• Northumbria University Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Ulster University Featured Masters Courses
  • Birmingham City University Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Surrey Featured Masters Courses
University of Nottingham in China Featured Masters Courses
Cass Business School Featured Masters Courses
Cranfield University Featured Masters Courses
Staffordshire University Featured Masters Courses
Ulster University Featured Masters Courses
"robotic"×
0 miles

Masters Degrees (Robotic)

We have 85 Masters Degrees (Robotic)

  • "robotic" ×
  • clear all
Showing 1 to 15 of 85
Order by 
Robotic technology and cyber-physical systems can be applied in many different ways, such as industrial machines, automobiles, (micro)-electric industries, as well as aerospace and air transport industries. Read more

Robotic technology and cyber-physical systems can be applied in many different ways, such as industrial machines, automobiles, (micro)-electric industries, as well as aerospace and air transport industries. The design of robotic systems deals with various preception principles that enable the systems to recognize and analyze their environment, adapt to it and take appropriate actions to accomplish the given tasks. M.Sc. Robotic Systems Engineering (M.Sc. RoboSys) is tailored for robotic specialists and provides an outstanding education in the fields of mechanical engineering, electrical engineering, and computer sciences.

A Robotic Systems Engineering graduate is someone who...

  • Learns in specialist facilities, which includes a wide range of robotic systems: industrial robots, mobile robots, assistance robotics, and intralogistics robotic systems
  • Develops, implements and programs robotic systems for different levels of autonomy
  • Designs industrial robots that are automated, programmable, and capable to move in a dexterous workspace
  • Combines and applies technological skills of mechanics, electrical drives, sensor technology, and information processing to optimize systems of robots for different domains
  • Organizes and monitors the operation and manufacturing processes
  • Develops robotic systems for embedded production systems or autonomous warehouses (e.g. such as Amazon and Alibaba are aiming to build)

… to make a difference. Will this be you?

You can also be a part of our group of highly motivated students who are widely engaged in extracurricular activities. Our Carologistics student team, for example, is the current world champion in the RoboCup Logistics League (RCLL) for the fourth time in a row.

PROGRAM STRUCTURE

M.Sc. RoboSys comprises three semesters of lectures, exercises and practical courses in mechanical engineering at RWTH Aachen University. In the fourth semester, you will choose either the industrial track, in which you will pursue an internship in industry or the academic track to carry out a research project. You also have to finish your Master's thesis in this final semester.

By awarding the RWTH Aachen Master's Degree, the program gives its graduates a degree that is recognized worldwide and qualifies you for doctoral studies.



Read less
The MSc Digital Architecture and Robotic Construction focuses on digital design methods and construction technologies in Architecture, Engineering and Design. Read more
The MSc Digital Architecture and Robotic Construction focuses on digital design methods and construction technologies in Architecture, Engineering and Design. It provides a scientific and practical foundation and gives an overview of latest developments in Advanced Modelling, Computational Design and Robotic Construction.

Digital technologies have altered the field of architecture and the architectural profession significantly – from design to production. In this context, the course combines the professional quality of an architectural qualification with the theory and practice behind the latest digital developments in the field.

You'll use computer-aided methods for design and study the construction and fabrication process in-depth. As part of the School of the Built Environment and Architecture, you'll work in a transdisciplinary environment where knowledge is shared. Architecture students are also able to work in our Architecture Design Studio, a dedicated studio space with views across the London landscape.

You'll be able to exploit LSBU's extensive industry connections during the course and your dissertation will be closely linked to practice. You'll be encouraged to work together with partners; an engineering company or another academic School within LSBU.

Visit the Digital Architecture and Robotics lab (DARLAB) website, where you can find more information about the facilities and the latest projects taking place

http://www.dar-lab.net/

Modules

Integrative technologies and robotic manufacturing
Advanced digital design techniques
Design project material behaviour
Design project adaptive systems and structures
Technology for building systems
Design research architectural project
Dissertation

Modules will be assessed by a mix of coursework and examinations.

Teaching and learning

The academic team are qualified experts from all over the world, with experience in working with avant-garde technologies to gain the best results in architecture and design. In addition, all are actively involved in research and consultancy, which enables staff to draw on the latest industry developments in both lectures and practical work. You'll enjoy guest lectures from world experts.

The course makes extensive use of DARLAB (Digital Architectural Robotics lab), a research platform in architectural education that advances experimentation and cross-discipline collaboration among professors, students and industry partners to expand the boundaries of architectural practice. The modules' contents are oriented toward integrated learning assignments. The course is delivered through lectures, seminars, projects and internships.

You'll be supported throughout your final project by your tutors and will have access to a range of e-learning materials.

Currently 50% of our full-time student cohort is from overseas. This allows our students to network across America, India, the Middle-East, Australia and Europe.

Placements

Staff use their professional connections to help students find work experience and job opportunities on graduation. All students will be involved in the construction of a large-scale pavilion in central London.

Professional links

The Digital Architecture and Robotics laboratory (DARLAB) partners with industry to provide solutions to their business problems and challenges that they currently face or expect to arise in the near future. We offer businesses a number of avenues for accessing our research expertise. We also undertake research projects for small and big businesses alike at competitive rates and where speed and confidentially are key requirements.

Partners Include:

• Hiteco: designers and manufacturers of high-tech machine components for machining wood, light alloys, plastic and composite materials.
• QDesign: a team of experts in engineering sciences. Their solutions offer a wide range of robotics plants applications and continuous software development.
• SCM Group: company world leader in the production of woodworking machinery and systems.
• CIMsystem: a leading provider of CAD/CAM technology and technological solutions with a worldwide technical and sales partner network.
• HAL: a Grasshopper plugin for industrial robots programming supporting ABB, KUKA and Universal Robots machines. Allows to simulate, program, control and monitor robotic cells.
• KUKA: pioneer in robotics and automation technology, one of the leading manufacturers of robotic systems worldwide.

Employability

The Master's program opens up various possibilities for professional development. You could go on to work in the area of architecture, building construction, engineering, interior or product design. You could also work as a specialist or consultant in the field of computational design and robotic construction.

The course could also lead on to a PhD or employment in engineering research.

LSBU Employability Services

LSBU is committed to supporting you develop your employability and succeed in getting a job after you have graduated. Your qualification will certainly help, but in a competitive market you also need to work on your employability, and on your career search. Our Employability Service will support you in developing your skills, finding a job, interview techniques, work experience or an internship, and will help you assess what you need to do to get the job you want at the end of your course. LSBU offers a comprehensive Employability Service, with a range of initiatives to complement your studies, including:

• Direct engagement from employers who come in to interview and talk to students
• Job Shop and on-campus recruitment agencies to help your job search
• Mentoring and work shadowing schemes.

Read less
The MSc in Intelligent Robotics will provide the opportunity to learn about the growing area of mobile and autonomous robotics, and intelligent systems. Read more
The MSc in Intelligent Robotics will provide the opportunity to learn about the growing area of mobile and autonomous robotics, and intelligent systems. You will gain experience in an exciting wide range of topics, providing you hands-on experience. You will learn about the development of embedded control systems for robots, intelligent algorithms and their application to robotics, communications and systems programming, all with a focus on the practical implementation, both in hardware and simulation. The MSc culminates in a large group project focussed on collective robotic systems, ranging from ground-based units to flying robots. You will have the opportunity to work in a state of the art, dedicated, robotics laboratory for some of your modules and your final project, see the York Robotics Laboratory website for more details on the lab.

The MSc is intended for students who want to learn about robotic and autonomous systems for employment in related industries, or who are seeking a route into a PhD.

The broad aims of the course are to provide:
-A thorough grounding in the use of scientific and engineering techniques as applied to intelligent robotic systems
-A detailed knowledge of the development and deployment of intelligent robotic systems
-A detailed knowledge of the latest developments in intelligent robotics and an ability to reflect critically on those developments
-A detailed understanding of engineering collective robotic systems with emergent behaviours
-Experience of undertaking a substantial group project, on a subject related to research in autonomous robotic systems

Group Project

The aim of this substantial group project is to immerse the students in a life-like scenario of a group of engineers developing a large scale collective robotic system. The project will involve the design, construction and implementation of the control of a heterogeneous collective robotic system, providing students with practical experience of project management and team skills. The system will include both software (such as individual and collective robotic control, low-level programming) and hardware (such as hardware design or customisation) components. The project will culminate in the design and realisation of a collective robotic system that will undergo various test scenarios in the robotics laboratory.

The project preparation will begin towards the end of the Autumn term when groups will be develop a Quality Assurance manual, that will prepare the students to establish effective group policies, procedures and roles for group members, introducing the Quality Assurance processes applied to medium to large projects in industry. The group will be given a scenario and begin establishing requirements and develop outline designs.

In the Summer term, the project will get under way. Groups of 4-6 students will be formed, assigned a target system to design, and provided with a budget. In this term, the students will prepare a design document that will be followed for the remainder of the project. Detailed system specifications will be established and initial prototypes developed. You will make full use of the Robotics Laboratory and spend the vast majority of your time working on robotic systems and attempting to develop an innovative solution to the problem given. Full technical support is available in the laboratory.

A final presentation of each group is done in September where live demos of the system developed have to be provided. This is combined with a group presentation on the work undertaken and contributions made by each individual. Group documentation is submitted along with an individual report.

Read less
Why this course?. This MSc focuses on state-of-the-art technologies for autonomous control and machine learning with applications in robotics, sensor networks, big data analytics, and autonomous agents. Read more

Why this course?

This MSc focuses on state-of-the-art technologies for autonomous control and machine learning with applications in robotics, sensor networks, big data analytics, and autonomous agents.

Emphasis is given to topics that support a new emerging generation of self-sustaining and intelligent devices created for the Internet of Things, Ubiquitous Computing, and Industry 4.0 environments.

This degree is designed to provide a wide-ranging background in autonomous technologies that can be applied in a variety of disciplines. 

In addition to traditional technologies related to robotics, embedded systems, design, and control, students will be exposed to system-level design methods and state-of-the-art theory behind some of the newest and most promising fields of artificial intelligence.

Applications include autonomous mobile systems, digital manufacturing, Big Data analytics, Internet of things device engineering, and artificial intelligence programming.

The MSc is delivered jointly by the Departments of Electronic & Electrical Engineering, and Design, Manufacture & Engineering Management.

This ensures you have access to academic leaders in the fields of machine learning, autonomous systems, digital manufacturing and design engineering.

You’ll study

You’ll take two semesters of compulsory and optional taught classes. These are followed by a three-month research project in your chosen area. Opportunities exist to do the project through the departments' competitive MSc industrial internships.

The internships are offered in collaboration with selected department industry partners. You’ll address real-world engineering challenges facing the partner, with site visits, access and provision of relevant technical data and/or facilities provided, along with an industry mentor and academic supervisor.

Facilities

We’ve a wide range of excellent teaching spaces including interactive flexible learning spaces, and state-of-the-art facilities. Our Technology and Innovation Centre (TIC) is home to a number of world class labs where students will have an opportunity to undertake research projects in relevant areas. The University is also home to some key and relevant industry engagement research centres, including:

Industry engagement

Interaction with industry is provided through our internships, teaching seminars and networking events. The departments deliver monthly seminars to support students’ learning and career development.

Xilinx, Texas Instruments, MathWorks, and Leonardo are just a few examples of the industry partners you can engage with during your programme of study.

Learning & teaching

We use a blend of teaching and learning methods including interactive lectures, problem-solving tutorials and practical project-based laboratories.

Our technical and experimental officers are available to support and guide you on individual subject material. Each module comprises approximately five hours of direct teaching per week.

To enhance your understanding of the technical and theoretical topics covered in these, you're expected to undertake a further five to six hours of self-study, using our web-based virtual learning environment (MyPlace), research journals and library facilities.

The teaching and learning methods used ensure you'll develop not only technical engineering expertise but also communications, project management and leadership skills.

Assessment

A variety of assessment techniques are used throughout the course. Each module has a combination of written assignments, individual and group reports, oral presentations, practical lab work and, where appropriate, an end-of-term exam.

Assessment of the summer research project consists of four elements, with individual criteria:

  1. Interim report (10%, 1,500 to 3,000 words) – The purpose of this report is to provide a mechanism for supervisors to provide valuable feedback on the project’s objectives and direction.
  2. Poster Presentation (15%) – A vital skill of an engineer is the ability to describe their work to others and respond to requests for information. The poster presentation is designed to give you an opportunity to practise that.
  3. Final report (55%) – This assesses the communication of project objectives and context, accuracy and relevant of background material, description of practical work and results, depth and soundness of discussion and conclusions, level of engineering achievement and the quality of the report’s presentation.
  4. Conduct (20%) - Independent study, project and time management are key features of university learning. The level of your initiative & independent thinking and technical understanding are assessed through project meetings with your supervisor and your written logbooks.

Careers

Job titles include:

  • Graduate controls engineer
  • Graduate software engineer
  • Lecturer
  • Roboticist
  • Data analytics programmer

Employers include:

  • Xilinx
  • Texas Instruments
  • MathWorks
  • Leonardo
  • Siemens
  • Jaguar/Land Rover


Read less
Robotics and autonomous systems (RAS) are set to shape innovation in the 21st century, underpinning research in a wide range of challenging areas. Read more

Robotics and autonomous systems (RAS) are set to shape innovation in the 21st century, underpinning research in a wide range of challenging areas: the ageing population, efficient health care, safer transport, and secure energy. The UCL edge in scientific excellence, industrial collaboration and cross-sector activities make it ideally placed to deliver this MRes, which uniquely covers the whole spectrum of potential RAS areas and application.

About this degree

The programme teaches students the essentials of robotic and computational tools for robotics and autonomous systems. The key aim of the principal project thesis is to cultivate a deep understanding of robotics research, with a particular focus on a specific research topic in robotics and autonomous systems.

Students undertake modules to the value of 180 credits.

The programme consists of one core module (15 credits), two to three optional modules (30 to 45 credits), up to two elective modules (30 credits), and a dissertation/report (105 credits).

Core modules

  • Robotic Systems Engineering (15 credits)

Optional modules

Students must choose a minimum of 30 and a maximum of 45 credits from Optional modules. Students must also choose a minimum of 15 and a maximum of 30 credits from Electives. 

  • Robotic Control Theory and Systems (15 credits)
  • Robotic Sensing, Manipulation and Interaction (15 credits)
  • Robotic Vision and Navigation (15 credits)

Please note: the availability and delivery of modules may vary, based on your selected options.

A list of acceptable elective modules is available on the Departmental page.

Dissertation/report

All students undertake an independent research project which culminates in a dissertation of 30,000 words.

Teaching and learning

Teaching is delivered by lectures, tutorials, practical sessions, projects and seminars. Assessment is through examination, individual and group projects and presentations, and design exercices.

Further information on modules and degree structure is available on the department website: Robotics MRes

Funding

Scholarships relevant to this department are displayed below.

For a comprehensive list of the funding opportunities available at UCL, including funding relevant to your nationality, please visit the Scholarships and Funding website.

Careers

Robotics is a growing field encompassing many technologies with tremendous opportunities for research and development both in industry and in academia, and with diverse applications across different industrial sectors spanning manufacturing, security, mining, design, transport, exploration and healthcare. Graduates from our MRes programme will will have project-focused experience and knowledge in robotics and the underpinning computational and analytical fundamentals. These skills will position graduates to be well placed to undertake PhD studies or industrial research and development in robotics and computational research specific to robotics but translational across different analytical disciplines, or applied fields that will be influenced by new robotic technologies and capabilities.

Employability

The MRes will develop skills widely relevant to a career in engineering industries and analytical problem-solving occupations. Graduates with skills to develop new robotics solutions and solve computational challenges in automation are likely to be in high demand globally.

Why study this degree at UCL?

UCL scored highest among UK universities for the quality of research in Computer Science and Informatics in the Research Excellence Framework (REF2014).

With the external project involvement anticipated, students on this programme will have the opportunity to interact and collaborate with key companies in the industry - Airbus, Shadow Hand, OC Robotics and Intuitive Surgical - and work on real-world problems through industry-supported projects.

Recent investment across UCL in the Faculty of Engineering and The Bartlett Faculty of the Built Environment has created the infrastructure for an exciting robotics programme, which will be interdisciplinary and unique within the UK and Europe.



Read less
Robotics and autonomous systems (RAS) are set to shape innovation in the 21st century, underpinning research in a wide range of challenging areas. Read more

Robotics and autonomous systems (RAS) are set to shape innovation in the 21st century, underpinning research in a wide range of challenging areas: the ageing population, efficient health care, safer transport, and secure energy. The UCL edge in scientific excellence, industrial collaboration and cross-sector activities make it ideally placed to drive IT robotics and automation education in the UK.

About this degree

The programme provides an overview of robotic and computational tools for robotics and autonomous systems as well as their main computational components: kinetic chains, sensing and awareness, control systems, mapping and navigation. Optional modules in machine learning, human-machine interfaces and computer vision help students grasp fields related to robotics more closely, while the project thesis allows students to focus on a specific research topic in depth.

Students undertake modules to the value of 180 credits.

The programme consists of four core modules (60 credits), two to four optional modules (30 to 60 credits), up to two elective modules (30 credits), and a dissertation/report (60 credits).

Core modules

  • Robotic Control Theory and Systems (15 credits)
  • Robotic Sensing, Manipulation and Interaction (15 credits)
  • Robotic Systems Engineering (15 credits)
  • Robotic Vision and Navigation (15 credits)

Optional modules

Students will need to choose a minimum of 30 and a maximum of 60 credits from the optional modules.

  • Acquisition and Processing of 3D Geometry (15 credits)
  • Artificial Intelligence and Neural Computing (15 credits)
  • Image Processing (15 credits)
  • Inverse Problems in Imaging (15 credits)
  • Mathematical Methods, Algorithmics and Implementations (15 credits)
  • Numerical Optimisation (15 credits)
  • Research Methods and Reading (15 credits)
  • Terrestrial Data Acquisition (15 credits)

Please note: the availability and delivery of optional modules may vary, depending on your selection.

Students can also choose up to two elective MSc modules from across UCL Computer Science, UCL Mechanical Engineering and UCL Bartlett School of Architecture.

A list of acceptable elective modules is available on the Departmental page.

Dissertation/report

All students undertake an independent research project which culminates in a dissertation of 12,000 words.

Teaching and learning

Teaching is delivered by lectures, tutorials, practical sessions, projects and seminars. Assessment is through examination, individual and group projects and presentations, and design exercises.

Further information on modules and degree structure is available on the department website: Robotics and Computation MSc

Funding

Four MSc Scholarships, worth £4000 each, are made available by the Department of Computer Science to UK/EU offer holders with a record of excellent academic achievement. The closing date will be in June 2018. For more information, please see the department pages.

For a comprehensive list of the funding opportunities available at UCL, including funding relevant to your nationality, please visit the Scholarships and Funding website.

Careers

Robotics is a growing field encompassing many technologies with applications across different industrial sectors, and spanning manufacturing, security, mining, design, transport, exploration and healthcare. Graduates from our MSc programme will have diverse job opportunities in the international marketplace with their knowledge of robotics and the underpinning computational and analytical fundamentals that are highly valued in the established and emerging economies. Students will also be well placed to undertake PhD studies in robotics and computational research specific to robotics but translational across different analytical disciplines or applied fields that will be influenced by new robotic technologies and capabilities.

Employability

This programme prepares students to enter a robotics-related industry or any other occupation requiring engineering or analytical skills. Graduates with skills to develop new robotics solutions and solve computational challenges in automation are likely to be in demand globally.

Why study this degree at UCL?

UCL received the highest percentage (96%) for quality of research in Computer Science and Informatics in the UK's most recent Research Excellence Framework (REF2014).

With the external project involvement anticipated, students on this programme will have the opportunity to interact and collaborate with key companies in the industry - Airbus, Shadow Hand, OC Robotics and Intuitive Surgical - and work on real-world problems through industry-supported projects.

Recent investment across UCL in the Faculty of Engineering and The Bartlett Faculty of the Built Environment has created the infrastructure for an exciting robotics programme, which will be interdisciplinary and unique within the UK and Europe.



Read less
Robotics is on the cusp of an exciting new era as robots become more reactive, intelligent and human-like, as well as finding applications in a range of industries including consumer and healthcare robotics. Read more

Robotics is on the cusp of an exciting new era as robots become more reactive, intelligent and human-like, as well as finding applications in a range of industries including consumer and healthcare robotics.

We are in the midst of an increase in the pace of technological change and the changes in the coming decade will be a magnitude of order greater than anything that has gone before. A paradigm shift is about to take place that will forever change society; our ability to manufacture novel robots and new artificial intelligence techniques will both change the way we interact with technology and will allow technology to interact with us and our world in a far more nuanced way.

This new MSc Robotics Engineering reflects recent software and hardware technological advances and exposes students to new, much sought-after skills and up-to-date areas of research. Recent technological advances are incorporated into the course by developing novel cross disciplinary approaches and subject areas such as Embedded Systems, Artificial Intelligence and Virtual Reality.

Robotics Engineering covers a wide range of specific topics such as:

  • Robotics
  • Embedded Systems
  • Robots for special applications
  • Sensors
  • Actuators
  • Robot Navigation
  • Microcontrollers
  • Physical Computing
  • Artificial Intelligence
  • Virtual Reality
  • The Internet of Things

The course will include an introduction to Robotics, covering topics such as actuators, sensors and mechatronics, with examples and categorization of robots (from mobile robots to robot arms and interactive robots); robotic applications including biomedical robotics (e.g. for minimally invasive surgery) and robotic rehabilitation, robotic hands (metamorphic hands, grasping and sensing) and industrial robotics; embedded systems and microcontrollers including the Internet of Things; the robot as a computational unit based on sensing, reasoning and action; Artificial Intelligence, navigation and machine learning. You will have the opportunity to develop the hardware and software for a robotic system.



Read less
The Robotics MSc allows you to gain specialist knowledge relating to robotics and automation applications by examining the integration of mechanical devices, sensors, electronics and ‘intelligent’ computer-based controllers. Read more

The Robotics MSc allows you to gain specialist knowledge relating to robotics and automation applications by examining the integration of mechanical devices, sensors, electronics and ‘intelligent’ computer-based controllers. You will also explore the latest developments in robotics while completing research and development work for your individual research project. You will complete the course in one year, studying September to September and taking a combination of required and optional modules totalling 180 credits, including 60 credits that will come from an individual project of 15,000 words. You will study robotic systems, computer vision, sensors and actuators, real-time systems and control. There are also opportunities to explore a broad range of optional modules allowing you the freedom to develop your study pathway to reflect your interests.

Key benefits

  • Unrivalled location in the heart of London giving access to major libraries and leading scientific societies, including the Chartered Institute for IT (BCS), the Institution of Engineering and Technology and the Institution for Mechanical Engineers (IMechE).
  • Graduates gain experience of designing robotic devices to provide smart engineering solutions.
  • Access to speakers of international repute through seminars and external lectures, enabling students to keep abreast of emerging knowledge in intelligent systems and related fields.
  • Research-led individual project supervised by leading experts in their fields.
  • The Department of Informatics has a reputation for delivering research-led teaching and project supervision from leading experts in their field.

Description

Robotics is a multi-disciplinary activity dealing with the integration of mechanical devices, sensors, electronics and ‘intelligent’ computer-based controllers. The programme is therefore built around core modules such as Robotic Systems, Computer Vision, Sensors and Actuators, Real Time Systems and Control, which are complemented by a wide range of optional modules. The final part of the programme is an individual project that is closely linked with the Department’s research activities.

Course purpose

For graduates in engineering or a related scientific discipline, from this programme you will gain an awareness of the latest developments in Robotics while completing research and development work for your individual research project. This will provide valuable preparation for a career in research or industry.

Course format and assessment

We use lectures, seminars and group tutorials to deliver most of the modules on the programme. You will also be expected to undertake a significant amount of independent study.

You are expected to spend approximately 150 hours of effort (i.e. about 10 hours per credit) for each module you attend in your degree. These 150 hours cover every aspect of the module: lectures, tutorials, lab-based exercises, independent study based on personal and provided lecture notes, tutorial preparation and completion of exercises, coursework preparation and submission, examination revision and preparation, and examinations.

Assessment

Assessment methods will depend on the modules selected. The primary methods of assessment for this course are written examinations and coursework. You may also be assessed by practical laboratory examinations, laboratory reports and oral presentations.

Career destinations

Via the Department’s Careers Programme students are able to network with top employers and obtain advice on how to enhance career prospects. Our graduates have continued on to have very successful careers in industry and research, working areas such as manufacturing, automotive and aerospace. Recent employers include Cummins Inc. and Transport Alstom. 

Sign up for more information. Email now

Have a question about applying to King’s? Email now



Read less
The MSc in Robotics will provide you with the ability to understand, design and implement modern robotic systems. Read more
The MSc in Robotics will provide you with the ability to understand, design and implement modern robotic systems. Robotics is increasingly prominent in a variety of sectors, from manufacturing and health to remote exploration of hostile environments such as space and the deep sea, and as autonomous and semi-autonomous systems that interact with people physically and socially.

This programme exposes you to a wide range of advanced engineering and computer science concepts, with the opportunity to carry out a practical robot project at the Bristol Robotics Laboratory, one of the UK's most comprehensive robotics innovation facilities and a leading centre of robotics research.

The programme is jointly awarded and jointly delivered by the University of Bristol and the University of the West of England, both based in Bristol, and therefore draws on the combined expertise, facilities and resources of the two universities. The Bristol Robotics Laboratory is a collaborative research partnership between the two universities with a vision to transform robotics by pioneering advances in autonomous robot systems that can behave intelligently with minimal human supervision.

Programme structure

Your course will cover the following core subjects:
-Robotics systems
-Robotic fundamentals
-Intelligent adaptive systems
-Robotics research preparation
-Image processing and computer vision
-Technology and context of robotics and autonomous systems
-Bio-inspired artificial intelligence

Typically you will be able to select from the following optional subjects:
-Computational neuroscience
-Uncertainty modelling for intelligent systems
-Introduction to artificial intelligence
-Learning in autonomous systems
-Design verification
-Animation production
-Advanced DSP and FPGA implementation
-Statistical pattern recognition
-Control theory
-Advanced techniques in multidisciplinary design
-Advanced dynamics
-Virtual product development
-Biomechanics
-Sensory ecology
-Transport modelling
-Electromechanical systems integration
-Advanced control and dynamics

Please note that your choice of optional units will be dependent on your academic background, agreement with the programme director and timetable availability.

Dissertation
During your second semester, you will start working on a substantial piece of research work that will make up one third of the overall MSc. It is possible to work on this project at Bristol Robotics Laboratory or in conjunction with one of our many industrial partners. Within the Bristol Robotics Laboratory, there are a number of themes from which projects may be chosen, including:
-Aerial robots
-Assisted living
-Bioenergy and self-sustainable systems
-Biomimetics and neuro-robotics
-Medical robotics
-Nonlinear robotics
-Robot vision
-Safe human-robot interaction
-Self-reparing robotic systems
-Smart automation
-Soft robotics
-Swarm robotics
-Tactile robotics
-Unconventional computation in robots
-Verification and validation for safety in robots

Further information is available from the Faculty of Engineering.

NB: Teaching for this programme is delivered at both the University of Bristol and the University of the West of England campuses. Students attending the programme will be given free transport passes to travel between the two universities.

Careers

Robotics is a huge field spanning areas such as electronics, mechanics, software engineering, mathematics, physics, chemistry, psychology and biology. Career opportunities include: automotive industry, aerospace industry, advanced manufacturing, deep sea exploration, space exploration, food manufacture, pharmaceutical production and industrial quality control.

Read less
Progress and innovation in robotics is now faster than ever, and is providing a wide range of industries and professions access to increasingly sophisticated autonomous and remotely operated devices with a widening range of applications and uses including manufacturing, agriculture, security and medicine. Read more
Progress and innovation in robotics is now faster than ever, and is providing a wide range of industries and professions access to increasingly sophisticated autonomous and remotely operated devices with a widening range of applications and uses including manufacturing, agriculture, security and medicine. As well as enjoying a growing commercial side, robotics also supports scientific research in unprecedented ways, giving us access to ever more remote, unpredictable and hazardous locations. Of course, it is also a major global research discipline in its own right, and robotics' progress has created a burgeoning worldwide demand for experts in a range of disciplines in this expanding billion-dollar industry.

Course detail

The MSc Robotics is available through a partnership between UWE Bristol and the University of Bristol, and provides a comprehensive understanding of advanced robotics and automation systems. While providing an excellent background for a range of technology careers that require robotics and automation knowledge and skills, it also offers the specialisms to support doctorate-level studies and ongoing research careers.

Uniquely, the partnership gives you access to the Bristol Robotics Laboratory, a world-leading centre for autonomous robotic systems and robotics research.

Modules

Core modules:
• Robotic Fundamentals (15 credits)
• Image Processing and Computer Vision (10 credits)
• Uncertainty Modelling for Intelligent Systems (10 credits)
• Animation Production (10 credits)
• Intelligent and Adaptive Systems (15 credits)
• Robotic Systems (10 credits)
• Research Skills (20 credits)
• Research Project (60 credits)

Optional modules from:
• Advanced Dynamics
• Computational Neuroscience
• Advanced DSP and FPGA Implementation
• Artificial Intelligence with Logic Programming
• Pattern Analysis and Statistical Learning

Format

You'll learn through a combination of lectures, seminars, group work, and through sessions at the Bristol Robotics Laboratory (BRL). The course is offered in partnership between UWE Bristol and the University of Bristol, and you will attend sessions at UWE Bristol's Frenchay campus, the University of Bristol, and BRL.

Assessment

You will normally be assessed through examination and coursework, as well as the dissertation.

Careers / Further study

The course provides an excellent route into this increasingly important area of industry, and into research and development.

The partnership between UWE Bristol and the University of Bristol has created a unique centre of excellence for engineering, in the heart of one of the UK's most important hubs for engineering industry especially in the aeronautical and electronics sectors. Bristol is a major base for companies such as Airbus, Rolls Royce, Toshiba and Hewlett Packard, with whom both universities enjoy close links.

How to apply

Information on applications can be found at the following link: http://www1.uwe.ac.uk/study/applyingtouwebristol/postgraduateapplications.aspx

Funding

- New Postgraduate Master's loans for 2016/17 academic year –

The government are introducing a master’s loan scheme, whereby master’s students under 60 can access a loan of up to £10,000 as a contribution towards the cost of their study. This is part of the government’s long-term commitment to enhance support for postgraduate study.

Scholarships and other sources of funding are also available.

More information can be found here: http://www1.uwe.ac.uk/students/feesandfunding/fundingandscholarships/postgraduatefunding.aspx

Read less
This innovative MSc in Observational Physics is delivered by world leading academics at Liverpool John Moores University. The Masters degree includes access to LJMU's research class robotic Liverpool Telescope and is designed as a route to PhD study. Read more
This innovative MSc in Observational Physics is delivered by world leading academics at Liverpool John Moores University. The Masters degree includes access to LJMU's research class robotic Liverpool Telescope and is designed as a route to PhD study.

•Course available to study full time (1 year) and part time (2 years) via distance learning
•High-quality, innovative teaching
•Access to the two metre research-class robotic Liverpool Telescope
•Qualification designed to facilitate continued study at PhD level

Astrophysics is enjoying an unprecedented burst of new discoveries about the universe we live in, as a result of revolutionary techniques that are opening new windows for the exploration of planets, stars, galaxies and the entire universe.

LJMU's Astrophysics Research Institute has played a leading role in many of these advances, including the development of the world famous robotic Liverpool Telescope.

Over the last decade, this has become one of the most flexible and powerful observatories for the study of rapidly varying sources such as Gamma-Ray Bursts, novae and supernovae. This Masters course has been developed to enable students, throughout the world, to share in these new discoveries and graduates to pursue further research through a PhD or equivalent.

The programme emphasises independent student learning and each module provides you with the opportunity to explore current literature, with support from experienced tutors, all of whom are engaged in cutting-edge astrophysical research.

All sessions on this Masters degree are delivered via distance learning to provide maximum flexibility.

Read less
MSc Architecture is a specialised programme designed to develop digital design and practical manufacturing skills. It builds on the ethos of rigorous and directed design studio tuition of LSBU’s established RIBA part 1 and 2 degrees. Read more
MSc Architecture is a specialised programme designed to develop digital design and practical manufacturing skills. It builds on the ethos of rigorous and directed design studio tuition of LSBU’s established RIBA part 1 and 2 degrees. It also emphasises the value of detailed and analytical research and the expression of this through structured extended writing.

You’ll extend your understanding of advanced architectural design and progressive contextual urbanism through studio- and workshop-based projects. Tutorials in the design studio and analogue and digital workshops, as well as instruction in advanced design software, will help you define and enhance your personal response to architectural challenges.

The course connects 2D and 3D representations (drawing and physical modelling) with an understanding of digital fabrication and manufacturing, and you’ll have the opportunity to develop and make architectural components using the onsite facilities of the DARLAB(Digital Architecture and Robotic Lab).

You’ll also consider architectural history and theory, and evaluate this to develop your own position in the form of an extended written project on a subject of your choice. For your final design project you'll develop a proposition for a complex building or buildings, drawing together all your learning to highlight the relationships between theory, design and technology.

Modules

Advanced digital design techniques
Integrative technologies: robotic manufacturing
Design 1: research
History and theory: critical thinking
Architecture and theory: dissertation
Technology: technical thesis
Design 2: synthesis

Assessment

All design modules are subject to continuous assessment:

• Design tutors monitor design scheme proposals throughout the semester, and collectively moderate assessments at each semester’s end;
• Individual feedback on design project proposals is provided at every individual studio tutorial;
• An evaluative, critical summary of design projects is provided at all final presentations

Provisional grades are given at the end of semester 1, with all students offered opportunities to review, revise, and add to their design
project submissions:

• A written and illustrated project report examining aspects of environmental technology;
• A major extended written and illustrated assignment (dissertation) on a subject of personal interest related to architecture, and using primary and secondary sources;
• Workshop-based fabrication and design projects;
• A written and illustrated technology report examining aspects of the constructional, environmental, and material implications of the major design project.

Teaching and learning

Teaching takes place in our dedicated Masters level studios, and makes use of LSBU’s specialist workshops; the Digital Architecture Robotic Laboratory, and Centre for Efficient and Renewable Energy in Buildings.

You'll learn in a variety of formats including structured lecture programmes, 1:1 tutorials, small and large group seminars, and interim and final design juries with tutors and invited guests present.

Timetable

Typically each module involves 40 contact hours, and 160 self-managed learning hours; exceptionally, 'Design 2: synthesis' involves 80 contact hours, and 320 self-managed learning hours.

Professional links

The course has been developed in consultation with employers interested in upskilling their workforce with enhanced digital design and manufacturing skills. The course has strong links with the Royal Institute of British Architects, Architects Registration Board, and South London Society of Architects, plus numerous local, regional, and national practices.

Employability

Digital design and practical manufacturing skills are applicable to, and sought after in a very broad range of employment opportunities in architecture and other design-related activities, including visualisation, gaming, animation, media, production engineering, and industrial design.
The course is not intended to lead to a professional qualification, although it reflects the criteria and graduate attributes used by RIBA to deliver their validation services to programmes in architecture.
Curriculum developed to reflect (but not meet) professional and statutory body requirements.

LSBU Employability Services

LSBU is committed to supporting you develop your employability and succeed in getting a job after you have graduated. Your qualification will certainly help, but in a competitive market you also need to work on your employability, and on your career search. Our Employability Service will support you in developing your skills, finding a job, interview techniques, work experience or an internship, and will help you assess what you need to do to get the job you want at the end of your course. LSBU offers a comprehensive Employability Service, with a range of initiatives to complement your studies, including:

• Direct engagement from employers who come in to interview and talk to students
• Job Shop and on-campus recruitment agencies to help your job search
• Mentoring and work shadowing schemes.

Read less
This innovative MSc in Observational Physics is delivered by world leading academics at Liverpool John Moores University. The Masters degree includes access to LJMU's research class robotic Liverpool Telescope and is designed as a route to PhD study. Read more
This innovative MSc in Observational Physics is delivered by world leading academics at Liverpool John Moores University. The Masters degree includes access to LJMU's research class robotic Liverpool Telescope and is designed as a route to PhD study.

-Course available to study full time (1 year) and part time (2 years) via distance learning
-High-quality, innovative teaching
-Access to the two metre research-class robotic Liverpool Telescope
-Qualification designed to facilitate continued study at PhD level

Astrophysics is enjoying an unprecedented burst of new discoveries about the universe we live in, as a result of revolutionary techniques that are opening new windows for the exploration of planets, stars, galaxies and the entire universe.
LJMU's Astrophysics Research Institute has played a leading role in many of these advances, including the development of the world famous robotic Liverpool Telescope.

Over the last decade, this has become one of the most flexible and powerful observatories for the study of rapidly varying sources such as Gamma-Ray Bursts, novae and supernovae. This Masters course has been developed to enable students, throughout the world, to share in these new discoveries and graduates to pursue further research through a PhD or equivalent.

The programme emphasises independent student learning and each module provides you with the opportunity to explore current literature, with support from experienced tutors, all of whom are engaged in cutting-edge astrophysical research.

All sessions on this Masters degree are delivered via distance learning to provide maximum flexibility.

Please see guidance below on core and option modules for further information on what you will study.
Level 7
Astrophysical Concepts
Astrophysical Observations
Time-domain Astrophysics
Cosmology
Computational Astrophysics
Observational Research Project

Further guidance on modules

The information listed in the section entitled ‘What you will study’ is an overview of the academic content of the programme that will take the form of either core or option modules. Modules are designated as core or option in accordance with professional body requirements and internal Academic Framework review, so may be subject to change. Students will be required to undertake modules that the University designates as core and will have a choice of designated option modules. Additionally, option modules may be offered subject to meeting minimum student numbers.

Academic Framework reviews are conducted by LJMU from time to time to ensure that academic standards continue to be maintained. A review is currently in progress and will be operational for the academic year 2016/2017. Final details of this programme’s designated core and option modules will be made available on LJMU’s website as soon as possible and prior to formal enrolment for the academic year 2016/2017.

Please email if you require further guidance or clarification.

Read less
The MSc Machine Intelligence aims to equip students and engineering professionals through a diverse range of research informed learning, with the skills to maintain a future-thinking career. Read more

The MSc Machine Intelligence aims to equip students and engineering professionals through a diverse range of research informed learning, with the skills to maintain a future-thinking career. The programme goes beyond current technology, looking at predicting future innovation by equipping learners with the tools to see through media hype and effectively analyse the evolution of future technologies and engage with these technologies as they emerge.

Whether you're looking to deepen and diversify your industrial experience or continue your education through an innovative Master's degree, this programme provides an ideal opportunity to develop your technical and intellectual skills, staying one step ahead. 

The programme provides the opportunity to explore: future technologies; robotics; cybernetics and intelligent systems; distributed systems; advanced design and ergonomics; securing future technologies; and future business thinking, all set within a forward-thinking context. This programme offers the opportunity to participate in a highly motivated intellectual environment with research-active tutors and like-minded peers, whilst exploring and engaging with cutting-edge future technologies.

Outcomes

The aims of the programme are to:

  • Show you how to analyse, design, implement and manage intelligent and future focused technologies and systems in the context of engineering-related issues facing global societies
  • Provide you with the skills to further your career in these areas
  • Support you in understanding the innovative and pioneering approaches in this field and to be able to apply them to the solution of present, near future and future real-world problems in developing novel industrial and commercially-relevant solutions.

Course content

  • Future Technologies
  • Robotics
  • Cybernetics and Intelligent Systems
  • Distributed Systems
  • Research, Planning and Communication
  • Future Business Thinking
  • Securing Future Technologies
  • Individual Research Project.

Assessment

Assessments include examinations, coursework, group work and an individual project.

Careers

Postgraduate students from this programme will find employment opportunities as futurologists, engineers, scientists and technical managers in the private sector (engineering design firms, engineering consultancy, communications companies, social media companies and similar), in the public sector (local government, town and country planning), an entrepreneur or they may wish to pursue further qualifications such as a PhD within the Faculty of Engineering and Science at the University of Greenwich to become even more specialised. City banks, currency and stocks trading companies, consultancies, government agencies and NGOs will also be interested in employing the type of future orientated intelligent systems engineers that will graduate from this MSc.

Specialised equipment

Online resources: Students will require access to existing online resources such as Moodle, e-mails, library online resources, databases, Web of Knowledge, Scopus, Internet of Things, Internet of Everything.

Hardware: Computers, laboratory equipment to include but not limited to: experimental and laboratory equipment to support practical based learning (hardware and software development systems, robotic hardware, mobile robots, cybernetics hardware and software, Internet of Things, Sensors and Systems, WiFi development, 3D printers, laser cutters, 3D scanners, cutting edge single board computers)

Software: Matlab, Simulink, C/C++ compilers, development systems, networking and communication protocol monitoring and development.

Robotics: A specialist robotics laboratory has been developed containing a Robothespian industrial robotic arm, mobile robots and other robotic actuators and systems.



Read less
IN BRIEF. Gain a firm grounding in control engineering and intelligent systems concepts. This course has a particular emphasis on advanced robotics, where robots are designed to operate with a degree of intelligence. Read more

IN BRIEF:

  • Gain a firm grounding in control engineering and intelligent systems concepts
  • This course has a particular emphasis on advanced robotics, where robots are designed to operate with a degree of intelligence
  • Projects supported by internationally-leading research
  • Part-time study option
  • International students can apply

COURSE SUMMARY

This course is for students who already have a strong engineering background and wish to specialise in robotics and automation. This course has a particular emphasis on advanced robotics, where robots are designed to operate with a degree of intelligence.

You will gain a firm grounding in control engineering and intelligent systems concepts, along with the ability to comprehend and fully specify integrated automation systems embodying intelligence, robotic and automation hardware and software, and virtual reality (VR)/simulation technologies.

The course also provides a suitable background for research in advanced autonomous systems with reference to robotics.

TEACHING

You will be taught via a series of lectures and workshops with many of the modules taught via extensive hands-on practical lab-based sessions.

Practical experience includes the use of robotics platforms to produce a software system using the MATLAB toolboxes or the C programming language or to produce a finished hardware/software based mobile robotics system.

ASSESSMENT

70% coursework and 30% examination.

FACILITIES

There are dedicated labs and facilities for Robotics and Automation students, including: Industrial robots, flexi-picker, manipulators (Hitachi, KUKA) humanoid robots plus many mobile robots. Plus dedicated computing facilities

And if you do your MSc Project with an aerospace company, as many of our students do, then you will also have access to their facilities.

EMPLOYABILITY

Graduates from this course can expect to find employment in a range of industries. Robotics and automation are continuously developing topics that present many career opportunities in areas such as robotic design, control systems integration and design, factory automation, engineering management and research.

LINKS WITH INDUSTRY

Many of our students work on final year projects in conjunction with aeronautical companies associated with the University.

FURTHER STUDY

Many of our students go on to further study at the Centre for Advanced Robotics which is very closely linked with this course.



Read less

Show 10 15 30 per page



Cookie Policy    X