ac.uk/ebe/study/courses/details/index.php/P02623-1FTAB-1718/Telecommunications_Engineering?utm_source=ZZZZ&utm_medium=web&utm_campaign=courselisting

JANUARY 2018 (Part Time) - http://www.gcu.ac.uk/ebe/study/courses/details/index.php/P02624-1PTAB-1718/Telecommunications_Engineering_(Part-time)?utm_source=ZZZZ&utm_medium=web&utm_campaign=courselisting

Programme Description

The desire for higher data rates and mobility in applications such as mobile telephony and wireless networks has stimulated a massive growth in the telecommunications field in the last decades, which presents exciting opportunities to people working, or wanting to work in this popular area.

The MSc Telecommunications Engineering programme offered by GCU has been created to provide you with a comprehensive understanding of modern communication technologies and of the techniques used in telecommunication companies. Created in consultation with industry, this programme offers you the opportunity to gain relevant practical skills and to develop the expert knowledge that will allow you to succeed in the telecommunications arena.

Some of the key aspects covered by our programme include mobile telephony, satellite communication systems, optical systems and networks, and digital communications. Knowledge in these areas will allow you to successfully design and manage telecommunication systems and services.

Why Choose This Programme?

Our innovative approach to learning and teaching ensures students benefit from the latest thinking and best practice. You will have the opportunity to broaden individual and particular interests at Masters level, for example, ethics and technology and technology and environmental management. In the third trimester you will undertake a major project within the area of wireless communications. Projects can be industry-based or chosen from a selection of research and consultancy activities.

Assessment

All modules include examinations and coursework. Practical computing forms a significant part of assessment. This is accomplished through coursework and practical tests.

Career Opportunities

Graduates will be able to pursue careers within a wide range of industrial and technology sectors such as telecommunications, networking, communication systems, remote instrumentation, remote data logging, signal processing and software development.

The programme content will also benefit those in industry, commerce and management who wish to gain skills in wireless systems to help them better implement, advise, purchase, sell and manufacture wireless system technologies.

Read less
This MSc programme targets the needs of a rapidly evolving telecommunications sector and provides an industrially relevant and exciting qualification in the latest broadband and mobile technologies being employed and developed. Read more
This MSc programme targets the needs of a rapidly evolving telecommunications sector and provides an industrially relevant and exciting qualification in the latest broadband and mobile technologies being employed and developed.

Study the techniques and technologies that enable broadband provision through fixed and wireless/mobile networks, and that modernise the core networks to provide ultra-high bit-rates and multi-service support. The Broadband and Mobile Communication Networks MSc at Kent is well-supported by companies and research establishments in the UK and overseas.

The programme reflects the latest issues and developments in the telecommunications industry, delivering high-quality systems level education and training. Gain deep knowledge of next-generation wireless communication systems including antenna technology, components and systems, and fibre optic and converged access networks.

Visit the website https://www.kent.ac.uk/courses/postgraduate/247/broadband-mobile-communication-networks

About the School of Engineering and Digital Arts

The School of Engineering and Digital Arts (http://www.eda.kent.ac.uk/) successfully combines modern engineering and technology with the exciting field of digital media. The School was established over 40 years ago and has developed a top-quality teaching and research base, receiving excellent ratings in both research and teaching assessments.

The School undertakes high-quality research that has had significant national and international impact, and our expertise allows us to respond rapidly to new developments. Our 30 academic staff and over 130 postgraduate students and research staff provide an ideal focus to effectively support a high level of research activity. We have a thriving student population studying for postgraduate degrees in a friendly and supportive teaching and research environment.

We have research funding from the Research Councils UK, European research programmes, industrial and commercial companies and government agencies including the Ministry of Defence. Our Electronic Systems Design Centre and Digital Media Hub provide training and consultancy for a wide range of companies. Many of our research projects are collaborative, and we have well-developed links with institutions worldwide.

Modules

The following modules are indicative of those offered on this programme. This list is based on the current curriculum and may change year to year in response to new curriculum developments and innovation. Most programmes will require you to study a combination of compulsory and optional modules. You may also have the option to take modules from other programmes so that you may customise your programme and explore other subject areas that interest you.

EL872 - Wireless/Mobile Communications (15 credits)
EL873 - Broadband Networks (15 credits)
EL822 - Communication Networks (15 credits)
EL827 - Signal & Communication Theory II (15 credits)
EL849 - Research Methods & Project Design (30 credits)
EL871 - Digital Signal Processing (DSP) (15 credits)
EL891 - System and Circuit Design (15 credits)
EL892 - Satellite and Optical Communication Systems (15 credits)
EL890 - MSc Project (60 credits)

Assessment

The project module is examined by a presentation and dissertation. The Research Methods and Project Design module is examined by several components of continuous assessment. The other modules are assessed by examinations and smaller components of continuous assessment. MSc students must gain credit from all the modules. For the PDip, you must gain at least 120 credits in total, and pass certain modules to meet the learning outcomes of the PDip programme.

Programme aims

This programme aims to:

- educate graduate engineers and equip them with advanced knowledge of telecommunications and communication networks (including mobile systems), informed by insights and problems at the forefront of these fields of study, for careers in research and development in industry or academia

- produce high-calibre engineers with experience in specialist and complex problem-solving skills and techniques needed for the interpretation of knowledge and for systems level design in the telecommunications field

- provide you with proper academic guidance and welfare support

- create an atmosphere of co-operation and partnership between staff and students, and offer you an environment where you can develop your potential

- strengthen and expand opportunities for industrial collaboration with the School of Engineering and Digital Arts.

Research areas

- Communications

The Group’s activities cover system and component technologies from microwave to terahertz frequencies. These include photonics, antennae and wireless components for a broad range of communication systems. The Group has extensive software research tools together with antenna anechoic chambers, network and spectrum analysers to millimetre wave frequencies and optical signal generation, processing and measurement facilities.

Current main research themes include:

- photonic components
- networks/wireless systems
- microwave and millimetre-wave systems
- antenna systems
- radio-over-fibre systems
- electromagnetic bandgaps and metamaterials
- frequency selective surfaces.

Careers

We have developed the programme with a number of industrial organisations, which means that successful students will be in a strong position to build a long-term career in this important discipline.

School of Engineering and Digital Arts has an excellent record of student employability. We are committed to enhancing the employability of all our students, to equip you with the skills and knowledge to succeed in a competitive, fast-moving, knowledge-based economy.

Graduates who can show that they have developed transferable skills and valuable experience are better prepared to start their careers and are more attractive to potential employers. Within the School of Engineering and Digital Arts, you can develop the skills and capabilities that employers are looking for. These include problem solving, independent thought, report-writing, time management, leadership skills, team-working and good communication.

Building on Kent’s success as the region’s leading institution for student employability, we offer many opportunities for you to gain worthwhile experience and develop the specific skills and aptitudes that employers value.

Find out how to apply here - https://www.kent.ac.uk/courses/postgraduate/apply/

Read less
The MSc in Telecommunications with Satellite and Broadband Technologies aims to produce postgraduates with an advanced understanding of communication systems utilising satellite and broadband elements. Read more
The MSc in Telecommunications with Satellite and Broadband Technologies aims to produce postgraduates with an advanced understanding of communication systems utilising satellite and broadband elements. Students’ understanding of the theoretical principles underpinning digital communication systems is taken to an advanced level, and the problems and challenges associated with the implementation of both fixed and mobile wireless communication systems receives special attention. Leading- edge satellite and broadband systems utilising modern architectures are central to this programme of study.

Course Structure

Each MSc course consists of three learning modules (40 credits each) plus an individual project (60 credits). Each learning module consists of a short course of lectures and initial hands-on experience. This is followed by a period of independent study supported by a series of tutorials. During this time you complete an Independent Learning Package (ILP). The ILP is matched to the learning outcomes of the module. It can be either a large project or a series of small tasks depending on the needs of each module. Credits for each module are awarded following the submission of a completed ILP and its successful defence in a viva voce examination. This form of assessment develops your communication and personal skills and is highly relevant to the workplace. Overall, each learning module comprises approximately 400 hours of study.

The project counts for one third of the course and involves undertaking a substantial research or product development project. For part-time students, this can be linked to their employment. It is undertaken in two phases. In the first part, the project subject area is researched and a workplan developed. The second part involves the main research and development activity. In all, the project requires approximately 600 hours of work.

Further flexibility is provided within the structure of the courses in that you can study related topic areas by taking modules from other courses as options (pre-requisite knowledge and skills permitting).

Prior to starting your course, you are sent a Course Information and Preparation Pack which provides information to give you a flying start.

MSc Telecommunications Suite of Courses

The MSc Telecommunications has three distinct pathways:
-Digital Signal Processing
-Satellite and Broadband Communications
-Wireless Technologies

The demand for engineers in both wide-area and local-area communication systems is currently flourishing and is expected to grow for the foreseeable future. These three pathways offer both recent engineering graduates and industry-based engineers access to in-depth skills for closely related aspects of the communications discipline.

The course structure is quite flexible, affording industry-based students an opportunity to attend and accumulate module credits over an extended period of time. It also simultaneously serves the full-time student cohort which generally progresses through the MSc pathway in a single calendar year.

The MSc programmes are short course based and feature assessment through sequentially submitted result portfolios for the work packages, ie the ILPs. These are assigned immediately upon each short course module where the students are able to concentrate their study efforts just on the most recently-taught subject material. This greatly promotes efficient focused learning. The individual oral examination administered for each ILP furnishes valuable experience in oral defence, and frees students from written examination burdens.

The technical tasks undertaken in ILPs, along with the required major project, thoroughly exercise the concepts covered in the course modules and give scope for originality and industry-relevant study. Team-working activities encouraged within modules, along with the all-oral individual examination regimen employed in this Telecommunications MSc Suite, have proven solidly beneficial in refining the communication and employability-enhancing skills that are strongly valued by industry.

Read less
We have a wide range of testbeds available for projects, including wireless networking, wireless sensors, satellite networking, and security testbeds, future internet testbed and cloud infrastructure. Read more

We have a wide range of testbeds available for projects, including wireless networking, wireless sensors, satellite networking, and security testbeds, future internet testbed and cloud infrastructure.

We also have a wide range of software tools for assignments and project work, including OPNET, NS2/3, Matlab, C, C++ and various system simulators. Some projects can offer the opportunity to work with industry.

Read about the experience of a previous student on this course, Paulo Valente Klaine.

Programme structure

This programme is studied full-time over one academic year and part-time students must study at least two taught technical modules per academic year, until a total of eight is reached. It consists of eight taught modules and a standard project.

Example module listing

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Educational aims of the programme

The taught postgraduate Degree Programmes of the Department are intended both to assist with professional career development within the relevant industry and, for a small number of students, to serve as a precursor to academic research.

Our philosophy is to integrate the acquisition of core engineering and scientific knowledge with the development of key practical skills (where relevant).

To fulfil these objectives, the programme aims to:

  • Attract well-qualified entrants, with a background in Electronic Engineering, Physical Sciences, Mathematics, Computing & Communications, from the UK, Europe and overseas
  • Provide participants with advanced knowledge, practical skills and understanding applicable to the MSc degree
  • Develop participants' understanding of the underlying science, engineering, and technology, and enhance their ability to relate this to industrial practice
  • Develop participants' critical and analytical powers so that they can effectively plan and execute individual research/design/development projects
  • Provide a high level of flexibility in programme pattern and exit point
  • Provide students with an extensive choice of taught modules, in subjects for which the Department has an international and UK research reputation

Intended capabilities for MSc graduates:

  • Underpinning learning– know, understand and be able to apply the fundamental mathematical, scientific and engineering facts and principles that underpin mobile and satellite communications
  • Engineering problem solving - be able to analyse problems within the field of mobile and satellite communications and more broadly in electronic engineering and find solutions
  • Engineering tools - be able to use relevant workshop and laboratory tools and equipment, and have experience of using relevant task-specific software packages to perform engineering tasks
  • Technical expertise - know, understand and be able to use the basic mathematical, scientific and engineering facts and principles associated with the topics within mobile and satellite communications
  • Societal and environmental context - be aware of the societal and environmental context of his/her engineering activities
  • Employment context - be aware of commercial, industrial and employment-related practices and issues likely to affect his/her engineering activities
  • Research & development investigations - be able to carry out research-and- development investigations
  • Design - where relevant, be able to design electronic circuits and electronic/software products and systems

Technical characteristics of the pathway

This programme in Mobile Communication Systems reflects the importance and ubiquity of mobile telephony and mobile data communications throughout the world.

Students will gain a detailed knowledge of the fundamentals and advanced concepts involved in communications and 3G/4G/5G mobile technology together with the principles, algorithms and protocols that underpin Internet-based mobile backbone networks.

This material is complemented by study in areas such as mobile applications and web services, mobile app software development, the Internet of Things, network management, and satellite communications.

The teaching material and projects are closely related to the research being carried out in the EE Department's Institute for Communications Research.

Global opportunities

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.



Read less
Study the key design aspects of a modern wireless communication system, in particular cellular mobile radio systems. There is a current shortage of communications engineers with a comprehensive appreciation of wireless system design from RF through baseband to packet protocols. Read more

About the course

Study the key design aspects of a modern wireless communication system, in particular cellular mobile radio systems. There is a current shortage of communications engineers with a comprehensive appreciation of wireless system design from RF through baseband to packet protocols.

Our graduates are in demand

Many go to work in industry as engineers for large national and international companies, including ARUP, Ericsson Communications, HSBC, Rolls-Royce, Jaguar Land Rover and Intel Asia Pacific.

Real-world applications

This is a research environment. What we teach is based on the latest ideas. The work you do on your course is directly connected to real-world applications.

We work with government research laboratories, industrial companies and other prestigious universities. Significant funding from UK research councils, the European Union and industry means you have access to the best facilities.

How we teach

You’ll be taught by academics who are leaders in their field. The 2014 Research Excellence Framework (REF) puts us among the UK top five for this subject. Our courses are centred around finding solutions to problems, in lectures, seminars, exercises and through project work.

Accreditation

All of our MSc courses are accredited by the Institution of Engineering and Technology (IET), except the MSc(Eng) Advanced Electrical Machines, Power Electronics and Drives and MSc(Eng) Bioengineering: Imaging and Sensing. We are seeking accreditation for these courses.

First-class facilities

Semiconductor Materials and Devices
LED, laser photodetectors and transistor design, a high-tech field-emission gun transmission electron microscope (FEGTEM), a focused ion beam (FIB) milling facility, and electron beam lithographic equipment.

Our state-of-the-art semiconductor growth and processing equipment is housed in an extensive clean room complex as part of the EPSRC’s National Centre for III-V Technologies.

Our investment in semiconductor research equipment in the last 12 months totals £6million.

Electrical Machines and Drives

Specialist facilities for the design and manufacture of electromagnetic machines, dynamometer test cells, a high-speed motor test pit, environmental test chambers, electronic packaging and EMC testing facilities, Rolls-Royce University Technology Centre for Advanced Electrical Machines and Drives.

Communications

Advanced anechoic chambers for antenna design and materials characterisation, a lab for calibrated RF dosimetry of tissue to assess pathogenic effects of electromagnetic radiation from mobile phones, extensive CAD electromagnetic analysis tools.

Core modules

Advanced Signal Processing; Advanced Communication Principles; Antennas, Propagation and Satellite Systems; Mobile Networks and Physical Layer Protocols; Broadband Wireless Techniques; Wireless Packet Data Networks and Protocols; Major Research Project.

Examples of optional modules

Data Coding Techniques for Communication and Storage; Optical Communication Devices and Systems; Computer Vision; Electronic Communication Technologies; Data Coding Techniques for Communication and Storage.

Teaching and assessment

Research-led teaching and an individual research project. Assessment is by examinations, coursework and a project dissertation with poster presentation.

Read less
An astonishing global revolution has taken place in mobile and satellite communications, the full impact of which is difficult to exaggerate. Read more
An astonishing global revolution has taken place in mobile and satellite communications, the full impact of which is difficult to exaggerate. The resulting growth in mobile and satellite communications industries has created a high demand for graduates with expertise in the key areas of digital, mobile and satellite communications and networking.

With significant input from industry, this course produces highly competent graduates who can fill key positions and play leading roles in shaping this rapidly evolving field. By graduation, you will be well-equipped to develop new engineering applications for the next generation of communication systems. You will also be given the chance to undertake a six-month unpaid internship*.

Your studies will include advances in antennas and propagation, digital transmission, satellite communications, mobile communications, satellite networks, wireless applications, digital signal processing and product management. All this is enriched with seminars, field trips and a period of internship* in industry. You will also learn to use the latest engineering design tools, including the Systems ToolKit (STK) used by NASA for planning space missions.

Routes of study:
The course is available to study via two routes:
- MSc Mobile and Satellite Communications (with internship)
- MSc Mobile and Satellite Communications (without internship)

Please note: *Internships are available to full-time students only. Internship places are limited. Students have the opportunity to work in a participating UK company or within a Research Centre at the University. You can also opt to study the course without an internship which will reduce your course length.

See the website http://courses.southwales.ac.uk/courses/1431-msc-mobile-and-satellite-communications-with-internship

What you will study

You will study the following modules:
- Mobile Communication Technologies
- Satellite Communications
- Digital Communications Systems
- Applied Digital Signal Processing
- Product Management and Integrating Case Studies
- Six month Internship
- MSc Major Project

Optional modules:
- Wireless and Personal Communications
- Satellite Networking

Learning and teaching methods

You will be taught through lectures, tutorials and workshops involving hands-on systems modelling and simulations using state-of-the-art hardware and software facilities. Students will also engage in supervised research supported by full access to world-class online and library facilities.

The course is available to study via two main routes, you can opt to add further value to your studies by undertaking an internship or simply focus on building your academic knowledge through a on-campus study as detailed below:

MSc Mobile and Satellite Communications (with internship):

- Delivery: Full-time only | Start dates: September and February
If you choose to undertake an internship, your course will be delivered in four major blocks that offer an intensive but flexible learning pattern. Six taught modules are completed during two teaching blocks featuring 12 contact hours per week. This is followed by 6 month period of internship, after which the student returns to undertake a 16-week major research project. Please note: Course length may vary dependent on your chosen start date.


MSc Mobile and Satellite Communications (without internship):

- Delivery: Full-time and Part-time | Start dates: September and February
The study pathway available without internship is available full-time and part-time. The full-time route is delivered in three major blocks. Six taught modules are completed during two teaching blocks featuring 12 contact hours per week followed by a 16-week major research project. The full-time course duration is about 12 months, if you study part-time then you will complete the course in three years. Part-time study involves completing three modules in each of the first two years and a major research project in the final year. The use of block-mode delivery in this way allows flexible entry and exit, and also enables practising engineers to attend a single module as a short course.

Work Experience and Employment Prospects

Advancements in technology such as the increased use of Wi-Fi, are creating exciting career opportunities for graduates with the right skills. Graduates of this Masters award can enter the telecommunications industry in many different roles, conduct research or work towards a PhD.

Internship

Internships are only available to students studying full-time: Following successful completion of six taught modules, you will be competitively selected to join participating UK companies or University Research Centres on a six-month period of unpaid work placement before returning to undertake your major research project. All students who have an offer for the MSc Mobile and Satellite Communications (with internship) are guaranteed an internship either in industry or in a University Research Centre.

There are 25 internship places available. Students who wish to undertake an internship must apply for the MSc Mobile and Satellite Communications (with internship). It is anticipated that there will be significant demand for this programme and applicants are advised to apply as soon as possible to avoid disappointment. Applications will be considered on a first come first served basis and the numbers of students offered a place on the programme with internship will be capped.

If the course is already full and we are unable to offer you a place on the Masters course with internship, we may be able to consider you for the standard MSc Mobile and Satellite Communications (without internship) which is a shorter programme.

Assessment methods

Each of the six taught modules is typically assessed through 50% coursework and 50% closed-book class test. The major project is assessed through presentation to a panel of examiners, viva and written report.

Facilities

A state-of-the-art University library gives you access to most of the world’s leading publications. Other major facilities include a Cisco Academy networking laboratory, a Wireless Communications laboratory including a 1-65 GHz anechoic chamber and a satellite communication earth station, and a Communication Systems simulation laboratory equipped with PCs running the latest versions of MATLAB, SIMULINK, STK and other software.

In addition, we have recently opened a Calypto lab, which has software licences and support for the Catapult C toolset. This is used to develop advanced electronic products, such as the next generation of smart phones, more quickly and cost-effectively and to help engineers overcome design challenges in the increasingly complex world of board and chip design. The lab is sponsored by Calypto Design Systems Inc, a leader in electronic design automation. We are one of only four UK universities and 60 universities globally that have been granted permission to use the software worth £1.9m.

The new Renesas Embedded Systems lab comprises 25 new high-end terminals running cuttingedge tools. The facility was designed in collaboration with Renesas, the world’s leading supplier of microcontrollers, whose sponsorship helps ensure that students are always working with the latest technologies and development tools.

Teaching

The course is led by Professor Otung, a Chartered Engineer and internationally acclaimed author of Communication Engineering textbooks used in leading universities around the world, and supported by an impressive and highly-qualified teaching and supervision team. Generations of graduates from this course speak very highly of not only the cutting-edge expertise and technical skills that they developed on the course but also of the inspiration, professionalism and friendship of the entire teaching team.

Read less
Our Masters programme in Satellite Communications Engineering is designed to give you the specialist multidisciplinary skills required for careers in the satellite and space industries. Read more

Our Masters programme in Satellite Communications Engineering is designed to give you the specialist multidisciplinary skills required for careers in the satellite and space industries.

We have an exceptional concentration of academic staff experienced in the satellite area, in addition to well-established contacts with all the major satellite manufacturers, operators and service providers.

Industry participates in the MSc programme in both lecturing and projects, and facilitates excellent engagement for our students. Graduation from this programme will therefore make you very attractive to the relevant space-related industries that employ over 6,500 people in the UK alone.

Read about the experience of a previous student on this course, Thanat Varathon.

Programme structure

This programme is studied full-time over one academic year and part-time students must study at least two taught technical modules per academic year. It consists of eight taught modules and a project.

Example module listing

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Facilities, equipment and support

Through consistent investment, we have built up an impressive infrastructure to support our students and researchers. The University of Surrey hosts Surrey Space Centre – a unique facility comprising academics and engineers from our own spin-out company, Surrey Satellite Technology Ltd.

Our mission control centre was designed and developed by students to support international CubeSat operations as part of the GENSO network, and it also supports the development of the University’s own educational satellites.

Our teaching laboratories provide ‘hands-on’ experience of satellite design and construction through the use of EyasSAT nano-satellite kits. They also house meteorological satellite receiving stations for the live reception of satellite weather images.

Elsewhere, our fully equipped RF lab has network analyser, signal and satellite link simulators. The Rohde and Schwartz Satellite Networking Laboratory includes DVBS2-RCS generation and measurement equipment, and roof-mounted antennas to communicating live with satellites.

A security test-bed also exists for satellite security evaluation. We have a full range of software support for assignments and project work, including Matlab, and you will be able to access system simulators already built in-house.

Satellite Communications Engineering students can also make use of SatNEX, a European Network of Excellence in satellite communications supported by ESA; a satellite platform exists to link the 22 partners around Europe. This is used for virtual meetings and to participate in lectures and seminars delivered by partners.

Our own spin-out company, Surrey Satellite Technology Ltd, is situated close by on the Surrey Research Park and provides ready access to satellite production and industrial facilities. In addition, we have a strategic relationship with EADS Airbus Europe-wide and several other major communications companies.

Technical characteristics of the pathway

This programme in satellite communications engineering. provides detailed in-depth knowledge of theory and techniques applicable to radio frequency (RF) and microwave engineering.

The programme includes core modules in both RF and microwave covering all ranges of wireless frequencies and a number of application devices including radio frequency identification (RFID), broadcasting, satellite links, microwave ovens, printed and integrated microwave circuits.

Additional optional modules enable the student to apply the use of RF and microwave in subsystem design for either mobile communications, satellite communications, nanotechnology or for integration with optical communications.

The teaching material and projects are closely related to the research being carried out in the Department’s Advanced Technology Institute and the Institute for Communication Systems.

Global opportunities

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.



Read less
Our Masters in Space Engineering programme is designed to give you the specialist multidisciplinary knowledge and skills required for a career working with space technology and its applications. Read more

Our Masters in Space Engineering programme is designed to give you the specialist multidisciplinary knowledge and skills required for a career working with space technology and its applications.

Surrey students have access to all aspects of the design and delivery of spacecraft and payloads, and as a result are very attractive to employers in space-related industries.

As we develop and execute complete space missions, from initial concept to hardware design, manufacturing and testing, to in orbit operations (controlled by our ground station at the Surrey Space Centre), you will have the chance to be involved in, and gain experience of, real space missions.

Programme structure

This programme is studied full-time over one academic year and part-time students must study at least two taught technical modules per academic year. It consists of eight taught modules and a project.

Example module listing

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Educational aims of the programme

Our philosophy is to integrate the acquisition of core engineering and scientific knowledge with the development of key practical skills (where relevant). To fulfil these objectives, the programme aims to:

  • Attract well-qualified entrants, with a background in Electronic Engineering, Physical Sciences, Mathematics, Computing & Communications, from the UK, Europe and overseas
  • Provide participants with advanced knowledge, practical skills and understanding applicable to the MSc degree
  • Develop participants' understanding of the underlying science, engineering, and technology, and enhance their ability to relate this to industrial practice
  • Develop participants' critical and analytical powers so that they can effectively plan and execute individual research/design/development projects
  • Provide a high level of flexibility in programme pattern and exit point
  • Provide students with an extensive choice of taught modules, in subjects for which the Department has an international and UK research reputation

Intended capabilities for MSc graduates:

  • Underpinning learning– know, understand and be able to apply the fundamental mathematical, scientific and engineering facts and principles that underpin space engineering.
  • Engineering problem solving - be able to analyse problems within the field of mobile and satellite communications and more broadly in electronic engineering and find solutions
  • Engineering tools - be able to use relevant workshop and laboratory tools and equipment, and have experience of using relevant task-specific software packages to perform engineering tasks
  • Technical expertise - know, understand and be able to use the basic mathematical, scientific and engineering facts and principles associated with the topics within space engineering.
  • Societal and environmental context - be aware of the societal and environmental context of his/her engineering activities
  • Employment context - be aware of commercial, industrial and employment-related practices and issues likely to affect his/her engineering activities
  • Research & development investigations - be able to carry out research-and- development investigations
  • Design - where relevant, be able to design electronic circuits and electronic/software products and systems

Technical characteristics of the pathway

This programme in Space Engineering aims to provide a high-level postgraduate qualification relating to the design of space missions using satellites. Study is taken to a high level, in both theory and practice, in the specialist areas of space physics, mechanics, orbits, and space-propulsion systems, as well as the system and electronic design of space vehicles.

This is a multi-disciplinary programme, and projects are often closely associated with ongoing space projects carried out by Surrey Satellite Technology, plc.

This is a large local company that builds satellites commercially and carries out industrially-sponsored research. Graduates from this programme are in demand in the UK and European Space Industries.

Global opportunities

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.



Read less
In an increasingly overcrowded electromagnetic spectrum, the efficient and reliable operation of wireless, mobile and satellite communication systems, and of radar and remote sensing systems, relies upon advanced components and subsystems that exploit ongoing developments in technologies such as microfabrication, nanotechnology and high frequency semiconductor devices. Read more
In an increasingly overcrowded electromagnetic spectrum, the efficient and reliable operation of wireless, mobile and satellite communication systems, and of radar and remote sensing systems, relies upon advanced components and subsystems that exploit ongoing developments in technologies such as microfabrication, nanotechnology and high frequency semiconductor devices.

This programme provides training for engineers to become innovators in these rapidly expanding markets. A firm grasp of the fundamentals is established through modules in the foundations of communications engineering and in satellite, cellular and optical fibrte communications, electromagnetics and antennas, propagation, radio frequency and microwave engineering and computer and communications networksprovide advanced knowledge in an aspect of the relevant component technologies.

The programme will help you to develop an ability to interpret user requirements and component specifications, to engineer effective designs within the constraints imposed by the available resources and the fundamental physical limits. The programme provides a theoretical basis from which the design, construction and operation of satellite and cellular radio communications can be understood.

About the School of Electronic, Electrical & Systems Engineering

Electronic, Electrical and Systems Engineering, is an exceptionally broad subject. It sits between Mathematics, Physics, Computer Science, Psychology, Materials Science, Education, Biological and Medical Sciences, with interfaces to many other areas of engineering such as transportation systems, renewable energy systems and the built environment.
Our students study in modern, purpose built and up to date facilities in the Gisbert Kapp building, which houses dedicated state-of-theart teaching and research facilities. The Department has a strong commitment to interdisciplinary research and boasts an annual research fund of more than £4 million a year. This means that wherever your interest lies, you can be sure you’ll be taught by experts in the field.

Funding and Scholarships

There are many ways to finance your postgraduate study at the University of Birmingham. To see what funding and scholarships are available, please visit: http://www.birmingham.ac.uk/postgraduate/funding

Open Days

Explore postgraduate study at Birmingham at our on-campus open days.
Register to attend at: http://www.birmingham.ac.uk/postgraduate/visit

Virtual Open Days

If you can’t make it to one of our on-campus open days, our virtual open days run regularly throughout the year. For more information, please visit: http://www.pg.bham.ac.uk

Read less
This programme is suitable for recent graduates and engineers with experience of microelectronics who have good mathematical ability. Read more
This programme is suitable for recent graduates and engineers with experience of microelectronics who have good mathematical ability. It provides a thorough knowledge of the principles and techniques of this exciting field and has been developed in consultation with industry advisors to ensure it is relevant to today’s workplace.

Modules are block taught so can also be studied separately by working engineers as continuous professional development either to enhance their knowledge in particular subject fields or to widen their portfolio.

Core study areas include ASIC engineering, sensors and actuators, technology and verification of VLSI systems, embedded software development and an individual project.

Optional study areas include communication networks, information theory and coding, solar power, wind power, systems architecture, advanced FPGAs, DSP for software radio, advanced photovoltaics, mobile network technologies and advanced applications.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/eese/electronic-electrical-engineering/

Programme modules

Compulsory Modules:
• ASIC Engineering
• Sensors and Actuators for Control
• Embedded Software Development
• Individual Project

Optional Modules (Choose five):
• Communication Networks
• Fundamentals of Digital Signal Processing
• Solar Power 1
• Wind Power 1
• Communications Channels
• DSP for Software Radio
• Imagineering
• Mobile Networks
• Advanced FPGAs
• Engineering Applications
• Systems Modelling for Control Engineering – new for 2015
• Radio Frequency and Microwave Integrated Circuit Design – new for 2015

Block-taught, individual modules are also highly suitable as CPD for professional engineers needing to fill a skills gap.

How you will learn

Compulsory modules provide a comprehensive understanding of modern microelectronics, embedded electronic systems, emerging technologies and their uses while the individual research project offers the chance to pursue a specialism in-depth. You’ll have access to advanced research knowledge and state of the art laboratories using industry standard software (Altera, Cadence, Mentor, Xilinx) so that you are prepared to enter a wide range of industry sectors on graduation.

- Assessment
Examinations are held in January and May, with coursework and group work assessments throughout the programme. The high practical content of this course is reflected in the inclusion of laboratory assessments and practical examinations. The individual research project is assessed by written report and viva voce in September.

Facilities

You’ll have access to laboratories, industry standard software (Altera, Cadence, Mentor Graphics, Xilinx) and hardware including equipment provided by Texas Instruments.

Careers and further study

Consultation with industry to craft the syllabus ensures that you’ll have an advantage in the job market. The in-depth knowledge acquired can be applied wherever embedded electronic systems are found including mobile phones (4/5G), acoustics, defence, medical instrumentation, radio and satellite communication and networked systems, control engineering, instrumentation, signal processing and telecommunications engineering.

Scholarships and bursaries

Scholarships and bursaries are available each year for UK/EU and international students who meet the criteria for award.

Why choose electronic, electrical and systems engineering at Loughborough?

We develop and nurture the world’s top engineering talent to meet the challenges of an increasingly complex world. All of our Masters programmes are accredited by one or more of the following professional bodies: the IET, IMechE, InstMC, Royal Aeronautical Society and the Energy Institute.

We carefully integrate our research and education programmes in order to support the technical and commercial needs of society and to extend the boundaries of current knowledge.

Consequently, our graduates are highly sought after by industry and commerce worldwide, and our programmes are consistently ranked as excellent in student surveys, including the National Student Survey, and independent assessments.

- Facilities
Our facilities are flexible and serve to enable our research and teaching as well as modest preproduction testing for industry.
Our extensive laboratories allow you the opportunity to gain crucial practical skills and experience in some of the latest electrical and electronic experimental facilities and using industry standard software.

- Research
We are passionate about our research and continually strive to strengthen and stimulate our portfolio. We have traditionally built our expertise around the themes of communications, energy and systems, critical areas where technology and engineering impact on modern life.

- Career prospects
90% of our graduates were in employment and/or further study six months after graduating. They go on to work with companies such as Accenture, BAE Systems, E.ON, ESB International, Hewlett Packard, Mitsubishi, Renewable Energy Systems Ltd, Rolls Royce and Siemens AG.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/eese/electronic-electrical-engineering/

Read less
Mobile communications provide terrestrial coverage in densely populated areas, while satellite communications enable wireless communication in regions where mobile networking is not cost-effective. Read more

Mobile communications provide terrestrial coverage in densely populated areas, while satellite communications enable wireless communication in regions where mobile networking is not cost-effective. The programme gives you an in-depth understanding of the engineering aspects of these important current and future technologies.

Read about the experience of a previous student on this course, Gideon Ewa.

Programme structure

This programme is studied full-time over one academic year and part-time students must study at least two taught technical modules per academic year, until a total of eight is reached. It consists of eight taught modules and a project.

Example module listing

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Educational aims of the programme

The programme aims to:

  • Attract well-qualified entrants, with a background in Electronic Engineering, Physical Sciences, Mathematics, Computing & Communications, from the UK, Europe and overseas
  • Provide participants with advanced knowledge, practical skills and understanding applicable to the MSc degree
  • Develop participants' understanding of the underlying science, engineering, and technology, and enhance their ability to relate this to industrial practice
  • Develop participants' critical and analytical powers so that they can effectively plan and execute individual research/design/development projects
  • Provide a high level of flexibility in programme pattern and exit point
  • Provide students with an extensive choice of taught modules, in subjects for which the Department has an international and UK research reputation

Intended capabilities for MSc graduates:

  • Underpinning learning– know, understand and be able to apply the fundamental mathematical, scientific and engineering facts and principles that underpin mobile and satellite communications
  • Engineering problem solving - be able to analyse problems within the field of mobile and satellite communications and more broadly in electronic engineering and find solutions
  • Engineering tools - be able to use relevant workshop and laboratory tools and equipment, and have experience of using relevant task-specific software packages to perform engineering tasks
  • Technical expertise - know, understand and be able to use the basic mathematical, scientific and engineering facts and principles associated with the topics within mobile and satellite communications
  • Societal and environmental context - be aware of the societal and environmental context of his/her engineering activities
  • Employment context - be aware of commercial, industrial and employment-related practices and issues likely to affect his/her engineering activities
  • Research & development investigations - be able to carry out research-and- development investigations
  • Design - where relevant, be able to design electronic circuits and electronic/software products and systems

Technical characteristics of the pathway

This Programme in Mobile and Satellite Communications reflects the importance of mobile telephony, mobile data communications and satellite-based communications as complementary technologies.

Students will gain a detailed knowledge of the fundamentals and advanced concepts involved in communications and 3G/4G/5G mobile technology, and satellite-based communications and networking.

This material is complemented by study in areas such as mobile applications and web services, mobile app software development, RF design, the Internet of Things, and network management.

The teaching material and projects are closely related to the research being carried out in the EE Department's Institute for Communications Systems.

Global opportunities

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.



Read less
With the launch of 4G wireless networks (LTE), industry vendors are competing to recruit graduates with unique combination of skills and knowledge in both wireless and broadband networking fields. Read more
With the launch of 4G wireless networks (LTE), industry vendors are competing to recruit graduates with unique combination of skills and knowledge in both wireless and broadband networking fields. This course offers an integrated approach to transmission technologies, signal processing techniques, broadband network design, wireless networking techniques and modelling simulation skills.

The unique features of this course are the integration of latest wireless communications and broadband networking engineering which are at the forefront of modern telecommunication systems in the industry today.

Engineering employers have expressed their need for engineers with a solid grasp of the business requirements that underpin real engineering projects. Our course incorporates a management-related module focused on entrepreneurship and project management. This management module develops our graduates' commercial awareness and ensures that they have the skill-set valued by industry employers.

As a student here you'll benefit from well-equipped telecommunications lab and Cisco equipment.

See the website http://www.lsbu.ac.uk/courses/course-finder/telecommunication-wireless-engineering-msc

Modules

- Technical, research and professional skills
This module provides training for the skills that are necessary for successful completion of the MSc studies in the near future and for professional development in the long-term future. More specifically, the course teaches how to search and gather relevant technical information, how to extract the essence from a piece of technical literature, how to carry out a critical review of a research paper, how to write a feasibility report, how to give presentations and put your thoughts across effectively, and how to manage a project in terms of time and progress in a group project environment. These are designed to enhance the technical and analytical background that is necessary for the respective MSc stream.

- Computer network design
This module provides a broad understanding of the principles of computer networks and approaches of network design. It starts from standard layered protocol architecture and each layer of the TCP/IP model. Then it will focus on a top-down approach for designing computer networks for an enterprise.

- Wireless communication and satellite systems
This module provides understanding of main aspects of wireless communication technologies, various radio channel models, wireless communication networks and satellite communication systems. Particular emphasis will be given to current wireless technologies and architectures, design approaches and applications.

- Technology evaluation and commercialisation
In this module you'll follow a prescribed algorithm in order to evaluate the business opportunity that can be created from a technology's unique advantages. You will be guided towards identifying a technology project idea that you will evaluate for its business potential. To do this you'll conduct detailed research and analysis following a prescribed algorithmic model, in order to evaluate the business potential of this technology idea. The outcomes from this will serve as the basis for implementation of the selected technology in the business sense. Thus you'll develop the appropriate commercialisation strategy and write the business plan for your high-tech start-up company.

- Optical and microwave communications
This module provides a comprehensive approach to teach the system aspects of optical and microwave communications, with the emphasis on applications to Fibre-to-the Home (FTTH)/Fibre-to-the Business (FTTB) or Fibre-to-the Curb (FTTC), radio over fibre (RoF), optical-wireless integration, high-capacity photonic switching networks, wired and wireless broadband access systems, and high-speed solutions to last-mile access, respectively.

- Smart receivers and transmission techniques
This module provides a further in-depth study of some advanced transmission and receiver processing techniques in wireless communication systems. The module focuses on various current topics such as evolution and challenges in wireless and mobile technologies, smart transceivers, processing, coding and possible future evolutions in mobile communication systems. This module also aims to provide you with in-depth understanding and detailed learning objectives related the current mobile wireless industry trends and standards for key design considerations in related wireless products.

- Final project
This module requires you to undertake a major project in an area that is relevant to your course. You'll chose your projects and carry it out under the guidance of their supervisor. At the end of the project, you are required to present a dissertation, which forms a major element of the assessment. The dissertation tests the your ability to integrate information from various sources, to conduct an in-depth investigation, to critically analyse results and information obtained and to propose solutions. The other element of the assessment includes an oral presentation. The Individual Project carries 60 credits and is a major part of MSc program.

Employability

Engineers who keep abreast of new technologies in telecommunications, wireless and broadband networking are increasingly in demand.

There are diverse employment opportunities in this expanding field. Graduates could work for an equipment manufacturer, network infrastructure provider or a service provider, carrying out research, or working on the design and development projects, or production of data networks, broadband networking, optical fibre and microwave communications, wireless and mobile communications, cellular mobile networks or satellite systems. You could also pursue PhD studies after completing the course.

LSBU Employability Services

LSBU is committed to supporting you develop your employability and succeed in getting a job after you have graduated. Your qualification will certainly help, but in a competitive market you also need to work on your employability, and on your career search. Our Employability Service will support you in developing your skills, finding a job, interview techniques, work experience or an internship, and will help you assess what you need to do to get the job you want at the end of your course. LSBU offers a comprehensive Employability Service, with a range of initiatives to complement your studies, including:

- direct engagement from employers who come in to interview and talk to students
- Job Shop and on-campus recruitment agencies to help your job search
- mentoring and work shadowing schemes.

Professional links

The School of Engineering has a strong culture of research and extensive research links with industry through consultancy works and Knowledge Transfer Partnerships (KTPs). Teaching content on our courses is closely related to the latest research work.

Read less
Telecommunications engineering involves the design, build and management of systems that carry out the transmission and broadcasting of information using wireless signals. Read more
Telecommunications engineering involves the design, build and management of systems that carry out the transmission and broadcasting of information using wireless signals. Telecommunications engineers design, implement, and optimise a company's wireless LAN and other wireless technologies.

The Master of Professional Engineering (Telecommunications) is a 3 year full-time course delivering technical and professional outcomes that will allow you to be recognised as an Australian graduate engineer in this field. This program was created due to rapid convergence of wireless and network engineering.

The Master of Professional Engineering (Telecommunications) has been accorded full accreditation at the level of Professional Engineering by the industry governing body, Engineers Australia http://www.engineersaustralia.org.au/

If your bachelor's degree included foundational engineering units, you may be given advanced standing and be eligible to enrol either in a reduced length graduate certificate or directly into the Master of Professional Engineering. Entry pathways are available for students with widely varying backgrounds.

In this course you will engage in areas of study including mobile networks, satellite communication systems, gigabits wireless systems, and radio frequency engineering. You will also have the opportunity to complete either an engineering project or research at the end of the course.

To ask a question about this course, visit http://sydney.edu.au/internationaloffice/

Read less
The MSc Telecommunications Engineering programme provides a comprehensive understanding of modern communication technologies and the techniques used in telecommunication. Read more
The MSc Telecommunications Engineering programme provides a comprehensive understanding of modern communication technologies and the techniques used in telecommunication. Created in consultation with industry, this programme offers you the opportunity to gain relevant practical skills and to develop the expert knowledge needed to succeed in the telecommunications arena.

Programme description

The desire for higher data rates and mobility in applications such as mobile telephony and wireless networks has stimulated a massive growth in the telecommunications field in the last decades, which presents exciting opportunities to people working, or wanting to work in this popular area.

The MSc Telecommunications Engineering programme offered by GCU has been created to provide you with a comprehensive understanding of modern communication technologies and of the techniques used in telecommunication companies. Created in consultation with industry, this programme offers you the opportunity to gain relevant practical skills and to develop the expert knowledge that will allow you to succeed in the telecommunications arena.

Some of the key aspects covered by our programme include mobile telephony, satellite communication systems, optical systems and networks, and digital communications. Knowledge in these areas will allow you to successfully design and manage telecommunication systems and services.

Why Choose This Programme?

Our innovative approach to learning and teaching ensures students benefit from the latest thinking and best practice. You will have the opportunity to broaden individual and particular interests at Masters level, for example, ethics and technology and technology and environmental management. In the third trimester you will undertake a major project within the area of wireless communications. Projects can be industry-based or chosen from a selection of research and consultancy activities.

Assessment

All modules include examinations and coursework. Practical computing forms a significant part of assessment. This is accomplished through coursework and practical tests.

Career Opportunities

Graduates will be able to pursue careers within a wide range of industrial and technology sectors such as telecommunications, networking, communication systems, remote instrumentation, remote data logging, signal processing and software development.

The programme content will also benefit those in industry, commerce and management who wish to gain skills in wireless systems to help them better implement, advise, purchase, sell and manufacture wireless system technologies.

Read less

Show 10 15 30 per page



Cookie Policy    X