• University of Derby Online Learning Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • University of Leeds Featured Masters Courses

Postgrad LIVE! Study Fair

Birmingham | Bristol | Sheffield | Liverpool | Edinburgh

Cranfield University Featured Masters Courses
Xi’an Jiaotong-Liverpool University Featured Masters Courses
University of Cambridge Featured Masters Courses
Cass Business School Featured Masters Courses
Swansea University Featured Masters Courses
"road" AND "engineering"×
0 miles

Masters Degrees (Road Engineering)

We have 53 Masters Degrees (Road Engineering)

  • "road" AND "engineering" ×
  • clear all
Showing 1 to 15 of 53
Order by 
IN THIS 24-MONTH INTENSIVE, PART TIME ONLINE PROGRAM YOU WILL LEARN. - Advanced skills and knowledge civil and structural engineering principles that can be applied in a variety of workplaces. Read more
IN THIS 24-MONTH INTENSIVE, PART TIME ONLINE PROGRAM YOU WILL LEARN:

- Advanced skills and knowledge civil and structural engineering principles that can be applied in a variety of workplaces
- The essential underpinning knowledge that guides a range of projects, including road, rail and drainage systems, dams, harbours, bridges, buildings and other structures
- Practical skills in the design and drafting of engineering plans to international standards
- Skills in engineering management

KEY BENEFITS OF THIS PROGRAM:

- Receive practical guidance from civil and structural engineering experts with real world industry skills
- Gain credibility in your firm
- Develop new contacts in the industry
- Improve career prospects and income

Due to extraordinary demand we have scheduled another intake this year.

Start date: September 04, 2017. Applications now open; places are limited.

There are limited placed available so contact us now to speak to a Course Advisor.

INTRODUCTION

Join the next generation of senior civil and structural engineering experts. Embrace a well paid, intensive yet enjoyable career by taking this comprehensive and practical course. It is delivered over 24 months by live distance learning and presented by some of the leading civil and structural engineering instructors in the world today.

Civil and structural engineering encompasses a range of disciplines, including road, rail and drainage systems, dams, harbours, bridges, buildings and other structures. Civil and structural designers and drafters plan, design, develop and manage construction and repair projects.

This qualification develops your skills and knowledge in the design and drafting of engineering plans to recognised standards. You will learn about different areas of civil engineering, including construction, project management, design and testing. You will also learn about the design and drafting of concrete, steelwork, roads and pipes, as well as hydrology, stormwater drainage and foundations.

While it is essential that those who work in the supervisory or management levels of this discipline have a firm understanding of drafting and planning principles, this qualification goes much further. To be effective on the job, you will need to know how to apply knowledge of fundamental civil and structural engineering concepts, including geotechnical engineering, hydraulic engineering, engineering maths, and properties of materials. Throughout the program this subject matter will be placed into the context of engineering management. Our aim is to ensure that you are an effective, knowledgeable and skilled supervisor or manager, someone who can work beyond a “plan and design” brief to ensure that a project is delivered effectively.
This qualification aims to provide theoretical and practical education and training such that graduates may gain employment at the engineering associate (“paraprofessional”) level within the building and construction industry.

There are eight threads in the course to give you maximum, practical coverage. These threads comprise environmental issues, engineering technologies, drawing, 2D and 3D CAD design, building materials, civil and structural sub-disciplines (roads, steel, concrete, pavement, drainage, soil, water supply, sewerage), construction sites and engineering management.

This program avoids too much emphasis on theory. This is rarely needed in the real world of industry where time is short and immediate results, with hard-hitting and useful know-how, are required as a minimal requirement. The instructors presenting this advanced diploma are highly experienced engineers from industry who have done the hard yards and worked in the civil and structural areas. The format of presentation — live, interactive distance learning with the use of remote learning technologies — means that you can hit the ground running and be of immediate benefit to your company or future employer.

WHO SHOULD ATTEND?

Anyone who wants to gain a solid working knowledge of the key elements of civil and structural engineering that can be applied at the supervisory and paraprofessional level. See “Entrance Requirements”

This program is particularly well suited to students for who on-campus attendance is less desirable than the flexibility offered by online delivery. When work, family and general lifestyle priorities need to be juggled this world class program becomes an attractive option to many students world-wide.

- Site Supervisors
- Senior Trades Managers
- Trades Workers
- Construction Managers
- Maintenance Engineers or Supervisors
- Leading hands
- Consulting Engineers

Even those who are highly qualified in civil and structural engineering may find it useful to attend to gain practical know-how.

COURSE

This program is composed of 4 stages, delivered over 24 months. It is possible to achieve the advanced diploma qualification within the time period because the study mode is part-time intensive.

There are 8 threads around which the program is structured:

- Environmental issues
- Engineering technologies
- Drawing
- 2D and 3D CAD design
- Building materials
- Roads, steel, concrete, pavement, drainage, soil, water supply, sewerage
- Construction sites
- Engineering management

COURSE FEES

What are the fees for my country?

The Engineering Institute of Technology (EIT) provides distance education to students located almost anywhere in the world – it is one of the very few truly global training institutes. Course fees are paid in a currency that is determined by the student’s location. A full list of fees in a currency appropriate for every country would be complex to navigate and, with today’s exchange rate fluctuations, difficult to maintain. Instead we aim to give you a rapid response regarding fees that is customised to your individual circumstances.

We understand that cost is a major consideration before a student commences study. For a rapid reply to your enquiry regarding courses fees and payment options, please enquire via the below button and we will respond within 2 business days.

Read less
Summary. This course is unique in Ireland for its breadth across a range of infrastructure disciplines such as water, waste, structures, highways, road safety, project management and sustainability, with strong emphases on design. Read more

Summary

This course is unique in Ireland for its breadth across a range of infrastructure disciplines such as water, waste, structures, highways, road safety, project management and sustainability, with strong emphases on design. The knowledge and understanding covers key areas of civil and infrastructure engineering and meets the needs of graduates seeking chartered status. It has significant input from the expertise of a blend of current practitioners and research-led academics, with inter-disciplinary teaching in design and sustainability modules; all of this is integrated and delivered within the principles and practice of sustainable development.

About

This technical masters programme focuses on Technical subjects in a framework of Design and Sustainability, and this approach is grounded in technical modules covering waste, water, structural design, utilities, road safety and highways, supported by project management and sustainable development; a large Dissertation brings research-led studies and unique knowledge with substantial industrial linkages. Sustainable Development is the key driver in the design, delivery and assessment of all curricula and material; also, all content is set in the context of scholarly activity in which academic research is blended with professional knowledge and experience to provide a rich learning environment. Input from leading professionals as guest lecturers, mentors and advisors enhances the delivery and educational experience. Therefore the course offers a linked postgraduate course which is intellectually coherent, academically challenging, progressive in nature (with appropriate exit points) and has vocational relevance to the disciplines of civil and infrastructure engineering, as well as being linked to transport, construction, waste management and water engineering. It is designed to provide: (1) development of infrastructure engineering in the context of global sustainability and local strategic drivers, by studying relevant theoretical concepts and making critical reflection on their application;& (2) access to multi and interdisciplinary teaching and professional strengths of the Faculty staff;& (3) innovation in teaching, learning and assessment strategies, thereby relating to current professional practice; (4) leaders of infrastructure engineering for the future; and;(5) opportunities for graduates and professionals within the broad construction and built environment industry to enhance their knowledge and skills through the application of appropriate methods and techniques.

Attendance

Attendance is full-time for one year over 3 Semesters, commencing normally in September, but it is also possible to commence in January.

Attendance for the part-time Postgraduate Diploma is over 3 years, requiring attendance in 2 semesters of Years 1 and 2, and attendance in Year 3 as agreed with the Dissertation supervisor

Semester 1 - Compulsory: Project Management Practice; Integrated Design Studies; Optional – two from: Utilities and Water Engineering, Road Safety Engineering or Highway Asset Management; total of 4 x 15 credit modules.

Semester 2 - Compulsory: Sustainable Development; Infrastructure Design Studies; Optional – two from Structural Design for Infrastructure, Waste Systems or Road Safety Engineering; total of 4 x 15 credit modules.

Semester 3 – Compulsory: Dissertation - 1 x 60 credit module. Study will normally involve a weekly 12 hours of lectures, tutorials, site visits, design studio work, with independent study of 20+ hours.

Professional recognition

Institute of Highway Engineers (IHE) 

Accredited by the Institute of Highway Engineers (IHE) on behalf of the Engineering Council for the purposes of fully meeting the academic requirement for registration as a Chartered Engineer.

Institution of Structural Engineers (IStructE) 

Accredited by the Institution of Structural Engineers (IStructE) on behalf of the Engineering Council for the purposes of fully meeting the academic requirement for registration as a Chartered Engineer.

Chartered Institute of Highways and Transportation (CIHT) 

Accredited by the Chartered Institution of Highways and Transportation (CIHT) on behalf of the Engineering Council for the purposes of fully meeting the academic requirement for registration as a Chartered Engineer.

Institution of Civil Engineers (ICE) 

Accredited by the Institution of Civil Engineers (ICE) on behalf of the Engineering Council for the purposes of fully meeting the academic requirement for registration as a Chartered Engineer.

Career options

Graduate employment may be found in public or private sectors in built environment disciplines, especially in the careers of civil engineering, transportation, public health or environmental engineering, dealing with many key activities such as utilities, construction, design, infrastructure, sustainability, environmental and traffic impacts and waste management. Skills developed will include rational thinking, integrative studies and recent knowledge of current issues such as legislative structures, sustainability challenges, design practices, research-led knowledge. Recent graduates have found professional employment in the UK Water Sector, Australian engineering industries, Scottish Local Authorities, Irish County Councils, major consulting engineers and in Research posts.



Read less
The Master of Engineering Studies in Transportation Engineering is a specialised masters degree programme developed in consultation with the land transport industry professionals and support from the NZ Transport Agency. Read more

Invest in your future

The Master of Engineering Studies in Transportation Engineering is a specialised masters degree programme developed in consultation with the land transport industry professionals and support from the NZ Transport Agency.

Industry leaders are directly involved through national and regional liaison committees as well as making contributions to lecture content, assignments and research projects.

Programme Structure

Taught (120 or 180 points)
The MEngSt (Transportation Engineering)'s flexible structure gives you the opportunity to consider your personal strengths, undergraduate qualifications, previous work experiences and learning objectives. This makes our programme an excellent choice for students who need to study part-time, or are currently working in industry.

Electives

Elective enrolments may depend on your prior study and professional experience, but ultimately, choosing the appropriate courses and topics can allow you to concentrate on and develop strengths in your energy field of choice.

Our broad list of electives include courses in:
• Traffic Engineering and Planning
• Highway and Pavement Engineering
• Traffic Systems Design
• Highway and Transportation Design
• Traffic Operations and Management
• Planning and Design of Transport Facilities
• Transportation Planning
• Transportation and Networks Analysis
• Highway Safety and Operations
• Infrastructure Asset Management
• Road Asset Management
• Pavement Analysis Design
• Crash Reduction and Prevention
• Highway Geometric Design
• Transport Systems Economics
• Planning and Managing Transport
• Public Transport: Planning and Operation
• Sustainable Transport: Planning and Design

Next generation research at the Faculty of Engineering

The Faculty of Engineering is dedicated to providing you with all the facilities, flexibility and support needed for you to develop the skills needed for the workforce. We boast research themes and programmes that provoke interdisciplinary projects, bringing together expertise from our five departments, other faculties, and industry partners and research organisations. Collaborative study is strongly encouraged – postgraduates in particular have the benefit of experiencing cohorts with diverse academic and industry backgrounds.

You will gain access to world-renowned experts who actively demonstrate the positive impacts research have on society. High-performance equipment and labs beyond industry standards are at your fingertips. Our facilities extend beyond study hours – we take pride in our involvement in student events and associations across the University, and are dedicated to providing you with academic, personal and career advice. We encourage you to take advantage of our resources, and use them to expand the possibilities of your research and career path.

Read less
The Master of Science Programme (LM) in Safety Engineering for Transport, Logistics, and Production wants to provide students with a high level of advanced training, to enable them to operate in the areas the most qualified with reference to the various activities related to safety in transport systems, logistics, and related manufacturing. Read more

Aims and Basic Characteristics:

The Master of Science Programme (LM) in Safety Engineering for Transport, Logistics, and Production wants to provide students with a high level of advanced training, to enable them to operate in the areas the most qualified with reference to the various activities related to safety in transport systems, logistics, and related manufacturing.

The degree course aims at training a professional engineer with a thorough knowledge and understanding of the principles of systems engineering of transportation, logistics and production, in which to realize the acquired ability to conceive, plan, design and manage complex, innovative systems and processes, with particular attention to the related safety aspects.
The degree in Safety Engineering for Transport, Logistics, and Production will support the state exam for a license to practice in all the three areas of Engineering: Civil and Environmental, Industrial, and Information.

The typical professional fields for graduates in Safety Engineering for Transport, Logistics, and Production are those of the design and management of safety systems, with particular reference to the transport systems, the development of advanced innovative services, the management of logistics and production, in private and public enterprises, and public administration.

For any information, feel free to write to Prof. Nicola Sacco: safety_at_dime.unige.it

Job opportunities:

• engineering companies and/or large professional firms operating in the field of design, implementation, security management with reference of the transport systems and territorial
• public and private institutions that handle large lines infrastructure (railways, highways, ...)
• government (municipalities, provinces, regions, port authorities, ...)
• freelance
• research structures (universities, research centers, ...)

What Will You Study and Future Prospects:

The main goal is to enable M.Sc. graduates to operate in the various activities related to safety in transport systems, logistics, and production, but also of the territory where they are located.

The course provides notions about:

• the risk assessment of local systems, and in particular the planning, design and management of both safety (protection against accidental events) and security (protection than intentional events);
• the evaluation in terms of cost/benefits of different design alternatives for risk mitigation in transport, logistics, and production systems;
• the planning and management of the mobility of people and goods, through the knowledge of the fundamental elements of transport and logistic systems, as well as the criteria to define the physical characteristics of isolated infrastructures a network of infrastructures, with particular reference to the relevant functions and interdependencies;
• the design and safe management of transport, logistic, and production systems, with reference to either the systems as a whole, and to the relevant single components, such as infrastructures, facilities, vehicles, equipment;
• the development and use of advanced methods to manage and optimize the performance and safety of road, rail, air and sea infrastructure and transport services, as well as their interactions in an intermodal framework, by means of the design and implementation of monitoring, regulation, and control systems via the most advanced technologies related to their specific disciplines;
• the analysis and evaluation of the externalities of transport and logistic systems, with explicit reference to the particular safety aspect and issues characterizing each phase of the mobility of people and goods, even within the production plants connected, and their interaction with surrounding environment.

The course is articulated into two alternative curricula:

1. TRANSPORT AND LOGISTICS: This curriculum concentrates on the problems related to design and manage the complex systems that realize a safe and effective mobility of passengers and freights.

2. INDUSTRIAL LOGISTICS AND PRODUCTION: This curriculum concentrates on the problems related to design and manage the complex systems that realize a safe and effective production plant internal logistics and management.

Entry Requirements:

Admission to the Master of Science in Safety Engineering for Transport, Logistics and Production is subject to the possession of specific curricular requirements and adequacy of personal preparation.

The access requirements are equivalent to those provided by the general educational objectives of all three-year university degree in classes of Civil and Environmental Engineering, Information Engineering, and Industrial Engineering. In fact, one of the following curricular requirements must be fulfilled:

• possession of a Bachelor, or a Master degree, or a five-year degree in classes of Civil and Environmental Engineering, Information Engineering, and Industrial Engineering, awarded by an Italian University, or equivalent qualifications;
• possession of a Bachelor, or a Master degree, or a five-year degree with at least 36 ECTS (“Base Courses”, e.g. Mathematics, Physics, Chemistry, Informatics) and at least 45 ECTS that pertain to the Engineering classes, awarded by an Italian University, or equivalent qualifications;

To access, a knowledge of English is required, at least equivalent at B1 European Level.

Read less
Graduates in Civil Engineering work in the field of constructions and infrastructures. The subjects taught in the Master’s Degree Program aim at strengthening the basic preparation of the students, providing them, at the same time, with an adequately deepened knowledge of topics central to Civil Engineering. Read more

Mission and goals

Graduates in Civil Engineering work in the field of constructions and infrastructures. The subjects taught in the Master’s Degree Program aim at strengthening the basic preparation of the students, providing them, at the same time, with an adequately deepened knowledge of topics central to Civil Engineering. Students can choose their field of specialization in one of the following areas: Geotechnics, Hydraulics, Transportation infrastructures, Structures. Suggested study plans help students define their curriculum. Additionally, a General curriculum is also proposed, aimed at students preferring a wider spectrum formation in Civil Engineering.
The programme includes two tracks taught in English.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/civil-engineering/

Career opportunities

Engineers having obtained the Master’ degree can find career opportunities in the following areas:
1. companies involved in the design and maintainance of civil structures, plants and infrastructures;
2. universities and higher education research institutions;
3. public offices in charge of the design, planning, management and control of urban and land systems;
4. businesses, organizations, consortia and agencies responsible for managing and monitoring civil works and services;
5. service companies for studying the urban and land impact of infrastructures.

They can also work as self-employed professionals.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Civil_Engineering_02.pdf
Civil Engineers deal with structures (e.g. buildings, bridges, tunnels, dams) and infrastructures (such as roads, railways, airports, water supply systems, etc.). The two-year Master of Science in Civil Engineering provides students with a sound preparation on these topics, allowing them to choose a curriculum (or ‘track’) among the five available: General, Geotechnics, Hydraulics, Transport Infrastructures and Structures. The ‘General’ curriculum aims at training civil engineers with a broader range of expertise in the design, implementation and management of civil works of various kinds. ‘Geothecnics’ is devoted to the study of engineering problems involving geomaterials (i.e., soil and rock) and their interaction with civil structures (foundations, tunnels, retaining walls).
‘Hydraulics’ deals with problems concerning water storage, transportation and control (pipelines, sewers, river and coastal erosion control, reservoirs). ‘Transport Infrastructures’ covers various subjects of transportation engineering (road and railway design, airport and harbor design, modeling of transport fluxes). ‘Structures’ is devoted to the analysis and design of civil and industrial structures
(steel and concrete buildings, bridges, etc.). The tracks ‘Geotechnics’ and ‘Structures’ are taught in English.

Subjects

1st year subjects
- Common to the two curricula:
Numerical methods for Civil Engineering; Computational mechanics and Inelastic structural analysis; Theory of structures and Stability of structures; Dynamics of Structures; Advanced Structural design*; Reinforced and prestressed concrete structures*; Advanced computational mechanics*; Mechanics of materials and inelastic constitutive laws*; Fracture mechanics*

- Curriculum Geotechnics:
Groundwater Hydraulics; Engineering Seismology

- Curriculum Structures:
Steel structures*; Computational Structural Analysis*

2nd year subjects
- Common to the two curricula:
Foundations; Geotechnical Modelling and Design; Underground excavations; 1st year subjects marked by * may also be chosen;

- Curriculum Geotechnics:
Slope Stability

- Curriculum Structures:
Earthquake Resistant Design; Bridge Theory and Design; Structural rehabilitation; Precast structures; 1st year subjects marked by * may also be chosen

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/civil-engineering/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/civil-engineering/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
Created in partnership with companies such as the Ford Motor Company and Jaguar Land Rover, the programme is also aimed at existing or prospective product development engineers and those working in manufacturing, particularly those working alongside product design personnel in the context of cross-functional teams and simultaneous working practice. Read more

Created in partnership with companies such as the Ford Motor Company and Jaguar Land Rover, the programme is also aimed at existing or prospective product development engineers and those working in manufacturing, particularly those working alongside product design personnel in the context of cross-functional teams and simultaneous working practice.

Students study three compulsory modules and a further three modules from a choice of five. In addition, full-time students undertake a university-based project and part-time students undertake an industry-based project.

An online study support system provides additional information and materials to facilitate student discussion.

The programme is accredited by the Institution of Mechanical Engineers (towards Chartered status).

This course is aimed at engineers working in the automotive industry who wish to extend and deepen their skills and understanding of the field, as well as recent graduates who intend to start a career in the industry.

Though primarily aimed at product development engineers, the course offers significant value to those working in the manufacturing side of the industry and those who work alongside colleagues from product design in the context of cross-functional teams. Individual modules of this MSc can be studied as short courses.

The programme is very much one of technical engineering content, sitting in a systems engineering framework.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/aero-auto/automotive-systems-engineering/

Course structure and teaching

Students study three compulsory modules, three optional taught modules and carry out an individual project. In total the course comprises 180 modular credits, made up from 6 taught modules valued at 20 credits each, plus the project which is valued at 60 credits.

The course is mostly delivered as a series of block taught modules. An online study support system provides additional information and materials to facilitate learning and discussion. Full time students undertake a University based project and part time students undertake an industry based project.

Assessment: Examination, coursework assignments and project dissertation.

Course features

- Incorporates a systems thinking framework, referring to product lifecycle, target setting, requirements capture and cascade, plus elements of business-related drivers for engineering practice.

- Provides clear links between design and manufacture, for example presenting examples where manufacturing capabilities have a large impact on design and system robustness.

- Develops advanced and specialist themes via the optional modules.

- Expertise provided from industry-based specialists.

- Individual modules can be studied as short courses.

- The MSc course was originally developed in partnership with Ford Motor Company, and we continue to work closely with the automotive industry in designing, developing and delivering our courses.

Compulsory modules

- Manufacturing Systems and Integrated Design

- Vehicle and Powertrain Functional Performance

- Vehicle Systems Analysis

- Project

Optional modules (select three)

- Body Engineering

- Powertrain Calibration Optimisation

- Sustainable Vehicle Powertrains

- Vehicle Dynamics and Control (for full time programme only)

- Vehicle Electrical Systems Integration

Careers and further Study

Graduates work primarily in product design and development groups and are sought after by a wide range of automotive companies. Students that wish to pursue other careers are well-equipped to work in a wide range of sectors within the vehicle industry.

Scholarships

Loughborough University offers five merit based competitive scholarships to the value of 10% of the programme tuition fee for international students applying for the MSc in Automotive Systems Engineering. All students applying for the course will be considered for the scholarship.

Why choose aeronautical and automotive engineering at Loughborough?

The Department of Aeronautical and Automotive Engineering is a specialist centre within one of the UK’s largest engineering universities.

The Department has 37 academic staff and nearly 150 postgraduate students on taught and research programmes. In the Government’s External Subject Review, the Department was awarded an excellent score (23/24) for the quality of its teaching.In the most recent Research Excellence Framework our subject areas featured in the top ten nationally.

- Facilities

The Department has extensive laboratories and facilities including: wind tunnels; anechoic chamber; indoor UAV testing; structures testing facilities; gas-turbine engines; eight purpose-built engine test cells; Hawk aircraft; 6-axis simulator (road and aircraft); chassis dynamometer and numerous instrumented test vehicles.

The Department hosts the Rolls-Royce University Technology Centre (UTC) in Combustion Aerodynamics and the Caterpillar Innovation and Research Centre (IRC) in engine systems.

- Research

The Department has four major research groups working across the technologies of automotive and aeronautical engineering. Each group works on a variety of research topics, ranging from the development of new low emissions combustion systems for gas turbine engines, through to fundamental investigations into the operation of hydrogen powered fuel cells.

- Career prospects

Over 90% (DLHE, 2016) of our graduates were in employment and/or further study six months after graduating. The Department has particularly close links with BAE Systems, Bentley, British Airways, Ford Motor Company, Group Lotus, Jaguar Land Rover, JCB, MIRA, Perkins Caterpillar, Rolls-Royce and many tier one automotive suppliers

Find out how to apply here http://www.lboro.ac.uk/departments/aae/postgraduate/apply/



Read less
Victoria University’s Master of Engineering Practice (MEP) is a unique and innovative programme for graduates seeking a professional postgraduate engineering qualification in the IT field. Read more

Victoria University’s Master of Engineering Practice (MEP) is a unique and innovative programme for graduates seeking a professional postgraduate engineering qualification in the IT field.

There is a demand from New Zealand employers for ICT graduates, particularly for graduates who have the appropriate skills for working eff ectively in the New Zealand workplace.

Industry has made it clear that they need graduates with good communication and teamwork skills and an understanding of the professional environment in industry, as well as straight technical knowledge and skills.

The MEP has been designed to provide graduates who can meet that demand.

About the Master of Engineering Practice Programme

Many Engineering and Computer Science graduates have little experience at applying theoretical knowledge to real engineering problems and little understanding of the professional environment in the New Zealand industry.

The MEP is a one-year, 180-point Master’s programme which aims to help students advance their skills and improve their job prospects.

Students will have completed a relevant degree such as in Computer Science or an appropriate engineering discipline. The programme will include courses focusing on communication, problem solving and enterprise skills. It will end with a three-month research and development project in an industry placement.

  • For Electronics and/or Computer Science Engineering graduates or similar
  • Unique in NZ. Designed to prepare students for work in the ICT industry
  • Includes an industrial placement (Part Three of the degree)
  • Applicants must be able to demonstrate: Strength in Maths; some Programming in their background; able to deal with Abstractions

Course structure

Taught 180 points Master’s degree - 1.5 years of academic study. It is taught in three parts and it is expected that students may complete the degree in one calendar year.

Part 1 (one trimester of study) – 60 points

  • Research and Communication Skills (15 points)
  • Engineering Practice (15 points)
  • 2 courses from Electronics, Networking, Software or Computer Science (30 points)

Part 2 (one trimester of study) – 60 points

  • Engineering project (30 Points)
  • 2 courses from Electronics, Networking, Software or Computer Science (30 points)

Part 3 (one trimester of study) – 60 points

  • Industry Research and Development Project (60 points)

Students may be placed in industries locally (including within Victoria University of Wellington), or nationally – past industry placements include companies such as Google, Xero, Datacom, Weta Digital, Park Road Post, Solnet, Microsoft, IBM, Trade Me, Fujitsu, Magritek, Tekron, BRANZ, Callaghan Innovation, BECA, GNS, Fisher & Paykel, EDMI, Chorus, Transfield Services, 2degrees and others.

Students may be paid by companies in which they are placed.



Read less
If you are an ambitious engineering graduate – from a civil, mechanical, computing or electronic engineering background – this course is a smart route to a career in the expanding field of transport consultancy and public policy. Read more

If you are an ambitious engineering graduate – from a civil, mechanical, computing or electronic engineering background – this course is a smart route to a career in the expanding field of transport consultancy and public policy.

97% of our graduates find employment in a professional or managerial role, or continue with further studies.*

Learn to develop solutions to engineering problems that fit the broader aims of transport and planning policy, from academics with an international reputation whose research sets industry standards. This includes studying the principles of transport engineering and data collection and analysis. Other options include:

  • Traffic management
  • Road geometry and infrastructure
  • System dynamics
  • Road safety management
  • Public transport planning.

Develop an early understanding of four-stage modelling before gaining hands-on experience of SATURN and other Leeds-built models so that you become fluent in their use in live environments.

Deepen your knowledge of:

  • Engineering design principles
  • Integrated transport networks - road, rail, and aviation
  • Refining models to fit local contexts.

And experience what it is like to be part of a project team working across disciplinary boundaries within the transport sector. Through this, gain insights into how engineering, planning, economics, environmental science and modelling can work together to develop sustainable solutions to global challenges. This industry-inspired approach will enable you to apply your knowledge to real-world issues in the field.

Your colleagues will be among the best and brightest from Latin America to the Far East, from Africa to Europe and the UK. Together you will learn engineering techniques that will help you develop transport networks that are founded on fundamental principles, robust evidence, sustainable and equitable principles, state-of-the-art modelling, accurate data analysis, and an understanding of human psychology.

This course provides you with a clear pathway to the Transport Planning Professional (TPP) qualification and is accredited by the major professional bodies in the transport sector, including Chartered Institute of Logistics and Transport (CILT UK) and Chartered Institution of Highways and Transport (CIHT).

ITS – the global institute teaching the transport leaders of tomorrow.

*Higher Education Statistics Agency (HESA), Destinations of Leavers from Higher Education (DLHE) 2015, http://www.hesa.ac.uk

We have redesigned our suites of courses following close consultation with Industry and academia.

With a strong focus on industry needs, our degrees will prepare you for employment in your chosen field. They will also address the multi-disciplinary nature of transport – enabling you to make effective decisions for clients, employers and society.

And to experience what it’s really like to work in the transport sector, collaborate with a project team of students from our other degrees through our new Transport Integrated Project module.

Research environment

The Institute for Transport Studies (ITS) was established as the UK’s first multi-disciplinary transport department, and we continue to lead the field with our research.

Our reputation allows us to invest in world-class facilities, such as the University of Leeds Driving Simulator – one of the most sophisticated in any university in the world, allowing us to research driver behaviour in controlled lab conditions. We also have access to a variety of specialist software tools including those we’ve developed in-house such as SATURN, PLUTO, DRACULA, MARS and KonSULT.

Other Study Options

This programme is available part time, allowing you to combine study with other commitments. You can work to fund your studies, or gain a new qualification without giving up an existing job. We aim to be flexible in helping you to put together a part-time course structure that meets your academic goals while recognising the constraints on your study time.

You can also study this subject at Postgraduate Diploma level, part time or full time, or at Postgraduate Certificate level with our PGCert in Transport Studies.

Accreditation

This programme is recognised by the major professional bodies in the transport sector. It fulfils the educational requirements for membership of the Chartered Institute of Logistics and Transport (CILT UK) and the Chartered Institution of Highways and Transportation (CIHT) and provides a pathway towards the Transport Planning Professional (TPP) qualification.

It is also accredited as meeting the requirements for technical Further Learning for Chartered Engineer (CEng) status for candidates who have already acquired a CEng accredited BEng (Hons). Please see the Joint Board of Moderators website for further information.




Read less
Our MSc Transportation Planning and Engineering (Infrastructure) course focuses on the design, engineering and operation of land transport systems, with modules looking in detail at road and railway systems. . Read more

Our MSc Transportation Planning and Engineering (Infrastructure) course focuses on the design, engineering and operation of land transport systems, with modules looking in detail at road and railway systems. 

This MSc is appropriate for students interested in a career in the transport industry. The infrastructure pathway is differentiated through the compulsory study of highway and traffic engineering, and railway engineering and operations.

Whilst this pathway is very suitable for engineers; graduates from other disciplines - science, mathematics, planning and geography – would be welcome on this course.

Introducing your degree

Whether you are interested in starting a career in the transport industry, or an experienced transport professional keen to enhance your skills, our MSc in Transportation Planning and Engineering (Infrastructure) is the masters course for you. Covering everything from the fundamentals of modelling and economics through to the application of software and planning tools using real life examples from around the world, it is the perfect way to improve your capabilities and employability in the transport sector.

Overview

The one year full-time course starts in September each year and includes two semesters of taught modules and a summer period devoted to your individual project, from which you produce a Dissertation. Lectures take place on Tuesdays and Thursdays each week – allowing the course to be undertaken on a part-time basis over 2 years, with attendance on one day each week. The course includes a 2 day residential field trip which in the past has featured behind-the-scenes site visits, museum trips, and a 'transport challenge' competition.

Career Opportunities

  • Transport engineering (rail infrastructure companies, local highways departments),
  • Transport planning,
  • Transport management,
  • Transport consultancy.


Read less
Our Transport and Operations Research Group is a leading centre of transport technology in Europe. We conduct world leading research that has commercial impact. Read more
Our Transport and Operations Research Group is a leading centre of transport technology in Europe. We conduct world leading research that has commercial impact. You will be able to develop your work into ground breaking research through working with our experts.

By pursuing research in the School of Civil Engineering and Geosciences you will join an extremely successful research group focussing on transport and civil engineering. Our mission is to foster, promote and conduct research of international quality. This means that we attract high quality graduates and researchers and train them to international standards.

Research into transport and civil engineering is conducted by our Transport Operations Research Group (TORG), one of the leading centres of transport technology in Europe. We are central to key research in areas such as road user charging and smartcards, developing both the policy ideas and the underlying technologies.

We are currently running a world-leading trial in electric vehicles and public charging infrastructure in the north east of England. This research is informing policy, international standards development and its impact on energy demand and environmental emissions. We have also developed a low-cost wireless sensing technology, Motes, which is being used to monitor traffic pollution, help develop strategies to manage traffic demand and reduce emissions. This world-leading technology is being used commercially by several local authorities and it is being assessed for deployment in a number of high profile international cities.

Our main research areas are:
-Land use and network models
-Passenger transport and policy
-Transport and the environment
-Infrastructure design and telematics

We supervise MPhil and PhD students in the following areas:
-Freight and traffic loading
-Public transport management and operations
-Traffic management and control
-Road traffic safety and accident analysis
-Transport emissions and the environment
-Transport telematics and image processing
-Intelligent transport systems (ITS)
-Travel behaviour
-Highway design and engineering
-Operating speed models
-Environmental impact and monitoring of transport activities

Delivery

During term time, TORG has weekly seminars where staff, current PhD students and invited speakers make presentations. The current research themes deal with:
-Transport telematics
-Public transport
-Transport and the environment
-Pollution and congestion
-Road-user charging and infrastructure

You have the opportunity to attend and make presentations at conferences, including the Universities' Transport Study Group Annual Conference.

Placements

We have extensive UK and international contacts so that research can be carried out in collaboration with industry and government agencies. Research projects are supervised by staff with a wide range of industrial and academic experience.

Read less
This one-year postgraduate course is designed to enable graduate engineers obtain a sound knowledge of important aspects of highway, traffic and geotechnical engineering. Read more
This one-year postgraduate course is designed to enable graduate engineers obtain a sound knowledge of important aspects of highway, traffic and geotechnical engineering. The course is particularly suited to engineers involved in the provision, preservation and operation of highways, but it is open to all those holding a degree or equivalent in Civil Engineering or any other relevant branch of engineering.

The topics covered include: transportation economics; highway planning and programming and route selection; survey methods and instrumentation; computer applications in local authorities; construction law; transportation modelling; theory of traffic flow; impacts of road traffic facilities; traffic: methods for planning, capacity analysis and design; traffic control and management; design of flexible and concrete pavements; pavement maintenance and rehabilitation; surface and sub-surface drainage; bridge design and management; quality assurance plans for road schemes; descriptions of soils and rocks; earthworks technology; stability of fills, slope stability; construction of embankments on soft ground; procurement of civil engineering works; road asset management plans; environmental impact assessment.

Lectures are normally held on Friday evening and Saturday morning each week throughout the two semesters (September to April).

Read less
With an ever growing demand for skilled electronic engineers, our course will equip you with the skills and expertise you’ll need to meet the challenges of a constantly changing industrial world. Read more
With an ever growing demand for skilled electronic engineers, our course will equip you with the skills and expertise you’ll need to meet the challenges of a constantly changing industrial world.

Your course will have a new home in Compass House, which will extend our campus along East Road. You’ll have the latest technology at your fingertips and be able to collaborate with other students on innovative projects to hone your skills.

See the website http://www.anglia.ac.uk/study/postgraduate/electronic-and-electrical-engineering

Our course covers a number of contemporary topics, including power electronics, signal processing, renewable systems, holistic modeling of electronic systems and image processing. Building on your previous experience, and with developed practical skills, you’ll leave with the expert knowledge and understanding to practice safely and effectively in a wide range of environments.

Cambridge is home to the Silicon Fen, Europe’s largest high-technology commercial research and development centre. We have excellent, established links with many employers in the sector including:

- ARM Ltd
- British Computer Society
- Cambridge Network
- Cambridge Silicon Radio
- E2V
- Ford Motor Company
- Selex Sensors and Airborne Systems
- South East Essex PCT

Our specially equipped laboratories provide you with the essential tools you need in the field of industrial electronics and microelectronics. Among other features they are equipped with wind and solar energy systems, development boards with FPGA circuits and power electronics modules. You’ll also have access to our CAD laboratories with the very latest software.

This programme is CEng accredited and fulfils the educational requirements for registration as a Chartered Engineer when presented with a CEng accredited Bachelors programme.

See the website http://www.anglia.ac.uk/study/postgraduate/electronic-and-electrical-engineering

Our course is designed to address the challenges of the modern industrial world. It focuses on power electronics, renewable systems, signal processing, holistic modelling of electronic systems and image processing. The main aims of the course are to:
• Meet a local, national and international demand for skilled electronic and electrical engineers.
• Provide an opportunity for students to gain in-depth relevant specialist knowledge in electronics systems design.
• Synthesise formal solutions through the application of specialist knowledge to design and create innovative electronic and electrical circuits.
• Perform and develop objective and critical analysis skills necessary to synthesis effective solutions when presented with a set of specifications.
• Equip you with the appropriate depth in understanding of electronic engineering development tools and techniques.

Upon completion of the course you will be able to:
• Exercise an in-depth understanding of the design mechanisms which can be used to create electronic and electrical designs and critically evaluate their effectiveness.
• Demonstrate an ability to deal with complex and interdependent design issues both systematically and creatively in a sustainability context.
• Analyse and devise strategies to design, evaluate and optimise microelectronics based systems.
• Critically evaluate the tools and techniques required to create microelectronics circuits which satisfy specifications.
• Analyse current research and technical problems within the discipline for further reflection for evaluation and critique.
• Recognise your obligations to function in a professional, moral and ethical way.
• Synthesise original circuit design from a knowledge of current tools, methodologies and strategies.
• Critically survey current and recent practice in the field of electronic and electrical engineering, in a sustainability context, in order to identify examples of best practice and to propose new hypotheses.
• Develop the ability to act autonomously to plan and manage a project through its life cycle, and to reflect on the outcomes.
• Define the goals, parameters and methodology of a research and development activity.

Careers

The possibilities that are open to you range from design or systems engineering, to medical electronics, environmental monitoring, sound technology biophysics or microelectronics. Across industry, whether it’s in process control, construction and building or services, teaching and beyond, there’ll be opportunities to find your own specialist niche.

Core modules

Sustainable Technologies
DSP Applications and ARM® Technology
Digital Systems Design with VHDL and FPGAs
Power Conversion Systems
Remote Sensing and the Internet of Things
Research Methods
Major Project

Assessment

You’ll be assessed through exams and written assignments based on case studies and scenarios.

Facilities

Our Department has specialist laboratories for electronics and microelectronics, equipped with wind and solar energy systems, power electronics modules, development boards with FPGA circuits and more. Our laboratories are designed, maintained, and operated by an in-house team of technical experts. Students also benefit from access to a wide range of central computing and media facilities.

We also operate modern electronic Computer Aided Design labs loaded with the latest software that includes Integrated Synthesis Environment Design Suite, Matlab, Simulink and other relevant software.

Your faculty

The Faculty of Science & Technology is one of the largest of five faculties at Anglia Ruskin University. Whether you choose to study with us full- or part-time, on campus or at a distance, there’s an option whatever your level – from a foundation degree, to a BSc, MSc, PhD or professional doctorate.

Whichever course you pick, you’ll gain the theory and practical skills needed to progress with confidence. Join us and you could find yourself learning in the very latest laboratories or on field trips or work placements with well-known and respected companies. You may even have the opportunity to study abroad.

Everything we do in the faculty has a singular purpose: to provide a world-class environment to create, share and advance knowledge in science and technology fields. This is key to all of our futures.

Read less
Mechatronics is a synergistic combination of precision mechanics, electronics, controls, and computer engineering, combined through a process of integrated design. Read more
Mechatronics is a synergistic combination of precision mechanics, electronics, controls, and computer engineering, combined through a process of integrated design. On the MSc in Mechatronics, the development of skills and advancement of knowledge focus on enabling students to understand the combination, at a high level, of Mechanical and Electronic Engineering and to gain a broad range expertise in these areas.

This is alongside developing a student’s ability to control mechanical systems using analogue and digital electronics. This course will give students an awareness of modern digital embedded platforms for mechatronic systems.

Students will cover subject specific subjects such as Dynamics and Performance of mechanical Systems with the option of Artificial Intelligence or Renewable Energy Systems and Smart Grid alongside cohort taught subjects to develop their management skills and their employability.

The successful postgraduates of the course will acquire the knowledge and understanding, intellectual, practical and transferable skills necessary for the analysis and synthesis of problems in engineering and manufacturing through a combination of experimental, simulation, research methods and case studies.

They can expect to gain work in a range of disciplines within a variety of industries from specialist technical roles to positions of management responsibility.

Why choose this course?

Students who undergo this course will develop knowledge and understanding of the advanced theoretical issues and their practical implementations that underlie recent developments in Mechatronics.

Gain the abilities to evaluate the performance of systems appropriate to Mechatronics by theoretical analysis and/or simulation
Supported by the School which has over 25 years' experience of teaching electronic engineering and has established an excellent international reputation in this field.

We offer extensive lab facilities for engineering students, including the latest software packages.

Careers

Applications are extremely wide ranging covering for example the aerospace industry, road vehicles and trains, medical engineering, materials processing, advanced manufacturing systems, defence systems and consumer electronics. Graduates may therefore expect employment across a very wide range of engineering companies.

Teaching methods

Our enthusiastic staff is always looking for new ways to enhance your learning experience and over recent years, we have won national awards for our innovative teaching ideas. In addition, our staff are active in research and useful elements of it are reflected on the learning experience.

The School of Engineering and Technology has a reputation for innovation in teaching and learning, where nearly all MSc modules are delivered through a combination of traditional face-to-face teaching and backup tutorial's using the University's StudyNet web based facility. StudyNet allows students to access electronic teaching and learning resources, and conduct electronic discussions with staff and other students.

A heavy emphasis is placed on theory and practice, and the School of Engineering and Technology has a policy of using industrial standard software wherever possible.

Structure

Core Modules
-Advanced Reconfigurable Systems and Applications
-Control of Engineering Systems
-Digital Signal Processing and Processes
-Dynamics and Performance of Mechanical Systems
-Embedded Control Systems
-MSc Project
-MSc Projects
-Mixed Mode and VLSI Technologies
-Operations Management
-Operations Management
-Operations Research
-Operations Research

Optional
-Artificial Intelligence
-Renewable Energy Systems and Smart Grids Technology

Read less
The intercollegiate Transport with Sustainable Development MSc, offered in conjunction with Imperial College London, brings together the transport research and training capabilities of the civil engineering departments of the two universities. Read more
The intercollegiate Transport with Sustainable Development MSc, offered in conjunction with Imperial College London, brings together the transport research and training capabilities of the civil engineering departments of the two universities. Students benefit from the multi-disciplinary expertise of both departments and their 45 years' experience as leaders in this field.

See the website http://www.ucl.ac.uk/prospective-students/graduate/taught/degrees/transport-sustainable-development-msc

Key Information

- Application dates
All applicants:
Open: 5 October 2015
Close: 29 July 2016
Fees note: Fees set by Imperial College London

English Language Requirements

If your education has not been conducted in the English language, you will be expected to demonstrate evidence of an adequate level of English proficiency.
The English language level for this programme is: Set by Imperial College London
Further information can be found on http://www.ucl.ac.uk/prospective-students/graduate/life/international/english-requirements .

International students

Country-specific information, including details of when UCL representatives are visiting your part of the world, can be obtained from http://www.ucl.ac.uk/prospective-students/international .

Degree Information

Students gain the skills necessary to incorporate the concepts of sustainable development in all stages of an engineering project's development, together with a systematic understanding of the causes, motivations and means of personal travel and goods movement, and techniques for analysing transport problems and evaluating projects, plans and policies.

Students undertake modules to the value of 90 ECTS Credits.

- Core Modules
Transport and its Context
Quantitative Methods
Transport Economics
Transport Demand and its Modelling
The Concept of Sustainable Development
Sustainable Development and Engineering Innovation
Applying the Principles of Sustainable Development

- Options
Options may include the following:
Highway Engineering
Road Traffic Theory and its Application
Public Transport
Transport Safety and Risk Management
Quantitative Techniques for Transport Engineering and Planning
Advanced Transport Modelling
Understanding and Modelling Travel Behaviour
Transport and the Environment
Intelligent Transport Systems
Design of Accessible Transport Systems
Freight Transport
Air Traffic Management
Ports and Maritime Transport
Urban Street Planning and Design
Roads and Underground Infrastructure: Design, Construction and Maintenance

- Dissertation/report
All students undertake an independent research project which culminates in a special project of 12,000 words.

Teaching and Learning

The programme is delivered through a combination of lectures, seminars, computer-based work and coursework. Assessment is through unseen written examinations, coursework, an individual literature review, presentations and the dissertation focussing on the final project.

Further information on modules and degree structure available on the department web site Transport with Sustainable Development MSc http://www.cege.ucl.ac.uk/teaching/Pages/Postgraduate/Transport.aspx

Funding

This programme offers a number of bursaries, including awards from the Engineering and Physical Sciences Research Council, the Rees Jeffreys Road Fund and the Brian Large Fund.
For further information please visit: www3.imperial.ac.uk/cts/teaching.
Scholarships relevant to this department are displayed (where available) below. For a comprehensive list of the funding opportunities available at UCL, including funding relevant to your nationality, please visit the Scholarships and Funding website http://www.ucl.ac.uk/prospective-students/scholarships .

- Brown Family Bursary - NOW CLOSED FOR 2015/16 ENTRY
Value: £15,000 (1 year)
Eligibility: UK students
Criteria: Based on both academic merit and financial need

- Commonwealth Shared Scholarship Scheme (CSSS)
Value: Full fees, flights, stipend, and other allowances (1 year)
Eligibility: Overseas students
Criteria: Based on both academic merit and financial need

- SPDC Niger Delta Postgraduate Scholarship - NOW CLOSED FOR 2015/16 ENTRY
Value: Tuition fees, plus stipend, flights and allowances. (1 year)
Eligibility: Overseas students
Criteria: Based on academic merit

More scholarships are listed on the Scholarships and Funding website http://www.ucl.ac.uk/prospective-students/scholarships

Careers

Transport graduates find employment with transport operators, consultancies, local and central governments in various countries, and in supranational organisations. Many graduates are employed by companies involved in the manufacture of instrumentation, and in companies specialising in software and other services for the engineering industry.

- Employability
Successful completion of this MSc meets the academic requirements for corporate membership of the Chartered Institute of Logistics and Transport. The programme is accredited by the Chartered Institution of Highways and Transportation. The programme is also accredited by the Institution of Civil Engineers as meeting the regulations of the Engineering Council's scheme for enabling graduates without an accredited Bachelor's degree in Civil Engineering to be considered for corporate membership and registration.

Why study this degree at UCL?

The Centre for Transport Studies is an energetic and exciting environment. Students benefit from engaging with the teaching staff who are actively involved in internationally leading research, and advising local, national and international transport agencies.

Both universities are located in the centre of one of the world's most exciting cities, near to relevant professional institutions and transport agencies. London provides a living laboratory in which students can observe many of the problems that they are studying, analyse the success or failure of current approaches to design, and operate and manage them.

Student / staff ratios › 95 staff including 43 postdocs › 200 taught students › 170 research students

Application and next steps

- Applications
Students are advised to apply as early as possible due to competition for places. Those applying for scholarship funding (particularly overseas applicants) should take note of application deadlines.

- Who can apply?
The Transport with Sustainable Development pathway is suitable for students who wish to direct their career towards issues of transport development and redevelopment, especially in the provision of infrastructure, and its renovation and renewal.

For more information see the Applications page http://www3.imperial.ac.uk/cts/teaching .

Read less
This course is designed in collaboration with transport industry partners to equip you to meet the needs of the rail and road industries. Read more
This course is designed in collaboration with transport industry partners to equip you to meet the needs of the rail and road industries. There is an increased demand for advancements in electrical, electronic, control and communication systems for transport, with a particular focus on themes like higher efficiency and sustainability, safety and driving assistance, position and traffic control for smart transport planning.

Modern electrical, electronic, control and communication systems for intelligent transport require today engineers with a combination of skills and solutions from cross-disciplinary abilities spanning electrical, electronic, control and communications. In this context, the overall aim of this Conversion Masters is to provide you with an enriching learning experience, and to enhance your knowledge and skill-base in the area of modern road vehicle and rail transport systems design.

This conversion course is intended both for engineers in current practice and for fresh honours graduates to facilitate their professional development, mobility and employability.

Course content

This course aims to enhance your knowledge and skills in the area of intelligent and efficient transport systems design. You will develop advanced practical skills that will help you determine system requirements, select and deploy suitable design processes and use the latest specialist tool chains to test and/or prototype a device or algorithm. The programme will help you acquire the cross-disciplinary skills and abilities that today are vital to be able to implement effective solutions for modern electrical, electronic and communication systems applied to intelligent transport. The broad range of disciplines covered by the course will enable you to enter a career that requires a cross-disciplinary approach with a practical skillset.

The subject areas covered within the course offer you an excellent launch pad which will enable you to enter into this ever expanding, fast growing and dominant area within the electrical engineering sector, and particularly in the area of intelligent and efficient transport systems. Furthermore, the course will provide the foundations required to re-focus existing knowledge and enter the world of multi-disciplined jobs.

Modules

The following modules are indicative of what you will study on this course.

Core modules
-Electric Motors and Control for Transport Systems
-Power Conversion and Drives for Transport Systems
-Project
-Sensor, Data Acquisition and Communication for Transport Systems

Associated careers

The course provides the foundations required to re-focus existing knowledge and enter the world of multi-disciplined jobs. Graduates can expect to find employment, for example, as Electrical systems design engineers; Control systems engineers, Transport systems engineers; Plant control engineers; Electronic systems design engineer; Communication systems design engineers; Sensor systems engineers; Computer systems engineer. Examples of typical industries of employment can be: Transport; Automobile; Aviation; Electrical systems; Electronic systems; Assembly line manufacturers; Robotics and home help; Toy; Communication systems; Logistics and distribution; Consumer industry; Life-style industry; Security and surveillance; Petro-chemical.

Professional recognition

This course will be seeking accreditation from the IET.

Read less

Show 10 15 30 per page



Cookie Policy    X