• Leeds Beckett University Featured Masters Courses
  • Imperial College London Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Regent’s University London Featured Masters Courses
  • University of York Featured Masters Courses
London Metropolitan University Featured Masters Courses
University of Southampton Featured Masters Courses
University of Kent Featured Masters Courses
Queen Margaret University, Edinburgh Featured Masters Courses
Coventry University Featured Masters Courses
"robotic"×
0 miles

Masters Degrees (Robotic)

  • "robotic" ×
  • clear all
Showing 1 to 15 of 72
Order by 
Chelmsford, ICENI Centre, Broomfield Robotic Centre. Our course will provide you with the breadth and depth of experience to fully engage with all aspects of minimally invasive and robotic surgery including the latest technological advances. Read more

Campus

Chelmsford, ICENI Centre, Broomfield Robotic Centre

Overview

Our course will provide you with the breadth and depth of experience to fully engage with all aspects of minimally invasive and robotic surgery including the latest technological advances.
You’ll undertake laparoscopic simulation training, based at the ICENI Centre in Colchester, and you’ll also have access to the Robotic Centre at Broomfield Hospital in Chelmsford. The ICENI Centre is internationally recognised as a leading centre of excellence in the field of minimally invasive surgery. It combines the advanced multidisciplinary laparoscopic techniques practised at Colchester Hospital University NHS Foundation Trust, with the highest-quality research infrastructure established here at Anglia Ruskin University.
We’re home to the Postgraduate Medical Institute (PMI), which has its own £10 million building on our Chelmsford campus. It features state-of-the-art laboratory and training facilities and lecture theatres linked with partner hospital sites. In conjunction with Colchester Hospital University Foundation Trust, we’ve funded a £2 million building specifically for minimally-invasive surgery research and a training centre.
Designed by clinical experts, the course will prepare you to advance your career development and opportunities in this area of surgical specialism. On successful completion of this programme, you will be awarded a Master of Surgery which entitles you to use
MCh after your name. MCh is an abbreviation of Magister Chirurgiae, the Latin for Master of Surgery. Master of Surgery, rather than MCh, will appear on your certificate.

Core Modules

Core Principles of Minimally Invasive and Robotic Surgery
Research Studies
Major Project

Specialist modules

Principles of Minimally Invasive and Robotic Surgery – Gynaecology
Principles of Minimally Invasive and Robotic Surgery – Gastrointestinal
Principles of Minimally Invasive and Robotic Surgery – Urological
Principles of Minimally Invasive and Robotic Surgery – Vascular
In addition to the compulsory modules students select one speciality module from the above list to complete the course.

Optional modules

Global Leadership
Advancing Professional Decision Making

Modules are subject to change and availability.

Start dates

September 2017

Read less
The MSc in Electronics with Robotic and Control Systems aims to produce postgraduates with a strong practical skill base that will enable them to model, analyse, design and prototype smart robotic sub-systems. Read more
The MSc in Electronics with Robotic and Control Systems aims to produce postgraduates with a strong practical skill base that will enable them to model, analyse, design and prototype smart robotic sub-systems. Specialist knowledge and practical skillsets will be taught, extensively developed and practiced in the areas of control systems and the analysis, categorisation and design of robotic systems that facilitate movement with multiple degrees of freedom. The knowledge and skillsets taught are key enabling skillsets used to implement devices for applications such as security drones, warehouse robots, medical robots and more humanoid like robots. It is intended that the course will re-focus and enhance existing knowledge in the areas of software engineering, electronic engineering and real-time embedded systems to enable the student to participate in the fast expanding and exciting sector of industrial and consumer robotic systems.

Course structure

Each MSc course consists of three learning modules (40 credits each) plus an individual project (60 credits). Each learning module consists of a short course of lectures and initial hands-on experience. This is followed by a period of independent study supported by a series of tutorials. During this time you complete an Independent Learning Package (ILP). The ILP is matched to the learning outcomes of the module. It can be either a large project or a series of small tasks depending on the needs of each module. Credits for each module are awarded following the submission of a completed ILP and its successful defence in a viva voce examination. This form of assessment develops your communication and personal skills and is highly relevant to the workplace. Overall, each learning module comprises approximately 400 hours of study.

The project counts for one third of the course and involves undertaking a substantial research or product development project. For part-time students, this can be linked to their employment. It is undertaken in two phases. In the first part, the project subject area is researched and a workplan developed. The second part involves the main research and development activity. In all, the project requires approximately 600 hours of work.

Further flexibility is provided within the structure of the courses in that you can study related topic areas by taking modules from other courses as options (pre-requisite knowledge and skills permitting).

Prior to starting your course, you are sent a Course Information and Preparation Pack which provides information to give you a flying start.

MSc Electronics Suite of Courses

The MSc in Electronics has four distinct pathways:
-Robotic and Control Systems
-Embedded Systems
-System-on-Chip Technologies
-Medical Instrumentation

The subject areas covered within the four pathways of the electronic suite of MSc courses offer students an excellent launch pad which will enable the successful graduate to enter into these ever expanding, fast growing and dominant areas. With ever increasing demands from consumers such as portability, increased battery life and greater functionality combined with reductions in cost and shrinking scales of technologies, modern electronic systems are finding ever more application areas.

A vastly expanding application base for electronic systems has led to an explosion in the use of embedded system technologies. Part of this expansion has been led by the introduction of new medical devices and robotic devices entering the main stream consumer market. Industry has also fed the increase in demand particularly within the medical electronics area with the need of more sophisticated user interfaces, demands to reduce equipment costs, demands for greater accessibility of equipment and a demand for ever greater portability of equipment.

The technical tasks undertaken in ILPs, along with the required major project, thoroughly exercise the concepts covered in the course modules and give scope for originality and industry-relevant study. Team-working activities encouraged within modules, along with the all-oral individual examination regimen employed in this Electronics MSc Suite, have proven solidly beneficial in refining the communication and employability-enhancing skills that are strongly valued by industry.

Read less
The MSc in Intelligent Robotics will provide the opportunity to learn about the growing area of mobile and autonomous robotics, and intelligent systems. Read more
The MSc in Intelligent Robotics will provide the opportunity to learn about the growing area of mobile and autonomous robotics, and intelligent systems. You will gain experience in an exciting wide range of topics, providing you hands-on experience. You will learn about the development of embedded control systems for robots, intelligent algorithms and their application to robotics, communications and systems programming, all with a focus on the practical implementation, both in hardware and simulation. The MSc culminates in a large group project focussed on collective robotic systems, ranging from ground-based units to flying robots. You will have the opportunity to work in a state of the art, dedicated, robotics laboratory for some of your modules and your final project, see the York Robotics Laboratory website for more details on the lab.

The MSc is intended for students who want to learn about robotic and autonomous systems for employment in related industries, or who are seeking a route into a PhD.

The broad aims of the course are to provide:
-A thorough grounding in the use of scientific and engineering techniques as applied to intelligent robotic systems
-A detailed knowledge of the development and deployment of intelligent robotic systems
-A detailed knowledge of the latest developments in intelligent robotics and an ability to reflect critically on those developments
-A detailed understanding of engineering collective robotic systems with emergent behaviours
-Experience of undertaking a substantial group project, on a subject related to research in autonomous robotic systems

Group Project

The aim of this substantial group project is to immerse the students in a life-like scenario of a group of engineers developing a large scale collective robotic system. The project will involve the design, construction and implementation of the control of a heterogeneous collective robotic system, providing students with practical experience of project management and team skills. The system will include both software (such as individual and collective robotic control, low-level programming) and hardware (such as hardware design or customisation) components. The project will culminate in the design and realisation of a collective robotic system that will undergo various test scenarios in the robotics laboratory.

The project preparation will begin towards the end of the Autumn term when groups will be develop a Quality Assurance manual, that will prepare the students to establish effective group policies, procedures and roles for group members, introducing the Quality Assurance processes applied to medium to large projects in industry. The group will be given a scenario and begin establishing requirements and develop outline designs.

In the Summer term, the project will get under way. Groups of 4-6 students will be formed, assigned a target system to design, and provided with a budget. In this term, the students will prepare a design document that will be followed for the remainder of the project. Detailed system specifications will be established and initial prototypes developed. You will make full use of the Robotics Laboratory and spend the vast majority of your time working on robotic systems and attempting to develop an innovative solution to the problem given. Full technical support is available in the laboratory.

A final presentation of each group is done in September where live demos of the system developed have to be provided. This is combined with a group presentation on the work undertaken and contributions made by each individual. Group documentation is submitted along with an individual report.

Read less
The MSc Digital Architecture and Robotic Construction focuses on digital design methods and construction technologies in Architecture, Engineering and Design. Read more
The MSc Digital Architecture and Robotic Construction focuses on digital design methods and construction technologies in Architecture, Engineering and Design. It provides a scientific and practical foundation and gives an overview of latest developments in Advanced Modelling, Computational Design and Robotic Construction.
You'll use computer-aided methods for design and study the construction and fabrication process in-depth.

Read less
Robotics and autonomous systems (RAS) are set to shape innovation in the 21st century, underpinning research in a wide range of challenging areas. Read more
Robotics and autonomous systems (RAS) are set to shape innovation in the 21st century, underpinning research in a wide range of challenging areas: the ageing population, efficient health care, safer transport, and secure energy. The UCL edge in scientific excellence, industrial collaboration and cross-sector activities make it ideally placed to deliver this MRes, which uniquely covers the whole spectrum of potential RAS areas and application.

Degree information

The programme teaches students the essentials of robotic and computational tools for robotics and autonomous systems. The key aim of the principal project thesis is to cultivate a deep understanding of robotics research, with a particular focus on a specific research topic in robotics and autonomous systems.

Students undertake modules to the value of 180 credits. The programme consists of one core module (15 credits), two optional modules (30 credits), two elective modules (30 credits), and a dissertation/report (105 credits).

Core modules
-Robotic Systems Engineering

Optional modules
-Robotic Control Theory and Systems
-Robotic Sensing, Manipulation and Interaction
-Robotic Vision and Navigation
-Numerical Optimisation
-Students also choose two elective MSc modules from across UCL Computer Science, UCL Medical Physics & Biomedical Engineering, UCL Mechanical Engineering and UCL Bartlett School of Architecture.

Dissertation/report
All students undertake an independent research project which culminates in a dissertation of 30,000 words.

Teaching and learning
Teaching is delivered by lectures, tutorials, practical sessions, projects and seminars. Assessment is through examination, individual and group projects and presentations, and design exercices.

Careers

Robotics is a growing field encompassing many technologies with tremendous opportunities for research and development both in industry and in academia, and with diverse applications across different industrial sectors spanning manufacturing, security, mining, design, transport, exploration and healthcare. Graduates from our MRes programme will will have project-focused experience and knowledge in robotics and the underpinning computational and analytical fundamentals. These skills will position graduates to be well placed to undertake PhD studies or industrial research and development in robotics and computational research specific to robotics but translational across different analytical disciplines, or applied fields that will be influenced by new robotic technologies and capabilities.

Employability
The MRes will develop skills widely relevant to a career in engineering industries and analytical problem-solving occupations. Graduates with skills to develop new robotics solutions and solve computational challenges in automation are likely to be in high demand globally.

Why study this degree at UCL?

UCL was ranked first in the UK for computer science and informatics in the recent Research Excellence Framework (REF).

With the external project involvement anticipated, students on this programme will have the opportunity to interact and collaborate with key companies in the industry - Airbus, Shadow Hand, OC Robotics and Intuitive Surgical - and work on real-world problems through industry-supported projects.

Recent investment across UCL in the Faculty of Engineering and The Bartlett Faculty of the Built Environment has created the infrastructure for an exciting robotics programme, which will be interdisciplinary and unique within the UK and Europe.

Read less
Robotics and autonomous systems (RAS) are set to shape innovation in the 21st century, underpinning research in a wide range of challenging areas. Read more
Robotics and autonomous systems (RAS) are set to shape innovation in the 21st century, underpinning research in a wide range of challenging areas: the ageing population, efficient health care, safer transport, and secure energy. The UCL edge in scientific excellence, industrial collaboration and cross-sector activities make it ideally placed to drive IT robotics and automation education in the UK.

Degree information

The programme provides an overview of robotic and computational tools for robotics and autonomous systems as well as their main computational components: kinetic chains, sensing and awareness, control systems, mapping and navigation. Optional modules in machine learning, human-machine interfaces and computer vision help students grasp fields related to robotics more closely, while the project thesis allows students to focus on a specific research topic in depth.

Students undertake modules to the value of 180 credits.

The programme consists of four core modules (60 credits), two optional modules (30 credits), two elective modules (30 credits), and a dissertation/report (60 credits).

Core modules
-Robotic Control Theory and Systems
-Robotic Sensing, Manipulation and Interaction
-Robotic Systems Engineering
-Robotic Vision and Navigation

Optional modules
-Acquisition and Processing of 3D Geometry
-Affective Computing and Human-Robot Interaction
-Artificial Intelligence and Neural Computing
-Image Processing
-Inverse Problems in Imaging
-Machine Vision
-Mathematical Methods, Algorithmics and Implementations
-Probabilistic and Unsupervised Learning
-Research Methods and Reading
-Supervised Learning
-Other selected modules available within UCL Computer Science
-Students also choose two elective MSc modules from across UCL Computer Science, UCL Medical Physics & Biomedical Engineering, UCL Mechanical Engineering and UCL Bartlett School of Architecture.

Dissertation/report
All students undertake an independent research project which culminates in a dissertation of 30,000 words.

Teaching and learning
Teaching is delivered by lectures, tutorials, practical sessions, projects and seminars. Assessment is through examination, individual and group projects and presentations, and design exercises.

Careers

Robotics is a growing field encompassing many technologies with applications across different industrial sectors, and spanning manufacturing, security, mining, design, transport, exploration and healthcare. Graduates from our MSc programme will have diverse job opportunities in the international marketplace with their knowledge of robotics and the underpinning computational and analytical fundamentals that are highly valued in the established and emerging economies. Students will also be well placed to undertake PhD studies in robotics and computational research specific to robotics but translational across different analytical disciplines or applied fields that will be influenced by new robotic technologies and capabilities.

Employability
This programme prepares students to enter a robotics-related industry or any other occupation requiring engineering or analytical skills. Graduates with skills to develop new robotics solutions and solve computational challenges in automation are likely to be in demand globally.

Why study this degree at UCL?

UCL was ranked first in the UK for computer science and informatics in the recent Research Excellence Framework (REF).

With the external project involvement anticipated, students on this programme will have the opportunity to interact and collaborate with key companies in the industry - Airbus, Shadow Hand, OC Robotics and Intuitive Surgical - and work on real-world problems through industry-supported projects.

Recent investment across UCL in the Faculty of Engineering and The Bartlett Faculty of the Built Environment has created the infrastructure for an exciting robotics programme, which will be interdisciplinary and unique within the UK and Europe.

Read less
The MSc Future Intelligent Technologies aims to equip students and engineering professionals, through a diverse range of research informed learning, with the skills to maintain a future-thinking career. Read more
The MSc Future Intelligent Technologies aims to equip students and engineering professionals, through a diverse range of research informed learning, with the skills to maintain a future-thinking career. The programme goes beyond current technology, looking at predicting future innovation by equipping learners with the tools to see through media hype and effectively analyse the evolution of future technologies and engage with these technologies as they emerge. The programme provides the opportunity to explore: future technologies; robotics; cybernetics and intelligent systems; distributed systems; advanced design and ergonomics; securing future technologies; and future business thinking, all set within a forward thinking context. This programme offers the opportunity to participate in a highly motivated intellectual environment with research active tutors and like-minded peers, whilst exploring and engaging with cutting edge future technologies.

Whether you're looking to deepen and diversify your industrial experience, or continue your education through an innovative master's degree, this programme provides an ideal opportunity to develop your technical and intellectual skills, staying one step ahead. The Faculty of Engineering and Science accredits its computer, electronics and communications engineering programmes with the Institute of Engineering Technology, with postgraduate programmes contributing towards the further learning requirements of Chartered Engineer status.

The aims of the programme are:

- To show you how to analyse, design, implement and manage intelligent and future focused technologies and systems in the context of engineering-related issues facing global societies

- To provide you with the skills to further your career in these areas

- To support you in understanding the innovative and pioneering approaches in this field and to be able to apply them to the solution of present, near future and future real-world problems in developing novel industrial and commercially-relevant solutions.

Visit the website http://www2.gre.ac.uk/study/courses/pg/enggen/fut-int

What you'll study

Future Technologies
Robotics
Cybernetics and Intelligent Systems
Distributed Systems
Research, Planning and Communication
Future Business Thinking
Securing Future Technologies
Individual Research Project

Fees and finance

Your time at university should be enjoyable and rewarding, and it is important that it is not spoilt by unnecessary financial worries. We recommend that you spend time planning your finances, both before coming to university and while you are here. We can offer advice on living costs and budgeting, as well as on awards, allowances and loans.

Assessment

Assessments include examinations, coursework, group work and an individual project.

Specialist equipment/facilities

Online resources: Students will require access to existing online resources such as Moodle, e-mails, library online resources, databases, Web of Knowledge, Scopus, Internet of Things, Internet of Everything.

Hardware: Computers, laboratory equipment to include but not limited to: experimental and laboratory equipment to support practical based learning (hardware and software development systems, robotic hardware, mobile robots, cybernetics hardware and software, Internet of Things, Sensors and Systems, WiFi development, 3D printers, laser cutters, 3D scanners, cutting edge single board computers)

Software: Matlab, Simulink, C/C++ compilers, development systems, networking and communication protocol monitoring and development.

Robotics: A specialist robotics laboratory has been developed containing a Robothespian industrial robotic arm, mobile robots and other robotic actuators and systems.

Professional recognition

Accreditation will be sought for the programme, initially from the Institute of Engineering Technology (IET) – contributing towards the further learning requirements of Chartered Engineer status.

Career options

Postgraduate students from this programme will find employment opportunities as futurologists, engineers, scientists and technical managers in the private sector (engineering design firms, engineering consultancy, communications companies, social media companies and similar), in the public sector (local government, town and country planning), as entrepreneur or they may wish to pursue further qualifications such as a PhD within the Faculty of Engineering and Science at the University of Greenwich to become even more specialised. City banks, currency and stocks trading companies, consultancies, government agencies and NGOs will also be interested in employing the type of future orientated intelligent systems engineers that will graduate from this MSc.

Careers and employability

FACULTY OF ENGINEERING & SCIENCE
We work with employers to ensure our degrees provide students with the skills and knowledge they need to succeed in the world of work. They also provide a range of work experience opportunities for undergraduates in areas such as civil engineering, manufacturing and business information technology.

Find out how to apply here - http://www2.gre.ac.uk/study/apply

Read less
Join a hands-on, state-of-the-art course that focuses on the practical side of robotics ad the effects that robots have on society. Read more
Join a hands-on, state-of-the-art course that focuses on the practical side of robotics ad the effects that robots have on society.

Intended as both an academic and industry facing course, the subject is aimed at graduates from a computing, engineering or science discipline who want to develop their understanding of the practical and theoretical aspects of robotic systems. This is an area with a wide-range of applications in industry and research.

This MSc focuses on the computational side of Robotics with an emphasis on the software engineering aspects. In addition it provides the ability to investigate the field of Artificial Intelligence applicable to this sector and a substantial portion of the programme concentrates on the effect that robots have on society. It is the intention of this programme to produce specialists with up to date knowledge and skills that are capable of being used in an industrial, commercial and research environment.

Although the necessary background is introduced as appropriate, the course deals with problem-solving and the provisioning of real time aspects of computer based solutions and applications using current and emerging technologies. In addition to developing an understanding of underlying principles, students are engaged in the practical application of design, implementation, trouble-shooting and management for real-world problems.

Key Course Features

The programme aims to provide the students with the following:
-Hands-on experience of state of the art equipment.
-Specialist, advanced technical skills in the area of Robotics.
-An advanced understanding and competence in the hardware and software used for the development and use of Robotics.
-The ability to critically appraise and disseminate research results.
-A sound basis for further research and / or professional development.

What Will You Study?

The MSc Robotics is offered in full-time and part-time mode. As with most masters programmes the MSc Robotics has 2 parts, a taught part followed by a dissertation. Students study 6 core modules worth 20 credits each followed by a 60 credit dissertation making a total of 180 credits.

MODULES
-Research Methods
-Future & Emerging Technology
-Advanced Artificial Intelligence
-Computational Robotics
-Robotic Applications in Society
-Robotic Software Engineering
-Dissertation

The information listed in this section is an overview of the academic content of the programme that will take the form of either core or option modules. Modules are designated as core or option in accordance with professional body requirements and internal academic framework review, so may be subject to change.

Career Prospects

Modules studied on the programme have been designed to provide the skills to meet industrial and commercial needs as well as those of traditional academic standing. In addition to the academic and theoretical aspects the emphasis will be on the practical side of robotics to enable graduates to practise as a professional in industry or continue with further study towards a research degree.

The Careers & Zone at Wrexham Glyndŵr University is there to help you make decisions and plan the next steps towards a bright future. From finding work or further study to working out your interests, skills and aspirations, they can provide you with the expert information, advice and guidance you need.

Read less
This innovative MSc in Observational Physics is delivered by world leading academics at Liverpool John Moores University. The Masters degree includes access to LJMU's research class robotic Liverpool Telescope and is designed as a route to PhD study. Read more
This innovative MSc in Observational Physics is delivered by world leading academics at Liverpool John Moores University. The Masters degree includes access to LJMU's research class robotic Liverpool Telescope and is designed as a route to PhD study.

-Course available to study full time (1 year) and part time (2 years) via distance learning
-High-quality, innovative teaching
-Access to the two metre research-class robotic Liverpool Telescope
-Qualification designed to facilitate continued study at PhD level

Astrophysics is enjoying an unprecedented burst of new discoveries about the universe we live in, as a result of revolutionary techniques that are opening new windows for the exploration of planets, stars, galaxies and the entire universe.
LJMU's Astrophysics Research Institute has played a leading role in many of these advances, including the development of the world famous robotic Liverpool Telescope.

Over the last decade, this has become one of the most flexible and powerful observatories for the study of rapidly varying sources such as Gamma-Ray Bursts, novae and supernovae. This Masters course has been developed to enable students, throughout the world, to share in these new discoveries and graduates to pursue further research through a PhD or equivalent.

The programme emphasises independent student learning and each module provides you with the opportunity to explore current literature, with support from experienced tutors, all of whom are engaged in cutting-edge astrophysical research.

All sessions on this Masters degree are delivered via distance learning to provide maximum flexibility.

Please see guidance below on core and option modules for further information on what you will study.
Level 7
Astrophysical Concepts
Astrophysical Observations
Time-domain Astrophysics
Cosmology
Computational Astrophysics
Observational Research Project

Further guidance on modules

The information listed in the section entitled ‘What you will study’ is an overview of the academic content of the programme that will take the form of either core or option modules. Modules are designated as core or option in accordance with professional body requirements and internal Academic Framework review, so may be subject to change. Students will be required to undertake modules that the University designates as core and will have a choice of designated option modules. Additionally, option modules may be offered subject to meeting minimum student numbers.

Academic Framework reviews are conducted by LJMU from time to time to ensure that academic standards continue to be maintained. A review is currently in progress and will be operational for the academic year 2016/2017. Final details of this programme’s designated core and option modules will be made available on LJMU’s website as soon as possible and prior to formal enrolment for the academic year 2016/2017.

Please email if you require further guidance or clarification.

Read less
This is an MSc course in Embedded Systems with contributions from the fields of mechatronics and robotics. Embedded systems are microprocessor-based systems within a larger mechanical or electrical system that performs a dedicated function or task. Read more
This is an MSc course in Embedded Systems with contributions from the fields of mechatronics and robotics.

Embedded systems are microprocessor-based systems within a larger mechanical or electrical system that performs a dedicated function or task. They encompass a wide variety of products ranging from small mobile phones to large process automation installations. A practicing engineer in the field of embedded systems needs to have a specialised expertise in more than one of the engineering subjects of this multi-discipline subject.

Our MSc is tailored to provide you with advanced learning in microprocessor systems that are at the heart of embedded systems, with additional contributions from the fields of mechatronics and robotics. This approach reflects the needs of the industry and is well supported by the range in expertise we have in our Department.

The Department of Engineering and Design covers the full gamete of teaching in electronic, telecommunication and computer networks engineering as well as mechanical engineering and product design.

Our academics are a cohesive group of highly skilled lecturers, practitioners and researchers. You'll benefit from your choice of supervisors to support a wide range of modern and multi-discipline Masters-level projects. Our teaching is supported by well-equipped laboratory workshops, using mostly the latest hardware and software available in universities.

- Robot Detectives
LSBU holds an international reputation as a world leader in the use of robotics in non-destructive testing and developing intelligent robotic systems. Groundbreaking projects have ranged from building wall climbing robots to robots that work under water and oil.

See the website http://www.lsbu.ac.uk/courses/course-finder/mechatronics-robotics-engineering-msc

Modules

- Embedded system design
This module shows you how to design and implement an Embedded System on a single IC. You will learn about the basics and the benefits of all programmable devices. The SOC (System on Chip) process flow is explained for FPGAs (Field Programmable Gate Arrays) stressing the role played by the Hardware Description Languages (HDL). The accompanying workshops demonstrate the use of tools and methodologies as well as the programming, verifying and protecting your designs. We use the commercial software Quartus II and QSYS and the hardware development platform DE2 by Altera.

- Individual project
The individual project is a major element of the course. It involves a wider spectrum of multidisciplinary research in design, manufacturing systems, quality management and IT, with due regard to the efficient exploitation of the technology, materials and marketing resources of industrial firms. Students are encouraged to work on industrial-based projects.

- Pattern recognition and machine learning
This module introduces the fundamentals of both statistical learning theory and practical approaches for solving pattern recognition problems. Further, it consolidates lectures with experimental computer-based workshops to inculcate the principles of machine learning and classification. The module covers: Bayesian decision theory, parametric density estimation, linear discriminant functions, perceptrons, support vector machines, neural networks and clustering.

- Microprocessor-based control and robotics
This module will provide information allowing you to critically evaluate and make the right choice of the microprocessor that will be at the heart of your embedded system. To this effect we provide a thorough discussion and qualitative comparison of the various microprocessor architectures and the methods of the software development available to you. The workshop assignments involve interfacing 8 and 32 bit microcontrollers to a wide range of devices, including robotic manipulators and control/measurement instrumentation.

- Electromechanical systems and manufacturing technology
This module consists of two parts. The first part covers the design of electromechanical components of the embedded system. The material presented here derives from the fields of Mechatronics and Robotics. The second part provides information on modern developments in the field of materials and the manufacturing. Examples of topics covered include applications of nano-technology, use of polymers and composites. Manufacturing techniques are described together with process modelling and control that is essential to produce the material to the required specification.

- Technology evaluation and commercialisation
This module includes: research product idea generation; product definition and value proposition; market research and assessment; functional assessment of product concepts; and strategic assessment of commercial viability.

- Technical, research and professional skills
This module includes: an introduction to project management, project planning, research project characteristics, ethics, feasibility analysis of requirements and resources; research methods; stages in project management; modelling and optimisation tools (PERT and CPM); technical report writing.

- Robotics
This module introduces you to the basic elements and principles of modern robotics. You'll gain a thorough theoretical and practical understanding of the fundamental concepts of this important and fast developing field. Essential geometric concepts will be introduced and these will be applied to the analysis and control of several different types of machines. A key feature of the module will be the wide range of robotic devices studied, from industrial serial manipulators, through mobile robots to quadcopters. The workshop for this modules includes various topics such as Robot Programming, Path Planning, Mapping and Localisation.

- MSc project
The individual project is a major element of the course. We offer a supervision of projects from a wide spectrum of either specialized or multi-disciplinary topics. There are opportunities for individual-centered projects as well for the student being allocated specific tasks within a larger research effort. Students are encouraged to work on industrial-based projects under joint supervision with their employer.

Employability

The course has been designed to help to meet the needs of industry. How much your employability will increase, will depend on your background and the personal contribution you make to your development whilst studying on the course.

Benefits for new graduates

If you are a new graduate in electronic or computer engineering then you benefit from the further advanced topics presented. You'll get an opportunity to cut your teeth on a challenging MSc Project, which will demonstrate your abilities to the potential employers. Alternatively, you could also pursue PhD studies after completing the course.

Benefits of returning to University after time working in industry

If you are returning to University after a period of working in industry, then you'll be able to update yourself with the recent technological progress in the field. You'll gain confidence in your ability to perform at your best and stand a better chance to seek challenging work opportunities. If you are already working in the field, the MSc qualification will enhance your status which will may help with your promotion.

Employment links

We are continually developing links with employers who are interested to provide internship to our students . Examples of this can include small VHDL and DSP designs, ARM based designs, industrial design or correlation research. These projects can be performed as part of the curriculum or as part of a research project.

LSBU Employability Services

LSBU is committed to supporting you develop your employability and succeed in getting a job after you have graduated. Your qualification will certainly help, but in a competitive market you also need to work on your employability, and on your career search. Our Employability Service will support you in developing your skills, finding a job, interview techniques, work experience or an internship, and will help you assess what you need to do to get the job you want at the end of your course. LSBU offers a comprehensive Employability Service, with a range of initiatives to complement your studies, including:

- direct engagement from employers who come in to interview and talk to students
- Job Shop and on-campus recruitment agencies to help your job search
- mentoring and work shadowing schemes.

Professional links

The School of Engineering at LSBU has a strong culture of research, extensive research links with industry through consultancy works and Knowledge Transfer Partnerships (KTPs), and teaching content is closely related to the latest research findings in the field.

History and expertise

A strong research tradition and our industrial links has helped shaped the course design, content selection, course delivery and project supervision.

The Department of Engineering and Design has a strong Mechatronics, Robotics and Non-destructive testing research group with a wide national and international profile. This is in addition to excellent research in many areas of mechanical engineering, electrical engineering, product design, computer network and telecommunications engineering.

Read less
The programmes aim is to provide graduates in engineering or relevant scientific disciplines with specialist knowledge of robotics, with emphasis on automation applications. Read more
The programmes aim is to provide graduates in engineering or relevant scientific disciplines with specialist knowledge of robotics, with emphasis on automation applications. As a multidisciplinary activity dealing with the integration of mechanical devices, sensors, electronics and 'intelligent' computer-based controllers, the programme comprises a number of core robotics-related modules, including Dynamical Systems & Simulation; Group Design Project; Computer-Aided Manufacture; Computer-Aided Design; Sensors & Actuators; Real Time Systems & Control; Robotic Systems. The final part of the programme is an individual project closely linked with our department's research activities.

Key benefits

- Unrivalled location in the heart of London giving access to major libraries and leading scientific societies, including the BCS Chartered Institute for IT, the Institution of Engineering and Technology and the Institution for Mechanical Engineers (IMechE).

- Graduates gain experience of designing robotic devices to provide smart engineering solutions.

- Access to speakers of international repute through seminars and external lectures, enabling students to keep abreast of emerging knowledge in intelligent systems and related fields.

- Research-led individual project supervised by leading experts in their fields.

Visit the website: http://www.kcl.ac.uk/study/postgraduate/taught-courses/robotics-msc.aspx

Course detail

- Description -

Robotics is a multi-disciplinary activity dealing with the integration of mechanical devices, sensors, electronics and ‘intelligent’ computer-based controllers. The programme is therefore built around core modules such as Robotic Systems, Computer Vision, Sensors and Actuators, Real Time Systems and Control, which are complemented by a wide range of optional modules. The final part of the programme is an individual project that is closely linked with the Department’s research activities.

- Course purpose -

For graduates in engineering or a related scientific discipline, from this programme you will gain an awareness of the latest developments in Robotics while completing research and development work for your individual research project. This will provide valuable preparation for a career in research or industry.

- Course format and assessment -

Lectures; tutorials; seminars; laboratory sessions. Assessed through: coursework; written examinations; final project report.

Career prospects

Via the Department’s Careers Programme students are able to network with top employers and obtain advice on how to enhance career prospects. Our graduates have gone on to have very successful careers in industry and research, working areas such as manufacturing, automotive and aerospace. Recent employers include Cummins Inc. and Transport Alstom.

How to apply: http://www.kcl.ac.uk/study/postgraduate/apply/taught-courses.aspx

About Postgraduate Study at King’s College London:

To study for a postgraduate degree at King’s College London is to study at the city’s most central university and at one of the top 20 universities worldwide (2015/16 QS World Rankings). Graduates will benefit from close connections with the UK’s professional, political, legal, commercial, scientific and cultural life, while the excellent reputation of our MA and MRes programmes ensures our postgraduate alumni are highly sought after by some of the world’s most prestigious employers. We provide graduates with skills that are highly valued in business, government, academia and the professions.

Scholarships & Funding:

All current PGT offer-holders and new PGT applicants are welcome to apply for the scholarships. For more information and to learn how to apply visit: http://www.kcl.ac.uk/study/pg/funding/sources

Free language tuition with the Modern Language Centre:

If you are studying for any postgraduate taught degree at King’s you can take a module from a choice of over 25 languages without any additional cost. Visit: http://www.kcl.ac.uk/mlc

Read less
The MSc in Robotics will provide you with the ability to understand, design and implement modern robotic systems. Read more
The MSc in Robotics will provide you with the ability to understand, design and implement modern robotic systems. Robotics is increasingly prominent in a variety of sectors, from manufacturing and health to remote exploration of hostile environments such as space and the deep sea, and as autonomous and semi-autonomous systems that interact with people physically and socially.

This programme exposes you to a wide range of advanced engineering and computer science concepts, with the opportunity to carry out a practical robot project at the Bristol Robotics Laboratory, one of the UK's most comprehensive robotics innovation facilities and a leading centre of robotics research.

The programme is jointly awarded and jointly delivered by the University of Bristol and the University of the West of England, both based in Bristol, and therefore draws on the combined expertise, facilities and resources of the two universities. The Bristol Robotics Laboratory is a collaborative research partnership between the two universities with a vision to transform robotics by pioneering advances in autonomous robot systems that can behave intelligently with minimal human supervision.

Programme structure

Your course will cover the following core subjects:
-Robotics systems
-Robotic fundamentals
-Intelligent adaptive systems
-Robotics research preparation
-Image processing and computer vision
-Technology and context of robotics and autonomous systems
-Bio-inspired artificial intelligence

Typically you will be able to select from the following optional subjects:
-Computational neuroscience
-Uncertainty modelling for intelligent systems
-Introduction to artificial intelligence
-Learning in autonomous systems
-Design verification
-Animation production
-Advanced DSP and FPGA implementation
-Statistical pattern recognition
-Control theory
-Advanced techniques in multidisciplinary design
-Advanced dynamics
-Virtual product development
-Biomechanics
-Sensory ecology
-Transport modelling
-Electromechanical systems integration
-Advanced control and dynamics

Please note that your choice of optional units will be dependent on your academic background, agreement with the programme director and timetable availability.

Dissertation
During your second semester, you will start working on a substantial piece of research work that will make up one third of the overall MSc. It is possible to work on this project at Bristol Robotics Laboratory or in conjunction with one of our many industrial partners. Within the Bristol Robotics Laboratory, there are a number of themes from which projects may be chosen, including:
-Aerial robots
-Assisted living
-Bioenergy and self-sustainable systems
-Biomimetics and neuro-robotics
-Medical robotics
-Nonlinear robotics
-Robot vision
-Safe human-robot interaction
-Self-reparing robotic systems
-Smart automation
-Soft robotics
-Swarm robotics
-Tactile robotics
-Unconventional computation in robots
-Verification and validation for safety in robots

Further information is available from the Faculty of Engineering.

NB: Teaching for this programme is delivered at both the University of Bristol and the University of the West of England campuses. Students attending the programme will be given free transport passes to travel between the two universities.

Careers

Robotics is a huge field spanning areas such as electronics, mechanics, software engineering, mathematics, physics, chemistry, psychology and biology. Career opportunities include: automotive industry, aerospace industry, advanced manufacturing, deep sea exploration, space exploration, food manufacture, pharmaceutical production and industrial quality control.

Read less
Progress and innovation in robotics is now faster than ever, and is providing a wide range of industries and professions access to increasingly sophisticated autonomous and remotely operated devices with a widening range of applications and uses including manufacturing, agriculture, security and medicine. Read more
Progress and innovation in robotics is now faster than ever, and is providing a wide range of industries and professions access to increasingly sophisticated autonomous and remotely operated devices with a widening range of applications and uses including manufacturing, agriculture, security and medicine. As well as enjoying a growing commercial side, robotics also supports scientific research in unprecedented ways, giving us access to ever more remote, unpredictable and hazardous locations. Of course, it is also a major global research discipline in its own right, and robotics' progress has created a burgeoning worldwide demand for experts in a range of disciplines in this expanding billion-dollar industry.

Course detail

The MSc Robotics is available through a partnership between UWE Bristol and the University of Bristol, and provides a comprehensive understanding of advanced robotics and automation systems. While providing an excellent background for a range of technology careers that require robotics and automation knowledge and skills, it also offers the specialisms to support doctorate-level studies and ongoing research careers.

Uniquely, the partnership gives you access to the Bristol Robotics Laboratory, a world-leading centre for autonomous robotic systems and robotics research.

Modules

Core modules:
• Robotic Fundamentals (15 credits)
• Image Processing and Computer Vision (10 credits)
• Uncertainty Modelling for Intelligent Systems (10 credits)
• Animation Production (10 credits)
• Intelligent and Adaptive Systems (15 credits)
• Robotic Systems (10 credits)
• Research Skills (20 credits)
• Research Project (60 credits)

Optional modules from:
• Advanced Dynamics
• Computational Neuroscience
• Advanced DSP and FPGA Implementation
• Artificial Intelligence with Logic Programming
• Pattern Analysis and Statistical Learning

Format

You'll learn through a combination of lectures, seminars, group work, and through sessions at the Bristol Robotics Laboratory (BRL). The course is offered in partnership between UWE Bristol and the University of Bristol, and you will attend sessions at UWE Bristol's Frenchay campus, the University of Bristol, and BRL.

Assessment

You will normally be assessed through examination and coursework, as well as the dissertation.

Careers / Further study

The course provides an excellent route into this increasingly important area of industry, and into research and development.

The partnership between UWE Bristol and the University of Bristol has created a unique centre of excellence for engineering, in the heart of one of the UK's most important hubs for engineering industry especially in the aeronautical and electronics sectors. Bristol is a major base for companies such as Airbus, Rolls Royce, Toshiba and Hewlett Packard, with whom both universities enjoy close links.

How to apply

Information on applications can be found at the following link: http://www1.uwe.ac.uk/study/applyingtouwebristol/postgraduateapplications.aspx

Funding

- New Postgraduate Master's loans for 2016/17 academic year –

The government are introducing a master’s loan scheme, whereby master’s students under 60 can access a loan of up to £10,000 as a contribution towards the cost of their study. This is part of the government’s long-term commitment to enhance support for postgraduate study.

Scholarships and other sources of funding are also available.

More information can be found here: http://www1.uwe.ac.uk/students/feesandfunding/fundingandscholarships/postgraduatefunding.aspx

Read less
This innovative MSc in Observational Physics is delivered by world leading academics at Liverpool John Moores University. The Masters degree includes access to LJMU's research class robotic Liverpool Telescope and is designed as a route to PhD study. Read more
This innovative MSc in Observational Physics is delivered by world leading academics at Liverpool John Moores University. The Masters degree includes access to LJMU's research class robotic Liverpool Telescope and is designed as a route to PhD study.

•Course available to study full time (1 year) and part time (2 years) via distance learning
•High-quality, innovative teaching
•Access to the two metre research-class robotic Liverpool Telescope
•Qualification designed to facilitate continued study at PhD level

Astrophysics is enjoying an unprecedented burst of new discoveries about the universe we live in, as a result of revolutionary techniques that are opening new windows for the exploration of planets, stars, galaxies and the entire universe.

LJMU's Astrophysics Research Institute has played a leading role in many of these advances, including the development of the world famous robotic Liverpool Telescope.

Over the last decade, this has become one of the most flexible and powerful observatories for the study of rapidly varying sources such as Gamma-Ray Bursts, novae and supernovae. This Masters course has been developed to enable students, throughout the world, to share in these new discoveries and graduates to pursue further research through a PhD or equivalent.

The programme emphasises independent student learning and each module provides you with the opportunity to explore current literature, with support from experienced tutors, all of whom are engaged in cutting-edge astrophysical research.

All sessions on this Masters degree are delivered via distance learning to provide maximum flexibility.

Read less
The MSc in Electronics with Embedded Systems aims to produce postgraduates with an advanced level of understanding in the design of real-time embedded systems for time-critical, power sensitive applications. Read more
The MSc in Electronics with Embedded Systems aims to produce postgraduates with an advanced level of understanding in the design of real-time embedded systems for time-critical, power sensitive applications. Practical skillset development is emphasized throughout the course. Students will be taught the theory, protocol and the efficient use of both analogue and digital interfaces and sensor devices together with the principles of and use of Real-Time-Operating-Systems (RTOS). A key focus of the course will be in the implementation of power aware sustainable solutions, the course will provide an in-depth discussion of the underlying power management hardware sub-systems within modern MCUs and will show and use software techniques that will exploit these to reduce power consumption.

Broader consideration of embedded system design will be examined. In particular, the design process, risk assessment, product life-cycle, software life-cycle, safety and regulation will be investigated and used. It is intended that the course will re-focus existing knowledge held by the student in software engineering and hardware engineering and deliver a set of enhanced practical skills that will enable the student to fully participate in this multi-disciplined, fast expanding and dominating engineering sector of embedded systems.

Course Structure

Each MSc course consists of three learning modules (40 credits each) plus an individual project (60 credits). Each learning module consists of a short course of lectures and initial hands-on experience. This is followed by a period of independent study supported by a series of tutorials. During this time you complete an Independent Learning Package (ILP). The ILP is matched to the learning outcomes of the module. It can be either a large project or a series of small tasks depending on the needs of each module. Credits for each module are awarded following the submission of a completed ILP and its successful defence in a viva voce examination. This form of assessment develops your communication and personal skills and is highly relevant to the workplace. Overall, each learning module comprises approximately 400 hours of study.

The project counts for one third of the course and involves undertaking a substantial research or product development project. For part-time students, this can be linked to their employment. It is undertaken in two phases. In the first part, the project subject area is researched and a workplan developed. The second part involves the main research and development activity. In all, the project requires approximately 600 hours of work.

Further flexibility is provided within the structure of the courses in that you can study related topic areas by taking modules from other courses as options (pre-requisite knowledge and skills permitting).

Prior to starting your course, you are sent a Course Information and Preparation Pack which provides information to give you a flying start.

MSc Electronics Suite of Courses

The MSc in Electronics has four distinct pathways:
-Robotic and Control Systems
-Embedded Systems
-System-on-Chip Technologies
-Medical Instrumentation

The subject areas covered within the four pathways of the electronic suite of MSc courses offer students an excellent launch pad which will enable the successful graduate to enter into these ever expanding, fast growing and dominant areas. With ever increasing demands from consumers such as portability, increased battery life and greater functionality combined with reductions in cost and shrinking scales of technologies, modern electronic systems are finding ever more application areas.

A vastly expanding application base for electronic systems has led to an explosion in the use of embedded system technologies. Part of this expansion has been led by the introduction of new medical devices and robotic devices entering the main stream consumer market. Industry has also fed the increase in demand particularly within the medical electronics area with the need of more sophisticated user interfaces, demands to reduce equipment costs, demands for greater accessibility of equipment and a demand for ever greater portability of equipment.

There are plenty of opportunities for employment in the electronic systems subject area, in particular, there is a demand for engineers that can solve problems requiring a multi-disciplined approach covering skills from software engineering, control engineering, digital electronic systems engineering, analogue electronic engineering, medical physics, and mechanics amongst others. The MSc in Electronics and its specialist pathways will provide the foundations required to re-focus existing knowledge and enter this exciting world of multi-disciplined jobs.

The technical tasks undertaken in ILPs, along with the required major project, thoroughly exercise the concepts covered in the course modules and give scope for originality and industry-relevant study. Team-working activities encouraged within modules, along with the all-oral individual examination regimen employed in this Electronics MSc Suite, have proven solidly beneficial in refining the communication and employability-enhancing skills that are strongly valued by industry.

Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X