• University of Derby Online Learning Featured Masters Courses
  • Coventry University Featured Masters Courses
  • University of Glasgow Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • New College of the Humanities Featured Masters Courses
  • St Mary’s University, Twickenham Featured Masters Courses
London School of Hygiene & Tropical Medicine Featured Masters Courses
Coventry University Featured Masters Courses
University of Bradford Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
FindA University Ltd Featured Masters Courses
"sampling"×
0 miles

Masters Degrees (Sampling)

  • "sampling" ×
  • clear all
Showing 1 to 15 of 101
Order by 
What methods are used to discover how people behave, what they believe and what opinions they hold? What sort of sampling techniques are needed to access different types of population? What is the best way to design a questionnaire?. Read more
What methods are used to discover how people behave, what they believe and what opinions they hold? What sort of sampling techniques are needed to access different types of population? What is the best way to design a questionnaire?

Our MSc Survey Methods for Social Research will provide answers to these questions and more, preparing you for a professional career in social, academic or market research. Central to our course is an emphasis on practical learning and experience, so you undertake a short work placement in one of a number of professional research organisations.

You explore topics including:
-Sampling
-Questionnaire design
-Analysis of survey data
-Management of the survey process

This course has ESRC Doctoral Training Centre accreditation, meaning it can form part of a 1+3 funding opportunity worth up to £18,000 for talented postgraduates. Our University is one of only 21 ESRC-accredited Doctoral Training Centres in the UK.

Our Department of Sociology was rated top 10 in the UK for research quality (REF 2014), and we consistently receive strong student satisfaction scores, including 96% overall student satisfaction in 2015.

Our expert staff

We are a large and friendly department, offering a diverse range of research interests and with staff members who are committed to teaching, research and publication that covers a broad geographical spectrum.

Many have worked at the local level with local authorities, justice councils, community partnerships and charities. Others have worked at a national and international level with bodies like the United Nations, the European Commission’s Expert Group on Public Understanding of Science, Amnesty International, The Royal College of Paediatrics and Child Health, The Home Office and national non-governmental organisations.

Specialist facilities

-Dedicated postgraduate support facilities
-Our renowned off-campus Graduate Conference takes place every February
-A unique Student Resource Centre where you can get help with your studies, access examples of previous students’ work, and attend workshops on research skills
-The Sociology common room is open all day Monday-Friday, is stocked with daily newspapers, magazines and journals, and has free drinks available
-Links with the Institute of Social and Economic Research, which conducts large-scale survey projects and has its own library, and the -UK Data Archive, which stores national research data like the British Crime Survey
-Our students’ Sociology Society, a forum for the exchange of ideas, arranging talks by visiting speakers, introducing you to various career pathways, and organising debates

Your future

This course is invaluable training if you seek future employment in a wide range of social research occupations. You will develop key employability skills including; thinking analytically, research design, essay writing, quantitative and qualitative data analysis and interviewing skills.

You are provided with excellent preparation for further academic study, and many of our postgraduates go on to successful academic careers, both in the UK and overseas.

Others have established careers in non-governmental organisations, local authorities, specialist think tanks, government departments, charities, media production, and market intelligence.

We work with the university’s Employability and Careers Centre to help you find out about further work experience, internships, placements, and voluntary opportunities.

Example structure

-Introduction to Quantitative Analysis
-Panel Data Methods
-Introduction to Survey Design and Management
-Applied Sampling
-Survey Measurement and Question Design
-Dissertation
-Dealing with Survey Non-response (optional)

Read less
This MSc course addresses scientific, technological and legislative aspects of the diagnosis (analysis and assessment) and management (remediation and restoration) of important environmental issues concerned with contaminated land, water quality, air pollution and waste. Read more
This MSc course addresses scientific, technological and legislative aspects of the diagnosis (analysis and assessment) and management (remediation and restoration) of important environmental issues concerned with contaminated land, water quality, air pollution and waste.

It has been designed with industry advice to enable good science and engineering graduates begin and advance successful careers in the environmental sector, and pursue postgraduate scientific research. The MSc is delivered in first-class teaching and research facilities by a dedicated team of internationally renowned environmental scientists, and presents considerable interaction with environmental consultancies and engineers, industry, local and regulatory authorities, and research institutes.

During 2007-2011, the course was supported by 6 NERC studentships, the most awarded annually to an environmental MSc. Students on the course have won the most EMpower research projects funded by companies within the nuclear industry, and since 2008, a Prize for Best Performance Overall has been awarded annually by Arup, a global environmental engineering and consultancy company.

See the website https://www.royalholloway.ac.uk/earthsciences/coursefinder/mscenvironmentaldiagnosismanagement.aspx

Why choose this course?

- The quality of teaching and learning on the course is enhanced considerably by significant professional networking and interaction with leading experts from environmental consultants and engineers, industry, local and regulatory authorities, and universities and research institutes; who present seminars, host study visits, co-supervise research projects, and act as an advisory panel.

- Graduates of the course are skilled and knowledgeable scientists with excellent employment prospects within the environmental sector, particularly as environmental consultants and engineers, in local and regulatory authorities, industry, charitable trusts, and research institutes and universities.

- In the 2008 Research Assessment Exercise (RAE), the Department’s research was ranked equal 6th in the UK with 70% rated as world-leading or internationally excellent in terms of originality, significance and rigour.

Course content and structure

You will study seven taught modules, three case studies and complete an Independent Research Project:

- Communication & Co-operation Skills
Provides practical training in written and verbal communication media; project, team and time management; role playing in environmental impact assessment; careers advice and a mock job interview.

- Environmental Inorganic Analysis
A practical laboratory and field-work based introduction to quality assured sampling strategies, preparation processes and analytical methods for heavy metals in soils, surface waters, and vegetation.

- Diagnostic & Management Tools
Provides practical computer-based training in statistical analysis of environmental data, geographical information systems, and environmental risk assessment.

- Environmental Organic Chemistry Pathways Toxicology
Comprises physical and chemical properties, transport, fate and distribution, and toxicology of organic compounds in the environment.

- Contaminated Land Case Study
A practical laboratory and field-work based human health risk assessment of pollutant linkages at a former gravel extraction and landfill site. It comprises desk-top study, site investigation and sampling, laboratory analysis, data interpretation, quantitative risk assessment, and remediation options.

- Water Quality: Diagnosis & Management
A practical laboratory and field-work based introduction to aquatic science, hydrogeology, treatment of water and wastewater, and chemical, biological and physical monitoring of water quality. Includes a study visit to a global manufacturer of pesticides and herbicides.

- River Thames Basin Case Study
A combination of fieldwork, laboratory work and desk-top study to diagnose water quality in chemical and ecological terms, to identify industrial and agricultural pollutant linkages, and to determine environmental, ecological and health impacts.

- Air Pollution: Monitoring, Impacts & Management
Covers: sources, sinks, dispersion, conversion, monitoring, impacts and management of air pollutants with study visits to a local authority and a government research institute.

- Royal Holloway Campus Air Quality Case Study
Involves a consultancy company-style investigation of ambient and indoor air quality within the confines of RHUL campus; and combines desk-top research with practical fieldwork and laboratory analysis.

- Waste Management & Utilisation
Considers municipal, industrial and radioactive waste management options, with study visits to a landfill site, a waste incinerator, composting facility, recycling centre and nuclear power station.

- Independent Research Project
Consists of a four-month, independent scientific investigation, usually in collaboration with environmental consultants and engineers, local and regulatory authorities, industry, research institutes, and universities. Projects may comprise a desk-top study or practical laboratory and field investigation, they may be funded, and often lead to employment or to PhD research. Final results are presented at the Research Project Symposium to an audience from within the environmental sector

On completion of the course graduates will have acquired the experience, knowledge, and critical understanding to enable them to:

- Conduct themselves as professional environmental research scientists, consultants, and managers, convey in a professional manner, scientific, technical and managerial information, and manage projects and resources efficiently

- Apply quality assured sampling strategies, preparation procedures and analytical systems to quantify health risks posed by inorganic and organic pollutant linkages in soils, waters and air

- Apply statistical analysis, geographical information systems, and environmental impact and risk assessment to the interpretation of environmental data

- Appreciate the importance and impacts of hydro-geological, and bio- and physico-chemical processes on the treatment of water and wastewater, and on the quality of groundwater and aquatic ecosystems

- Appreciate the emissions, dispersion, conversion, and monitoring of natural and man-made gaseous and particulate air pollutants, their impacts on climate change, human health and vegetation, and management on local, regional and global scales

- Appreciate the prevention, re-use, recycling, recovery, disposal and utilisation of municipal and industrial waste and the management of nuclear waste within the constraints of national and international legislation

- Manage an independent environmental science research project, often with professional collaboration, and of significant value to their career development.

Assessment

- Written examinations test understanding of the principles and concepts taught in the modules and case studies, and the ability to integrate and apply them to environmental diagnosis and management.

- Assessment of module work and practical computing, laboratory and fieldwork evaluates critical understanding of the environmental science taught, and mastery of producing quality assured data, and its analysis, interpretation, presentation and reporting.

- Assessment also reflects the ability to work independently and in teams, and to learn during study visits.

- Assessment of research projects is based on the ability to manage and report on an original piece of independent scientific work.

- All assessed work has significant confidential written and verbal feedback.

Employability & career opportunities

94% of the graduates of the MSc from 2008 to 2013 either successfully secured first-destination employment as international environmental consultants and engineers, in industry, local and regulatory authorities and charitable trusts, or are conducting postgraduate research within international research institutes and universities.

How to apply

Applications for entry to all our full-time postgraduate degrees can be made online https://www.royalholloway.ac.uk/studyhere/postgraduate/applying/howtoapply.aspx .

Read less
This programme is ideal for engineers and scientists who want to improve the delivery of water and sanitation services in low- and middle-income countries. Read more
This programme is ideal for engineers and scientists who want to improve the delivery of water and sanitation services in low- and middle-income countries. You will develop knowledge, expertise and skills in many aspects of inclusive and sustainable public health infrastructure and services.

The programme is based in the School of Civil and Building Engineering’s Water, Engineering and Development Centre (WEDC), one of the world’s leading education and research institutes of its kind.

Modules are taught by experts in a broad range of disciplines who have considerable experience of working in low- and middle- income countries. Classes include a mix of nationalities and past experiences, providing both a stimulating learning experience and a valuable future network.

Externally accredited, WEDC programmes are well-established, and held in high regard by practitioners and employers from both the emergency and development sectors.

Key Facts

- Research-led teaching from international experts. 75% of the School’s research was rated as world-leading or internationally excellent in the latest Government Research Excellence Framework.

- An outstanding place to study. The School of Civil and Building Engineering is ranked in the UK top 10 in the Guardian Good University Guide

- Excellent graduate prospects. Many of our graduates are employed by relief and development agencies.

- Professionally accredited. The Chartered Institution of Water and Environmental Management (CIWEM) have accredited this programme. Students registered for this programme are eligible for free student membership of CIWEM. The Joint Board of Moderators (JBM) has also accredited all WEDC MSc degrees as meeting requirements for Further Learning.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/civil/water-waste/

Programme modules

Core modules:
- Water and Waste Engineering Principles
The aims of this module are for the student to understand the range of suitable technologies for water supply and engineering management of liquid and solid wastes in low- and middle-income countries.

- Management of Water and Sanitation
The aim of this module is to introduce the principles, concepts and key issues of managing sustainable water and environmental sanitation services for low-income consumers in developing countries.

- Water Utilities Management
The aim of this module is to better enable participants to plan for and manage urban water and sanitation services in developing countries.

- Data Collection, Analysis and Research
The aims of this module are to introduce the principles and approaches for doing research and studies on infrastructure and services in low- and middle-income countries and to prepare students to undertake the research dissertation module.

- Group Project
The aims of this module are for the student to work within a group to understand the necessary inter-relationships between different components of their programme of study; to consolidate and integrate material contained in earlier taught modules; and to learn how to work as part of a team.

- Research Dissertation
The aim of this module is to provide the student with experience of the process and methodology of research by defining and studying (on an individual basis) a complex problem in a specialised area relating to their degree.

Optional Modules (choose 3):
- Water Source Development
The aim of this module is for the student to understand the occurrence, location, exploration, exploitation and pollution of groundwater and surface water sources.

- Wastewater Treatment
The aims of this module are for the student to understand the various stages, and unit operation and process options, for treatment of wastewaters, particularly in low- and middle-income countries; and to understand the principles for planning and design of wastewater treatment facilities, particularly in low- and middle-income countries.

- Integrated Water Resources Management
The aim of this module is for participants to understand the concepts used in integrated planning and management of water resources in low and middle-income countries.

- Solid Waste Management
The aim of this module is to introduce participants with available and possible options in solid waste management for low and middle income countries. To make participants familiar with the key issues for low income countries.

- Water Distribution and Drainage Systems
The aim of this module is for the student to understand the most important aspects of how to design, construct and maintain piped water distribution, drainage and sewerage systems.

- Short Project
The aim of this module is for participants to be able to undertake extended study of a subject of their own choosing which is related to their Postgraduate Programme to enable them to conduct an independent review and analysis to understand state of art issues or a topic.

Facilities

All masters students have access to our excellent laboratory facilities which include equipment for field sampling and analysis of water and wastewater, and some of the largest hydraulics equipment in the UK. There are three dedicated water laboratory staff available to help you use our equipment who are specialists in pollutant analysis, hydraulics and running continuous trials.

Practical training includes:
- Hand-pump maintenance using the largest single site collection of hand-pumps;
- latrine slab construction;
- flow measurements; and
- water quality sampling and analysis.

Field visits are made to relevant UK facilities.

WEDC has a unique sector Resource Centre with a dedicated and skilled information officer. Over 19,000 items can be searched on a customized database allowing ready access to this collection of books, series, country files, student projects, videos, journals, maps, and manufacturers' catalogues.

The Resource Centre also provides a dedicated quiet study space for WEDC students. Many items including all WEDC publications and over 2500 papers presented at 37 WEDC International Conferences are available in the open access sector knowledge base.

How you will learn

The programme comprises both compulsory core modules and optional modules which may be selected. A group case study module draws together material from across the programme and develops team working skills. The individual research project and dissertation (frequently linked to specific needs of an agency) of between 75 and 150 pages in length concludes the programme. To support your learning you will have access to our comprehensive facilities including laboratories, hand-pumps, and a dedicated Resource Centre.

- Assessment
For most modules, students are assessed by one item of coursework (two items for foundation modules) and an in-class test. The Group Project module is assessed on the basis of written documents and spoken presentations, including an individual component for the module mark. The individual Research Dissertation is assessed on the basis of a written dissertation, and this module includes an oral when a student discusses their submitted dissertation with their supervisor and a second member of academic staff.

Careers and further study

Many WEDC students and alumni work for international NGOs (MSF, Oxfam, SCF, GOAL, WaterAid, etc.) and agencies (such as UNICEF), or National Governments. Graduate job titles include Sanitation Technical Manager, Water and Sanitation Consultant, Project Manager, Environmental Engineering Consultant and Civil Engineering Specialist.

Scholarships / Bursaries

Bursaries are available for self-funding international students.
The University also offers over 100 scholarships each year to new self-financing full-time international students who are permanently resident in a county outside the European Union. These Scholarships are to the value of 25% of the programme tuition fee and that value will be credited to the student’s tuition fee account. You can apply for one of these scholarships once you have received an offer for a place on this programme.

Why choose civil engineering at Loughborough?

As one of four Royal Academy of Engineering designated Centres of Excellence in Sustainable Building Design, the School of Civil and Building Engineering is one of the largest of its type in the UK and holds together a thriving community of over 60 academic staff, 40 technical and clerical support staff and over 240 active researchers that include Fellows, Associates, Assistants, Engineers and Doctoral Students.

Our world-class teaching and research are integrated to support the technical and commercial needs of both industry and society. A key part of our ethos is our extensive links with industry resulting in our graduates being extremely sought after by industry and commerce world-wide,

- Postgraduate programmes
The School offers a focussed suite of post graduate programmes aligned to meet the needs of industry and fully accredited by the relevant professional institutions. Consequently, our record of graduate employment is second to none. Our programmes also have a long track record of delivering high quality, research-led education. Indeed, some of our programmes have been responding to the needs of industry and producing high quality graduates for over 40 years.

Currently, our suite of Masters programmes seeks to draw upon our cutting edge research and broad base knowledge of within the areas of contemporary construction management, project management, infrastructure management, building engineering, building modelling, building energy demand and waste and water engineering. The programmes are designed to respond to contemporary issues in the field such as sustainable construction, low carbon building, low energy services, project complexity, socio-technical systems and socio-economic concerns.

- Research
Drawing from our excellent record in attracting research funds (currently standing at over £19M), the focal point of the School is innovative, industry-relevant research. This continues to nurture and refresh our long history of working closely with industrial partners on novel collaborative research and informs our ongoing innovative teaching and extensive enterprise activities. This is further complemented by our outstanding record of doctoral supervision which has provided, on average, a PhD graduate from the School every two weeks.

- Career Prospects
Independent surveys continue to show that industry has the highest regard for our graduates. Over 90% were in employment and/or further study six months after graduating. Recent independent surveys of major employers have also consistently rated the School at the top nationally for civil engineering and construction graduates.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/civil/water-waste/

Read less
This programme is ideal for engineers and scientists who want to improve the delivery of water and environmental services in low-and middle-income countries. Read more
This programme is ideal for engineers and scientists who want to improve the delivery of water and environmental services in low-and middle-income countries. You will develop knowledge, expertise and skills in many aspects of water, sanitation and environmental management. The programme focuses on the conditions and aspirations of communities in low- and middle-income countries.

The programme is based in the School of Civil and Building Engineering’s Water, Engineering and Development Centre (WEDC), one of the world’s leading education and research institutes of its kind.

Modules are taught by experts in a broad range of disciplines who have considerable experience of working in low- and middle- income countries. Classes include a mix of nationalities and past experiences, providing both a stimulating learning experience and a valuable future network.

Externally accredited, WEDC programmes are well-established, and held in high regard by practitioners and employers from both the emergency and development sectors.

Key Facts

- Research-led teaching from international experts. 75% of the School’s research was rated as world-leading or internationally excellent in the latest Government Research Excellence Framework.

- An outstanding place to study. The School of Civil and Building Engineering is ranked in the UK top 10 in the Guardian Good University Guide

- Excellent graduate prospects. Many of our graduates are employed by relief and development agencies.

- Professionally accredited. The Chartered Institution of Water and Environmental Management (CIWEM) have accredited this programme. Students registered for this programme are eligible for free student membership of CIWEM. The Joint Board of Moderators (JBM) has also accredited all WEDC MSc degrees as meeting requirements for Further Learning.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/civil/water-environmental-management/

Programme modules

Core modules:
- Management of Water and Sanitation
The aim of this module is to introduce the principles, concepts and key issues of managing sustainable water and environmental sanitation services for low-income consumers in developing countries.

- Water and Environmental Sanitation
The aim of this module is for participants to understand the range of suitable technologies for water supply and engineering management of liquid and solid wastes in low- and middle-income countries.

- Integrated Water Resources Management
The aim of this module is for participants to understand the concepts used in integrated planning and management of water resources in low and middle-income countries.

- Water Utilities Management
The aim of this module is to better enable participants to plan for and manage urban water and sanitation services in developing countries.

- Data Collection, Analysis and Research
The aims of this module are to introduce the principles and approaches for doing research and studies on infrastructure and services in low- and middle-income countries and to prepare students to undertake the research dissertation module.

- Group Project
The aims of this module are for the student to work within a group to understand the necessary inter-relationships between different components of their programme of study; to consolidate and integrate material contained in earlier taught modules; and to learn how to work as part of a team.

- Research Dissertation
The aim of this module is to provide the student with experience of the process and methodology of research by defining and studying (on an individual basis) a complex problem in a specialised area relating to their degree.

Optional Modules (choose 2):
- Water Source Development
The aim of this module is for the student to understand the occurrence, location, exploration, exploitation and pollution of groundwater and surface water sources.

- Environmental Assessment
The aim of this module is for participants to develop a broad understanding of both the needs for and the mechanisms of environmental assessment and management, with emphasis on aquatic environments, in low and middle-income countries.

- Small-scale Water Supply and Sanitation
The aim of this module is for the student to understand important aspects of the design, construction, operation and maintenance of small-scale water supplies and on-site sanitation options for low-income rural and urban communities.

- Solid Waste Management
The aim of this module is to introduce participants with available and possible options in solid waste management for low and middle income countries. To make participants familiar with the key issues for low income countries.

Facilities

All masters students have access to our excellent laboratory facilities which include equipment for field sampling and analysis of water and wastewater, and some of the largest hydraulics equipment in the UK. There are three dedicated water laboratory staff available to help you use our equipment who are specialists in pollutant analysis, hydraulics and running continuous trials.

Practical training includes:
- Hand-pump maintenance using the largest single site collection of hand-pumps;
- latrine slab construction;
- flow measurements; and
- water quality sampling and analysis.

Field visits are made to relevant UK facilities.

WEDC has a unique sector Resource Centre with a dedicated and skilled information officer. Over 19,000 items can be searched on a customized database allowing ready access to this collection of books, series, country files, student projects, videos, journals, maps, and manufacturers' catalogues.

The Resource Centre also provides a dedicated quiet study space for WEDC students. Many items including all WEDC publications and over 2500 papers presented at 37 WEDC International Conferences are available in the open access sector knowledge base.

How you will learn

The programme comprises both compulsory core modules and optional modules which may be selected. A group case study module draws together material from across the programme and develops team working skills. The individual research project and dissertation (frequently linked to specific needs of an agency) of between 75 and 150 pages in length concludes the programme. To support your learning you will have access to our comprehensive facilities including laboratories, hand-pumps, and a dedicated Resource Centre.

- Assessment
For most modules, students are assessed by one item of coursework (two items for foundation modules) and an in-class test. The Group Project module is assessed on the basis of written documents and spoken presentations, including an individual component for the module mark. The individual Research Dissertation is assessed on the basis of a written dissertation, and this module includes an oral when a student discusses their submitted dissertation with their supervisor and a second member of academic staff.

Careers and further study

Many WEDC students and alumni work for international NGOs (MSF, Oxfam, SCF, GOAL, WaterAid, etc.) and agencies (such as UNICEF), or National Governments. Graduate job titles include Sanitation Technical
Manager, Water and Sanitation Consultant, Project Manager, Technical Adviser, Environmental Engineering Consultant and Civil Engineering Specialist.

Scholarships and bursaries

Bursaries are available for self-funding international students.
The University also offers over 100 scholarships each year to new self-financing full-time international students who are permanently resident in a county outside the European Union. These Scholarships are to the value of 25% of the programme tuition fee and that value will be credited to the student’s tuition fee account.
You can apply for one of these scholarships once you have received an offer for a place on this programme.

Why choose civil engineering at Loughborough?

As one of four Royal Academy of Engineering designated Centres of Excellence in Sustainable Building Design, the School of Civil and Building Engineering is one of the largest of its type in the UK and holds together a thriving community of over 60 academic staff, 40 technical and clerical support staff and over 240 active researchers that include Fellows, Associates, Assistants, Engineers and Doctoral Students.

Our world-class teaching and research are integrated to support the technical and commercial needs of both industry and society. A key part of our ethos is our extensive links with industry resulting in our graduates being extremely sought after by industry and commerce world-wide,

- Postgraduate programmes
The School offers a focussed suite of post graduate programmes aligned to meet the needs of industry and fully accredited by the relevant professional institutions. Consequently, our record of graduate employment is second to none. Our programmes also have a long track record of delivering high quality, research-led education. Indeed, some of our programmes have been responding to the needs of industry and producing high quality graduates for over 40 years.

Currently, our suite of Masters programmes seeks to draw upon our cutting edge research and broad base knowledge of within the areas of contemporary construction management, project management, infrastructure management, building engineering, building modelling, building energy demand and waste and water engineering. The programmes are designed to respond to contemporary issues in the field such as sustainable construction, low carbon building, low energy services, project complexity, socio-technical systems and socio-economic concerns.

- Research
Drawing from our excellent record in attracting research funds (currently standing at over £19M), the focal point of the School is innovative, industry-relevant research. This continues to nurture and refresh our long history of working closely with industrial partners on novel collaborative research and informs our ongoing innovative teaching and extensive enterprise activities. This is further complemented by our outstanding record of doctoral supervision which has provided, on average, a PhD graduate from the School every two weeks.

- Career Prospects
Independent surveys continue to show that industry has the highest regard for our graduates. Over 90% were in employment and/or further study six months after graduating. Recent independent surveys of major employers have also consistently rated the School at the top nationally for civil engineering and construction graduates.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/civil/water-environmental-management/

Read less
This is a full-time research-based postgraduate degree, run jointly by Imperial College London and the Natural History Museum, London. Read more
This is a full-time research-based postgraduate degree, run jointly by Imperial College London and the Natural History Museum, London.

OPEN DAY

visit the course pages for more information about the next Open Day at NHM on Wednesday 7 June 2017.

OUTLINE

Taxonomy and systematics provide the foundation for studying the great diversity of the living world. These fields are rapidly changing through new digital and molecular technologies. There is ever greater urgency for species identification and monitoring in virtually all the environmental sciences, and evolutionary ‘tree thinking’ is now applied widely in most areas of the life sciences. These courses provide in-depth training in the study of biodiversity based on the principles of phylogenetics, evolutionary biology, palaeobiology and taxonomy. The emphasis is on quantitative approaches and current methods in DNA-based phylogenetics, bioinformatics, and the use of digital collections.

LOCATION

The course is a collaboration of Imperial College London (Silwood Park) with the Natural History Museum. This provides an exciting scientific environment of two institutions at the forefront of taxonomic and evolutionary research.

[[SYLLABUS ]]
The MRes in Biosystematics features hands-on research projects that cover the main methodological approaches of modern biosystematics. After 6 weeks of general skills training, students will ‘rotate’ through three research groups each conducting a separate 14-week project in specimen-based phylogenetics, molecular systematics/genomics, and bioinformatics. The projects may be of the student’s own design. Students attend small group tutorials, lab meetings and research seminars.

TRANSFERABLE SKILLS]

The GSLSM (Graduate School of Life Sciences and Medicine) at Imperial College London provides regular workshops covering a wide range of transferable skills, and MRes students are encouraged to undertake at least four during the year. Topics include: Applied Writing Skills, Creativity and Ideas Generation, Writing for Publication, Introduction to Regression Modelling, Introduction to Statistical Thinking.

RECENT PROJECTS

MORPHOLOGICAL

The Natural History Museum’s Dorothea Bate Collection of dwarfed deer from Crete: adaptation and proportional size reduction in comparison with larger mainland species
Cambrian lobopodians and their position as stem-group taxa
Atlas of the Caecilian World: A Geometric Morphometric perspective
Tooth crown morphology in Caecilian amphibians
Morphometrics of centipede fangs: untapping a possible new source of character data for the Scolopendromorpha
Phylogeny of the Plusiinae (Lepidoptera: Noctuidae): Exploring conflict between larvae and adults
A comparison between species delineation based on DNA sequences and genital morphometrics in beetles (Coleoptera)

MOLECULAR

Geographical distribution of endemic scavenger water beetles (Hydrophilidae) on the island of Madagascar based on DNA sequence data
Cryptic diversity within Limacina retroversa and Heliconoides inflate
Phylogenetics of pteropods of the Southern Oceans
Molecular discrimination of the European Mesocestoides species complex
A molecular phylogeny of the monkey beetles (Coleoptera: Scarabaeidae: Hopliini)
The molecular evolution of the mimetic switch locus, H, in the Mocker Swallowtail Papilio dardanus Brown, 1776
Phylogenetic and functional diversity of the Sargasso Sea Metagenome

BIOINFORMATICS

A study into the relation between body size and environmental variables in South African Lizards
Cryptic diversity and the effect of alignment parameters on tree topology in the foraminifera
Delimiting evolutionary taxonomic units within the bacteria: 16S rRNA and the GMYC model
Testing the molecular clock hypothesis and estimating divergence times for the order Coleoptera
Taxon Sampling: A Comparison of Two Approaches
Investigating species concepts in bacteria: Fitting Campylobacter and Streptococcus MLST profiles to an infinite alleles model to test population structure
Assessing the mitochondrial molecular clock: the effect of data partitioning, taxon sampling and model selection

ON COMPLETION OF THE COURSE, THE STUDENTS WILL HAVE:

• a good understanding of the state of knowledge of the field, together with relevant practical experience, in three areas of biosystematic science in which he or she has expressed an interest;
• where applicable, the ability to contribute to the formulation and development of ideas underpinning potential PhD projects in areas of interest, and to make an informed decision on the choice of potential PhD projects;
• a broad appreciation of the scientific opportunities within the NHM and Imperial College;
• knowledge of a range of specific research techniques and professional and transferable skills.

FURTHER INFORMATION

Students are encouraged to view the NHM website for further information, and to contact the course administrator if they have any queries. Visits can be arranged to the NHM to meet the course organisers informally and to be given a tour of the facilities. Applications should be made online on the Imperial College London website.

Read less
The world’s aquatic ecosystems and environment are increasingly under threat. Pollution, overfishing, global climate change and many other impacts have highlighted the importance for us to understand their function at all levels, from the molecular to the global. Read more

Why take this course?

The world’s aquatic ecosystems and environment are increasingly under threat. Pollution, overfishing, global climate change and many other impacts have highlighted the importance for us to understand their function at all levels, from the molecular to the global.

This is what our course sets out to do and thanks to our close proximity to many types of temperate marine habitats and internationally protected conservation areas, we offer the perfect location for investigation.

What will I experience?

On this course you can:

Research at our internationally-renowned Institute of Marine Sciences or carry out microbiological work at the University’s Field Centre for Environmental Technology at Petersfield Sewage Works
Rear coldwater species for restocking programmes or trial fish food at Sparsholt College’s National Aquatics Training Centre
Study abroad through Erasmus or various other conservation and research schemes

What opportunities might it lead to?

You’ll be taught by leading international researchers and the course has been designed with strong input from outside agencies including environmental consultancies, a range of government bodies and industry. This ensures your training links directly to UK and international employment opportunities.

Here are some routes our graduates have pursued:

Consultancy work
Government-based research
Conservation
Teaching
Further study

Module Details

You will cover a variety of topics in advanced laboratory and field skills, and choose from units that cover marine ecology, aquaculture, ecotoxicology and pollution, and scientific journalism. A large amount of your time will also be spent on the research project that will enable you to apply the skills and knowledge you have gained.

Core units are:

• Research Toolkit: This covers a range of key professional skills for research methods (communication skills, ethics and report writing), advanced field skills (boat sampling, taxonomy, and marine and freshwater sampling methods), advanced laboratory skills (genomics, monitoring and pollution monitoring methods) and remote sensing technology (such as GIS).

• Research Project: Your final project allows you to select from a range of marine and freshwater projects provided by staff within the School, government research laboratories, NGOs and private research companies. During the project you will write literature reviews and develop skills in data analysis and presentation.

Then choose any three optional units from:

• Ecotoxicology and Pollution: This provides an introduction to environmental toxicology using model and non-model organisms.

• Aquaculture: This unit focuses on the principles of aquaculture production, global production and diversity of aquaculture species. It is taught by academic staff and staff from the National Aquatics Training Centre at Sparsholt College. Areas covered include larval culture, diseases and pathology, feeding and growth, reproductive manipulation, and business and management.

• Marine Policy, Planning and Conservation: Planning and Conservation: This unit explores contemporary debates on coastal and marine management with a specific focus on marine policy, planning and conservation.

• Science and the Media: Science communication is increasingly becoming an important part of science. This unit firstly addresses the skills required by scientists to effectively communicate with the media and general public and secondly, provides an understanding of the skills needed for a career in science journalism.

• Subtidal Marine Ecology: Selected topics of current interest in marine ecology, incorporating both theory and applied aspects, culminating in a week-long practical field course in the Mediterranean Sea. The unit carries an additional cost for the field trip, and requires a minimum level of training and experience in SCUBA diving to participate.

Programme Assessment

Hands-on laboratory-based work teamed with field trips means that practical learning underpins the theory learned in lectures, seminars, tutorials and workshops. You’ll also find that some aspects of your course may be taught online using our virtual learning environment.

You will be assessed using a range of methods from exams to coursework and presentations, with great opportunities to present your final-year projects to industry and researchers from other departments and organisations.

Student Destinations

Once you have completed this course, you will be particularly well placed to enter a wide range of interesting and rewarding careers in the UK and abroad. We will ensure you have all the relevant knowledge and skills that employers require, giving you the opportunity to either pursue a scientific career, enter the teaching profession, or further study should you want to continue your research.

Read less
Environmental issues such as eutrophication, habitat degradation and climate change threaten the sustainability of our aquatic resources. Read more
Environmental issues such as eutrophication, habitat degradation and climate change threaten the sustainability of our aquatic resources. Responding to these threats the Aquatic Science MSc equips students with an interdisciplinary understanding of the structure and functioning of aquatic environments, encompassing lakes, ponds, rivers, wetlands, groundwaters, estuaries and shallow seas.

Degree information

Students focus on integrated freshwater and coastal systems and gain extensive training in field sampling, study design and species identification. Distinctive features include: integration of aquatic ecology with hydro-geomorphology, aquatic landscape ecology, analysis of sediment cores for environmental change reconstruction, design of aquatic monitoring programmes and modelling of aquatic system dynamics. Students come away with a sound knowledge of current-day links between aquatic science, legislation and conservation.

Students undertake modules to the value of 180 credits.

The programme consists of four core modules (60 credits), four optional modules (60 credits) and a research dissertation (60 credits).

A Postgraduate Diploma - 4 core modules and 4 optional modules all 15 credits (120 credits, full-time nine months, part-time two years) is offered. A Postgraduate Certificate - 4 core modules only at 15 credits (60 credits, full-time twelve weeks, part-time two years) is offered.

Core modules
-Aquatic Systems
-Aquatic Monitoring (includes field-trip to Scottish Highlands)
-Environmental Data Acquisition and Analysis
-Scientific Basis for Freshwater and Coastal Conservation (field-based module in Norfolk, England)

*modules running are dependent on staff sabbaticals.

Optional modules - students choose four of the following:
-Lakes
-Coastal Change
-Politics of Climate Change
-Marine Conservation
-Surface Water Modelling
-Wetlands
-Aquatic Macrophytes (field-based module in Dorset, England)
-Impacts of Climate Change on Hydro-ecological Systems
-Biological Indicators of Environmental Change
-Non-biological Indicators for Environmental Change
-Environmental GIS
-Ocean Circulation and Climate Change

*modules running are dependent on staff sabbaticals.

Dissertation/report
All students undertake an independent research project which culminates in a dissertation of 15,000 words. Dissertation placement positions are offered linked to external conservation bodies and research-orientated consultancies.

Teaching and learning
The programme is delivered through a combination of lectures, seminars, practical classes, laboratory sessions, case-studies and residential field classes. Assessment is through coursework and the dissertation, which includes an oral presentation of the research proposal.

Careers

This programme provides an ideal foundation for PhD research, or for employment with environmental protection and conservation agencies, the water industry and environmental consultancies.

Top career destinations for this degree:
-Education Officer, Norfolk Wildlife Trust
-PhD in Pond Conservation, UCL
-PhD in the Macroecology of Deep Sea Jelly Fish, University of Southampton
-Land Use Adviser, Natural England
-River Catchment Planner, Norfolk Rivers Trust

Employability
The MSc provides students with the science background and practical skills necessary for a career working in aquatic conservation and environmental protection agencies, environmental consultancies and stakeholder agencies. The MSc is also an ideal platform for further PhD study. We aim to expose students to potential employers from the outset and students receive expert tuition in field sampling and monitoring programme design, conservation biology, taxonomy of key species groups, knowledge of important conservation principles and legislation and working with stakeholders.

Why study this degree at UCL?

The Aquatic Science MSc is run by UCL Geography which enjoys an outstanding international reputation for its aquatic environmental research and teaching. The degree has a strong emphasis on field working with three major residential classes to the North Norfolk Coast, Scottish Highlands and Dorset.

The programme is taught by research groups specialising in Environmental Change & Biodiversity, Environmental Modelling & Observation, and has specialist input from the Thames Estuary Partnership, and in-house aquatic consultancy Environmental Scientific Services.

Speakers from environmental organisations including the UK Environment Agency, the Rivers Trusts, Wildfowl & Wetlands Trust, the UK Wildlife Trusts, National Trust and Natural England lecture on the programme and take part in fieldwork. By bringing together students, researchers and practitioners, a vibrant and informal academic environment is created encouraging mutual discovery and ongoing debate.

Read less
Animal welfare science and ethics is an expanding topic of international concern, which is why the University of Glasgow offer an Animal Welfare MSc programme. Read more
Animal welfare science and ethics is an expanding topic of international concern, which is why the University of Glasgow offer an Animal Welfare MSc programme. It aims to improve our knowledge and understanding of animals’ needs, which is required to provide a high standard of care to the whole range of animals kept in captivity.

Why this programme

◾Top 100 University
◾This Animal Welfare Degree programme is offered by the Institute of Biodiversity, Animal Health and Comparative Medicine (IBAHCM); a grouping of top researchers who focus on combining ecology and evolution with more applied problems in animal health
◾When studying Animal Welfare you will be taught by research-active staff using the latest approaches in understanding and responding to animal welfare-related issues, legislation related to use of animals, and both theoretical and applied ethics.
◾In addition, you will have opportunities to develop skills in quantitative methods, sequence analysis, conservation biology, epidemiology and practical approaches to assessing biodiversity.
◾A unique strength of the Animal Welfare MSc at the University of Glasgow for many years has been the strong ties between veterinarians and ecologists, which has now been formalised in the formation of the IBAHCM. This direct linking is rare but offers unique opportunities to provide training that spans both fundamental and applied research.
◾The IBAHCM also offers an MSc in Quantitative Methods in Biodiversity, Conservation and Epidemiology. This degree is more focused on ecology and evolutionary biology and provides the opportunity for you to gain key quantitative skills that are not often a focus of welfare-based programmes.
◾You will have the opportunity to base your independent research projects at the University field station on Loch Lomond (for freshwater or terrestrial-based projects); Millport field station on the Isle of Cumbria (for marine projects); or Cochno farm in Glasgow (for research based on farm animals). We will also assist you to gain research project placements in zoos or research laboratories, whenever possible.
◾You will gain core skills and knowledge across a wide range of subjects that will enhance your selection chances for competitive PhD programmes. In addition to academic options, career opportunities include roles in zoos, government agencies, officers of animal welfare, protection, or wildlife crime, veterinary nursing and aquaculture
◾We have many links with animal welfare-related organisations through them coming to us to teach their expertise to our Animal Welfare degree and the class going to visit their organisation to obtain a first-hand view of what working is like at these organisations. Many of them also provide the students with opportunities to carry out their independent research project within their company. Students will also be able to capitalise on the strong ties between the veterinarians and ecologists at the IBAHCM. This allows us to directly link fundamental and applied research and offers unique opportunities to provide training that spans both theory and praxis.
◾We have currently the following partners involved in this programme: ◾Scottish Society for the Prevention of Cruelty to Animals (Scottish SPCA)
◾Highland Wildlife Park, Kingussie
◾BlairDrummondSafari Park
◾ChesterZoo
◾The Aspinall Foundation (Howletts & Port Lympne)
◾National Museum Scotland

Programme structure

The programme provides a strong grounding in scientific writing and communication, statistical analysis, and experimental design. It is designed for flexibility, to enable you to customise a portfolio of courses suited to your particular interests.

You can choose from a range of specialised options that encompass key skills in:
◾Ethics, legislative policy and welfare science – critical for promoting humane treatment of both captive and wild animals.
◾Monitoring and assessing biodiversity – critical for understanding the impacts of environmental change
◾Quantitative analyses of ecological and epidemiological data – critical for animal health and conservation.

Core courses
◾Key research skills: Scientific communication; Introduction to R; Advanced linear models; Experimental design and power analysis
◾Animal ethics
◾Animal welfare science
◾Legislation related to animal welfare
◾Independent research project.

Optional courses
◾Enrichment of animals in captive environments
◾Care of captive animals
◾Biology of suffering
◾Assessment of physiological state
◾Freshwater sampling techniques
◾Marine sampling techniques
◾Invertebrate identification
◾Vertebrate identification
◾Molecular analyses for DNA barcoding and biodiversity measurement
◾Phyloinformatics
◾Conservation genetics and phylodynamics
◾Infectious disease ecology and the dynamics of emerging disease
◾Single-species population models
◾Multi-species models
◾Spatial processes
◾Introduction to Bayesian statistics.

Animal Welfare is a very broad and applied field and the programme aims to provide coverage of all the different aspects of the topic which are often treated separately. Science is an essential skill in order to have a good understanding of welfare but we appreciate that applicants may come from diverse backgrounds and therefore the course includes a rigorous training in science communication, experimental design, data analysis and interpretation. The programme also includes teaching by practitioners and visits to organisations with first-hand experience of applied welfare problems. The programme also attempts to cover the entire spectrum of animal welfare, including zoos, farms, laboratory animals and wildlife.

Career prospects

Students are exposed to potential work places and can make valuable contacts with professionals in the welfare community. Where possible this is a two-way exchange in which communities are offered help with any issues they have and for which assistance may be provided in finding a solution (e.g. through independent research projects, supervised by university staff). This is also an option open to other courses and could benefit the students in the long-term as well as give the university valuable connections with the wider community.

Read less
This programme aims to provide students with a solid foundation in a broad range of social science research methods as well as basic research skills. Read more
This programme aims to provide students with a solid foundation in a broad range of social science research methods as well as basic research skills.

Students will acquire a general overview of the philosophy of social research, and understand how this informs research design, methods of data collection and analysis. They will also develop an ability to use a range of research methods, to communicate research findings effectively and an understanding of the potential use of and impact of their research within and beyond academia.

Core Modules

Philosophy of Social Science Research

The module considers fundamental philosophical debates about what counts as ‘knowledge’ across the social sciences. Teaching addresses (natural) science as a method of obtaining knowledge and the interpretative tradition in the social sciences. Students explore fundamental philosophical debates about what counts as ‘knowledge’ across the social sciences and apply these discussions to their own disciplines and field of study.

Research Design, Practice and Ethics

The module introduces students to social science research designs and ethical issues in research practice. Learning supports students to be able to make strategic choices when developing their own projects, and to assess the design and research ethics decision making in others’ published research work.

Fundamentals in Quantitative Research Methods

Concepts, methods and skills central to quantitative research, including data collection approaches and concept operationalization, are core throughout this module. Building on a grounding in ideas relating to probability sampling, sampling error and statistical inference, coverage of techniques extends from comparisons of means and simple cross-tabular analyses to a discussion of multivariate analysis approaches, focusing on linear and logistic regression.

Foundations in Qualitative Research

Qualitative research is examined across a range of topics, from different approaches and methods including ethnographic and observational research, discourse and conversation analysis, documentary and archival analysis, participatory research and the use of interviews. Ethics in qualitative research is specifically considered, as is the evaluation of qualitative research.

Advanced Training Programme

Unless stated, all advanced training courses run as 2-day intensive workshops from 10–4pm with breaks. This list is updated regularly as new courses are approved so do check this website from time to time to see what is on offer.

These advanced training courses are open to all research students in the College (and some departments in other Colleges, such as Geography, subject to the discretion of the Programme Team). However, places on each course are limited and priority will be given to MA Social Research students.

These advanced training courses are also open to all staff in the University who may wish to attend without completing the assessments. However, all doctoral researchers and staff who wish to do so will be placed on a waiting list. Confirmation will be sent a week before the course dates.

Advanced Training courses run in Semester 3, unless otherwise stated:

Analysing Hierarchical Panel Data
An Approach To Research On Discourse
Case Study Research Design
Documentary Research In Education
Factor Analysis
Introduction To Econometric Software
Introduction To Time Series Regression
Narrative Research
Multivariate Linear To Logistic Regression
Policy Evalution
Q Methodology - A Systematic Approach For Interpretive Research Design
Questionnaire Design
Researching Disability
Role Of Thinking: Philosophy Of Social Science Research
Visual Research Methods

NB: some courses have pre-requisites, e.g. to register on Multiple Linear and Logistic Regression, Factor Analysis, or Narrative Research, you will need to have passed Social Research Methods II (20 credits module), or equivalent. You will need to provide evidence that you have passed a similar course on quantitative/qualitative data analysis where appropriate.

To register for the above advanced training courses, please e-mail: specifying which courses you are interested in. When registering for courses, please provide your name, student ID, department/programme you are affiliated to, and your e-mail address.

In addition, you will write a 12,000-word dissertation (60 credits).

About the School of Government and Society

The School of Government and Society is one of the leading UK and International centres for governance, politics, international development, sociology, public management, Russian and European studies.
Established in 2008, the School comprises three Departments: Politics and International Studies (POLSIS); International Development (IDD) and Local Government Studies (INLOGOV).

POLSIS: The Department of Political Science and International Studies (POLSIS), one of the largest and most academically vibrant departments of Political Science and International Studies in the UK. In the latest Research Excellence Framework (REF) Politics and International Studies at Birmingham was ranked the 6th best in the power rankings highlighting the large number of staff in POLSIS producing world-leading and internationally excellent research.

IDD: Be part of global effort to achieve the Sustainable Development Goals. Contribute to conflict resolution and post-conflict reconstruction. Help build capacity of nations and communities to adapt to climate change. Study with us to gain the skills and knowledge essential for working in international development in the 21st Century.

INLOGOV: The Institute of Local Government Studies (INLOGOV) is the leading academic centre for research and teaching on local governance and strategic public management. We enrich the world of local public service with research evidence and innovative ideas, making a positive difference.

Funding and Scholarships

There are many ways to finance your postgraduate study at the University of Birmingham. To see what funding and scholarships are available, please visit: http://www.birmingham.ac.uk/postgraduate/funding

Open Days

Explore postgraduate study at Birmingham at our on-campus open days.
Register to attend at: http://www.birmingham.ac.uk/postgraduate/visit

Virtual Open Days

If you can’t make it to one of our on-campus open days, our virtual open days run regularly throughout the year. For more information, please visit: http://www.pg.bham.ac.uk

Read less
This course is designed to give participants a thorough training in the theory and practice of modern analytical techniques, with special regard to solving problems such as arise in various areas of Irish industry. Read more
This course is designed to give participants a thorough training in the theory and practice of modern analytical techniques, with special regard to solving problems such as arise in various areas of Irish industry. Towards these ends the course will consist of (i) lectures, (ii) laboratory work on set experiments and (iii) a short analytical research/development project.

Visit the website: http://www.ucc.ie/en/ckp03/

Course Details

Among the topics covered in lectures are: Introduction, sampling, classical methods of analysis, instrumentation in spectroscopy, atomic and molecular spectroscopy, near infrared, nuclear magnetic resonance spectroscopy, mass spectrometry, separation methods (incl. gas-liquid and high-performance liquid chromatography, supercritical fluid extraction), ion exchangers, potentiometry, voltammetry, sensors, process analysis, thermal methods, materials analysis, statistical data handling and the use of computers in analytical chemistry.

Format

Lectures, chosen from the following topic areas, are provided in a dedicated lecture schedule and through attendance at appropriate modules.

Set experiments

Set experiments are selected from the topics listed above and will involve the whole analytical process from sampling to the assessment of results and reliability parameters.

Project

A short research/development project is completed during the summer by full-time candidates (for part-time students special arrangements will be made).

Further details on the content and modules are available on the Postgraduate College Calendar - http://www.ucc.ie/calendar/postgraduate/PGDiplomas/science/page03.html

Placement and study abroad

Opportunities exist for industrial placement both locally and through IAESTE and for exchange of staff and students with other European research laboratories through various EU-supported Socrates networks, linked to University College Cork.

How to apply: http://www.ucc.ie/en/study/postgrad/how/

Funding and Scholarships

Information regarding funding and available scholarships can be found here: https://www.ucc.ie/en/cblgradschool/current/fundingandfinance/fundingscholarships/

Read less
Habitat loss, global climate change, water and air pollution, ozone depletion, species invasions, loss of biodiversity, and the accumulation of toxic wastes are among the many environmental dilemmas our society faces. Read more

Program overview

Habitat loss, global climate change, water and air pollution, ozone depletion, species invasions, loss of biodiversity, and the accumulation of toxic wastes are among the many environmental dilemmas our society faces. These complex problems pit environmental limits against economic development, diverse cultures, ethics, values, and social stability and therefore require an understanding of science, policy, society, history, and economics. Environmental scientists must use integrated and holistic approaches to understand and find sustainable solutions to these problems. Graduates of the environmental science program are well prepared for a variety of environmental careers including consulting, research, policy, and outreach, or further graduate work towards a doctoral degree.

Plan of study

Built on the concept that environmental issues are inherently interdisciplinary, the program is offered in collaboration with the College of Liberal Arts. The curriculum provides students with a deep understanding of the science behind our environmental problems, the complex set of circumstances that impact environmental issues, and how environmental decisions and policies must attempt to find a balance between environmental conservation, human well-being, and economic development. Students augment their hands-on classroom work with in-depth experiential learning through an individual thesis or project that provides students with the chance to work on real-world environmental problems under the guidance of skilled environmental scientists. The program includes a core curriculum and electives chosen to reflect the student’s background and career goals. A minimum of 34 semester credit hours beyond the bachelor’s degree is required. All students must propose, conduct, and report on an original research thesis or project.

Curriculum

Course sequence differs according to thesis/project option, see website for a particular option's modules
http://www.rit.edu/programs/environmental-science-ms

Other admission requirements

-Submit official transcripts (in English) from all previously completed undergraduate and graduate course work.
-Have a minimum GPA of 3.0 (overall and in science/math).
-Submit a statement outlining the candidate's research/project interests, career goals, and suitability to the program.
-Submit three letters of recommendation, and complete a graduate application.
-International applicants whose native language is not English must submit scores from the Test of English as a Foreign Language (TOEFL). A minimum score of 600 (paper-based) is required. International English Language Testing System (IELTS) scores are accepted in place of the TOEFL exam. Minimum scores will vary; however, the absolute minimum score required for unconditional acceptance is 7.0. For additional information about the IELTS, please visit http://www.ielts.org.
-The Graduate Record Examination (GRE) is recommended but not required for applicants with an undergraduate degree from a US institution.The GRE is required for International applicants.
-Students are strongly encouraged to contact program faculty before applying to discuss thesis topics and research projects. Students will be matched with a potential thesis advisor at the time of admission.

Additional information

Facilities and equipment:
The program provides a wide range of research opportunities. Many faculty members are engaged in field-based projects and the college boasts excellent laboratory facilities that support field research, including wet laboratories and computer facilities (traditional and geographic information systems). For a list of past and present projects, and faculty research interests, please visit the program website.

Monitoring, mapping, and field equipment:
ArcGIS and IDRISI GIS software, ENVS and ERDAS Remote Sensing software, Garmin and Trimble GPS receivers, soil sampling and analysis equipment, water sampling devices, multisonde water quality probes and dissolved oxygen meters, SCT meter, ponar dredges, Li-Cor light meter, plankton samplers, macroinvertebrate nets/samplers, and a library of field reference texts.

Other equipment:
Fluorimeter, Raman Spectrometer, UV-Vis-IR, GC-MS, ICP, atomic absorption, polarimeter, centrifuge, electrochemical equipment, gas chromatographs, HPLC, viscometer, ESR (built in-house), confocal microscope, infrared carbon dioxide analyzer, Unisense microelectrode system, Lachat autoanalyzer, incubators, capillary electrophoresis, DSCs, DMA, NMR, drying oven, Wiley mill.

Read less
This course combines theoretical and practical training in biology and control of disease vectors and the human pathogens they transmit. Read more
This course combines theoretical and practical training in biology and control of disease vectors and the human pathogens they transmit. Students will gain specialised skills in the molecular biology of infectious diseases, and will cover all aspects of major vector-borne diseases. The course also offers a thorough grounding in the systematics of medically important arthropods, processes regulating vector populations, and the biology of vector–parasite and vector–vertebrate interactions.

Graduates enter operational control programmes, applied basic research and academic fields. Students benefit from close interaction with staff who have extensive international expertise.

The James Busvine Memorial Medal and Prize, donated by Professor James Busvine in 1987, is awarded each year for outstanding performance.

- Full programme specification (pdf) (http://www.lshtm.ac.uk/edu/qualityassurance/medic_progspec.pdf)
- Intercalating this course (http://www.lshtm.ac.uk/study/intercalate)

Visit the website http://www.lshtm.ac.uk/study/masters/msbcdv.html

Objectives

By the end of this course students should be able to:

- demonstrate advanced knowledge and understanding of the biology of vectors and intermediate hosts of human pathogens together with methods for their control

- describe the biology, pathogenesis and diagnosis of parasitic infections in humans and relate these to human health and disease control strategies

- demonstrate a range of specialised technical and analytical skills relevant to vectors and vector-borne diseases

- design and carry out a research project on biology or control of disease vectors, analyse and interpret the results and prepare a report including a critical literature review

- design, undertake and evaluate vector control interventions, and show written and verbal competence in communicating scientific information

Structure

Term 1:
There is a one-week orientation period that includes an introduction to studying at the School, sessions on key computing and study skills and an introduction to major groups of pathogens, followed by three compulsory core modules:

- Parasitology & Entomology
- Analysis & Design of Research Studies
- Critical Skills for Tropical Medicine

Sessions on basic computing, molecular biology and statistics are run throughout the term for all students.

Terms 2 and 3:
Students take a total of five modules, one from each timetable slot (Slot 1, Slot 2 etc.). Some modules can be taken only after consultation with the Course Director.

*Recommended modules

- Slot 1:
Epidemiology & Control of Malaria*
Designing Disease Control Programmes in Developing Countries
Molecular Biology & Recombinant Techniques

- Slot 2:
Advanced Diagnostic Parasitology*
Design & Analysis of Epidemiological Studies
Statistical Methods in Epidemiology

- Slot 3:
Vector Sampling, Identification & Incrimination (compulsory)

- Slot 4:
Vector Biology & Vector Parasite Interactions*
Epidemiology & Control of Communicable Diseases
Molecular Biology Research Progress & Applications
Population Dynamics & Projections

- Slot 5:
Integrated Vector Management (compulsory)

Further details for the course modules - http://www.lshtm.ac.uk/study/currentstudents/studentinformation/msc_module_handbook/section2_coursedescriptions/tbcd.html

Residential Field Trip

There is a compulsory one week field course, after the Term 3 examinations, on vector and parasite sampling and identification methods. The cost of £630 is included in the field trip fee.

Project Report

During the summer months (July - August), students complete a field or laboratory research project on an appropriate entomological topic, for submission by early September.

Titles of some of the recent summer projects completed by students on this MSc

Due to our collaborative networking, students are given the opportunity to conduct research projects overseas. This unique experience provides students with skills that are highly desirable to potential employers. The majority of students who undertake projects abroad receive financial support for flights from the School's trust funds set up for this purpose.

Find out how to apply here - http://www.lshtm.ac.uk/study/masters/msbcdv.html#sixth

Read less
This course provides core training in the theoretical and practical aspects of medical parasitology, covering the protozoan and metazoan parasites of humans and the vectors which transmit them. Read more
This course provides core training in the theoretical and practical aspects of medical parasitology, covering the protozoan and metazoan parasites of humans and the vectors which transmit them. Students will gain specialised skills to enable them to pursue a career in research, control or teaching related to medical parasitology.

Graduates enter a range of global health fields ranging from diagnostics through to applied basic research and operational control to higher degree studies and academic/teaching-related positions.

The Patrick Buxton Memorial Medal and Prize is awarded to the best student of the year. Founded by relatives of Patrick Alfred Buxton, Professor in Entomology, who died in 1955.

- Full programme specification (pdf) (http://www.lshtm.ac.uk/edu/qualityassurance/mp_progspec.pdf)
- Intercalating this course (http://www.lshtm.ac.uk/study/intercalate)

Visit the website http://www.lshtm.ac.uk/study/masters/msmp.html

Additional Requirements

An additional preferred requirement for the MSc Parasitology is an interest in parasites of public health importance and disease transmission. Any student who does not meet the minimum entry requirement above but who has relevant professional experience may still be eligible for admission. Qualifications and experience will be assessed from the application.

Objectives

By the end of this course students should be able to demonstrate:

- detailed knowledge and understanding of the biology, life cycles, pathogenesis, and diagnosis of parasitic infections in humans and their relevance for human health and control

- detailed knowledge and understanding of the biology and strategies for control of the vectors and intermediate hosts of human parasites

- carry out practical laboratory identification of parasite stages both free and in tissues and diagnose infections

- specialised skills in: advanced diagnostic, molecular, immunological, genetic, chemotherapeutic, ecological and/or control aspects of the subject

- the ability to design a laboratory or field-based research project, and apply relevant research skills

- prepare a written report including a critical literature review of relevant scientific publications, and show competence in communicating scientific findings

Structure

Term 1:
There is a two-week orientation period that includes an introduction to studying at the School, sessions on key computing and study skills and an introduction to major groups of pathogens, followed by three compulsory core modules:

- Parasitology & Entomology
- Analysis & Design of Research Studies
- Critical Skills for Tropical Medicine

Recommended module: Molecular Biology

Sessions on basic computing, molecular biology and statistics are run throughout the term for all students.

Terms 2 and 3:
Students take a total of five modules, one from each timetable slot (Slot 1, Slot 2 etc.). Some modules can be taken only after consultation with the Course Director.

*Recommended modules

- Slot 1:
Epidemiology & Control of Malaria*
Molecular Biology & Recombinant DNA Techniques*
Advanced Immunology 1
Designing Disease Control Programmes in Developing Countries

- Slot 2:
Advanced Diagnostic Parasitology*
Advanced Immunology 2
Design & Analysis of Epidemiological Studies
Statistical Methods in Epidemiology

- Slot 3:
Vector Sampling, Identification & Incrimination*
Advanced Training in Molecular Biology
Spatial Epidemiology in Public Health
Tropical Environmental Health

- Slot 4:
Immunology of Parasitic Infection: Principles*
Molecular Biology Research Progress & Applications*
Vector Biology & Vector Parasite Interactions*
Epidemiology & Control of Communicable Diseases
Genetic Epidemiology

- Slot 5 :
Antimicrobial Chemotherapy*
Integrated Vector Management*
Molecular Cell Biology & Infection*
AIDS

Further details for the course modules - http://www.lshtm.ac.uk/study/currentstudents/studentinformation/msc_module_handbook/section2_coursedescriptions/tmpa.html

Residential Field Trip

There is a compulsory one week field course, after the Term 3 examinations, on vector and parasite sampling and identification methods.The cost of £630 is included in the field trip fee.

Project Report

During the summer months (July - August), students complete a research project, for submission by early September. This may be based on a critical review of an approved topic, analysis of a collection of results or a laboratory study.Students undertaking projects overseas will require additional funding of up to £1,500 to cover costs involved.

The majority of students who undertake projects abroad receive financial support for flights from the School's trust funds set up for this purpose.

Find out how to apply here - http://www.lshtm.ac.uk/study/masters/msmp.html#sixth

Read less
Part 1 (120 credits). runs from September to May and consists of four taught modules, a Field Visit, and a Research Methods module component. Read more
Part 1 (120 credits): runs from September to May and consists of four taught modules, a Field Visit, and a Research Methods module component. They must be completed successfully before proceeding to Part 2.

Part 2 (60 credits): is the dissertation phase and runs from end of May to September. This is a supervised project phase which gives students further opportunity for specialisation in their chosen field. Dissertation topics are related to the interests and needs of the individual and must show evidence of wide reading and understanding as well as critical analysis or appropriate use of advanced techniques. The quality of the dissertation is taken into account in the award of the Masters degree. Bangor University regulations prescribe a maximum word limit of 20,000 words for Masters Dissertations. A length of 12,000 to 15,000 words is suggested for Masters programmes in our School.

Summary of modules taken in Part 1:

All students undertake 6 modules of 20 credits each which are described below.

Conservation Science considers questions such as ‘in a post-wild world what should be the focus of conservation attention?’ ‘What are the relative roles of ecology, economics and social science in conservation?’ ‘What are the advantage and disadvantages of the introduction of market-like mechanisms into conservation policy?’ We look closely at the current and emerging drivers of biodiversity loss world-wide, while carefully analysing the range of responses.

Insect Pollinators and Plants is at the interface between agriculture and conservation, this module introduces students to plant ecology and insect pollinators. Students will gain unique understanding of the ecological interactions between plants and insect pollinators including honey-bees to implement more sensitive conservation management. The module explores the current conservation status of insect pollinators and their corresponding plant groups; how populations are monitored, and how interventions in the broader landscape can contribute to improving their conservation status. Module components relate specifically to ecosystem pollination services, apiculture and habitat restoration and/or maintenance. The module has a strong practical skills focus, which includes beekeeping and contemporary challenges to apiculture; plant and insect sampling and habitat surveying. Consequently, there is a strong emphasis on “learning by doing.

Agriculture and the Environment reviews the impact of agricultural systems and practices on the environment and the scientific principles involved. It includes examples from a range of geographical areas. It is now recognised that many of the farming practices adopted in the 1980’s and early 1990’s, aimed at maximising production and profit, have had adverse effects on the environment. These include water and air pollution, soil degradation, loss of certain habitats and decreased biodiversity. In the UK and Europe this has led to the introduction of regulatory instruments and codes of practice aimed at minimising these problems and the promotion of new approaches to managing farmland. However, as world population continues to rise, there are increased concerns about food security, particularly in stressful environments such as arid zones where farmers have to cope with natural problems of low rainfall and poor soils. Although new technologies including the use of GM crops have potential to resolve some of these issues, concerns have been expressed about the impact of the release of these new genetically-engineered crops into the environment.

Management Planning for Conservation provides students with an understanding of the Conservation Management System approach to management planning. This involves describing a major habitat feature at a high level of definition; the preparation of a conservation objective (with performance indicators) for the habitat; identification and consideration of the implications of all factors and thus the main management activities; preparation of a conceptual model of the planning process for a case study site and creating maps using spatial data within a desktop GIS.

Research Methods Module: this prepares students for the dissertation stage of their MSc course. The module provides students with an introduction to principles of hypothesis generation, sampling, study design, spatial methods, social research methods, quantitative & qualitative analysis and presentation of research findings. Practicals and field visits illustrate examples of these principles. Course assessment is aligned to the research process from the proposal stage, through study write up to presentation of results. The module is in two phases. The taught content phase is until the period following Christmas. This is followed by a project planning phase for dissertation title choice and plan preparation.

Field Visit Module: this is an annual programme of scientific visits related to Conservation and Land Management. The main purpose of the trip will be to appreciate the range of activities different conservation organisations are undertaking, to understand their different management objectives and constraints. Previous field trips have visited farms, forests and reserves run by Scottish Wildlife Trust, National Trust, RSPB, local authorities, community groups and private individuals.

Read less
This Masters programme in Ecology and Environmental Biology is mainly intended to provide training for students who hope to enter a PhD programme in the areas of ecology and environmental biology, and who wish training in transferable skills and in ecological and environmental disciplines. Read more
This Masters programme in Ecology and Environmental Biology is mainly intended to provide training for students who hope to enter a PhD programme in the areas of ecology and environmental biology, and who wish training in transferable skills and in ecological and environmental disciplines.

Why this programme

-This Ecology and Evnvironmental Biology degree programme draws on the research expertise of a large number of University staff and allows you the chance to obtain experience in a wide range of modern research techniques.
-There is considerable expertise in this area of biology available at Glasgow, especially in ornithology, fish biology, aquatic ecosystems, and theoretical, physiological, molecular and evolutionary ecology.
-Excellent research and teaching facilities are available at the Scottish Centre for Ecology and the Natural Environment (SCENE) and Cochno Farm and Research Centre
-You will be encouraged to tailor the MSc Ecology and Environmental Biology programme to your own specific requirements and interests, within the limitations of the courses and projects offered.

Programme structure

The programme consists of a taught component, and two research projects in individual laboratories and/or field based.

The taught component consists of core research skills and specialist option in analytical and sampling techniques.

The main part of the degree, however, is devoted to experience of research techniques. You will carry out two 20-week research projects with individual placements chosen to reflect your interests and the skills you wish to acquire. After each project, you will write a scientific report.

Core and optional courses

Core Courses
-Key Research Skills
-Research Project (x 2)

Optional Courses
-Programming in R (prerequisite for all modelling and epidemiology)
-Infectious Disease Ecology & the Dynamics of Emerging Disease
-Single-species Models
-Conservation Genetics & Phylodynamics
-Freshwater Sampling Techniques
-Invertebrate Identification
-Molecular Analyses for DNA Barcoding and Biodiversity Measurement
-Phyloinformatics
-Vertebrate Identification

Career prospects

The programme will provide an excellent training for those who want to undertake a PhD programme and enter ecological management or conservation businesses. It should also serve as an excellent introduction to research in the UK for overseas students intending to proceed to a PhD in this country.

Some of the Institutions/Organisations our M.Res students went on to:
-Bremen Institute for Tropical Marine Ecology (ZMT)
-Clyde River Foundation
-Dakshin Foundation, India
-Victoria University, Wellington (New Zealand)
-University of Glasgow
-Warwick University

Some of the more exotic locations for MRes projects in recent years have included southern Brazil, Trinidad, Tobago, Kuwait, Egypt, Svalbard (Norway), Canada, the Azores (Portugal), Oman, Cayman Islands, and The Philippines.

Read less

Show 10 15 30 per page



Cookie Policy    X