• University of Edinburgh Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • University of Leeds Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Bristol Featured Masters Courses

Postgrad LIVE! Study Fair

Birmingham | Bristol | Sheffield | Liverpool | Edinburgh

University of London International Programmes Featured Masters Courses
University of Cambridge Featured Masters Courses
King’s College London Featured Masters Courses
University of Cambridge Featured Masters Courses
University of London International Programmes Featured Masters Courses
"rotating"×
0 miles

Masters Degrees (Rotating)

We have 17 Masters Degrees (Rotating)

  • "rotating" ×
  • clear all
Showing 1 to 15 of 17
Order by 
Rotating Machinery, Engineering and Management provides a comprehensive background in the design and operation of different types of rotating equipment for power, oil, gas, marine and other surface applications. Read more

Course Description

Rotating Machinery, Engineering and Management provides a comprehensive background in the design and operation of different types of rotating equipment for power, oil, gas, marine and other surface applications. The course is designed for those seeking a career in the design, development, operation and maintenance of power systems. Graduates are provided with the skills that allow them to deliver immediate benefits in a very demanding and rewarding workplace and therefore are in great demand. This course is suitable for graduates seeking a challenging and rewarding career in an international growth industry.

Overview

Rotating machinery is employed today in a wide variety of industrial applications including oil, power, and process industries. With the continuing expansion of the applications of rotating machinery, qualified personnel are required by the increasingly large numbers of users.

English Language Requirements

If you are an international student you will need to provide evidence that you have achieved a satisfactory test result in an English qualification. The minimum standard expected from a number of accepted courses are as follows:

IELTS - 6.5
TOEFL - 92
Pearson PTE Academic - 65
Cambridge English Scale - 180
Cambridge English: Advanced - C
Cambridge English: Proficiency - C

In addition to these minimum scores you are also expected to achieve a balanced score across all elements of the test. We reserve the right to reject any test score if any one element of the test score is too low.

We can only accept tests taken within two years of your registration date (with the exception of Cambridge English tests which have no expiry date).

Structure

The course consists of approximately eight to twelve taught modules and an individual research project.

In addition to management, communication, team work and research skills, each student will attain at least the following outcomes from this degree course:
- Provide the skills required for a rewarding career in the field of propulsion and power.
- Meet employer requirements for graduates within power and propulsion industries.
- Demonstrate a working knowledge and critical awareness of gas turbine performance, analysis techniques, component design and associated technologies.
- Explain, differentiate and critically discuss the underpinning concepts and theories for a wide range of areas of gas turbine engineering and associated applications.
- Be able to discern, select and apply appropriate analysis techniques in the assessment of particular aspects of gas turbine engineering.

Modules

The taught programme for the Rotating Machinery, Engineering and Management masters consists of eight compulsory modules and up to four optional modules. The modules are generally delivered from October to April.

Core:
- Blade Cooling
- Combustors
- Engine Systems
- Gas Turbine Theory and Performance
- Management for Technology: Energy
- Mechanical Design of Turbomachinery
- Turbomachinery
- Gas Turbine Operations and Rotating Machines

Optional:
- Computational Fluid Dynamics
- Fatigue and Fracture
- Gas Turbine Simulation and Diagnostics

Individual Project

You are required to submit a written thesis describing an individual research project carried out during the course. Many individual research projects have been carried out with industrial sponsorship, and have often resulted in publication in international journals and symposium papers. This thesis is examined orally in September in the presence of an external examiner.

Recent Individual Research Projects include:
- Performance and economic study on the viability of combined cycle floating power barge
- Risk-based maintenance for azep
- Implementation of the nutating disk engine in high bypass turbofan
- Load minimization of tidal turbines
- Gas turbine airfleet maintenance case study
- Airfleet maintenance study
- Advanced bottoming cycle technology
- Cavitation simulation in centrifugal pump.

Assessment

The final assessment is based on two components of equal weight; the taught modules (50%) and the individual research project (50%). Assessment is by examinations, assignments, presentations and thesis.

Career opportunities

- Gas turbine engine manufacturers
- Airframe manufacturers
- Airline operators
- Regulatory bodies
- Aerospace/Energy consultancies
- Power production industries
- Academia: doctoral studies.

For further information

On this course, please visit our course webpage http://www.cranfield.ac.uk/Courses/Masters/Rotating-Machinery-Engineering-and-Management-Option

Read less
Gas Turbine Technology provides a comprehensive background in the design and operation of different types of gas turbines for all applications. Read more

Course Description

Gas Turbine Technology provides a comprehensive background in the design and operation of different types of gas turbines for all applications. This course is designed for those seeking a career in the design, development, operations and maintenance of power and propulsion systems. Graduates are provided with the skills that allow them to deliver immediate benefits in a very demanding and rewarding workplace and therefore are in great demand. The course is suitable for graduates seeking a challenging and rewarding career in an international growth industry.

The UK continues to lead the world in power and propulsion technology. In addition to its established aerospace role, the gas turbine is finding increasing application in power generation, oil and gas pumping, chemical processing and power plants for ships and other large vehicles.

Course overview

The course consists of approximately ten to fifteen taught modules and an individual research project.

In addition to management, communication, team work and research skills, each student will attain at least the following outcomes from this degree course:

- Provide the skills required for a rewarding career in the field of propulsion and power.
- Meet employer requirements for graduates within power and propulsion industries.
- Demonstrate a working knowledge and critical awareness of gas turbine performance, analysis techniques, component design and associated technologies.
- Explain, differentiate and critically discuss the underpinning concepts and theories for a wide range of areas of gas turbine engineering and associated applications.
- Be able to discern, select and apply appropriate analysis techniques in the assessment of particular aspects of gas turbine engineering.

Individual Project

You are required to submit a written thesis describing an individual research project carried out during the course. Many individual research projects have been carried out with industrial sponsorship, and have often resulted in publication in international journals and symposium papers. This thesis is examined orally in September in the presence of an external examiner.

Recent Individual Research Projects include:

- S-duct aerodynamic shape multi-objective optimisation
- Performance modelling of evaporative gas turbine cycles for marine applications
- Mechanical integrity/stress analysis of the high pressure compressor of a new engine
- High pressure turbine blade life analysis for a civilian derivative aircraft conducting military operations
- Engine performance degradation due to foulants in the environment
- Effects of manufacturing tolerances on gas turbine performance and components
- Development of a transient combustion model
- Numerical fan modelling and aerodynamic analysis of a high bp ratio turbofan engine
- Combustor modelling
- Impact of water ingestion on large jet engine performance and emissions
- Windmilling compressor and fan aerodynamics
- Neural networks based sensor fault diagnostics for industrial gas turbine engines
- Boundary layer ingestion for novel aircraft
- Multidisciplinary design optimisation for axial compressors
- Non-linear off design performance adaptation for a twin spool turbofan engine
- Engine degradation analysis and washing effect on performance using measured data.

Modules

The taught programme for the Gas Turbine Technology masters consists of seven compulsory modules and up to seven optional modules. The modules are generally delivered from October to April.

Core -

Blade Cooling
Combustors
Engine Systems
Gas Turbine Theory and Performance
Mechanical Design of Turbomachinery
Gas Turbine Simulation and Diagnostics
Turbomachinery

Optional -

Computational Fluid Dynamics
Fatigue and Fracture
Gas Turbine Applications
Jet Engine Control (only October intake)
Management for Technology
Propulsion Systems Performance and Integration
Rotating Equipment Selection

Assessment

The final assessment is based on two components of equal weight; the taught modules (50%) and the individual research project (50%). Assessment is by examinations, assignments, presentations and thesis.

Funding

A variety of funding, including industrial sponsorship, is available. Please contact us for details.

Cranfield Postgraduate Loan Scheme (CPLS) - https://www.cranfield.ac.uk/Study/Postgraduate-degrees/Fees-and-funding/Funding-opportunities/cpls/Cranfield-Postgraduate-Loan-Scheme

The Cranfield Postgraduate Loan Scheme (CPLS) is a funding programme providing affordable tuition fee and maintenance loans for full-time UK/EU students studying technology-based MSc courses.

Career opportunities

- Gas turbine engine manufacturers
- Airframe manufacturers
- Airline operators
- Regulatory bodies
- Aerospace/Energy consultancies
- Power production industries
- Academia: doctoral studies.

Further Information

For further information on this course, please visit our course webpage - http://www.cranfield.ac.uk/Courses/Masters/Gas-Turbine-Technology-option-Thermal-power

Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Mechanical Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Mechanical Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

Mechanical Engineering at Swansea maintains a high standard of teaching and research, set in a relaxed and sociable atmosphere. As a student on the Master's course in Mechanical Engineering, you will be provided with a high quality overview of the techniques of modern mechanical engineering, presenting examples of use from a wide range of disciplines and industries.

Key Features of MSc in Mechanical Engineering

The MSc Mechanical Engineering course is stimulating and our graduates are rewarded with excellent job prospects. It will equip you with the ability to make informed judgements on the most appropriate approach to a range of mechanical engineering problems.

The MSc Mechanical Engineering course covers the development of mechanical engineering tools, methods and techniques for problem solving, the ability to formulate an adequate representation of sets of experimental data, the use of these tools and techniques for real world applications, the ability to formulate an accurate representation of sets of experimental data, and business and management methods and their application in the field of engineering.

The research project undertaken as part of the MSc Mechanical Engineering course is industrially relevant and the topics of the course are of high industrial relevance.

Mechanical Engineering at Swansea University is recognised as one of the top 200 departments in the world (QS World Subject Rankings).

MSc programmes are modular in structure. Students must obtain a total of 180 credits to qualify for the degree. This is made up of 120 credits in the taught element (Part One) and a project (Part Two) that is worth 60 credits and culminates in a written dissertation. Students must successfully complete Part One before being allowed to progress to Part Two.

Modules

Modules on the MSc Mechanical Engineering course can vary each year but you could expect to study:

Strategic Project Planning

Additive Manufacturing

Entrepreneurship for Engineers

Optimisation

Composite Materials

Simulation Based Product Design

Advanced Thermo Fluid Mechanics

Advanced Solid Mechanics

Environmental Analysis and Legislation

Polymer Processing

Systems Monitoring, Control, Reliability, Survivability, Integrity and Maintenance

Process Metallurgy and Optimisation

Power Generation Systems

Accreditation

The MSc Mechanical Engineering course is accredited by the Institution of Mechanical Engineers (IMechE).

The MSc Mechanical Engineering degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

Accreditation is a mark of assurance that the degree meets the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC). An accredited degree will provide you with some or all of the underpinning knowledge, understanding and skills for eventual registration as an Incorporated (IEng) or Chartered Engineer (CEng). Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.

Facilities

Our new home at the innovative Bay Campus provides some of the best university facilities in the UK, in an outstanding location.

Mechanical Engineering at Swansea University has extensive laboratory and computing facilities for both teaching and research purposes.

In the mechanical laboratories are two large rotating rigs. One is used to study the dynamics of high speed machinery whilst the other is devoted to the analysis of heat transfer in turbine blade.

Careers

The modules on the MSc Mechanical Engineering course are of high industrial relevance and the benefits to employability are immediate in a wide range of industries.

Links with Industry

Members of staff work closely with a range of industries through knowledge transfer projects, consultancy and strategic research, which informs the practical problems used in our teaching.

Within Wales we have close interaction with large companies such as Tata Steel and Ford, as well as small and medium-sized enterprises (SMEs). Across the UK there is or has been recent work with companies such as Astra-Zeneca, British Aerospace, Qinetiq, GKN and Rolls-Royce whilst further afield there is close working with companies such as SKF (Netherlands), Freeport (USA), One Steel (Australia), Barrick Gold (USA) to name a few.

Careers

The modules on the MSc Mechanical Engineering course are of high industrial relevance and the benefits to employability are immediate in a wide range of industries.

Research

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.

The REF assesses the quality of research in the UK Higher Education sector, assuring us of the standards we strive for.

The REF shows that 94% of research produced by our academic staff is of World-Leading (4*) or Internationally Excellent (3*) quality. This has increased from 73% in the 2008 RAE.

Research pioneered at the College of Engineering harnesses the expertise of academic staff within the department. This ground-breaking multidisciplinary research informs our world-class teaching with several of our staff leaders in their fields.

Student Quotes

“Every single day at the College of Engineering has been a learning process for me. The MSc in Mechanical Engineering involves leading world class professors, tutors and academics with whom we were lucky to be associated with. There is also a great peer group too.

I would like to pursue a PhD from Swansea University and become an entrepreneur. The College of Engineering has helped immensely with these ambitions.”

Arnab Dasgupta, MSc Mechanical Engineering



Read less
The MSc in Power, Propulsion and the Environment course is an important element in the development of engineers with an environmental awareness. Read more

Course Description

The MSc in Power, Propulsion and the Environment course is an important element in the development of engineers with an environmental awareness. This course is suitable for talented graduates seeking a challenging and rewarding career in an international growth industry. The course is suitable for graduates seeking a challenging and rewarding career in an growing international industry. Graduates are provided with the skills that allow them to deliver immediate benefits in a very demanding and rewarding workplace and therefore are in great demand.

The gas turbine is employed today in a wide variety of industrial applications including oil, power, and process industries. The continuing expansion of the applications of rotating machinery implies that a multidisciplinary approach to their design and selection is required. This should take into account their techno-economic and environmental impact.

Course overview

The course consists of approximately ten to fifteen taught modules and an individual research project.

In addition to management, communication, team work and research skills, each student will attain at least the following outcomes from this degree course:

- Provide the skills required for a rewarding career in the field of propulsion and power.
- Meet employer requirements for graduates within power and propulsion industries.
- Demonstrate a working knowledge and critical awareness of gas turbine performance, analysis techniques, component design and associated technologies.
- Explain, differentiate and critically discuss the underpinning concepts and theories for a wide range of areas of gas turbine engineering and associated applications.
- Be able to discern, select and apply appropriate analysis techniques in the assessment of particular aspects of gas turbine engineering.

Individual Project

You are required to submit a written thesis describing an individual research project carried out during the course. Many individual research projects have been carried out with industrial sponsorship, and have often resulted in publication in international journals and symposium papers. This thesis is examined orally in September in the presence of an external examiner.

Recent Individual Research Projects include:

- Benchmark of methods to measure the density of atmospheric ice
- Green runway: investigation of emissions and noise for large aircraft operation within an airport.
- Techno economic environmental risk assessment on marine propulsion.

Assessment

The final assessment is based on two components of equal weight; the taught modules (50%) and the individual research project (50%). Assessment is by examinations, assignments, presentations and thesis.

Funding

A variety of funding, including industrial sponsorship, is available. Please contact us for details.

Cranfield Postgraduate Loan Scheme (CPLS) - https://www.cranfield.ac.uk/Study/Postgraduate-degrees/Fees-and-funding/Funding-opportunities/cpls/Cranfield-Postgraduate-Loan-Scheme

The Cranfield Postgraduate Loan Scheme (CPLS) is a funding programme providing affordable tuition fee and maintenance loans for full-time UK/EU students studying technology-based MSc courses

Career opportunities

- Gas turbine engine manufacturers
- Airframe manufacturers
- Airline operators
- Regulatory bodies
- Aerospace/Energy consultancies
- Power production industries
- Academia: doctoral studies.

Further Information

For further information on this course, please visit our course webpage - http://www.cranfield.ac.uk/Courses/Masters/Power-Propulsion-and-the-Environment-option

Read less
IN BRIEF. Emphasis on feedback control, robotics, flight control and discrete event manufacturing control. Real opportunities for career progression in to the automation industry. Read more

IN BRIEF:

  • Emphasis on feedback control, robotics, flight control and discrete event manufacturing control
  • Real opportunities for career progression in to the automation industry
  • Programme designed using Engineering Council benchmarks
  • Part-time study option
  • International students can apply

COURSE SUMMARY

The overall objective of this course is to add value to your first degree and previous relevant experience by developing a focused, integrated and critically aware understanding of underlying theory and current policy and practice in the field of control systems engineering.

The course is control systems focused, with the emphasis on control systems theory together with a range of control applications including industrial control (SCADA), intelligent control, flight control and robotic control. The control systems approach provides continuity in learning throughout the one year of study.

COURSE DETAILS

This course has been awarded accredited status by both the Royal Aeronautical Society (RAeS) and the Institution of Mechanical Engineers (IMechE) for 2010 to 2014 intake cohorts as meeting the exemplifying academic benchmark for registration as a Chartered Engineer (CEng) for students who also hold an accredited BEng Honours degree. Candidates who do not hold an appropriately accredited BEng Honours degree will gain partial exemption for CEng status; these candidates will need to have their first qualification individually assessed if they wish to progress onto CEng registration.

Professional registration and Institution membership will enhance your career in the following ways:

  • Access to continuous professional development
  • Careers advice and employment opportunities
  • Increased earning potential over the length of your career
  • International recognition of your qualifications, skills and experience
  • Evidence of your motivation, drive and commitment to the profession
  • Networking opportunities

On completion of the course you should have a critical awareness and understanding of current problems in control engineering, techniques applicable to research in the field of control systems and how established techniques of research and enquiry are used to create and interpret knowledge in the field of control systems. You should also be able to deal with complex issues both systematically and creatively, make sound judgments in the absence of complete data, and communicate your conclusions clearly to specialist and non-specialists.

TEACHING

Teaching will be delivered through a combination of lectures, tutorials, computer workshops and laboratory activities.

ASSESSMENT

  • 35% examinations
  • 65% coursework (labs, reports, dissertation)

FACILITIES

Mechanical Lab – This lab is used to understand material behaviour under different loading conditions and contains a tensile test machine and static loading experiments – typical laboratory sessions would include tensile testing of materials and investigation into the bending and buckling behaviour of beams.

Aerodynamics Lab – Contains low speed and supersonic wind tunnels – typical laboratory experiments would include determining the aerodynamic properties of an aerofoil section and influence of wing sweep on the lift and drag characteristics of a tapered wing section.

Composite Material Lab – This lab contains wet lay-up and pre-preg facilities for fabrication of composite material test sections. The facility is particularly utilised for final year project work.

Control & Dynamics Lab – Contains flight simulators (see details below) and programmable control experiments – typical laboratory sessions would include studying the effects of damping and short period oscillation analysis, forced vibration due to rotating imbalance, and understanding the design and performance of proportional and integral controllers.

Flight Simulators

Merlin MP520-T Engineering Simulator    

  • This simulator is used to support engineering design modules, such as those involving aerodynamics and control systems by giving a more practical experience of aircraft design than a traditional theory and laboratory approach. As a student, you'll design and input your own aircraft parameters into the simulator before then assessing the flight characteristics.
  • The simulator is a fully-enclosed single seat capsule mounted on a moving 2-degree of freedom platform which incorporates cockpit controls, integrated main head-up display and two secondary instrumentation display panels.
  • An external instructor console also accompanies the simulator and is equipped with a comprehensive set of displays, override facilities and a two-way voice link to the pilot.

Elite Flight Training System    

  • The Elite is a fixed base Piper PA-34 Seneca III aircraft simulator used for flight operations training and is certified by the CAA as a FNPT II-MCC Multi-Crew Cockpit training environment. It has two seats, each with a full set of instrumentation and controls, and European Visuals, so you see a projection of the terrain that you're flying through, based on real geographic models of general terrain and specific airports in Europe.

EMPLOYABILITY

A wide range of control and automation opportunities in manufacturing and engineering companies, opportunities in the aerospace sector.

FURTHER STUDY

There are opportunities to go on to further research study within our CASE control and Intelligent Systems Research Centre.

Research themes in the Centre include:

  • Control Engineering
  • Railway/Automotive Research
  • Computational Intelligence and Robotics
  • Biomedical Research
  • Energy and Electrical Engineering


Read less
The full time, distance learning MA Preventive Conservation course will immerse you in the world of preventive conservation and collections care by engaging you with the complexities and challenges of professional practice. Read more
The full time, distance learning MA Preventive Conservation course will immerse you in the world of preventive conservation and collections care by engaging you with the complexities and challenges of professional practice.

On completion of this one-year course you will possess the specialist knowledge and skills required to provide appropriate strategies for the care, storage, display, transit and environmental management of heritage collections.

During the course you will learn about the physical and chemical characteristics of materials commonly found in collections, preventive conservation policies and procedures, conservation-cleaning processes, environmental management strategies as well as the fundamental chemistry and physics underpinning professional practice. You will also undertake a placement that will allow you to contextualise the theory that you have learnt within professional practice. Personal research is encouraged throughout the course and you are provided with the opportunity to shape assignments in support of its development, which often leads to the focus of the final dissertation.

Northumbria University is the market lead in this fast growing area of conservation practice and provides teaching that is at the forefront of this exciting discipline.

For more information on the part time version of this course, please view this web-page: https://www.northumbria.ac.uk/study-at-northumbria/courses/preventive-conservation-dtdpcz6/

Learn From The Best

The teaching team are members, co-ordinators and directory board members of leading international conservation organisations around the world and have extensive experience in professional practice as well as teaching and learning at a distance.

The teaching team continuously draw on their international networks to identify emerging trends in professional practice. This enables them to ensure that course content remains current and that graduates have the skills and knowledge required by prospective employers.

All staff are research-active and regularly present and publish their work around the world at international peer-reviewed conferences. This places them in a strong position to guide and support you in the publication of your own research after graduation, greatly enhancing your employability.

Teaching And Assessment

This course is delivered in a distance learning format and the none-synchronous delivery provides flexibility as to when, where and at what pace you learn, which is particularly valuable if you do not have English as a first language. The format is invaluable if you do not wish to re-locate but if you wish to continue in employment throughout the programme you are advised to take the part time format.

All learning is student-led. You learn by identifying the area of research that is of interest to you and then develop it through the coursework and assignments using the teaching materials as appropriate. This makes the learning process more engaging, personal and meaningful. The formative and summative assignments and dissertation are designed to help you develop as the critical thinker, reflective practitioner and independent learner required in professional practice.

Module Overview
EF0126 - E.S.A.P. in FADSS Level 7 (Optional, 0 Credits)
VA7017 - Collections Care (Core, 30 Credits)
VA7018 - Conservation Science (Core, 30 Credits)
VA7019 - Conservation Cleaning (Core, 30 Credits)
VA7020 - Work Placed Learning (Core, 30 Credits)
VA7021 - Preventive Conservation Dissertation (Core, 60 Credits)

Learning Environment

Learning materials, course and module handbooks, assessment information, lecture presentation slides, web-links and reading lists are made available via our innovative e-learning platform Blackboard. You can also access student support and other key University systems through your personal online account.

The course content is delivered using smart interactive materials including lectures with voice overs, high quality virtual tours, rotating 3D artefacts with hot spots that can be magnified for examination purposes and audio-visual demonstrations of the processes and procedures used in professional practice. The high quality interactive learning materials have been developed by subject specialists and are available throughout the course so that you can develop and consolidate your knowledge and understanding as often as required. Discussion boards provide regular opportunities for you to discuss academic issues with the other students in your cohort.

You will be fully supported throughout the course by the teaching team who will help you develop your area of personal research, provide weekly feedback on formative course work and provide swift high quality feedback to any concerns or queries that you might have via e mail.

Research-Rich Learning

Research-rich learning is embedded throughout the course and our academics are research-active, publishing cutting-edge work within this specialised field.

The course has a research-based format engendering an enquiring, analytical and creative approach to the challenges of professional practice.

This course provides a large emphasis on both the development of individual research skills and the importance of group work and by the end of your course you will possess the skills required to position yourself as a confident researcher able to identify, deliver and disseminate research that will contribute to professional and enhance your employability.

Give Your Career An Edge

Northumbria University has led in the development of this area of practice and a high percentage of our graduates secure employment within the sector within six months of graduation or earlier.

The work placement will greatly enhance your future career prospects by providing an invaluable opportunity to apply your skills and knowledge within a professional environment. It will allow you to start developing professional networks and help you identify which aspect of professional practice you would most like to pursue.

The high quality learning materials provided throughout your course, teamed with our established record of delivery and international network of contacts places your knowledge and understanding at the forefront of that required by the sector enhancing your employability.

Your Future

On completion of this course you will possess the knowledge and skills required to care for collections and be able to understand, develop and implement appropriate strategies for storage, display, transit and environmental management.

We continue to support your continuous professional development after graduation through our LinkedIn alumni page, which enables us to alert you to potential jobs, conferences and publications.

A range of career options are available to graduates, with many choosing to pursue roles such as preventive conservation officers, environmental managers or collections managers in museums, galleries and heritage organisations.

The number of former graduates working in professional practice within the first six months of graduating is very high and former students work within many high profile organisations around the world including the National Trust, TATE, Fitzwilliam Museum Cambridge, Islamic Arts Museum Malaysia, National Museum Qatar, New Brunswick Museum Canada, National Library Israel, Heritage Conservation Centre Singapore, National Gallery Victoria Australia and the National Archives Norway.

Read less
What is the Erasmus Mundus Master of Science in Theoretical Chemistry and Computational Modelling all about?. Get in at the bleeding edge of contemporary chemistry. Read more

What is the Erasmus Mundus Master of Science in Theoretical Chemistry and Computational Modelling all about?

Get in at the bleeding edge of contemporary chemistry: theoretical and computational chemistry are marking the new era that lies ahead in the molecular sciences. The aim of the programme is to train scientists that are able to address a wide range of problems inmodern chemical, physical and biological sciences through the combination of theoretical and computational tools.

This programme is organised by:

  • Universidad Autónoma de Madrid (coordinating institution), Spain
  • Universiteit Groningen, the Netherlands
  • KU Leuven, Belgium
  • Università degli Studi di Perugia, Italy
  • Universidade do Porto, Portugal
  • Université Paul Sabatier - Toulouse III, France
  • Universitat de Valencia, Spain

The Erasmus Mundus Master of Theoretical Chemistry and Computational Modelling is a joint initiative of these European Universities, including KU Leuven and co-ordinated by the Universidad Autónoma de Madrid. 

This is an initial Master's programme and can be followed on a full-time or part-time basis.

Structure

The programme is organised according to a two-year structure.

  • The first year of the programme introduces you to concepts and methods. The core of the programme is an intensive international course intended to bring all participants to a common level of excellence. It takes place in the summer between year 1 and year 2 and runs for four weeks. Coursework is taught by a select group of invited international experts.
  • The second year of the programme is devoted to tutorials covering the material dealt with in the intensive course and to a thesis project carried out in part at another university within the consortium. The intensive course is organised at the partner institutions on a rotating basis.

Department

The Department of Chemistry consists of four divisions, all of which conduct highquality research embedded in well-established collaborations with other universities, research institutes and companies around the world. Its academic staff is committed to excellence in teaching and research. Although the department's primary goal is to obtain insight into the composition, structure and properties of chemical compounds and the design, synthesis and development of new (bio)molecular materials, this knowledge often leads to applications with important economic or societal benefits.

The department aims to develop and maintain leading, internationally renowned research programmes dedicated to solving fundamental and applied problems in the fields of:

  • the design, synthesis and characterisation of new compounds (organic-inorganic, polymers).
  • the simulation of the properties and reactivity of (bio)molecules, polymers and clusters by quantum chemical and molecular modelling methods.
  • the determination of the chemical and physical properties of (bio)molecules, and polymers on the molecular as well as on the material level by spectroscopy, microscopy and other characterisation tools as related to their structure.

Objectives

Modern Chemistry is unthinkable without the achievements of Theoretical and Computational Chemistry. As a result these disciplines have become a mandatory tool for the molecular science towards the end of the 20th century, and they will undoubtedly mark the new era that lies ahead of us.

In this perspective the training and formation of the new generations of computational and theoretical chemists with a deep and broad knowledge is of paramount importance. Experts from seven European universities have decided to join forces in a European Master Course for Theoretical Chemistry and Computational Modelling (TCCM). This course is recognized as an Erasmus Mundus course by the European Union.

Graduates will have acquired the skills and competences for advanced research in chemical, physical and material sciences, will be qualified to collaborate in an international research team, and will be able to develop professional activities as experts in molecular design in pharmaceutical industry, petrochemical companies and new-materials industry.

Career perspectives

In addition to commanding sound theoretical knowledge in chemistry and computational modelling, you will be equipped to apply any of the scientific codes mastered in the programme in a work environment, or develop new codes to address new requirements associated with research or productive activities.

You will have attained the necessary skills to pursue a scientific career as a doctoral student in chemistry, physics or material science. You will also be qualified to work as an expert in molecular design in the pharmaceutical industry, at petrochemical companies and in the new-materials industry. You will also have a suitable profile to work as a computational expert.



Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Mechanical Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Mechanical Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

With our close interaction with large companies such as Tata Steel and Ford, as well as small and medium-sized enterprises, Swansea University provides an excellent base for your research as a MSc by Research student in Mechanical Engineering.

Key Features of MSc by Research in Mechanical Engineering

Across the UK and overseas in Mechanical Engineering, there is or has been recent work at Swansea University with companies such as:

Astra-Zeneca

British Aerospace

Qinetiq

GKN

Rolls-Royce

SKF

Freeport

One Steel

Barrick Gold

Research within Engineering at Swansea University is multidisciplinary in nature, incorporating our strengths in research areas across the Engineering disciplines including Mechanical Engineering.

Computational mechanics forms the basis for the majority of the MSc by Research projects within the Mechanical Engineering discipline.

Mechanical Engineering at Swansea University is recognised as one of the top 200 departments in the world (QS World Subject Rankings).

MSc by Research in Mechanical Engineering typically lasts one year full-time, two to three years part-time. This is an individual research project written up in a thesis of 30,000 words.

Facilities

Our new home at the innovative Bay Campus provides some of the best university facilities in the UK, in an outstanding location.

Mechanical Engineering at Swansea University has extensive laboratory and computing facilities for both teaching and research purposes.

In the mechanical laboratories are two large rotating rigs. One is used to study the dynamics of high speed machinery whilst the other is devoted to the analysis of heat transfer in turbine blade.

Hardware includes a 450 cpu Cluster, high-end graphics workstations and high-speed network links. Extensive software packages include both in-house developed and 'off-the-shelf' commercial.

Links with industry

Mechanical Engineering at Swansea University has a close interaction with large companies such as Tata Steel and Ford, as well as small and medium-sized enterprises. Across the UK and overseas, there is or has been recent work with companies such as:

Astra-Zeneca

British Aerospace

Qinetiq

GKN

Rolls-Royce

SKF

Freeport

One Steel

Barrick Gold

Research

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.

World-leading research

The REF shows that 94% of research produced by our academic staff is of World-Leading (4*) or Internationally Excellent (3*) quality. This has increased from 73% in the 2008 RAE.

Research pioneered at the College of Engineering harnesses the expertise of academic staff within the department. This ground-breaking multidisciplinary research informs our world-class teaching with several of our staff leaders in their fields.

Highlights of the Engineering results according to the General Engineering Unit of Assessment:

Research Environment at Swansea ranked 2nd in the UK

Research Impact ranked 10th in the UK

Research Power (3*/4* Equivalent staff) ranked 10th in the UK



Read less
IN BRIEF. Great employer demand for graduates of this course. Access to excellent facilities including over 20 wind tunnels and a DC10 jet engine. Read more

IN BRIEF:

  • Great employer demand for graduates of this course
  • Access to excellent facilities including over 20 wind tunnels and a DC10 jet engine
  • Accredited course by the Institute of Mechanical Engineers, giving you the opportunity to achieve chartered engineer status
  • International students can apply

COURSE SUMMARY

The aerospace industry is at the forefront of modern engineering and manufacturing technology and there is an expanding need for highly skilled chartered Aerospace Engineers.

If you are looking to pursue a career in aerospace engineering this course will enable you to apply your skills and knowledge of engineering devices and associated components used in the production of civil and military aircraft, spacecraft and weapons systems.

This module has been accredited by the Institution of Mechanical Engineers. On graduation you be able to work towards Chartered Aerospace Engineer status which is an independent verification of your skills and demonstrates to your colleagues and employers your commitment and credentials as an engineering professional.

TEACHING

The course will be taught by a series of lectures, tutorials, computer workshops and laboratory activities.

Some modules will include a structured factory visit to illustrate the processes and techniques and to enable investigations to be conducted.

Engineers from the industry will contribute to the specialist areas of the syllabus as guest lecturers.

ASSESSMENT

The coursework consists of one assignment, and two laboratory exercises.

  • Assignment 1: Control design skills. (30%)
  • Laboratory 1: Feedback control design skills and system modelling skills. (10%)
  • Laboratory 2: Flight dynamics (10%)
  • The first 5 assignments are of equal weighting of 10%, assignment 6 has a weighting of 20%
  • Assignment1: Matlab programming skills assessed.
  • Assignment2: Simulink/ Matlab for control programming skills assessed.
  • Assignment3: Matlab simulation skills assessed.
  • Assignment4: Matlab integration skills assessed.
  • Assignment5: Matlab matrix manipulation knowledge assessed.
  • Assignment 6: Aerospace assembly techniques.

FACILITIES

Mechanical Lab – This lab is used to understand material behaviour under different loading conditions and contains a tensile test machine and static loading experiments – typical laboratory sessions would include tensile testing of materials and investigation into the bending and buckling behaviour of beams.

Aerodynamics Lab – Contains low speed and supersonic wind tunnels – typical laboratory experiments would include determining the aerodynamic properties of an aerofoil section and influence of wing sweep on the lift and drag characteristics of a tapered wing section.

Composite Material Lab – This lab contains wet lay-up and pre-preg facilities for fabrication of composite material test sections. The facility is particularly utilised for final year project work.

Control Dynamics Lab – Contains flight simulators (see details below) and programmable control experiments – typical laboratory sessions would include studying the effects of damping and short period oscillation analysis, forced vibration due to rotating imbalance, and understanding the design and performance of proportional and integral controllers.

Flight Simulators

Merlin MP520-T Engineering Simulator    

  • This simulator is used to support engineering design modules, such as those involving aerodynamics and control systems by giving a more practical experience of aircraft design than a traditional theory and laboratory approach. As a student, you'll design and input your own aircraft parameters into the simulator before then assessing the flight characteristics.
  • The simulator is a fully-enclosed single seat capsule mounted on a moving 2-degree of freedom platform which incorporates cockpit controls, integrated main head-up display and two secondary instrumentation display panels.
  • An external instructor console also accompanies the simulator and is equipped with a comprehensive set of displays, override facilities and a two-way voice link to the pilot.

Elite Flight Training System    

  • The Elite is a fixed base Piper PA-34 Seneca III aircraft simulator used for flight operations training and is certified by the CAA as a FNPT II-MCC Multi-Crew Cockpit training environment. It has two seats, each with a full set of instrumentation and controls, and European Visuals, so you see a projection of the terrain that you're flying through, based on real geographic models of general terrain and specific airports in Europe.

EMPLOYABILITY

This is a highly valued qualification and as a graduate you can expect to pursue careers in a range of organizations around the world such as in aerospace companies and their suppliers, governments and research institutions.

FURTHER STUDY

You may consider going on to further study in our Engineering 2050 Research Centre which brings together a wealth of expertise and international reputation in three focussed subject areas.

Research at the centre is well funded, with support from EPSRC, TSB, DoH, MoD, Royal Society, European Commission, as well as excellent links with and direct funding from industry. Our research excellence means that we have not only the highest calibre academics but also the first class facilities to support the leading edge research projects for both post-graduate studies and post-doctoral research.

Visit http://www.cse.salford.ac.uk/research/engineering-2050/ for further details.




Read less
IN THIS INTENSIVE, PART-TIME, 18-MONTH ONLINE PROGRAM YOU WILL GAIN. - Skills and know-how in the latest technologies in electrical engineering. Read more
IN THIS INTENSIVE, PART-TIME, 18-MONTH ONLINE PROGRAM YOU WILL GAIN:

- Skills and know-how in the latest technologies in electrical engineering
- Practical guidance from electrical engineering experts in the field
- Knowledge from the extensive experience of the lecturers, rather than from only the theoretical information gained from books and college
- Credibility as the local electrical engineering expert in your firm
- Networking contacts in the industry
- Improved career prospects and income
- An Advanced Diploma of Applied Electrical Engineering (Electrical Systems)

Next intake starts October 09, 2017. Registrations are now open.

Payment is not required until 2 to 4 weeks before the start of the program.

The EIT Advanced Diploma of Applied Electrical Engineering (Electrical Systems) is recognized worldwide and has been endorsed by the International Society of Automation (ISA). Please ask us about specific information on accreditation for your location.

OVERVIEW

Join the next generation of electrical engineers and technicians and embrace a well paid, intensive yet enjoyable career by embarking on this comprehensive course on electrical engineering. It is presented in a practical and useful manner - all theory covered is tied to a practical outcome. Leading electrical engineers who are highly experienced engineers from industry, having 'worked in the trenches' in the various electrical engineering areas present the course over the web in a distance learning format using our acclaimed live e-learning techniques.

The course starts with an overview of the basic principles of electrical engineering and then goes on to discuss the essential topics in depth. With a total of 16 modules, everything that is of practical value from electrical distribution concepts to the equipment used, safety at work to power quality are all looked at in detail. Each module contains practical content so that the students can practice what they learn including the basic elements of designing a system and troubleshooting.

Most academic courses deal with engineering theory in detail but fall short when it comes to giving practical hints on what a technician is expected to know for a job in the field. In this course, the practical aspects receive emphasis so that when you go out into the field you will have the feeling that ‘you have seen it all.

*JOB OUTCOMES, INTERNATIONAL RECOGNITION AND PROFESSIONAL MEMBERSHIP:

A range of global opportunities awaits graduates of the Advanced Diploma of Applied Electrical Engineering (Electrical Systems). Pending full accreditation you may become a full member of Engineers Australia and your qualification will be recognized by Engineers Australia and (through the Dublin Accord) by leading professional associations and societies in Australia, Canada, Ireland, Korea, New Zealand, South Africa, United Kingdom and the United States. The Dublin Accord is an agreement for the international recognition of Engineering Technician qualifications.

For example, current enrolled students can apply for free student membership of Engineers Australia. After graduation, you can apply for membership to become an Engineering Associate, while graduates interested in UK recognition can apply for membership of the Institution of Engineering and Technology (IET) as a Technician Member of the Institution of Engineering and Technology.

This professional recognition greatly improves the global mobility of graduates, and offers you the opportunity of a truly international career.

You will be qualified to find employment as an Engineering Associate in public and private industry including transportation, manufacturing, process, construction, resource, energy and utilities industries. Engineering Associates often work in support of professional engineers or engineering technologists in a team environment. If you prefer to work in the field you may choose to find employment as a site supervisor, senior technician, engineering assistant, or similar.

WHO SHOULD COMPLETE THIS PROGRAM?

- Electrical Engineers and Technicians
- Project Engineers
- Design Engineers
- Instrumentation and Design Engineers
- Electrical Technicians
- Field Technicians
- Electricians
- Plant Operators
- Maintenance Engineers and Supervisors
- Energy Management Consultants
- Automation and Process Engineers
- Design Engineers
- Project Managers
- Instrument Fitters and Instrumentation Engineers
- Consulting Engineers
- Production Managers
- Chemical and Mechanical Engineers
- Instrument and Process Control Technicians

In fact, anyone who wants to gain solid knowledge of the key elements of electrical engineering – to improve work skills and to create further job prospects. Even those of you who are highly experienced in electrical engineering may find it useful to attend some of the topics to gain key, up to date perspectives on electrical engineering.

PROGRAM STRUCTURE

The course is composed of 16 modules. These cover the following seven main threads to provide you with maximum practical coverage in the field of electrical engineering

- Electrical technology fundamentals
- Distribution equipment and protection
- Rotating machinery and transformers
- Power electronics
- Energy efficiency
- Earthing and safety regulations
- Operation and maintenance of electrical equipment

The 16 modules will be completed in the following order:

- Electrical Circuits
- Basic Electrical Engineering
- Fundamentals of Professional Engineering
- Electrical Drawings
- Electrical Power Distribution
- Transformers, Circuit Breakers and Switchgear
- Electrical Machines
- Power Cables and Accessories
- Earthing and Lightning / Surge Protection
- Power System Protection
- Electrical Safety and Wiring Regulations
- Testing, Troubleshooting and Maintenance of Electrical Equipment
- Energy Efficiency and Energy Use
- Power Quality
- Power Electronics and Variable Speed Drives
- DC and AC High Reliability Power Supplies

COURSE FEES

What are the fees for my country?

The Engineering Institute of Technology (EIT) provides distance education to students located all around the world – it is one of the very few truly global training institutes. Course fees are paid in a currency that is determined by the student’s location. We aim to give you a rapid response regarding course fees that are relevant to your individual circumstances.

We understand that cost is a major consideration before a student begins to study. For a rapid reply to your query regarding course fees and payment options, please contact a Course Advisor in your region via the below button and we will respond within two (2) business days.

Read less
WHAT YOU WILL GAIN. - Skills and know-how in the latest technologies in mechanical engineering. - Hard hitting know-how in pumps, compressors, piping, seals and machinery safety. Read more
WHAT YOU WILL GAIN:

- Skills and know-how in the latest technologies in mechanical engineering
- Hard hitting know-how in pumps, compressors, piping, seals and machinery safety
- Guidance from experts in the field of mechanical engineering technology
- Networking contacts in the industry
- Improved career prospects and income
- A world recognized EIT Advanced Diploma in Mechanical Engineering Technology

Next intake is scheduled for October 02, 2017. Applications now open; places are limited.

There are limited places in all of our courses to ensure great interaction can be achieved between the presenters and the students.

Contact us now to receive help from experienced Course Advisors!

INTRODUCTION

Whilst there is probably not a serious shortage of theoretically oriented practitioners in mechanical engineering, there is a shortage of highly skilled practically oriented mechanical technologists and engineers in the world today, due to the new technologies only recently becoming a key component of all modern plants, factories and offices. The critical shortage of experts in the area has been accentuated by retirement, restructuring and rapid growth in new industries and technologies. This is regardless of the recession in many countries.

Many businesses throughout the world comment on the difficulty in finding experienced mechanical engineers and technologists despite paying outstanding salaries. For example, about two years ago a need developed for mechanical technologists and engineers in building process plants. The interface from the traditional SCADA and industrial automation system to the web and to mechanical equipment has also created a new need for expertise in these areas. Specialists in these areas are few and far between.

The aim of this 18 month e-learning program is to provide you with core skills in working with mechanical engineering technology and systems and to take advantage of the growing need by industry here.

The five threads running through this program are:

- Fundamentals of Mechanical Engineering Technologies
- Applications of Mechanical Engineering Technologies
- Energy Systems
- Industrial Automation
- Management

WHO SHOULD ATTEND

- Plant operations and maintenance personnel
- Design engineers
- Process technicians, technologists and engineers
- Process control engineers and supervisors
- Mechanical technicians, technologists and engineers
- Mechanical equipment sales engineers
- Pump and mechanical equipment operators
- Contract and asset managers

COURSE STRUCTURE

The course is composed of 21 modules, which cover 5 main threads, to provide you with maximum practical coverage in the field of Mechanical Engineering Technology:

FUNDAMENTALS OF MECHANICAL ENGINEERING

Fundamentals of Mechanical Engineering
Structural Mechanics
Mechanical Drive Systems
A C Electrical Motors and Drives
Rotating Equipment Balancing, Alignment and Condition Monitoring
Hydraulics
Pneumatics
Lubrication Engineering

APPLICATIONS OF MECHANICAL ENGINEERING TECHNOLOGY

Heating, Ventilation and Air-conditioning
Process Plant Layout and Piping Design
Pipeline Systems
Pumps and Compressors
Mechanical Seals
Safe Lifting
Machinery Safety

ENERGY SYSTEMS

Energy Efficiency
Renewable Energy Systems

INDUSTRIAL AUTOMATION

Industrial Automation
Measurement and Control Systems
Management of Hazardous Areas

MANAGEMENT

Project Management

COURSE FEES

What are the fees for my country?

The Engineering Institute of Technology (EIT) provides distance education to students located almost anywhere in the world – it is one of the very few truly global training institutes. Course fees are paid in a currency that is determined by the student’s location. A full list of fees in a currency appropriate for every country would be complex to navigate and, with today’s exchange rate fluctuations, difficult to maintain. Instead we aim to give you a rapid response regarding fees that is customised to your individual circumstances.

We understand that cost is a major consideration before a student commences study. For a rapid reply to your enquiry regarding courses fees and payment options, please enquire via the below button and we will respond within 2 business days.

Read less
This is a two-year programme offered jointly by five of Europe's leading landscape architecture institutions. Read more

This is a two-year programme offered jointly by five of Europe's leading landscape architecture institutions: Edinburgh School of Architecture and Landscape Architecture (ESALA); Akademie van Bouwkunst, Amsterdam; Leibniz Universität, Hannover; Ecole Nationale Supérieure du Paysage (ENSP), Versailles; and Escola Tècnica Superior d’Arquitectura de Barcelona (ETSAB).

The programme offers you a unique educational experience and an opportunity to design your landscape architecture training to fit your aspirations, interests and skills.

You will be immersed in very different European cultural and pedagogical environments, greatly enriching your perspective and development as a designer.

The five partners approach the technical, aesthetic and ecological issues of landscape architecture in very different ways, at scales ranging from the urban site to the rural region. You will therefore experience a wide range of landscapes, methods, and skills, establish links to private- and public-sector employers across Europe, and be exposed to the daily life and culture of some of Europe's most diverse and exciting cities and regions.

Programme structure

The programme is based on the principle of student mobility. You will study for two semesters in Edinburgh and choose two of the partner institutions to study at for one semester each.

Courses include design studios, seminars, and lectures, which vary with the institution and semester. All students convene for a summer workshop run by one EMiLA partner on a rotating basis. These workshops are designed to be substantive and fun, and to stimulate thinking about the future challenges the landscape architecture profession will face.

The programme has been reviewed by the International Federation of Landscape Architects (IFLA) and currently has ‘Candidate Accreditation’ status with the Landscape Institute.

Career opportunities

Graduates of landscape architecture programmes at the University of Edinburgh have outstanding employability prospects.



Read less
Take your clinical skills in Computed Tomography forward in a range of settings of increasing complexity. Qualified radiographers working in or rotating through Computed Tomography who wish to advance their clinical practice and understanding of this modality. Read more
Take your clinical skills in Computed Tomography forward in a range of settings of increasing complexity.

Who is it for?

Qualified radiographers working in or rotating through Computed Tomography who wish to advance their clinical practice and understanding of this modality.

Objectives

This course has been designed to:
-Enhance the professional practice and personal development of practitioners.
-Provide opportunities for discussion and shared experience between practitioners.
-Enhance critical, analytical, professional, research and communication skills and promote the ability to relate these skills to individual clinical practice.
-Further develop the skills necessary for life-long independent learning.
-Prepare you to take on the professional roles of advanced practitioners.
-Encourage you to act autonomously in planning and implementing tasks at a professional level.
-Encourage you to develop originality in the application of knowledge to clinical practice.
-Enhance your understanding of how established techniques of research and enquiry are used to interpret knowledge in your field.

Placements

Students should be working as a radiographer in a Computed Tomography department at least three days per week (or equivalent). City is unable to provide a clinical placement.

Teaching and learning

Students learn through a mix of lectures, class discussions, seminars, presentations, case study analyses, interactive computer-based exercises, a virtual learning environment, guided independent learning and individual supervision. You will be taught by City Academics who specialise in Computed Tomography, Radiologists, Industry Professionals and Radiographers.

Assessment
You are assessed on a range of areas including your project dissertation, exams, written assignments, oral presentations and posters.

Modules

Core and elective module diet will vary depending on which certificate is undertaken.

Core modules
Year One (PGCert):
-RDM019 Clinical Applications of Computed Tomography (30 credits) - year 1, term 1
-RCM123 Science and Instrumentation of Computed Tomography (30 credits) - year 1, term 2.

Year Two (PGDip):
-RDM019 Clinical Applications of Computed Tomography (30 credits) - year 1, term 1
-RCM123 Science and Instrumentation of Computed Tomography (30 credits) - year 1, term 2
-HRM011 Introduction to Research Methods and Applied Data Analysis (15 credits) - year 2, term 1.

The remainder of the course will be selected from elective modules.

Year Three (MSc):
-RCM123 Science and Instrumentation of Computed Tomography (30 credits) - year 1, term 2
-RDM019 Clinical Applications of Computed Tomography (30 credits) - year 1, term 1
-HRM011 Introduction to Research Methods and Applied Data Analysis (15 credits) - year 2, term 1
-APM002 Dissertation (60 credits) - year 2, terms 1 and 2.

The remainder of the course will be selected from elective modules.

Elective modules
-RCM005 Evidence Based Practice (15 credits – distance learning)
-RCM010 Student Negotiated Module 1 (15 credits – distance learning)
-CHM003 Comparative Imaging (30 credits – distance learning)
-CHM002 Education in the Workplace (15 credits – distance learning)
-RCM124 Physics and Instrumentation of Medical Magnetic Resonance (30 credits – 36 hours classroom based) only suitable for students with some Computed Tomography (CT) rotation
-RDM017 Clinical Applications of Medical Magnetic Resonance (30 credits – 36 hours, classroom based). Only suitable for students with some MRI rotation.

Career prospects

The postgraduate programme in Computed Tomography will enable the student to work towards advancing their practice and support a rationale for more senior roles in the profession including specialist clinical practice, management and research.

The programme is accredited by the College and Society of Radiographers.

Previous students have gone on to take positions overseas, in research, management and advance clinical practice. Some of our students have taken their skills and continued to study to PhD level.

Read less
Take your clinical skills in Magnetic Resonance Imaging forward in a range of settings of increasing complexity. Read more
Take your clinical skills in Magnetic Resonance Imaging forward in a range of settings of increasing complexity.

Who is it for?

The MSc Medical Magnetic Resonance has been designed for Qualified Radiographers working in or rotating through Magnetic Resonance Imaging who wish to advance their clinical practice and understanding of this modality.

Objectives

This course has been designed to:
-Enhance the professional practice and personal development of practitioners.
-Provide opportunities for discussion and shared experience between practitioners.
-Enhance critical, analytical, professional, research and communication skills and promote the ability to relate these skills to individual clinical practice.
-Further develop the skills necessary for life-long independent learning.
-Prepare you to take on the professional roles of advanced practitioners.
-Encourage autonomous planning and implementation of tasks at a professional level.
-Encourage the development of originality in the application of knowledge to clinical practice.
-Enhance your understanding of how established techniques of research and enquiry are used to interpret knowledge in your field.

Placements

Students should be working as a radiographer in a Magnetic Resonance Imaging department at least thre days per week (or equivalent). City is unable to provide a clinical placement.

Teaching and learning

You will learn through a mix of lectures, class discussions, seminars, presentations, case study analyses, interactive computer-based exercises, a virtual learning environment, guided independent learning and individual supervision.

You will be taught by City Academics who specialise in Computed Tomography, Radiologists, Industry Professionals and Radiographers.

Assessment
You are assessed on a range of areas including your project dissertation, exams, written assignments, oral presentations and posters.

Modules

Core and elective module diet will vary depending on which certificate is undertaken.

Core modules
Year One (PGCert):
-RCM124 Physics and Instrumentation of Medical Magnetic Resonance (30 credits) - year one, term one
-RDM017 Clinical Applications of Medical Magnetic Resonance (30 credits) - year one, term two.

Year Two (PGDip):
-RCM124 Physics and Instrumentation of Medical Magnetic Resonance (30 credits) - year one, term one
-RDM017 Clinical Applications of Medical Magnetic Resonance (30 credits) - year one, term two
-HRM011 Introduction to Research Methods and Applied Data Analysis (15 credits)- year two, term one.

The remainder of the course will be selected from elective modules.

Year Three (MSc):
-RCM124 Physics and Instrumentation of Medical Magnetic Resonance (30 credits) - year one, term one
-RDM017 Clinical Applications of Medical Magnetic Resonance (30 credits) - year one, term two
-HRM011 Introduction to Research Methods and Applied Data Analysis (15 credits)- year two, term one
-APM002 Dissertation (60 credits)- year two, terms one and two.

The remainder of the course will be selected from elective modules.

Elective modules
-RCM005 Evidence Based Practice (15 credits – distance learning)
-RCM010 Student Negotiated Module 1 (15 credits – distance learning)
-CHM003 Comparative Imaging (30 credits – distance learning)
-CHM002 Education in the Workplace (15 credits – distance learning)
-RCM124 Physics and Instrumentation of Medical Magnetic Resonance (30 credits – 36 hours classroom based) only suitable for students with some CT rotation
-RDM017 Clinical Applications of Medical Magnetic Resonance (30 credits – 36 hours, classroom based). Only suitable for students with some CT rotation.

Career prospects

The postgraduate programme in Medical Magnetic Resonance will enable you to work towards advancing your practice and support a rationale for more senior roles in the profession including specialist clinical practice, management and research.

The programme is accredited by the College and Society of Radiographers.

Previous students have gone on to take positions overseas, in research, management and advance clinical practice. Some of our students have taken their skills and continued to study to PhD level.

Read less
This programme is an advanced MSc course in renewable energy engineering, with an emphasis on the design, analysis and implementation of renewable energy projects. Read more
This programme is an advanced MSc course in renewable energy engineering, with an emphasis on the design, analysis and implementation of renewable energy projects. Designed to help you develop critical understanding, the course will equip you with the engineering knowledge and practical skills necessary to develop and implement creative solutions to engineering problems encountered in renewable energy capture and conversion, system design and analysis, project development and implementation. You’ll use lab and field-testing facilities for measuring and monitoring performance of different renewable energy systems, such as wind turbines, photovoltaic power systems and heat pumps.

You’ll also learn to use tools for component and system design, simulation of the performance and monitoring of renewable energy systems. These tools include Matlab/Simulink, ANSYS and SciLab for wind turbine blade design and CFD, GH WindFarmer and WAsP for wind farm design, PVsyst for photovoltaic system design and Labview for system monitoring. You’ll also have the option to experience a Professional/Work Placement in addition to the taught course.

PROFESSIONAL ACCREDITATION

This MSc is accredited by the Institution of Engineering and Technology (IET), as further learning satisfying the educational requirements for Chartered Engineer (CEng) registration.

LEARNING ENVIRONMENT

Students will benefit from:
-Free supportive short course tailored to students individual needs. This is a group of lectures/tutorials, provided as part of the independent learning on foundation topics such as electric circuits, 3-phase current, rotating machines, maths, and excel.
-Free supportive English language module for International students
-Seminars on Employability
-Sites visits on UK renewable energy installations.
-Variety in assessment for learning methods including: examination, coursework, tests, presentations, poster defence and written reports.

Read less

Show 10 15 30 per page



Cookie Policy    X