• Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Regent’s University London Featured Masters Courses
  • University of York Featured Masters Courses
  • University of Leeds Featured Masters Courses
  • University of Glasgow Featured Masters Courses
  • Leeds Beckett University Featured Masters Courses
  • Swansea University Featured Masters Courses
King’s College London Featured Masters Courses
Leeds Beckett University Featured Masters Courses
University of Bradford Featured Masters Courses
Cardiff University Featured Masters Courses
University of Kent Featured Masters Courses
"robotics"×
0 miles

Masters Degrees (Robotics)

  • "robotics" ×
  • clear all
Showing 1 to 15 of 288
Order by 
The MSc in Robotics will provide you with the ability to understand, design and implement modern robotic systems. Read more
The MSc in Robotics will provide you with the ability to understand, design and implement modern robotic systems. Robotics is increasingly prominent in a variety of sectors, from manufacturing and health to remote exploration of hostile environments such as space and the deep sea, and as autonomous and semi-autonomous systems that interact with people physically and socially.

This programme exposes you to a wide range of advanced engineering and computer science concepts, with the opportunity to carry out a practical robot project at the Bristol Robotics Laboratory, one of the UK's most comprehensive robotics innovation facilities and a leading centre of robotics research.

The programme is jointly awarded and jointly delivered by the University of Bristol and the University of the West of England, both based in Bristol, and therefore draws on the combined expertise, facilities and resources of the two universities. The Bristol Robotics Laboratory is a collaborative research partnership between the two universities with a vision to transform robotics by pioneering advances in autonomous robot systems that can behave intelligently with minimal human supervision.

Programme structure

Your course will cover the following core subjects:
-Robotics systems
-Robotic fundamentals
-Intelligent adaptive systems
-Robotics research preparation
-Image processing and computer vision
-Technology and context of robotics and autonomous systems
-Bio-inspired artificial intelligence

Typically you will be able to select from the following optional subjects:
-Computational neuroscience
-Uncertainty modelling for intelligent systems
-Introduction to artificial intelligence
-Learning in autonomous systems
-Design verification
-Animation production
-Advanced DSP and FPGA implementation
-Statistical pattern recognition
-Control theory
-Advanced techniques in multidisciplinary design
-Advanced dynamics
-Virtual product development
-Biomechanics
-Sensory ecology
-Transport modelling
-Electromechanical systems integration
-Advanced control and dynamics

Please note that your choice of optional units will be dependent on your academic background, agreement with the programme director and timetable availability.

Dissertation
During your second semester, you will start working on a substantial piece of research work that will make up one third of the overall MSc. It is possible to work on this project at Bristol Robotics Laboratory or in conjunction with one of our many industrial partners. Within the Bristol Robotics Laboratory, there are a number of themes from which projects may be chosen, including:
-Aerial robots
-Assisted living
-Bioenergy and self-sustainable systems
-Biomimetics and neuro-robotics
-Medical robotics
-Nonlinear robotics
-Robot vision
-Safe human-robot interaction
-Self-reparing robotic systems
-Smart automation
-Soft robotics
-Swarm robotics
-Tactile robotics
-Unconventional computation in robots
-Verification and validation for safety in robots

Further information is available from the Faculty of Engineering.

NB: Teaching for this programme is delivered at both the University of Bristol and the University of the West of England campuses. Students attending the programme will be given free transport passes to travel between the two universities.

Careers

Robotics is a huge field spanning areas such as electronics, mechanics, software engineering, mathematics, physics, chemistry, psychology and biology. Career opportunities include: automotive industry, aerospace industry, advanced manufacturing, deep sea exploration, space exploration, food manufacture, pharmaceutical production and industrial quality control.

Read less
Taking BEng (Hons) Robotics to the next level, this MEng course digs deeper into the robotic technologies that are shaping today and tomorrow. Read more
Taking BEng (Hons) Robotics to the next level, this MEng course digs deeper into the robotic technologies that are shaping today and tomorrow. Providing an extra year of insight and training, your learning will be informed by robotics research pushing boundaries worldwide led by our very own teaching staff. You’ll build technical and managerial skills that you can put into practice daily, through a final group project that will set your course for success when you graduate.

You will experience learning that meets the highest standard academic requirements set by The Institution of Engineering and Technology (IET). You will draw on unique opportunities to engage in world-class robotics research, and in a variety of activities. You’ll capitalise on the opportunity to take a work placement in your second or third year, putting your robotics skills into action in the real world. You will take the fastest route to Chartered Engineer status.

Key features

-Benefit from outstanding teaching: in the 2016 National Student Survey 93 per cent of our final year students said that “The course is intellectually stimulating”.*
-Immerse yourself in a degree accredited by the Institution for Engineering and Technology (IET) on behalf of the Engineering Council for the purposes of fully meeting the academic requirement for registration as a Chartered Engineer (CEng).
-Keep pace with the fast-moving world of robotics, on a course that cuts a path through the latest research across technologies and disciplines.
-Take the fastest route to Chartered Engineer status.
-Experience learning that meets the highest standard academic requirements set by The Institution of Engineering and Technology (IET).
-Undertake a major robotics design and implementation in your final project, showcasing your technical and managerial skills. Develop your technical content, legal and business skills as well as team working and project planning.
-Capitalise on the opportunity to take a work placement in your second or third year, putting your robotics skills into action in the real world.
-Rise to the challenge as part of the Plymouth Humanoids team, battling it out in a variety of international robot competitions.
-Develop professional writing skills as well as strengthening your technical design skills.
-Refine your professional project management skills, with dedicated professional support from staff across the entire final year on every different aspect of your project.
-Work alongside internationally-renowned staff in a leading service and cognitive robotics research environment.
-Draw on unique opportunities to engage in world-class robotics research, and in a variety of activities (for example, in the humanoid robot football, Federation of International Robot-soccer Association (FIRA) competition).

Course details

Year 1
In your first year you'll learn through doing, developing your knowledge and practical problem solving skills in our dedicated robotics and communications laboratories. From analogue and digital electronics to engineering mathematics, you'll build up the essential foundations of robotics. Group project work will also help you develop your communication skills and you'll learn structured design procedures for hardware and software all brought together in an integrating robotics project.

Core modules
-ELEC143 Embedded Software in Context
-BPIE112 Stage 1 Electrical/Robotics Placement Preparation
-ELEC141 Analogue Electronics
-ELEC142 Digital Electronics
-ELEC144 Electrical Principles and Machines
-MATH187 Engineering Mathematics

Optional modules
-ELEC137PP Electronic Design and Build
-ROCO103PP Robot Design and Build

Year 2
Throughout your second year, you'll develop a greater understanding of underlying engineering principles and circuit design methods. Again there's an emphasis on team-work, with the opportunity to do both group and individual presentations of your projects. You'll use industrial standard software tools for design and simulation, data monitoring and control, all valuable preparation for your final year individual project or for a placement year.

Core modules
-MATH237 Engineering Mathematics and Statistics
-ROCO222 Introduction to Sensors and Actuators
-BPIE212 Stage 2 Electrical/Robotics Placement Preparation
-ROCO224 Introduction to Robotics
-ROCO218 Control Engineering
-ELEC240 Embedded Systems
-ELEC241 Real Time Systems

Optional placement year
Your optional work placement experience gives opportunities to put theory into practice, grow your understanding of robotics in the real world and showcase your growing expertise. We can help you find industrial placement opportunities in the UK, France, Germany or even Japan. Placements will complement your studies with on-the-ground experience and could lead to final year sponsorship. Many of our graduates are offered permanent jobs with their placement company.

Core modules
-BPIE332 Electrical Industrial Placement

Year 4
This is when your skills, expertise and know how come into their own. Through your individual project you'll consolidate your knowledge, explore and evaluate new technologies and showcase your potential. You'll demonstrate your communication skills in an oral and written presentation of your project. Refining the independent learning skills you've developed throughout the course, you'll build a proactive, imaginative and dynamic approach to learning, vital for your future robotics career.

Core modules
-ROCO318 Mobile and Humanoid Robots
-PROJ324 Individual Project
-ELEC351 Advanced Embedded Programming
-AINT308 Machine Vision and Behavioural Computing

Optional modules
-ELEC345 High Speed Communications
-AINT351 Machine Learning

Final year
The MEng includes additional technical modules and a large interdisciplinary design project. There is also the possibility of continuing your studies to MSc level in the same academic year.

Core modules
-ROCO503 Sensors and Actuators
-ROCO504 Advanced Robot Design
-PROJ515 MEng Project
-AINT512 Science and Technology of Human-Robot Interaction

Every undergraduate taught course has a detailed programme specification document describing the course aims, the course structure, the teaching and learning methods, the learning outcomes and the rules of assessment.

Read less
Robotics and autonomous systems (RAS) are set to shape innovation in the 21st century, underpinning research in a wide range of challenging areas. Read more
Robotics and autonomous systems (RAS) are set to shape innovation in the 21st century, underpinning research in a wide range of challenging areas: the ageing population, efficient health care, safer transport, and secure energy. The UCL edge in scientific excellence, industrial collaboration and cross-sector activities make it ideally placed to drive IT robotics and automation education in the UK.

Degree information

The programme provides an overview of robotic and computational tools for robotics and autonomous systems as well as their main computational components: kinetic chains, sensing and awareness, control systems, mapping and navigation. Optional modules in machine learning, human-machine interfaces and computer vision help students grasp fields related to robotics more closely, while the project thesis allows students to focus on a specific research topic in depth.

Students undertake modules to the value of 180 credits.

The programme consists of four core modules (60 credits), two optional modules (30 credits), two elective modules (30 credits), and a dissertation/report (60 credits).

Core modules
-Robotic Control Theory and Systems
-Robotic Sensing, Manipulation and Interaction
-Robotic Systems Engineering
-Robotic Vision and Navigation

Optional modules
-Acquisition and Processing of 3D Geometry
-Affective Computing and Human-Robot Interaction
-Artificial Intelligence and Neural Computing
-Image Processing
-Inverse Problems in Imaging
-Machine Vision
-Mathematical Methods, Algorithmics and Implementations
-Probabilistic and Unsupervised Learning
-Research Methods and Reading
-Supervised Learning
-Other selected modules available within UCL Computer Science
-Students also choose two elective MSc modules from across UCL Computer Science, UCL Medical Physics & Biomedical Engineering, UCL Mechanical Engineering and UCL Bartlett School of Architecture.

Dissertation/report
All students undertake an independent research project which culminates in a dissertation of 30,000 words.

Teaching and learning
Teaching is delivered by lectures, tutorials, practical sessions, projects and seminars. Assessment is through examination, individual and group projects and presentations, and design exercises.

Careers

Robotics is a growing field encompassing many technologies with applications across different industrial sectors, and spanning manufacturing, security, mining, design, transport, exploration and healthcare. Graduates from our MSc programme will have diverse job opportunities in the international marketplace with their knowledge of robotics and the underpinning computational and analytical fundamentals that are highly valued in the established and emerging economies. Students will also be well placed to undertake PhD studies in robotics and computational research specific to robotics but translational across different analytical disciplines or applied fields that will be influenced by new robotic technologies and capabilities.

Employability
This programme prepares students to enter a robotics-related industry or any other occupation requiring engineering or analytical skills. Graduates with skills to develop new robotics solutions and solve computational challenges in automation are likely to be in demand globally.

Why study this degree at UCL?

UCL was ranked first in the UK for computer science and informatics in the recent Research Excellence Framework (REF).

With the external project involvement anticipated, students on this programme will have the opportunity to interact and collaborate with key companies in the industry - Airbus, Shadow Hand, OC Robotics and Intuitive Surgical - and work on real-world problems through industry-supported projects.

Recent investment across UCL in the Faculty of Engineering and The Bartlett Faculty of the Built Environment has created the infrastructure for an exciting robotics programme, which will be interdisciplinary and unique within the UK and Europe.

Read less
Robotics and autonomous systems (RAS) are set to shape innovation in the 21st century, underpinning research in a wide range of challenging areas. Read more
Robotics and autonomous systems (RAS) are set to shape innovation in the 21st century, underpinning research in a wide range of challenging areas: the ageing population, efficient health care, safer transport, and secure energy. The UCL edge in scientific excellence, industrial collaboration and cross-sector activities make it ideally placed to deliver this MRes, which uniquely covers the whole spectrum of potential RAS areas and application.

Degree information

The programme teaches students the essentials of robotic and computational tools for robotics and autonomous systems. The key aim of the principal project thesis is to cultivate a deep understanding of robotics research, with a particular focus on a specific research topic in robotics and autonomous systems.

Students undertake modules to the value of 180 credits. The programme consists of one core module (15 credits), two optional modules (30 credits), two elective modules (30 credits), and a dissertation/report (105 credits).

Core modules
-Robotic Systems Engineering

Optional modules
-Robotic Control Theory and Systems
-Robotic Sensing, Manipulation and Interaction
-Robotic Vision and Navigation
-Numerical Optimisation
-Students also choose two elective MSc modules from across UCL Computer Science, UCL Medical Physics & Biomedical Engineering, UCL Mechanical Engineering and UCL Bartlett School of Architecture.

Dissertation/report
All students undertake an independent research project which culminates in a dissertation of 30,000 words.

Teaching and learning
Teaching is delivered by lectures, tutorials, practical sessions, projects and seminars. Assessment is through examination, individual and group projects and presentations, and design exercices.

Careers

Robotics is a growing field encompassing many technologies with tremendous opportunities for research and development both in industry and in academia, and with diverse applications across different industrial sectors spanning manufacturing, security, mining, design, transport, exploration and healthcare. Graduates from our MRes programme will will have project-focused experience and knowledge in robotics and the underpinning computational and analytical fundamentals. These skills will position graduates to be well placed to undertake PhD studies or industrial research and development in robotics and computational research specific to robotics but translational across different analytical disciplines, or applied fields that will be influenced by new robotic technologies and capabilities.

Employability
The MRes will develop skills widely relevant to a career in engineering industries and analytical problem-solving occupations. Graduates with skills to develop new robotics solutions and solve computational challenges in automation are likely to be in high demand globally.

Why study this degree at UCL?

UCL was ranked first in the UK for computer science and informatics in the recent Research Excellence Framework (REF).

With the external project involvement anticipated, students on this programme will have the opportunity to interact and collaborate with key companies in the industry - Airbus, Shadow Hand, OC Robotics and Intuitive Surgical - and work on real-world problems through industry-supported projects.

Recent investment across UCL in the Faculty of Engineering and The Bartlett Faculty of the Built Environment has created the infrastructure for an exciting robotics programme, which will be interdisciplinary and unique within the UK and Europe.

Read less
Launch yourself into the robotics research environment and develop the skills and confidence to conduct your own in-depth research project. Read more
Launch yourself into the robotics research environment and develop the skills and confidence to conduct your own in-depth research project. Gain current, advanced theoretical and practical knowledge from our world-leading experts in intelligent and interactive robotics. You’ll graduate ready for a future in the fast-moving world of personal and service robotics and with the skills to further your research to PhD level.

Key features

-Immerse yourself in an individual research project and learn how to communicate your motivation, methodology, and conclusions through a formal dissertation and summary paper.
-Get up-to-date with the latest developments in artificial life and intelligence, adaptive behaviour, information visualisation, neural computation and dynamic systems, as well as remote access and monitoring systems. Our seminars series with speakers from industry and academia gives you the opportunity to keep ahead in this fast moving field.
-Give yourself the edge. Our programme distinguishes itself from other robotics masters programmes, in the UK and abroad, by ensuring a deeper theoretical and practical knowledge of interactive and intelligent robotics.
-Expand your skills with first-class facilities including 3D rapid prototyping systems, in-house PCB design and assembly tools, and our award winning Plymouth Humanoid robots.
-Get expert training from members of the Marine and Industrial Dynamic Analysis (MIDAS) research group and the Centre for Robotics and Neural Systems (CRNS).
-Benefit by combining disciplines that are traditionally taught separately. You’ll graduate ready with the expertise and joined-up knowledge to design and develop fully integrated mechanical, electronic, control and computing systems.
-The taught elements of this programme are also delivered to students on Year 1 of the MSc Robotics Technology programme.

Course details

On this programme you’ll gain a solid and broad understanding of the latest developments and issues in robotics. You’ll build advanced theoretical and practical knowledge of control and design as well as covering the interface between real-world devices, autonomous processing and evaluation of acquired information. You’ll learn how to search, critically appraise and identify relevant research literature. You’ll also gain expertise in project management and personal effectiveness whilst immersing yourself in a substantial and innovative project inspired by the latest developments in technology and society. You’ll have access to a robotics club and to a seminar series so that you can keep up-to-date with advances in the industry and academia.

Core modules
-PROJ510 MRes Project

Optional modules
-ROCO503 Sensors and Actuators
-AINT511 Topics in Advanced Intelligent Robotics
-MECH533 Robotics and Control
-SOFT561 Robot Software Engineering
-AINT513 Robotic Visual Perception and Autonomy
-AINT512 Science and Technology of Human-Robot Interaction

Every postgraduate taught course has a detailed programme specification document describing the programme aims, the programme structure, the teaching and learning methods, the learning outcomes and the rules of assessment.

Read less
This course is for students who already have a strong engineering background and wish to specialise in robotics and automation. This course has a particular emphasis on advanced robotics, where robots are designed to operate with a degree of intelligence. Read more
This course is for students who already have a strong engineering background and wish to specialise in robotics and automation. This course has a particular emphasis on advanced robotics, where robots are designed to operate with a degree of intelligence.

You will gain a firm grounding in control engineering and intelligent systems concepts, along with the ability to comprehend and fully specify integrated automation systems embodying intelligence, robotic and automation hardware and software, and virtual reality (VR)/simulation technologies.

The course also provides a suitable background for research in advanced autonomous systems with reference to robotics.

Key benefits:

• Gain a firm grounding in control engineering and intelligent systems concepts
• This course has a particular emphasis on advanced robotics, where robots are designed to operate with a degree of intelligence
• Projects supported by internationally-leading research

Visit the website: http://www.salford.ac.uk/pgt-courses/robotics-and-automation

Suitable for

Suitable for students who already have a strong engineering background and wish to specialise in robotics and automation.

Format

You will be taught via a series of lectures and workshops with many of the modules taught via extensive hands-on practical lab-based sessions.

Practical experience includes the use of robotics platforms to produce a software system using the MATLAB toolboxes or the C programming language or to produce a finished hardware/software based mobile robotics system.

Module titles

• Automation and Robotics
• Interactive Visualisation
• Artificial Intelligence
• Mobile Robotics
• MSc Project/ Dissertation

Assessment

70% coursework and 30% examination.

Career potential

This qualification will equip you for employment in a number of industries. Excellent opportunities exist in areas including robotic design, control systems integration and design, factory automation, engineering management and research.

How to apply: http://www.salford.ac.uk/study/postgraduate/applying

Read less
This is an MSc course in Embedded Systems with contributions from the fields of mechatronics and robotics. Embedded systems are microprocessor-based systems within a larger mechanical or electrical system that performs a dedicated function or task. Read more
This is an MSc course in Embedded Systems with contributions from the fields of mechatronics and robotics.

Embedded systems are microprocessor-based systems within a larger mechanical or electrical system that performs a dedicated function or task. They encompass a wide variety of products ranging from small mobile phones to large process automation installations. A practicing engineer in the field of embedded systems needs to have a specialised expertise in more than one of the engineering subjects of this multi-discipline subject.

Our MSc is tailored to provide you with advanced learning in microprocessor systems that are at the heart of embedded systems, with additional contributions from the fields of mechatronics and robotics. This approach reflects the needs of the industry and is well supported by the range in expertise we have in our Department.

The Department of Engineering and Design covers the full gamete of teaching in electronic, telecommunication and computer networks engineering as well as mechanical engineering and product design.

Our academics are a cohesive group of highly skilled lecturers, practitioners and researchers. You'll benefit from your choice of supervisors to support a wide range of modern and multi-discipline Masters-level projects. Our teaching is supported by well-equipped laboratory workshops, using mostly the latest hardware and software available in universities.

- Robot Detectives
LSBU holds an international reputation as a world leader in the use of robotics in non-destructive testing and developing intelligent robotic systems. Groundbreaking projects have ranged from building wall climbing robots to robots that work under water and oil.

See the website http://www.lsbu.ac.uk/courses/course-finder/mechatronics-robotics-engineering-msc

Modules

- Embedded system design
This module shows you how to design and implement an Embedded System on a single IC. You will learn about the basics and the benefits of all programmable devices. The SOC (System on Chip) process flow is explained for FPGAs (Field Programmable Gate Arrays) stressing the role played by the Hardware Description Languages (HDL). The accompanying workshops demonstrate the use of tools and methodologies as well as the programming, verifying and protecting your designs. We use the commercial software Quartus II and QSYS and the hardware development platform DE2 by Altera.

- Individual project
The individual project is a major element of the course. It involves a wider spectrum of multidisciplinary research in design, manufacturing systems, quality management and IT, with due regard to the efficient exploitation of the technology, materials and marketing resources of industrial firms. Students are encouraged to work on industrial-based projects.

- Pattern recognition and machine learning
This module introduces the fundamentals of both statistical learning theory and practical approaches for solving pattern recognition problems. Further, it consolidates lectures with experimental computer-based workshops to inculcate the principles of machine learning and classification. The module covers: Bayesian decision theory, parametric density estimation, linear discriminant functions, perceptrons, support vector machines, neural networks and clustering.

- Microprocessor-based control and robotics
This module will provide information allowing you to critically evaluate and make the right choice of the microprocessor that will be at the heart of your embedded system. To this effect we provide a thorough discussion and qualitative comparison of the various microprocessor architectures and the methods of the software development available to you. The workshop assignments involve interfacing 8 and 32 bit microcontrollers to a wide range of devices, including robotic manipulators and control/measurement instrumentation.

- Electromechanical systems and manufacturing technology
This module consists of two parts. The first part covers the design of electromechanical components of the embedded system. The material presented here derives from the fields of Mechatronics and Robotics. The second part provides information on modern developments in the field of materials and the manufacturing. Examples of topics covered include applications of nano-technology, use of polymers and composites. Manufacturing techniques are described together with process modelling and control that is essential to produce the material to the required specification.

- Technology evaluation and commercialisation
This module includes: research product idea generation; product definition and value proposition; market research and assessment; functional assessment of product concepts; and strategic assessment of commercial viability.

- Technical, research and professional skills
This module includes: an introduction to project management, project planning, research project characteristics, ethics, feasibility analysis of requirements and resources; research methods; stages in project management; modelling and optimisation tools (PERT and CPM); technical report writing.

- Robotics
This module introduces you to the basic elements and principles of modern robotics. You'll gain a thorough theoretical and practical understanding of the fundamental concepts of this important and fast developing field. Essential geometric concepts will be introduced and these will be applied to the analysis and control of several different types of machines. A key feature of the module will be the wide range of robotic devices studied, from industrial serial manipulators, through mobile robots to quadcopters. The workshop for this modules includes various topics such as Robot Programming, Path Planning, Mapping and Localisation.

- MSc project
The individual project is a major element of the course. We offer a supervision of projects from a wide spectrum of either specialized or multi-disciplinary topics. There are opportunities for individual-centered projects as well for the student being allocated specific tasks within a larger research effort. Students are encouraged to work on industrial-based projects under joint supervision with their employer.

Employability

The course has been designed to help to meet the needs of industry. How much your employability will increase, will depend on your background and the personal contribution you make to your development whilst studying on the course.

Benefits for new graduates

If you are a new graduate in electronic or computer engineering then you benefit from the further advanced topics presented. You'll get an opportunity to cut your teeth on a challenging MSc Project, which will demonstrate your abilities to the potential employers. Alternatively, you could also pursue PhD studies after completing the course.

Benefits of returning to University after time working in industry

If you are returning to University after a period of working in industry, then you'll be able to update yourself with the recent technological progress in the field. You'll gain confidence in your ability to perform at your best and stand a better chance to seek challenging work opportunities. If you are already working in the field, the MSc qualification will enhance your status which will may help with your promotion.

Employment links

We are continually developing links with employers who are interested to provide internship to our students . Examples of this can include small VHDL and DSP designs, ARM based designs, industrial design or correlation research. These projects can be performed as part of the curriculum or as part of a research project.

LSBU Employability Services

LSBU is committed to supporting you develop your employability and succeed in getting a job after you have graduated. Your qualification will certainly help, but in a competitive market you also need to work on your employability, and on your career search. Our Employability Service will support you in developing your skills, finding a job, interview techniques, work experience or an internship, and will help you assess what you need to do to get the job you want at the end of your course. LSBU offers a comprehensive Employability Service, with a range of initiatives to complement your studies, including:

- direct engagement from employers who come in to interview and talk to students
- Job Shop and on-campus recruitment agencies to help your job search
- mentoring and work shadowing schemes.

Professional links

The School of Engineering at LSBU has a strong culture of research, extensive research links with industry through consultancy works and Knowledge Transfer Partnerships (KTPs), and teaching content is closely related to the latest research findings in the field.

History and expertise

A strong research tradition and our industrial links has helped shaped the course design, content selection, course delivery and project supervision.

The Department of Engineering and Design has a strong Mechatronics, Robotics and Non-destructive testing research group with a wide national and international profile. This is in addition to excellent research in many areas of mechanical engineering, electrical engineering, product design, computer network and telecommunications engineering.

Read less
Be inspired to innovate and develop the robots, artificial intelligence and autonomous systems of tomorrow’s world. Read more
Be inspired to innovate and develop the robots, artificial intelligence and autonomous systems of tomorrow’s world. Gain advanced theoretical and practical knowledge from our world-leading experts in interactive and intelligent robotics, and graduate ready to pursue an exciting career in anything from home automation to deep sea or space exploration. You’ll also have the opportunity to gain invaluable industry experience and cultivate professional contacts on an integral work placement.

Key features

-Enhance your employability and grow your professional network with an optional integral work placement. You can choose to work in the UK, or overseas in countries including France, Germany or Japan.
-Get up-to-date with the latest developments in artificial life and intelligence, adaptive behaviour, information visualisation, neural computation and dynamic systems, as well as remote access and monitoring systems. Our seminars series with speakers from industry and academia gives you the opportunity to keep ahead in this fast moving field.
-Give yourself the edge. Our programme distinguishes itself from other robotics masters programmes, in the UK and abroad, by ensuring a deeper theoretical and practical knowledge of interactive and intelligent robotics.
-Expand your skills with first-class facilities including 3D rapid prototyping systems, in-house PCB design and assembly tools, and our award winning Plymouth Humanoid robots.
-Get expert training from members of the Marine and Industrial Dynamic Analysis (MIDAS) research group and the Centre for Robotics and Neural Systems (CRNS).
-Become a professional in your field – this programme is accredited by the Institution of Engineering and Technology (IET).
-Benefit by combining disciplines that are traditionally taught separately. You’ll graduate ready with the expertise and joined-up knowledge to design and develop fully integrated mechanical, electronic, control and computing systems.

Course details

On this programme you’ll gain a solid and broad understanding of the latest developments and issues in robotics. You’ll build theoretical and practical knowledge of control and design as well as covering the interface between real-world devices, autonomous processing and evaluation of acquired information. You’ll investigate user interaction and intelligent decision-making and immerse yourself in an innovative project inspired by the latest developments in technology and society. You’ll have access to a robotics club and to a seminar series so that you can keep up-to-date with advances in the industry and academia.

Core modules
-ROCO503 Sensors and Actuators
-BPIE500 Masters Stage 1 Placement Preparation
-PROJ509 MSc Project
-AINT511 Topics in Advanced Intelligent Robotics
-MECH533 Robotics and Control
-SOFT561 Robot Software Engineering
-AINT513 Robotic Visual Perception and Autonomy
-AINT512 Science and Technology of Human-Robot Interaction

Optional modules
-BPIE502 Electrical/Robotics Masters Industrial Placement

Every postgraduate taught course has a detailed programme specification document describing the programme aims, the programme structure, the teaching and learning methods, the learning outcomes and the rules of assessment.

Read less
Progress and innovation in robotics is now faster than ever, and is providing a wide range of industries and professions access to increasingly sophisticated autonomous and remotely operated devices with a widening range of applications and uses including manufacturing, agriculture, security and medicine. Read more
Progress and innovation in robotics is now faster than ever, and is providing a wide range of industries and professions access to increasingly sophisticated autonomous and remotely operated devices with a widening range of applications and uses including manufacturing, agriculture, security and medicine. As well as enjoying a growing commercial side, robotics also supports scientific research in unprecedented ways, giving us access to ever more remote, unpredictable and hazardous locations. Of course, it is also a major global research discipline in its own right, and robotics' progress has created a burgeoning worldwide demand for experts in a range of disciplines in this expanding billion-dollar industry.

Course detail

The MSc Robotics is available through a partnership between UWE Bristol and the University of Bristol, and provides a comprehensive understanding of advanced robotics and automation systems. While providing an excellent background for a range of technology careers that require robotics and automation knowledge and skills, it also offers the specialisms to support doctorate-level studies and ongoing research careers.

Uniquely, the partnership gives you access to the Bristol Robotics Laboratory, a world-leading centre for autonomous robotic systems and robotics research.

Modules

Core modules:
• Robotic Fundamentals (15 credits)
• Image Processing and Computer Vision (10 credits)
• Uncertainty Modelling for Intelligent Systems (10 credits)
• Animation Production (10 credits)
• Intelligent and Adaptive Systems (15 credits)
• Robotic Systems (10 credits)
• Research Skills (20 credits)
• Research Project (60 credits)

Optional modules from:
• Advanced Dynamics
• Computational Neuroscience
• Advanced DSP and FPGA Implementation
• Artificial Intelligence with Logic Programming
• Pattern Analysis and Statistical Learning

Format

You'll learn through a combination of lectures, seminars, group work, and through sessions at the Bristol Robotics Laboratory (BRL). The course is offered in partnership between UWE Bristol and the University of Bristol, and you will attend sessions at UWE Bristol's Frenchay campus, the University of Bristol, and BRL.

Assessment

You will normally be assessed through examination and coursework, as well as the dissertation.

Careers / Further study

The course provides an excellent route into this increasingly important area of industry, and into research and development.

The partnership between UWE Bristol and the University of Bristol has created a unique centre of excellence for engineering, in the heart of one of the UK's most important hubs for engineering industry especially in the aeronautical and electronics sectors. Bristol is a major base for companies such as Airbus, Rolls Royce, Toshiba and Hewlett Packard, with whom both universities enjoy close links.

How to apply

Information on applications can be found at the following link: http://www1.uwe.ac.uk/study/applyingtouwebristol/postgraduateapplications.aspx

Funding

- New Postgraduate Master's loans for 2016/17 academic year –

The government are introducing a master’s loan scheme, whereby master’s students under 60 can access a loan of up to £10,000 as a contribution towards the cost of their study. This is part of the government’s long-term commitment to enhance support for postgraduate study.

Scholarships and other sources of funding are also available.

More information can be found here: http://www1.uwe.ac.uk/students/feesandfunding/fundingandscholarships/postgraduatefunding.aspx

Read less
In the near future robotic and other autonomous systems will be present in virtually every industry, with their global impact estimated to reach $6.5 trillion per year by 2025 (McKinsey). Read more
In the near future robotic and other autonomous systems will be present in virtually every industry, with their global impact estimated to reach $6.5 trillion per year by 2025 (McKinsey). As new markets turn to robotics for the next step in their evolution, the need for qualified robotic engineers has never been greater.

Why Study MSc Robotics at Middlesex University?
Our hands-on masters degree in Robotics blends practice with theory to equip students with the skills, knowledge and experience they need for a career as a robotics engineer. The postgraduate degree includes significant time working in laboratories under the supervision of our expert teaching staff, many of whom have worked in robotics since the early days of the technology.

Over the duration of the course you will gain experience working with industry-standard equipment in our cutting-edge labs and workshops. You will also benefit from our close to links to leading industry organisations, be encouraged to enter national robotics competitions and supported to undertake industry work placements during the masters.

Course highlights:
Learn in specialist facilities, which includes a wide range of robots, a £250,000 3D printer and Festo didactic automation training systems
Undertake a major study project in the area you wish to specialise in
Contribute to the wide range of robotics research being carried out in the school
Course leader Professor Martin Smith is one of the UK's leading robotics experts and was a judge on BBC Two's Robot Wars for six years.

Read less
The MSc in Intelligent Robotics will provide the opportunity to learn about the growing area of mobile and autonomous robotics, and intelligent systems. Read more
The MSc in Intelligent Robotics will provide the opportunity to learn about the growing area of mobile and autonomous robotics, and intelligent systems. You will gain experience in an exciting wide range of topics, providing you hands-on experience. You will learn about the development of embedded control systems for robots, intelligent algorithms and their application to robotics, communications and systems programming, all with a focus on the practical implementation, both in hardware and simulation. The MSc culminates in a large group project focussed on collective robotic systems, ranging from ground-based units to flying robots. You will have the opportunity to work in a state of the art, dedicated, robotics laboratory for some of your modules and your final project, see the York Robotics Laboratory website for more details on the lab.

The MSc is intended for students who want to learn about robotic and autonomous systems for employment in related industries, or who are seeking a route into a PhD.

The broad aims of the course are to provide:
-A thorough grounding in the use of scientific and engineering techniques as applied to intelligent robotic systems
-A detailed knowledge of the development and deployment of intelligent robotic systems
-A detailed knowledge of the latest developments in intelligent robotics and an ability to reflect critically on those developments
-A detailed understanding of engineering collective robotic systems with emergent behaviours
-Experience of undertaking a substantial group project, on a subject related to research in autonomous robotic systems

Group Project

The aim of this substantial group project is to immerse the students in a life-like scenario of a group of engineers developing a large scale collective robotic system. The project will involve the design, construction and implementation of the control of a heterogeneous collective robotic system, providing students with practical experience of project management and team skills. The system will include both software (such as individual and collective robotic control, low-level programming) and hardware (such as hardware design or customisation) components. The project will culminate in the design and realisation of a collective robotic system that will undergo various test scenarios in the robotics laboratory.

The project preparation will begin towards the end of the Autumn term when groups will be develop a Quality Assurance manual, that will prepare the students to establish effective group policies, procedures and roles for group members, introducing the Quality Assurance processes applied to medium to large projects in industry. The group will be given a scenario and begin establishing requirements and develop outline designs.

In the Summer term, the project will get under way. Groups of 4-6 students will be formed, assigned a target system to design, and provided with a budget. In this term, the students will prepare a design document that will be followed for the remainder of the project. Detailed system specifications will be established and initial prototypes developed. You will make full use of the Robotics Laboratory and spend the vast majority of your time working on robotic systems and attempting to develop an innovative solution to the problem given. Full technical support is available in the laboratory.

A final presentation of each group is done in September where live demos of the system developed have to be provided. This is combined with a group presentation on the work undertaken and contributions made by each individual. Group documentation is submitted along with an individual report.

Read less
Join a hands-on, state-of-the-art course that focuses on the practical side of robotics ad the effects that robots have on society. Read more
Join a hands-on, state-of-the-art course that focuses on the practical side of robotics ad the effects that robots have on society.

Intended as both an academic and industry facing course, the subject is aimed at graduates from a computing, engineering or science discipline who want to develop their understanding of the practical and theoretical aspects of robotic systems. This is an area with a wide-range of applications in industry and research.

This MSc focuses on the computational side of Robotics with an emphasis on the software engineering aspects. In addition it provides the ability to investigate the field of Artificial Intelligence applicable to this sector and a substantial portion of the programme concentrates on the effect that robots have on society. It is the intention of this programme to produce specialists with up to date knowledge and skills that are capable of being used in an industrial, commercial and research environment.

Although the necessary background is introduced as appropriate, the course deals with problem-solving and the provisioning of real time aspects of computer based solutions and applications using current and emerging technologies. In addition to developing an understanding of underlying principles, students are engaged in the practical application of design, implementation, trouble-shooting and management for real-world problems.

Key Course Features

The programme aims to provide the students with the following:
-Hands-on experience of state of the art equipment.
-Specialist, advanced technical skills in the area of Robotics.
-An advanced understanding and competence in the hardware and software used for the development and use of Robotics.
-The ability to critically appraise and disseminate research results.
-A sound basis for further research and / or professional development.

What Will You Study?

The MSc Robotics is offered in full-time and part-time mode. As with most masters programmes the MSc Robotics has 2 parts, a taught part followed by a dissertation. Students study 6 core modules worth 20 credits each followed by a 60 credit dissertation making a total of 180 credits.

MODULES
-Research Methods
-Future & Emerging Technology
-Advanced Artificial Intelligence
-Computational Robotics
-Robotic Applications in Society
-Robotic Software Engineering
-Dissertation

The information listed in this section is an overview of the academic content of the programme that will take the form of either core or option modules. Modules are designated as core or option in accordance with professional body requirements and internal academic framework review, so may be subject to change.

Career Prospects

Modules studied on the programme have been designed to provide the skills to meet industrial and commercial needs as well as those of traditional academic standing. In addition to the academic and theoretical aspects the emphasis will be on the practical side of robotics to enable graduates to practise as a professional in industry or continue with further study towards a research degree.

The Careers & Zone at Wrexham Glyndŵr University is there to help you make decisions and plan the next steps towards a bright future. From finding work or further study to working out your interests, skills and aspirations, they can provide you with the expert information, advice and guidance you need.

Read less
VIBOT is a two-year International Masters of Excellence in Vision and Robotics sponsored by the European Union under the Erasmus Mundus framework. Read more
VIBOT is a two-year International Masters of Excellence in Vision and Robotics sponsored by the European Union under the Erasmus Mundus framework. Built as collaboration between three leading universities in Europe (Heriot-Watt University in Scotland, the Universitat de Girona in Spain and the Université de Bourgogne in France), it is a truly international degree where students not only learn cutting edge science and engineering but are also exposed to different cultures. Over 50 countries have been represented on the Vibot programs since its inception in 2006.

This is a highly competitive programme aiming at attracting the best European and Overseas students to study robotics and computer vision. A number of very attractive grants (up to €42000) covering the University fees and a stipend for living and travel expenses are offered to the best students in the limit of the available grants (typically 16/year). On average, one in ten student applying is selected for a grant.

In recent years, the amount of digital image information to be stored, processed and distributed has grown dramatically. The generalisation of the use of digital images, in video surveillance, biomedical and e-health systems, and remote sensing, creates new, pressing challenges, and automated management tools are key to enable the organisation, mining and processing of these important knowledge resources. The key subject areas taught are computer vision, pattern recognition and robotics. Research in these areas is very dynamic and relevant to a wide range of sectors, such as the autonomotive industry, autonomous systems, medical imaging and e-health. The course is over two years, students spend the first semester in France, the second in Spain and the third in Scotland. The fourth semester is reserved for Masters thesis.

Career Prospects:
All of our graduates find work in industry or research very quickly and are sought after by research laboratories and leading blue chip companies alike. More and more of our graduates choose an industrial career.

Started in 2006, the VIBOT program has become the leading computer vision and robotics program in Europe. A majority of the VIBOT students have graduated with distinction and around 50% of them continue on to PhD studies.

Links with industry:
Strong links with industry have been established and companies now routinely welcome our students for their final year project. Recently, a 2007-2009 VIBOT student won the BAe Systems Chairman Bronze award for his contribution to autonomous navigation of terrestrial robots, demonstrating that our student are well prepared not only for high academic achievement but also for industry.

Our industrial partners have commented on our program:

“We have hosted VIBOT MSc project for the past 3 years and found them to be of a high calibre - in fact - we hired one of them. Their training seems to equip them well for in medical image analysis research, and what they don't know they quickly learn. The course works them hard - requiring a dissertation, short paper, poster and presentation of their work. This serves us well since it ensures they leave behind a good documentary record in addition to the software output. We look forward to working with VIBOT students in the future.

Ian Poole, PhD.
Scientific Fellow - Image Analysis
Toshiba Medical Visualization Systems Europe, Ltd Bonnington Bond”

“BAE Systems has found the ViBOT students to be of a high calibre and full of enthusiasm. They have all managed to fit into our teams quickly and have made valuable technical contributions. We have hired one student following his placement. We find that, through the students, we can sometimes attempt innovative tasks and try new approaches that are off the critical path of our projects. This can help give us early initial experience of emerging methods or potential applications. The ViBOT students are usually from overseas which has the bonus of adding to the diversity of our student placements, who are typically coming from the UK.

Richard Brimble
Principal Scientist,
BAE SYSTEMS, Advanced Technology Centre,

Facilities:
Our world-class robotics facilities include state of the art robots and 3D scanners. We have several turtlebots (http://www.turtlebot.eu) for land robotics, equipped with state of the art sensing such as the kinect, several human robots (Nao) as well as a wide range of dedicated robots for air and subsea robotics.

Read less
Automation, control and robotics are pervasive enabling technologies found in almost every modern technical system, particularly in manufacturing and production. Read more
Automation, control and robotics are pervasive enabling technologies found in almost every modern technical system, particularly in manufacturing and production. They combine the diverse and rapidly expanding disciplines of automation, control, mechanics, software and signal processing.

This course is ideal if you wish to develop comprehensive knowledge and understanding of
-Classical and modern control theory.
-Industrial automation.
-Systems analysis.
-Design and simulation.
-Robotics.

You gain the ability to apply principles of modelling, classical and modern control concepts and controller design packages in various areas of industry. You also learn how to design and exploit automation and robotic systems in a range of manufacturing and industrial applications.

The course has six core modules which cover the major aspects of industrial automation and control systems engineering and robotics, ranging from classical linear control system design to non-linear, optimal and intelligent control systems, including distributed control systems, robotics, computer networks and artificial intelligence.

You also choose two optional modules relevant to automation and control to suit your interests. For example, if you wish to work in the manufacturing industry you can choose manufacturing systems or machine vision. There is the opportunity to study one or two management modules if you wish to apply yourself to a more managerial role.

To gain the masters you complete a major research-based project, which can be focused on an area of your particular interest or career need.

You work alongside staff from the Electrical, Electronic and Control Engineering Group and the Centre for Automation and Robotics Research (CARR) at Sheffield Hallam. This provides the opportunity to work with active researchers.

For more information, see the website: https://www.shu.ac.uk/study-here/find-a-course/msc-automation-control-and-robotics

Professional recognition

This course is seeking accreditation by the Institution of Engineering and Technology (IET) on behalf of the Engineering Council for the purposes of fully meeting the academic requirements for registration as a Chartered Engineer. The MSc will meet, in part, the exemplifying academic benchmark requirements for registration as a Chartered Engineer; graduates who have a BEng (Hons) accredited for CEng will be able to show that they have satisfied the further learning requirement for CEng accreditation.

Course structure

Full time – 12 to 18 months.
Part time – 3 years.
Start dates September and January.

Core modules
-Industrial automation
-Control of linear systems
-Advanced control methods
-Robotics
-Computer networks
-Applicable artificial intelligence

Options
Choose two from:
-Software engineering
-Project and quality management
-Sustainability, energy and environmental management
-Machine vision
-Digital signals processing
-Manufacturing systems

MSc
-Project and dissertation

Assessment: coursework, examination, presentation, MSc project report.

Other admission requirements

International students
India: a first class BE in a relevant discipline, or a good second class BE with a strong performance in mechanical and manufacturing subjects.

China: a four year Bachelors degree in a relevant discipline, with an overall average of at least 80 per cent or equivalent.

Other countries: a good honours degree or equivalent in a relevant subject.

Overseas applicants from countries whose first language is not English must normally produce evidence of competence in English. An IELTS score of 6.0 with 5.5 in all skills (or equivalent) is the standard for non-native speakers of English. If your English language skill is currently below an IELTS score of 6.0 with a minimum of 5.5 in all skills we recommend you consider a Sheffield Hallam University Pre-sessional English course which will enable you to achieve an equivalent English level.

Read less
The School has a strong international reputation for research in this area and this expertise influences this course which explores current research and practice in artificial intelligence and robotics. Read more
The School has a strong international reputation for research in this area and this expertise influences this course which explores current research and practice in artificial intelligence and robotics. This MSc can lead to a career such as a designer of intelligent systems or in research. The core modules are: artificial life with robotics, neural computation and machine learning, theory and practice of artificial intelligence.

Why choose this course?

-This MSc is available with an optional one year industry placement. The 'with placement' programmes give you additional industrial experience by applying the skills you have learned throughout your studies
-One of a range of advanced courses within our postgraduate Master's programme in Computer Science, this particular course provides you with a specialism in Artificial Intelligence and Robotics
-Advanced topics studied include artificial life with robotics, neural computation and machine learning, theory and practice of artificial intelligence
-Taught by a highly-regarded and long-established computer science department
-Sixty percent of our research impact in Computer Science and Informatics at the University of Hertfordshire has been rated at world-leading or internationally excellent in the Research Excellence Framework (REF) 2014

Careers

Our master's programme is designed to give Computer Science graduates the specialist, up-to-date skills and knowledge sought after by employers, whether in business, industry, government or research.

This particular course will prepare you to take up a challenging job or to pursue further research in specific AI fields. Typical career opportunities include researcher or designer for intelligent systems.

Teaching methods

Classes consist of lectures, small group seminars, and practical work in our well-equipped laboratories. We use modern, industry-standard software wherever possible. There are specialist facilities for networking and multimedia and a project laboratory especially for master's students.

In addition to scheduled classes, you will be expected a significant amount of time in self-study, taking advantage of the extensive and up-to-date facilities. These include the Learning Resource Centres, open 24x7, with 1,500 computer workstations and wifi access, Studynet our versatile online study environment usable on and off campus, and open access to our labs.

Work Placement

All our one year full time Computer Science Masters programmes are available with an optional one year industry placement. The 'with placement' programmes give you additional industrial experience by applying the skills you have learned throughout your studies.

They offer you the opportunity to work for one year in a highly professional and stimulating environment. You will be a full time employee in a company earning a salary and will learn new skills that can't be taught at University. During the placement, you will be able to gain further insight into industrial practice that you can take forward into your individual project.

We will provide excellent academic and personal support during both your academic and placement periods together with comprehensive careers guidance from our very experienced dedicated Careers and Placements Service.

Although the responsibility for finding a placement is with you, our Careers and Placements Service maintains a wide variety of employers who offer placement opportunities and organise special training sessions to help you secure a placement, from job application to the interview. Optional one-to-one consultations are also available.

In order to qualify for the placement period you must maintain an overall average pass mark of not less than 60% across all modules studied in semester ‘A’.

Structure

Year 1
Core Modules
-Professional Issues
-Investigative Methods for Computer Science
-Artificial Life with Robotics
-Neural Networks and Machine Learning
-Theory and Practice of Artificial Intelligence
-Preparation for Placement
-Professional Work Placement for MSc Computer Science

Optional
-Professional Issues
-Investigative Methods for Computer Science
-Data Mining
-Mobile Standards, Interfaces and Applications
-Human Computer Interaction: Principles and Practice
-Advanced Databases
-Programming Paradigms
-Measures and Models for Software Engineering
-Programming for Software Engineers
-Software Engineering Practice and Experience
-Distributed Systems Security
-Secure Systems Programming
-Network System Administration
-Multicast and Multimedia Networking
-Wireless, Mobile and Ad-hoc Networking
-Information Security, Management and Compliance
-Digital Forensics
-Penetration Testing

Year 2
Core Modules
-Artificial Intelligence with Robotics Masters Project

Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X