• Cardiff University Featured Masters Courses
  • University of Northampton Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Birmingham City University Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • Northumbria University Featured Masters Courses
King’s College London Featured Masters Courses
EURECOM Featured Masters Courses
Birmingham City University Featured Masters Courses
Cranfield University Featured Masters Courses
University of Birmingham Featured Masters Courses
"rotating" AND "machinery…×
0 miles

Masters Degrees (Rotating Machinery)

We have 7 Masters Degrees (Rotating Machinery)

  • "rotating" AND "machinery" ×
  • clear all
Showing 1 to 7 of 7
Order by 
Rotating machinery is employed today in a wide variety of industrial applications including oil, power, and process industries. With the continuing expansion of the applications of rotating machinery, qualified personnel are required by the increasingly large numbers of users. Read more

Rotating machinery is employed today in a wide variety of industrial applications including oil, power, and process industries. With the continuing expansion of the applications of rotating machinery, qualified personnel are required by the increasingly large numbers of users.

Rotating Machinery, Engineering and Management is a specialist option of the MSc in Thermal Power providing a comprehensive background in the design and operation of different types of rotating equipment for power, oil, gas, marine and other surface applications.

Who is it for?

Designed for those seeking a career in the design, development, operation and maintenance of power systems. Graduates are provided with the skills that allow them to deliver immediate benefits in a very demanding and rewarding workplace and therefore are in great demand. This course is suitable for graduates seeking a challenging and rewarding career in an international growth industry.

Why this course?

The MSc option in Rotating Machinery, Engineering and Management is structured to enable you to pursue your own specific interests and career aspirations. You may choose from a wide range of optional modules and select an appropriate research project. An intensive two-week industrial management course is offered which assists in achieving exemptions from some engineering council requirements. You will receive a thorough grounding in the operation of different types of rotating machinery for aeronautical, marine and industrial applications.

We have been at the forefront of postgraduate education in thermal power and gas turbine technology at Cranfield since 1946. We have a global reputation for our advanced postgraduate education, extensive research and applied continuing professional development.

This MSc programme benefits from a wide range of cultural backgrounds which significantly enhances the learning experience for both staff and students.

Informed by Industry

Our industry partners help support our students in a number of ways - through guest lectures, awarding student prizes, recruiting course graduates and ensuring course content remains relevant to leading employers.

The Industrial Advisory Panel meets annually to maintain course relevancy and ensure that graduates are equipped with the skills and knowledge required by leading employers. Knowledge gained from our extensive research and consultancy activity is also constantly fed back into the MSc programme. The Thermal Power MSc Industrial Advisory Panel is comprised of senior engineers from companies such as:

  • Alstrom
  • Canadian Forces
  • EASA
  • EasyJet
  • E-ON
  • RMC
  • Rolls-Royce
  • Royal Air Force (RAF).

Accreditation

Re-accreditation for the MSc in Thermal Power is currently being sought with the Institution of Mechanical Engineers (IMechE), and the Royal Aeronautical Society (RAeS) on behalf of the Engineering Council as meeting the requirements for Further Learning for registration as a Chartered Engineer. Candidates must hold a CEng accredited BEng/BSc (Hons) undergraduate first degree to comply with full CEng registration requirements.

Course details

The course consists of approximately eight to twelve taught modules and an individual research project. The taught programme consists of eight compulsory modules and up to four optional modules. The modules are generally delivered from October to April.

Individual project

You are required to submit a written thesis describing an individual research project carried out during the course. Many individual research projects have been carried out with industrial sponsorship, and have often resulted in publication in international journals and symposium papers. This thesis is examined orally in September in the presence of an external examiner. 

Previous Individual Research Projects have included:

  • Performance and economic study on the viability of combined cycle floating power barge
  • Risk-based maintenance for azep
  • Implementation of the nutating disk engine in high bypass turbofan
  • Load minimisation of tidal turbines
  • Gas turbine airfleet maintenance case study
  • Airfleet maintenance study
  • Advanced bottoming cycle technology
  • Cavitation simulation in centrifugal pump.

Assessment

Taught modules 50%, Individual research project 50%

Your career

Over 90% of the graduates of the course have found employment within the first year of course completion. Many of our graduates are employed in the following industries:

  • Gas turbine engine manufacturers
  • Airframe manufacturers
  • Airline operators
  • Regulatory bodies
  • Aerospace/Energy consultancies
  • Power production industries
  • Academia: doctoral studies.


Read less
Gain fundamental and applied knowledge applicable to the understanding of the design and operation of different types of gas turbines for all applications. Read more

Gain fundamental and applied knowledge applicable to the understanding of the design and operation of different types of gas turbines for all applications. Pursue your own specific interests and career aspirations through a wide range of modules through four specialist options:

Who is it for?

This course aims to provide both fundamental and applied knowledge applicable to the understanding of the design and operation of different types of gas turbines for all applications. Suitable for graduates seeking a challenging and rewarding career in an established international industry.

Why this course?

The MSc course in Thermal Power is structured to enable you to pursue your own specific interests and career aspirations. You may choose from a wide range of modules and select an appropriate research project. An intensive industrial management course is offered which assists in achieving exemptions from some engineering council requirements.

The course is embedded in a large power and propulsion activity that is recognised internationally for its enviable portfolio of research, short courses and postgraduate programmes.

We have been at the forefront of postgraduate education in aerospace propulsion at Cranfield since 1946. We have a global reputation for our advanced postgraduate education, extensive research and applied continuing professional development. Our graduates secure relevant employment within six months of graduation, and you can be sure that your qualification will be valued and respected by employers around the world.

This MSc programme benefits from a wide range of cultural backgrounds which significantly enhances the learning experience for both staff and students.

Informed by Industry

Our industry partners help support our students in a number of ways - through guest lectures, awarding student prizes, recruiting course graduates and ensuring course content remains relevant to leading employers.

The Industrial Advisory Panel meets annually to maintain course relevancy and ensure that graduates are equipped with the skills and knowledge required by leading employers. Knowledge gained from our extensive research and consultancy activity is also constantly fed back into the MSc programme. The Thermal Power MSc Industrial Advisory Panel is comprised of senior engineers from companies such as:

  • Alstom
  • Canadian Forces
  • EASA
  • EasyJet
  • E-ON
  • RMC
  • Rolls-Royce
  • Royal Air Force (RAF)

Accreditation

Re-accreditation for the MSc in Thermal Power is currently being sought with the Institution of Mechanical Engineers (IMechE), and the Royal Aeronautical Society (RAeS) on behalf of the Engineering Council as meeting the requirements for Further Learning for registration as a Chartered Engineer. Candidates must hold a CEng accredited BEng/BSc (Hons) undergraduate first degree to comply with full CEng registration requirements.

Course details

The course is comprised of taught modules, depending on the course option chosen. Modules for each option vary; please see individual descriptions for compulsory modules which must be undertaken. There is also an opportunity to choose from an extensive choice of optional modules to match specific interests.

Individual project

You are required to submit a written thesis describing an individual research project carried out during the course. Many individual research projects have been carried out with industrial sponsorship, and have often resulted in publication in international journals and symposium papers. This thesis is examined orally in the presence of an external examiner.

Previous Individual projects have included:

  • Techno-economic, Environmental and Risk Assessment Studies
  • Centrifugal Compressors Simulations and Diagnostics for oil and gas applications
  • Advanced Power Generation Systems with Low Carbon Emissions
  • Design of Turbines for use in Oscillating Water Columns
  • Design of a 1MW Industrial Gas Turbine
  • Gas Path Analysis for Engine Diagnostics
  • Procurement Criteria for Civil Aero-Engines
  • Selection of Combined Heat and Power Plants
  • Condition Monitoring Systems Instrumentation
  • Repowering Steam Turbine Plants
  • Combined Cycle Plant Technical and Economic Evaluation.

Assessment

Taught modules 50%, Individual research project 50%

Your career

Over 90% of the graduates of the course have found employment within the first year of course completion. Many of our graduates are employed in the following industries:

  • Gas turbine engine manufacturers
  • Airframe manufacturers
  • Airline operators
  • Regulatory bodies
  • Aerospace, and energy consultancies
  • Power production industries
  • Academia: doctoral studies.


Read less
This course covers all aspects of the gas turbine and other industrial prime movers. It aims to provide you with a thorough knowledge of, and the ability to, assess anthropogenic emissions. . Read more

This course covers all aspects of the gas turbine and other industrial prime movers. It aims to provide you with a thorough knowledge of, and the ability to, assess anthropogenic emissions. 

Power, Propulsion and the Environment is a specialist option of the MSc in Thermal Power.

Who is it for?

This course is suitable for graduates seeking a challenging and rewarding career in an growing international industry. Graduates are provided with the skills that allow them to deliver immediate benefits in a very demanding and rewarding workplace and therefore are in great demand.

Why this course?

The MSc option in Power, Propulsion and the Environment is structured to enable you to pursue your own specific interests and career aspirations. You may choose from a wide range of modules and select an appropriate research project. An intensive industrial management course is offered which assists in achieving exemptions from some engineering council requirements. You will receive a thorough grounding in the operation of different types of rotating machinery for aeronautical, marine and industrial applications plus environmental management.

We have been at the forefront of postgraduate education in thermal power and gas turbine technology at Cranfield since 1946. We have a global reputation for our advanced postgraduate education, extensive research and applied continuing professional development. 

This MSc programme benefits from a wide range of cultural backgrounds which significantly enhances the learning experience for both staff and students.

Informed by Industry

Our industry partners help support our students in a number of ways - through guest lectures, awarding student prizes, recruiting course graduates and ensuring course content remains relevant to leading employers.

The Industrial Advisory Panel meets annually to maintain course relevancy and ensure that graduates are equipped with the skills and knowledge required by leading employers. Knowledge gained from our extensive research and consultancy activity is also constantly fed back into the MSc programme. The Thermal Power MSc Industrial Advisory Panel is comprised of senior engineers from companies such as:

  • Alstom
  • Canadian Forces
  • EASA
  • EasyJet
  • E-ON
  • RMC
  • Rolls-Royce
  • Royal Air Force (RAF).

Accreditation

Re-accreditation for the MSc in Thermal Power is currently being sought with the Institution of Mechanical Engineers (IMechE), and the Royal Aeronautical Society (RAeS) on behalf of the Engineering Council as meeting the requirements for Further Learning for registration as a Chartered Engineer. Candidates must hold a CEng accredited BEng/BSc (Hons) undergraduate first degree to comply with full CEng registration requirements.

Course details

The course is comprised of up to 12 taught modules, depending on the course option chosen. Modules for each option vary; please see individual descriptions for compulsory modules which must be undertaken. There is also an opportunity to choose from an extensive choice of optional modules to match specific interests.

Individual project

You are required to submit a written thesis describing an individual research project carried out during the course. Many individual research projects have been carried out with industrial sponsorship, and have often resulted in publication in international journals and symposium papers. This thesis is examined orally in September in the presence of an external examiner.

Previous Individual Research Projects have included:

  • Benchmark of methods to measure the density of atmospheric ice
  • Green runway: investigation of emissions and noise for large aircraft operation within an airport
  • Techno economic environmental risk assessment on marine propulsion.

Assessment

Taught modules 50%, Individual research project 50%

Your career

Over 90% of the graduates of the course have found employment within the first year of course completion. Many of our graduates are employed in the following industries:

  • Gas turbine engine manufacturers
  • Airframe manufacturers
  • Airline operators
  • Regulatory bodies
  • Aerospace/Energy consultancies
  • Power production industries
  • Academia: doctoral studies.


Read less
IN THIS INTENSIVE, PART-TIME, 18-MONTH ONLINE PROGRAM YOU WILL GAIN. - Skills and know-how in the latest technologies in electrical engineering. Read more

IN THIS INTENSIVE, PART-TIME, 18-MONTH ONLINE PROGRAM YOU WILL GAIN:

- Skills and know-how in the latest technologies in electrical engineering

- Practical guidance from electrical engineering experts in the field

- Knowledge from the extensive experience of the lecturers, rather than from only the theoretical information gained from books and college

- Credibility as the local electrical engineering expert in your firm

- Networking contacts in the industry

- Improved career prospects and income

- An Advanced Diploma of Applied Electrical Engineering (Electrical Systems)

Next intake starts July 02, 2018, with the following intake starting October 02, 2018. Registrations are now open.

Payment is not required until 2 to 4 weeks before the start of the program.

The EIT Advanced Diploma of Applied Electrical Engineering (Electrical Systems) is recognized worldwide and has been endorsed by the International Society of Automation (ISA). Please ask us about specific information on accreditation for your location.

OVERVIEW

Join the next generation of electrical engineers and technicians and embrace a well paid, intensive yet enjoyable career by embarking on this comprehensive course on electrical engineering. It is presented in a practical and useful manner - all theory covered is tied to a practical outcome. Leading electrical engineers who are highly experienced engineers from industry, having 'worked in the trenches' in the various electrical engineering areas present the course over the web in a distance learning format using our acclaimed live e-learning techniques.

The course starts with an overview of the basic principles of electrical engineering and then goes on to discuss the essential topics in depth. With a total of 16 modules, everything that is of practical value from electrical distribution concepts to the equipment used, safety at work to power quality are all looked at in detail. Each module contains practical content so that the students can practice what they learn including the basic elements of designing a system and troubleshooting.

Most academic courses deal with engineering theory in detail but fall short when it comes to giving practical hints on what a technician is expected to know for a job in the field. In this course, the practical aspects receive emphasis so that when you go out into the field you will have the feeling that ‘you have seen it all.

*JOB OUTCOMES, INTERNATIONAL RECOGNITION AND PROFESSIONAL MEMBERSHIP:

A range of global opportunities awaits graduates of the Advanced Diploma of Applied Electrical Engineering (Electrical Systems). Pending full accreditation you may become a full member of Engineers Australia and your qualification will be recognized by Engineers Australia and (through the Dublin Accord) by leading professional associations and societies in Australia, Canada, Ireland, Korea, New Zealand, South Africa, United Kingdom and the United States. The Dublin Accord is an agreement for the international recognition of Engineering Technician qualifications.

For example, current enrolled students can apply for free student membership of Engineers Australia. After graduation, you can apply for membership to become an Engineering Associate, while graduates interested in UK recognition can apply for membership of the Institution of Engineering and Technology (IET) as a Technician Member of the Institution of Engineering and Technology.

This professional recognition greatly improves the global mobility of graduates, and offers you the opportunity of a truly international career.

You will be qualified to find employment as an Engineering Associate in public and private industry including transportation, manufacturing, process, construction, resource, energy and utilities industries. Engineering Associates often work in support of professional engineers or engineering technologists in a team environment. If you prefer to work in the field you may choose to find employment as a site supervisor, senior technician, engineering assistant, or similar.

WHO SHOULD COMPLETE THIS PROGRAM?

- Electrical Engineers and Technicians

- Project Engineers

- Design Engineers

- Instrumentation and Design Engineers

- Electrical Technicians

- Field Technicians

- Electricians

- Plant Operators

- Maintenance Engineers and Supervisors

- Energy Management Consultants

- Automation and Process Engineers

- Design Engineers

- Project Managers

- Instrument Fitters and Instrumentation Engineers

- Consulting Engineers

- Production Managers

- Chemical and Mechanical Engineers

- Instrument and Process Control Technicians

In fact, anyone who wants to gain solid knowledge of the key elements of electrical engineering – to improve work skills and to create further job prospects. Even those of you who are highly experienced in electrical engineering may find it useful to attend some of the topics to gain key, up to date perspectives on electrical engineering.

PROGRAM STRUCTURE

The course is composed of 16 modules. These cover the following seven main threads to provide you with maximum practical coverage in the field of electrical engineering

- Electrical technology fundamentals

- Distribution equipment and protection

- Rotating machinery and transformers

- Power electronics

- Energy efficiency

- Earthing and safety regulations

- Operation and maintenance of electrical equipment

The 16 modules will be completed in the following order:

- Electrical Circuits

- Basic Electrical Engineering

- Fundamentals of Professional Engineering

- Electrical Drawings

- Electrical Power Distribution

- Transformers, Circuit Breakers and Switchgear

- Electrical Machines

- Power Cables and Accessories

- Earthing and Lightning / Surge Protection

- Power System Protection

- Electrical Safety and Wiring Regulations

- Testing, Troubleshooting and Maintenance of Electrical Equipment

- Energy Efficiency and Energy Use

- Power Quality

- Power Electronics and Variable Speed Drives

- DC and AC High Reliability Power Supplies

COURSE FEES

What are the fees for my country?

The Engineering Institute of Technology (EIT) provides distance education to students located all around the world – it is one of the very few truly global training institutes. Course fees are paid in a currency that is determined by the student’s location. We aim to give you a rapid response regarding course fees that are relevant to your individual circumstances.

We understand that cost is a major consideration before a student begins to study. For a rapid reply to your query regarding course fees and payment options, please contact a Course Advisor in your region via the below button and we will respond within two (2) business days.



Read less
WHAT YOU WILL GAIN. - Skills and know-how in the latest technologies in mechanical engineering. - Hard hitting know-how in pumps, compressors, piping, seals and machinery safety. Read more

WHAT YOU WILL GAIN:

- Skills and know-how in the latest technologies in mechanical engineering

- Hard hitting know-how in pumps, compressors, piping, seals and machinery safety

- Guidance from experts in the field of mechanical engineering technology

- Networking contacts in the industry

- Improved career prospects and income

- A world recognized EIT Advanced Diploma in Mechanical Engineering Technology

Next intake is scheduled for October 02, 2018. Applications now open; places are limited.

There are limited places in all of our courses to ensure great interaction can be achieved between the presenters and the students.

Contact us now to receive help from experienced Course Advisors!

INTRODUCTION

Whilst there is probably not a serious shortage of theoretically oriented practitioners in mechanical engineering, there is a shortage of highly skilled practically oriented mechanical technologists and engineers in the world today, due to the new technologies only recently becoming a key component of all modern plants, factories and offices. The critical shortage of experts in the area has been accentuated by retirement, restructuring and rapid growth in new industries and technologies. This is regardless of the recession in many countries.

Many businesses throughout the world comment on the difficulty in finding experienced mechanical engineers and technologists despite paying outstanding salaries. For example, about two years ago a need developed for mechanical technologists and engineers in building process plants. The interface from the traditional SCADA and industrial automation system to the web and to mechanical equipment has also created a new need for expertise in these areas. Specialists in these areas are few and far between.

The aim of this 18 month e-learning program is to provide you with core skills in working with mechanical engineering technology and systems and to take advantage of the growing need by industry here.

The five threads running through this program are:

- Fundamentals of Mechanical Engineering Technologies

- Applications of Mechanical Engineering Technologies

- Energy Systems

- Industrial Automation

- Management

WHO SHOULD ATTEND

- Plant operations and maintenance personnel

- Design engineers

- Process technicians, technologists and engineers

- Process control engineers and supervisors

- Mechanical technicians, technologists and engineers

- Mechanical equipment sales engineers

- Pump and mechanical equipment operators

- Contract and asset managers

COURSE STRUCTURE

The course is composed of 21 modules, which cover 5 main threads, to provide you with maximum practical coverage in the field of Mechanical Engineering Technology:

FUNDAMENTALS OF MECHANICAL ENGINEERING

Fundamentals of Mechanical Engineering

Structural Mechanics

Mechanical Drive Systems

A C Electrical Motors and Drives

Rotating Equipment Balancing, Alignment and Condition Monitoring

Hydraulics

Pneumatics

Lubrication Engineering

APPLICATIONS OF MECHANICAL ENGINEERING TECHNOLOGY

Heating, Ventilation and Air-conditioning

Process Plant Layout and Piping Design

Pipeline Systems

Pumps and Compressors

Mechanical Seals

Safe Lifting

Machinery Safety

ENERGY SYSTEMS

Energy Efficiency

Renewable Energy Systems

INDUSTRIAL AUTOMATION

Industrial Automation

Measurement and Control Systems

Management of Hazardous Areas

MANAGEMENT

Project Management

COURSE FEES

What are the fees for my country?

The Engineering Institute of Technology (EIT) provides distance education to students located almost anywhere in the world – it is one of the very few truly global training institutes. Course fees are paid in a currency that is determined by the student’s location. A full list of fees in a currency appropriate for every country would be complex to navigate and, with today’s exchange rate fluctuations, difficult to maintain. Instead we aim to give you a rapid response regarding fees that is customised to your individual circumstances.

We understand that cost is a major consideration before a student commences study. For a rapid reply to your enquiry regarding courses fees and payment options, please enquire via the below button and we will respond within 2 business days.



Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Mechanical Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Mechanical Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

Mechanical Engineering at Swansea maintains a high standard of teaching and research, set in a relaxed and sociable atmosphere. As a student on the Master's course in Mechanical Engineering, you will be provided with a high quality overview of the techniques of modern mechanical engineering, presenting examples of use from a wide range of disciplines and industries.

Key Features of MSc in Mechanical Engineering

The MSc Mechanical Engineering course is stimulating and our graduates are rewarded with excellent job prospects. It will equip you with the ability to make informed judgements on the most appropriate approach to a range of mechanical engineering problems.

The MSc Mechanical Engineering course covers the development of mechanical engineering tools, methods and techniques for problem solving, the ability to formulate an adequate representation of sets of experimental data, the use of these tools and techniques for real world applications, the ability to formulate an accurate representation of sets of experimental data, and business and management methods and their application in the field of engineering.

The research project undertaken as part of the MSc Mechanical Engineering course is industrially relevant and the topics of the course are of high industrial relevance.

Mechanical Engineering at Swansea University is recognised as one of the top 200 departments in the world (QS World Subject Rankings).

MSc programmes are modular in structure. Students must obtain a total of 180 credits to qualify for the degree. This is made up of 120 credits in the taught element (Part One) and a project (Part Two) that is worth 60 credits and culminates in a written dissertation. Students must successfully complete Part One before being allowed to progress to Part Two.

Modules

Modules on the MSc Mechanical Engineering course can vary each year but you could expect to study:

Strategic Project Planning

Additive Manufacturing

Entrepreneurship for Engineers

Optimisation

Composite Materials

Simulation Based Product Design

Advanced Thermo Fluid Mechanics

Advanced Solid Mechanics

Environmental Analysis and Legislation

Polymer Processing

Systems Monitoring, Control, Reliability, Survivability, Integrity and Maintenance

Process Metallurgy and Optimisation

Power Generation Systems

Accreditation

The MSc Mechanical Engineering course is accredited by the Institution of Mechanical Engineers (IMechE).

The MSc Mechanical Engineering degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

Accreditation is a mark of assurance that the degree meets the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC). An accredited degree will provide you with some or all of the underpinning knowledge, understanding and skills for eventual registration as an Incorporated (IEng) or Chartered Engineer (CEng). Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.

Facilities

Our new home at the innovative Bay Campus provides some of the best university facilities in the UK, in an outstanding location.

Mechanical Engineering at Swansea University has extensive laboratory and computing facilities for both teaching and research purposes.

In the mechanical laboratories are two large rotating rigs. One is used to study the dynamics of high speed machinery whilst the other is devoted to the analysis of heat transfer in turbine blade.

Careers

The modules on the MSc Mechanical Engineering course are of high industrial relevance and the benefits to employability are immediate in a wide range of industries.

Links with Industry

Members of staff work closely with a range of industries through knowledge transfer projects, consultancy and strategic research, which informs the practical problems used in our teaching.

Within Wales we have close interaction with large companies such as Tata Steel and Ford, as well as small and medium-sized enterprises (SMEs). Across the UK there is or has been recent work with companies such as Astra-Zeneca, British Aerospace, Qinetiq, GKN and Rolls-Royce whilst further afield there is close working with companies such as SKF (Netherlands), Freeport (USA), One Steel (Australia), Barrick Gold (USA) to name a few.

Careers

The modules on the MSc Mechanical Engineering course are of high industrial relevance and the benefits to employability are immediate in a wide range of industries.

Research

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.

The REF assesses the quality of research in the UK Higher Education sector, assuring us of the standards we strive for.

The REF shows that 94% of research produced by our academic staff is of World-Leading (4*) or Internationally Excellent (3*) quality. This has increased from 73% in the 2008 RAE.

Research pioneered at the College of Engineering harnesses the expertise of academic staff within the department. This ground-breaking multidisciplinary research informs our world-class teaching with several of our staff leaders in their fields.

Student Quotes

“Every single day at the College of Engineering has been a learning process for me. The MSc in Mechanical Engineering involves leading world class professors, tutors and academics with whom we were lucky to be associated with. There is also a great peer group too.

I would like to pursue a PhD from Swansea University and become an entrepreneur. The College of Engineering has helped immensely with these ambitions.”

Arnab Dasgupta, MSc Mechanical Engineering



Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Mechanical Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Mechanical Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

With our close interaction with large companies such as Tata Steel and Ford, as well as small and medium-sized enterprises, Swansea University provides an excellent base for your research as a MSc by Research student in Mechanical Engineering.

Key Features of MSc by Research in Mechanical Engineering

Across the UK and overseas in Mechanical Engineering, there is or has been recent work at Swansea University with companies such as:

Astra-Zeneca

British Aerospace

Qinetiq

GKN

Rolls-Royce

SKF

Freeport

One Steel

Barrick Gold

Research within Engineering at Swansea University is multidisciplinary in nature, incorporating our strengths in research areas across the Engineering disciplines including Mechanical Engineering.

Computational mechanics forms the basis for the majority of the MSc by Research projects within the Mechanical Engineering discipline.

Mechanical Engineering at Swansea University is recognised as one of the top 200 departments in the world (QS World Subject Rankings).

MSc by Research in Mechanical Engineering typically lasts one year full-time, two to three years part-time. This is an individual research project written up in a thesis of 30,000 words.

Facilities

Our new home at the innovative Bay Campus provides some of the best university facilities in the UK, in an outstanding location.

Mechanical Engineering at Swansea University has extensive laboratory and computing facilities for both teaching and research purposes.

In the mechanical laboratories are two large rotating rigs. One is used to study the dynamics of high speed machinery whilst the other is devoted to the analysis of heat transfer in turbine blade.

Hardware includes a 450 cpu Cluster, high-end graphics workstations and high-speed network links. Extensive software packages include both in-house developed and 'off-the-shelf' commercial.

Links with industry

Mechanical Engineering at Swansea University has a close interaction with large companies such as Tata Steel and Ford, as well as small and medium-sized enterprises. Across the UK and overseas, there is or has been recent work with companies such as:

Astra-Zeneca

British Aerospace

Qinetiq

GKN

Rolls-Royce

SKF

Freeport

One Steel

Barrick Gold

Research

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.

World-leading research

The REF shows that 94% of research produced by our academic staff is of World-Leading (4*) or Internationally Excellent (3*) quality. This has increased from 73% in the 2008 RAE.

Research pioneered at the College of Engineering harnesses the expertise of academic staff within the department. This ground-breaking multidisciplinary research informs our world-class teaching with several of our staff leaders in their fields.

Highlights of the Engineering results according to the General Engineering Unit of Assessment:

Research Environment at Swansea ranked 2nd in the UK

Research Impact ranked 10th in the UK

Research Power (3*/4* Equivalent staff) ranked 10th in the UK



Read less

  • 1
Show 10 15 30 per page



Cookie Policy    X