• Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Imperial College London Featured Masters Courses
  • Leeds Beckett University Featured Masters Courses
  • Regent’s University London Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of York Featured Masters Courses
London Metropolitan University Featured Masters Courses
University of Birmingham Featured Masters Courses
University of Sussex Featured Masters Courses
University of Leeds Featured Masters Courses
Coventry University Featured Masters Courses
"rna"×
0 miles

Masters Degrees (Rna)

  • "rna" ×
  • clear all
Showing 1 to 15 of 24
Order by 
This Masters in Bioinformatics, Polyomics and Systems Biology is a new, exciting and innovative programme that has grown out of our well-regarded MRes in Bioinformatics. Read more
This Masters in Bioinformatics, Polyomics and Systems Biology is a new, exciting and innovative programme that has grown out of our well-regarded MRes in Bioinformatics. Bioinformatics is a discipline at the interface between biology and computing and is used in organismal biology, molecular biology and biomedicine. ‘Polyomics’ is a new term used to describe the modern integrated approach to biological analysis involving genomics, transcriptomics, proteomics, metabolomics and systems-level datasets. The MSc Bioinformatics programme focuses on using computers to glean new insights from DNA, RNA and protein sequence data and related data at the molecular level through data storage, mining, analysis and display - all of which form a core part of modern biology.

Why this programme

-Our programme emphasises understanding core principles in practical bioinformatics and functional genomics, and then implementing that understanding in a series of practical-based elective courses in Semester 2 and in a summer research project.
-You will benefit from being taught by scientists at the cutting edge of their field and you will get intensive, hands-on experience in an active research lab during the summer research project.
-Bioinformatics and the 'Omics' technologies have evolved to play a fundamental role in almost all areas of biology and biomedicine.
-Advanced biocomputing skills are now deemed essential for many PhD studentships/projects in molecular bioscience and biomedicine, and are of increasing importance for many other such projects.
-The Semester 2 elective courses are built around real research scenarios, enabling you not only to gain practical experience of working with large molecular datasets, but also to see why each scenario uses the particular approaches it does and how to go about organizing and implementing appropriate analysis pipelines.
-You will be based in the College of Medical, Veterinary & Life Sciences, an ideal environment in which to train in bioinformatics; our College has carried out internationally-recognised research in functional genomics and systems biology.
-The new programme reflects the development and activities of 'Glasgow Polyomics'. Glasgow Polyomics is a world-class facility set up in 2012 to provide research services using microarray, proteomics, metabolomics and next-generation DNA sequencing technologies. Its scientists have pioneered the 'polyomics' approach, in which new insights come from the integration of data across different omics levels.
-In addition, we have several world-renowned research centres at the University, such as the Wellcome Trust Centre for Molecular Parasitology and the Wolfson Wohl Cancer Research Centre, whose scientists do ground-breaking research employing bioinformatic approaches in the study of disease.
-You will learn computer programming in courses run by staff in the internationally reputed School of Computing Science, in conjunction with their MSc in Information Technology.

Programme structure

Bioinformatics helps biologists gain new insights about genomes (genomics) and genes, about RNA expression products of genes (transcriptomics) and about proteins (proteomics); rapid advances have also been made in the study of cellular metabolites (metabolomics) and in a newer area: systems biology.

‘Polyomics’ involves the integration of data from these ‘functional genomics’ areas - genomics, transcriptomics, proteomics and metabolomics - to derive new insights about how biological systems function.

The programme structure is designed to equip students with understanding and hands-on experience of both computing and biological research practices relating to bioinformatics and functional genomics, to show students how the computing approaches and biological questions they are being used to answer are connected, and to give students an insight into new approaches for integration of data and analysis across the 'omics' domains.

On this programme, you will develop a range of computing and programming skills, as well as skills in data handling, analysis (including statistics) and interpretation, and you will be brought up to date with recent advances in biological science that have been informed by bioinformatics approaches.

The programme has the following overall structure
-Core material - 60 credits, Semester 1, made up of 10, 15 and 20 credit courses.
-Elective material - 60 credits, Semester 2, students select 4 courses (two 10 credit courses and two 20 credit courses) from those available.
-Project - 60 credits, 14 weeks embedded in a research group over the summer.

Core and optional courses

Core courses include:
-Programming (Java)
-Database Theory and Application
-Foundations of Bioinformatics
-Omics and Systems Approaches in Biology
-These 4 courses are obligatory for those taking the MSc degree and the PgDip; they are also obligatory for those with no prior programming experience taking the PgCert.
-60-credit summer research project lasting 14 weeks - this is also obligatory for those taking the MSc programme; normally this will be with one of the research laboratories in Glasgow associated with the programme, but there is also the opportunity to study in suitable laboratories in other parts of the world

Optional courses include:
-RNA-seq and next generation transcriptomics
-Metagenomics
-Pathogen Polyomics
-Cancer Genomics - NGS and functional analysis methods
-Disease Pathway Analysis - Systems Approaches and De Novo Pathway Mapping
-Using Chemical Structure Databases in Drug Discovery for Protein Targets
-Identification of disease-causing genetic variants
-A range of more general biology and computing biology courses are also available in semester 2

Career prospects

Most of our graduates embark on a research career path here in the UK or abroad using the skills they've acquired on our programme - these skills are now of primary relevance in many areas of modern biology and biomedicine. Many are successful in getting a PhD studentship. Others are employed as a core bioinformatician (now a career path within academia in its own right) or as a research assistant in a research group in basic biological or medical science. A postgraduate degree in bioinformatics is also valued by many employers in the life sciences sector - e.g. computing biology jobs in biotechnology/biosciences/neuroinformatics/pharma industry. Some of our graduates have entered science-related careers in scientific publishing or education; others have gone into computing-related jobs in non-bioscience industry or the public sector.

Read less
- check at. http://www.unipd.it/en/biotecnologie-alimentazione. http://www.unipd.it/en/how-apply. Instructions in English. http://www.unipd.it/en/educational-offer/second-cycle-degrees/school-of-agricultural-sciences-and-veterinary-medicine?ordinamento2011&keyIF0362. Read more

Admission Notice now available

- check at
http://www.unipd.it/en/biotecnologie-alimentazione
http://www.unipd.it/en/how-apply

Instructions in English:
http://www.unipd.it/en/educational-offer/second-cycle-degrees/school-of-agricultural-sciences-and-veterinary-medicine?ordinamento=2011&key=IF0362
.

Biotechnologies for Food Science

In the 2016-2017 academic year, the University of Padova inaugurated a new curriculum of the Master Degree “Biotechnology applied to Food Security and Nutrition” (Second Cycle Degree) entitled “Biotechnologies for Food Science " to be entirely taught in English.
The “Biotechnologies for Food Science " Master degree (MSc) is an interdisciplinary and research-oriented Master of Science Programme and explores how to produce healthier and safer food following a cross-cutting, farm/field-to-fork approach. It is focused on the application of advanced biotechnologies in food production and safety and it is the ideal trait-d’union between the requests of consumers, of producers in the agro-food sector and research applied to production and food-safety.
The course has a strong component on cutting-edge methods, such as genomics, bioinformatics, proteomics, metabolomics, nanotechnologies, all in the context of animal and crop production as well as food quality and safety. Theoretical lessons are mixed with practical training, offering hands-on experience in advanced DNA, RNA, and protein analysis together with substantial lab sessions in bioinformatics. Lectures will deal with food production, hygiene and quality, molecular methods of agro-food analyses, effects of agro-biotech products on human beings and environments. Moreover environmental stresses, disease mechanisms, pathogens and pests will be treated as essential to understand how to protect crop and farm animals and how food might impact on human health: the lectures move across animal infectious disease, immunology, microbiology, plant pests and pathogens as well as abiotic stresses to show how biotechnology might help preventing disease and improve food production. As consumers are increasingly worried about the presence of contaminants in food and on the real origin of what they eat; the Programme includes a course in food toxicology and regulation, and one on traceability for food authentication.
Our Programme is based at the Agripolis campus, where are located four departments of the School of Agriculture and Veterinary Medicine of the University of Padova, all of which contribute to the MSc course, offering the best opportunities for a rich, cross-disciplinary experience in a highly qualified scientific environment.

Who is the MSc candidate?

This programme is open to Italian and foreign students from the EU and abroad, interested in learning and implementing effective value-added practices for the production of high-quality food products both in the EU and in international markets. English knowledge must be minimum at B2 level (CEFR). Applying students might possibly have a three-year Bachelor’s degree in a field connected with the Master’s curriculum. Good background in molecular biology, biochemistry, and microbiology is requested.

How is the programme organised?

Biotechnologies for Food Science is a 2-year Master programme (120 ECTS, equivalent to a Master of Science). Requirements for graduation include courses and preparation and defense of the Master thesis. Students will be encouraged to spend a period of their studies abroad, through Erasmus+ or other local programmes and agreements. Financial support to meet part of the cost for thesis work is granted to best students.
Visit the MSc “Biotechnologies for Food Science” page on the Università di Padova web-site (http://www.unipd.it/en/biotecnologie-alimentazione) for more details.

Teaching methods

Teaching takes place in an international environment and includes lectures and laboratory activities, practical exercises and seminars by experts; opportunities for intensive tutoring and for master thesis-related stages of at least six months duration will be available with outstanding companies in the sector of the food industry or with other relevant organisations in the private or public sphere. The Programme assists students to find suitable internship opportunities with qualified laboratories in Italy and abroad.
Examinations are written or oral and assess students’ participation also through reports, presentations, and group work.

Course structure

During the two-years MSc course students attend the following 12 course units

Applied genomics for animal and crop improvement
Applied Bionformatics
Food Microbiology and Food Microbial Biotechnology
Molecular basis of disease, immunology, and transmissible diseases
Laboratory of advanced DNA, RNA, and protein analysis
Biotechnology for crop production
Epidemiology and risk analysis
Traceability tools for species authentication  
Advanced technologies for the agrifood sector (nanotechnologies, proteomics, metabolomics)
Biotechnology for plant protection
Food toxicology and food regulation
Foreign language (English)

First year
During the first year of the programme the student will acquire knowledge on animal and crop genomics, focusing on the most advanced methods for high throughput genomic analysis (transcriptomics, genome-wide SNP analysis, epigenomics) and on the most recent approaches for selective breeding (genomic selection, genomic prediction). In parallel, the student will learn how bioinformatics tools might be applied to manage large sets of data, how biological data bases are organized and how to link different types of data. Extensive practical training in bioinformatics will be offered with various sessions in a dedicated lab. Food-borne pathogens and the positive role of microorganisms in food processes will be examined in an integrated microbiology course, while the molecular basis of pathology, host-response to infection, epidemiology, and diagnostics of transmissible diseases will form the basis of two courses. A course on biotechnology for crop production will introduce the molecular and physiological basis of crop production. Biotechnological approaches to improve crop yield, with particular attention to fruit production, and to reduce impact of abiotic stresses will examined. Molecular tools for food traceability and an intensive practical lab in DNA/RNA/protein analysis applied to food control will conclude the first year.

Second year
In the second year, the first semester have three courses. One will focus on novel technologies (proteomics, metabolomics, nanotechnology) and their application to food production. A second one will extend knowledge on plant biotechnology exploring advanced technologies for crop disease and pest management. A third one will deal with contaminants in food and food legislation. The second semester is completely dedicated to lab internship. It is possible to join a research lab in the campus or to have a working stage in the private sector.
link to the Campus descriptions:
http://youtu.be/gR4qcWUXvGg

Read less
The MSc Molecular Genetics course aims to provide instruction in current concepts and techniques of molecular genetics as applied in modern research. Read more
The MSc Molecular Genetics course aims to provide instruction in current concepts and techniques of molecular genetics as applied in modern research. The MSc offers practical experience of experimental techniques and provides a framework to develop skills to plan research and devise strategies to achieve specific goals. The MSc acts as a springboard for graduates who want employment in molecular, biomedical or biotechnological research, or for entry to PhD programmes.

The MSc was established in 1988 and has been developed over the years to reflect the research strengths within the Faculty. Our students find the course to be demanding and challenging but also exciting, stimulating and rewarding.

The MSc consists of 180 course credits and is split into two phases:
Taught Phase 60 credits September - January
Research Project 120 credits January - August

Taught Phase
The taught phase is based around a series of taught practical experiments that introduce a variety of modern molecular techniques and research strategies. The experiments are run Tuesday-Friday of each week in the period September-December, with the Monday being reserved for a supporting lecture programme. The practical experiments are intensive and are used to help students develop analytical and reasoning skills as well as to learn how to plan and execute experimental investigations. There are some weeks set aside for students to complete written assignments and prepare for exams.

Research Project
For the research project students become part of an active research group and choose from a broad range of projects offered by departments of the Faculty of Medicine and Biological Sciences, the MRC Toxicology Unit, or collaborating research institutes or industrial partners (when available). The spread of projects covers a wide variety of disciplines involving molecular genetics and a variety of organisms.

Below are examples of project titles from a previous year:

• Molecular engineering of novel ligands with therapeutic potential

• Detection of oxidative damage to DNA in specific gene sequences

• Analyzing human disease genes in yeast

• Single molecule methods for watching the assembly of splicing complexes

• Secretory protein expression in pancreatic β-cells

• The iron responsive regulatory system of Campylobacter jejuni

• Non-recombining segments of the human genome as tools to study evolutionary history

• Analysis of telomere length dynamics in mice that lack telomerase by the amplification of single mouse telomeres.

• Molecular mechanisms underlying antisense-RNA mediated CpG island methylation in mammalian cells

• Mutations in the LMNA Gene in Emery Dreyfuss Muscular Dystrophy – consequences for in vitro differentiation of muscle cell cultures

• Alternative lengthening of telomeres in chronic lymphocytic leukaemia


Assessment of the research project is based on:
• Research performance (60 credits)
• A written report on the research (50 credits)
• A research seminar (10 credits).

Students submit the project report in August and the research seminars are held near the end of August.

Read less
Molecular genetics is the study of genes at the molecular level. It focuses on the processes that underlie the expression of the genetic information from the DNA into the functional proteins that execute the genetic programme. Read more
Molecular genetics is the study of genes at the molecular level. It focuses on the processes that underlie the expression of the genetic information from the DNA into the functional proteins that execute the genetic programme. Within the School of Life Sciences research in molecular genetics is concentrated in the Human Genetics, Fungal Biology, and Developmental Genetics and Gene Control groups. In the Human Genetics group research in this area includes studies of the molecular basis of myotonic dystrophy and the identification of genes involved in cardiac development; the molecular genetics of muscle disease; mouse models of muscle disorders and molecular genetic approaches to anthropology and human population genetics. In the Fungal Biology group there are studies on the molecular events that determine stress responses during polarised growth, protein folding and secretion in yeasts and filamentous fungi; the molecular and cellular effects of stress on yeast cells and the genetic mechanisms that control sex in fungi. The Developmental Genetics and Gene Control group focuses on the mechanisms of eukaryotic gene expression and the genetics of vertebrate embryonic development. Developmental studies are focussed largely upon the mechanisms that control stem cell fate. Projects on the control of gene expression address the machinery used by cells to achieve appropriate levels of functional transcripts. These studies include control of transcription and the mechanisms of RNA maturation.

APPLICATION PROCEDURES
After identifying which Masters you wish to pursue please complete an on-line application form
https://pgapps.nottingham.ac.uk/
Mark clearly on this form your choice of course title, give a brief outline of your proposed research and follow the automated prompts to provide documentation. Once the School has your application and accompanying documents (eg referees reports, transcripts/certificates) your application will be matched to an appropriate academic supervisor and considered for an offer of admission.

COURSE STRUCTURE
The MRes degree course consists of two elements:
160 credits of assessed work. The assessed work will normally be based entirely on a research project and will be the equivalent of around 10 ½ months full-time research work. AND
20 credits of non-assessed generic training. Credits can be accumulated from any of the courses offered by the Graduate School. http://www.nottingham.ac.uk/gradschool/research-training/index.phtml The generic courses should be chosen by the student in consultation with the supervisor(s).

ASSESSMENT
The research project will normally be assessed by a dissertation of a maximum of 30,000 to 35,000 words, or equivalent as appropriate*. The examiners may if they so wish require the student to attend a viva.
*In consultation with the supervisor it maybe possible for students to elect to do a shorter research project and take a maximum of 40 credits of assessed modules.

The School of Life Sciences will provide each postgraduate research student with a laptop for their exclusive use for the duration of their studies in the School.

SCHOLARSHIPS FOR INTERNATIONAL STUDENTS
http://www.nottingham.ac.uk/studywithus/international-applicants/scholarships-fees-and-finance/scholarships/masters-scholarships.aspx

Read less
Bioinformatics is changing as high throughput biological data collection becomes more Systems oriented. This means that employers are looking for people able to work across the traditional disciplines. Read more

Course Description

Bioinformatics is changing as high throughput biological data collection becomes more Systems oriented. This means that employers are looking for people able to work across the traditional disciplines. The MSc in Bioinformatics and Systems Biology at Manchester reflects these exciting developments, providing an integrated programme taught by researchers at the forefront of fields spanning Bioinformatics, Genomics and Systems Biology.

Bioinformatics has been an identifiable discipline for more than a decade, driven by the computational demands of high volumes of biological data. It incorporates both the development and application of algorithms to decipher biological relationships. Enormous success has been achieved, for example in defining homologous families of sequences at the DNA, RNA, and protein levels. However, our appreciation of function is changing rapidly as experimental analysis scales up to cellular and organismal viewpoints. At these levels, we are interested in the properties of a network of interacting components in a system, as well as the components themselves. The concepts or Systems Biology and Bioinformatics complement each other, and both are addressed in this course. This combination reflects the current skills sought in academic and industrial (e.g. pharmaceutical) settings. An important feature is the extent to which computational biology is concerned with finding patterns in biological data, and generating hypotheses that feed back into experiments.

You will be based in the top-rated Faculty of Life Sciences at the University of Manchester. Teaching is delivered by more than 10 academic staff working in the fields of Bioinformatics, Genomics and Systems Biology, representing the breadth and depth of these areas across Faculties.

Read less
The two-year MSc Bioinformatics concerns a new scientific discipline with roots in computer science, statistics and molecular biology. Read more

MSc Bioinformatics

The two-year MSc Bioinformatics concerns a new scientific discipline with roots in computer science, statistics and molecular biology. Bioinformaticians apply information technology to store, retrieve and manipulate these data and employ statistical methods capable of analysing large amounts of biological data to predict gene functions and to demonstrate relationships between genes and proteins.

Programme summary

DNA contains information about life, but how is this information used? Biological data, such as DNA and RNA sequence information produced by next-generation sequencing techniques, is accumulating at an unprecedented rate. Life scientists increasingly use bioinformatics resources to address their specific research questions. Bioinformaticians bridge the gap between complex biological research questions and this complex data. Bioinformaticians use and develop computational tools to predict gene function(s) and to demonstrate and model relationships between genes, proteins and metabolites in biological systems. Bioinformatics is an interdisciplinary field that applies computational and statistical techniques to the classification, interpretation and integration of large-scale biological data sets. If different data types are joined then complex interactions in biological systems can be studied. The use of systems biology methods to study complex biological interactions offers a wealth of possibilities to understand various levels of aggregation and enables control of biological systems on different scales. Systems biology approaches are therefore quickly gaining importance in many disciplines of life sciences, such as in applied biotechnology where these methods are now used to develop strategies for improving production in fermentation. Other examples include bioconversion and enzymatic synthesis, and in the study of human metabolism and its alterations where systems biology methods are applied to understand a variety of complex human diseases, including metabolic syndromes and cancer. The Wageningen Master programme focuses on the practical application of bioinformatics and systems biology approaches in many areas of the Life Sciences. To ensure that students acquire a high level of understanding of modelling and computing principles, the students are trained in the fundamentals of database management, computer programming, structural and functional genomics, proteomics and systems biology methods. This training includes advanced elective courses in molecular biology and biostatistics.

Thesis tracks

Bioinformatics
The bioinformatics track focuses on the practical application of bioinformatics knowledge and skills in molecular life sciences. It aims at creating and using bioinformatics resources to address specific research questions. The knowledge and skills gained can be applied in many life science disciplines such as molecular & cell biology, biotechnology, (human) genetics, health & medicine and environmental & biobased technology.

Systems Biology
The systems biology track focuses on the study of the complex interactions in biological systems and on the emerging properties derived from these. Systems biology approaches to complex biological problems offer a wealth of possibilities to understand various levels of aggregation. It enables control of biological systems on completely different scales, ranging from the molecular cellular level to marine, plant, or animal ecosystems to a desired state. The knowledge and skills gained can be applied in many life science disciplines including molecular & cell biology, applied biotechnology, genetics, medicine and vaccine development, environmental and biobased technology.

Your future career

Bioinformatics and Systems Biology are new fast growing biology based interdisciplinary fields of research poorly served by the traditional curricula of Life Sciences. As demand has outpaced the supply of bioinformaticians, the first job after graduation is often a PhD project at a research institute or university. It is expected that five years after graduation, about one third will stay employed as a scientist at a university or research centre, while the others choose for careers at research-oriented pharmaceutical and biotechnological companies.

Alumnus Tom van den Bergh.
"It is sometimes difficult for doctors to diagnose genetic diseases caused by missense mutations. A missense mutation does not necessarily mean that you have the gene-associated disease and will become ill since not all missense mutations lead to appreciable protein changes." Tom created a database for Fabry’s disease for his final thesis. He wrote a computer programme that reads publications and stores all information about Fabry mutations in its database. Genetic researchers can, in turn, quickly access this database to determine if the mutation they found in a patient has already been addressed in literature and what the effects were.

Related programmes:
MSc Biotechnology
MSc Molecular Life Sciences
MSc Plant Biotechnology

Read less
- https://www.kent.ac.uk/locations/medway/. This programme builds on a very successful in-house training programme implemented by a major pharmaceutical company. Read more

This course will be held at the Medway Campus

- https://www.kent.ac.uk/locations/medway/

This programme builds on a very successful in-house training programme implemented by a major pharmaceutical company.

It was designed and conceived by pharmaceutical industry experts in drug discovery and will be delivered and assessed by experts in this field at the School of Pharmacy.

The MSc covers how fundamental science is applied to the discovery and development of medicines and the main aims are to:

- provide you with the experience of critically appraising the research questions and techniques that are routine in the pharmaceutical industry workplace

- produce graduates trained in the processes by which fundamental science is linked to the design and development of modern medicines

- provide expert preparation for students who wish to pursue a career in drug discovery, or wish to proceed to a PhD.

Visit the website https://www.kent.ac.uk/courses/postgraduate/736/applied-drug-discovery

Duration: One year full-time (campus based), two years part-time (distance learning)

About Medway School of Pharmacy

Medway School of Pharmacy is one of the few regional schools of pharmacy in the UK, a collaboration between the University of Kent and the University of Greenwich.

The impetus for the formation of the Medway School of Pharmacy came from the local community, who recognised the shortage of qualified pharmacists in all branches of the pharmacy profession in Kent.

The School is now recognised as an established school with accreditation from the General Pharmaceutical Council (GPhC) and the Health and Care Professions Council (HCPC). Graduates are employed in health disciplines in Kent and the south-east and more broadly across the UK.

Course structure

This programme is taught as either a classic one year full-time programme with attendance required on Mondays and Tuesdays for 48 weeks plus an additional study day off-campus, or delivered through distance e-learning using an interactive virtual learning environment on a two-year part-time basis.

The programme comprises 60 credits at certificate level, 60 credits at diploma level and 60 credits at Master’s level. You may choose to end your study at any one of these stages.

Modules

The following modules are indicative of those offered on this programme. This list is based on the current curriculum and may change year to year in response to new curriculum developments and innovation. Most programmes will require you to study a combination of compulsory and optional modules. You may also have the option to take modules from other programmes so that you may customise your programme and explore other subject areas that interest you.

Assessment

Assessment is by 100% coursework; including scientific reports, assignments, essays, a research project and portfolio entries.

Programme aims

This programme aims to:

- produce graduates trained in the processes by which fundamental science is linked to the design and development of modern medicines

- teach you an understanding of the drug discovery process

- provide you with expanded training in the biological sciences technical skills that underpin the processes of drug discovery

- provide you with the experience of critically appraising the research questions and techniques they use routinely in the workplace

- develop a variety of postgraduate level intellectual and transferable skills

- equip you with lifelong learning skills necessary to keep abreast of developments in drug discovery

- provide you with opportunities for shared multidisciplinary learning in drug discovery

- give you the experience of undertaking an independent research project

- provide expert preparation for students who wish to pursue and/or further a career in drug discovery, or wish to proceed to a higher degree (PhD) in topics related to the drug discovery process

- provide access to as wide a range of students as practicable irrespective of race, background, gender or physical disability from both within the UK and from overseas.

Research areas

- Chemistry and drug delivery

This group has laboratories with dedicated state-ofthe art drug delivery, nanotechnology, spectroscopy, chromatography and organic synthesis facilities. It brings together researchers in medicinal chemistry and drug design, nanotechnology and materials science, drug delivery and pharmaceutics encouraging a multidisciplinary approach to research. Research covers synthesis and biological evaluation of potential anti-cancer agents, structurebased drug design, QSAR predication of ADMET properties, controlled release, particle engineering, powder technology, pharmaceutical technology, and novel drug delivery systems, with a focus on respiratory drug delivery.

- Biological sciences

This group is housed in recently refurbished laboratories with dedicated state-of-the-art molecular biological, electrophysiological, tissue culture and microscopy facilities. The research is divided into four main themes; infectious diseases and allergy; neuroscience; renal and cardiovascular physiology; and pharmacology. Examples of current work include: investigation of the use of non-pathogenic virus ‘pseudotypes’ to study pathogenic RNA, study of the properties of neuronal potassium channels and their modulation and the development of new therapies for patients that have developed acute kidney injury in collaboration with a major pharmaceutical company.

- Pharmacy practice

This group conducts research in two areas: public health and medicines optimisation, with a particular focus on cardiovascular diseases and mental health. Work in public health includes studies in physical exercise, alcohol, cardiovascular screening and spirometry testing, plus pharmacovigilance. Studies in medicines optimisation include work in dementia, bipolar disorder and stroke, with an emphasis on the patient perspective.

Careers

Graduates who obtain their PhD from Kent or Greenwich are highly sought after by prospective employers, both within the UK and overseas. Destinations for doctoral graduates include university academic departments, research institutes and leading pharmaceutical and biotechnological companies.

The taught postgraduate programmes are designed to promote the continuing professional development by providing sought-after skills. The programmes are beneficial for those who wish to develop their skills and/or to take the next step in their career. While the MSc in Applied Drug Discovery produces elite drug discovery personnel, who can pursue a career in the pharmaceutical industry or academia.

Find out how to apply here - https://www.kent.ac.uk/courses/postgraduate/apply/

Read less
- https://www.kent.ac.uk/locations/medway/. This programme provides general-level hospital pharmacists – registered with the GPhC and working – with the core skills required to provide holistic pharmaceutical care in the practice setting. Read more

This course will be held at the Medway Campus

- https://www.kent.ac.uk/locations/medway/

This programme provides general-level hospital pharmacists – registered with the GPhC and working – with the core skills required to provide holistic pharmaceutical care in the practice setting.

The programme aligns with a nationally agreed pharmacy practitioner development strategy and is the result of a unique collaboration of higher education institutions across London and the south and east of England.

The programme develops your knowledge and skills in clinical pharmacy practice and medicines management. It works on a philosophy of student-centred workplace learning, supported by workbooks and contact days facilitated by experienced pharmacy practitioners. You are expected to take responsibility for managing your learning and achieving the programme objectives. The ethos and culture of the programme is to enhance and develop self-reliance and an adult approach to learning in support of continuing professional development.

Visit the website https://www.kent.ac.uk/courses/postgraduate/737/general-pharmacy-practice

About Medway School of Pharmacy

Medway School of Pharmacy is one of the few regional schools of pharmacy in the UK, a collaboration between the University of Kent and the University of Greenwich.

The impetus for the formation of the Medway School of Pharmacy came from the local community, who recognised the shortage of qualified pharmacists in all branches of the pharmacy profession in Kent.

The School is now recognised as an established school with accreditation from the General Pharmaceutical Council (GPhC) and the Health and Care Professions Council (HCPC). Graduates are employed in health disciplines in Kent and the south-east and more broadly across the UK.

Modules

For more about the structure of this course please visit the Medway School of Pharmacy website (http://www.msp.ac.uk/studying/postgraduate/cert-gen-pharm-pract/index.html).

Assessment

Assessment is by Objective Structure Clinical Examination (OSCE), multiple-choice questions, assignments, literature review, prescribing audit, change management project, and a competency-based portfolio review.

Programme aims

The PCert and PDip aim to:

- enable you to apply appropriate knowledge, skills and attitudes in order to carry out effectively the role of the general pharmacist practitioner within your pharmacy practice base and wider healthcare teams

- enable you to carry out effective consultations with patients respecting their diverse needs and with regard to confidentiality and consent

- enable you to identify, prioritise and resolve complex pharmaceutical care issues

- enable you to apply knowledge of pathophysiology, pharmacology and the clinical use of drugs and therapeutic guidelines to the treatment of common disease states

- enable you to access, gather, interpret, critically evaluate and summarise medicines information

- enable you to monitor the quality of services provided, identify, prioritise and resolve significant medicines management issues and monitor and evaluate outcomes

- enable you to establish population health needs and apply specialist pharmaceutical knowledge to public health issues.

The MSc aims are to:

- investigate a topic in depth

- evaluate current practice or a new service

- publish research and advance knowledge in pharmacy practice

- develop skills you require for the RPS Advanced Pharmacy Framework

- inspire you and others in your workplace to carry out much needed practice research

- support your future career and perhaps to help you explore new career paths.

Research areas

Chemistry and drug delivery
This group has laboratories with dedicated state-ofthe art drug delivery, nanotechnology, spectroscopy, chromatography and organic synthesis facilities. It brings together researchers in medicinal chemistry and drug design, nanotechnology and materials science, drug delivery and pharmaceutics encouraging a multidisciplinary approach to research. Research covers synthesis and biological evaluation of potential anti-cancer agents, structurebased drug design, QSAR predication of ADMET properties, controlled release, particle engineering, powder technology, pharmaceutical technology, and novel drug delivery systems, with a focus on respiratory drug delivery.

Biological sciences
This group is housed in recently refurbished laboratories with dedicated state-of-the-art molecular biological, electrophysiological, tissue culture and microscopy facilities. The research is divided into four main themes; infectious diseases and allergy; neuroscience; renal and cardiovascular physiology; and pharmacology. Examples of current work include: investigation of the use of non-pathogenic virus ‘pseudotypes’ to study pathogenic RNA, study of the properties of neuronal potassium channels and their modulation and the development of new therapies for patients that have developed acute kidney injury in collaboration with a major pharmaceutical company.

Pharmacy practice
This group conducts research in two areas: public health and medicines optimisation, with a particular focus on cardiovascular diseases and mental health. Work in public health includes studies in physical exercise, alcohol, cardiovascular screening and spirometry testing, plus pharmacovigilance. Studies in medicines optimisation include work in dementia, bipolar disorder and stroke, with an emphasis on the patient perspective.

Careers

This programme provides progression for pharmacists towards advanced practitioner status.

Completion of the practice elements of the course leads to the award of the Certificate of Completion of General Pharmacist Training from an accredited training centre.

Find out how to apply here - https://www.kent.ac.uk/courses/postgraduate/apply/

Read less
- https://www.kent.ac.uk/locations/medway/. This programme, approved by the appropriate professional/regulatory bodies, provides a distance learning option for qualification as a non-medical prescriber. Read more

This course will be held at the Medway Campus

- https://www.kent.ac.uk/locations/medway/

This programme, approved by the appropriate professional/regulatory bodies, provides a distance learning option for qualification as a non-medical prescriber.

Eight contact days cover communication and diagnostic skills. Other topics on the syllabus include the legal, policy, professional and ethical aspects of prescribing, plus pharmacology and patient assessment and monitoring.

Visit the website https://www.kent.ac.uk/courses/postgraduate/740/independent-supplementary-prescribing

About Medway School of Pharmacy

Medway School of Pharmacy is one of the few regional schools of pharmacy in the UK, a collaboration between the University of Kent and the University of Greenwich.

The impetus for the formation of the Medway School of Pharmacy came from the local community, who recognised the shortage of qualified pharmacists in all branches of the pharmacy profession in Kent.

The School is now recognised as an established school with accreditation from the General Pharmaceutical Council (GPhC) and the Health and Care Professions Council (HCPC). Graduates are employed in health disciplines in Kent and the south-east and more broadly across the UK.

Course structure

You can take the Master’s programme as a stand-alone PCert in Independent/Supplementary Prescribing, or as one pathway into the Medicines Management programme, by studying prescribing as either the first or second year of the Medicines Management PDip.

On successful completion, the School will notify the appropriate professional/regulatory body that you have qualified as an independent/supplementary prescriber.

Modules

The following modules are indicative of those offered on this programme. This list is based on the current curriculum and may change year to year in response to new curriculum developments and innovation. Most programmes will require you to study a combination of compulsory and optional modules. You may also have the option to take modules from other programmes so that you may customise your programme and explore other subject areas that interest you.

Assessment

Assessment is by Objective Structured Clinical Examination (OSCE), assignments, case-study analysis, multiple-choice questions, short answer paper, narrative based on portfolio entries and attendance at a period of learning in practice.

Programme aims

This programme aims to:

- prepare pharmacists to practice as supplementary prescribers

- prepare nurses and midwives to practice as supplementary/independent prescribers

- develop the knowledge and skills required by an allied health professional to practice as a supplementary prescriber

- meet the standards set by the respective professional or regulatory body as required within the legislative framework.

Research areas

Chemistry and drug delivery
This group has laboratories with dedicated state-ofthe art drug delivery, nanotechnology, spectroscopy, chromatography and organic synthesis facilities. It brings together researchers in medicinal chemistry and drug design, nanotechnology and materials science, drug delivery and pharmaceutics encouraging a multidisciplinary approach to research. Research covers synthesis and biological evaluation of potential anti-cancer agents, structurebased drug design, QSAR predication of ADMET properties, controlled release, particle engineering, powder technology, pharmaceutical technology, and novel drug delivery systems, with a focus on respiratory drug delivery.

Biological sciences
This group is housed in recently refurbished laboratories with dedicated state-of-the-art molecular biological, electrophysiological, tissue culture and microscopy facilities. The research is divided into four main themes; infectious diseases and allergy; neuroscience; renal and cardiovascular physiology; and pharmacology. Examples of current work include: investigation of the use of non-pathogenic virus ‘pseudotypes’ to study pathogenic RNA, study of the properties of neuronal potassium channels and their modulation and the development of new therapies for patients that have developed acute kidney injury in collaboration with a major pharmaceutical company.

Pharmacy practice
This group conducts research in two areas: public health and medicines optimisation, with a particular focus on cardiovascular diseases and mental health. Work in public health includes studies in physical exercise, alcohol, cardiovascular screening and spirometry testing, plus pharmacovigilance. Studies in medicines optimisation include work in dementia, bipolar disorder and stroke, with an emphasis on the patient perspective.

Careers

Graduates who obtain their PhD from Kent or Greenwich are highly sought after by prospective employers, both within the UK and overseas. Destinations for doctoral graduates include university academic departments, research institutes and leading pharmaceutical and biotechnological companies.

The taught postgraduate programmes are designed to promote the continuing professional development by providing sought-after skills. The programmes are beneficial for those who wish to develop their skills and/or to take the next step in their career.

Find out how to apply here - https://www.kent.ac.uk/courses/postgraduate/apply/

Read less
- https://www.kent.ac.uk/locations/medway/. The Medway School of Pharmacy’s innovative postgraduate distance-learning programme in Medicines Management equips healthcare professionals with the skills and knowledge to contribute effectively to medicines management services and to individual drug therapy decisions. Read more

This course will be held at the Medway Campus

- https://www.kent.ac.uk/locations/medway/

The Medway School of Pharmacy’s innovative postgraduate distance-learning programme in Medicines Management equips healthcare professionals with the skills and knowledge to contribute effectively to medicines management services and to individual drug therapy decisions.

The programme emphasises clinical and costeffective prescribing in the context of holistic consideration of patient needs, and one of its pathways offers you the chance to qualify as an independent/supplementary prescriber.

Visit the website https://www.kent.ac.uk/courses/postgraduate/738/medicines-management

About Medway School of Pharmacy

Medway School of Pharmacy is one of the few regional schools of pharmacy in the UK, a collaboration between the University of Kent and the University of Greenwich.

The impetus for the formation of the Medway School of Pharmacy came from the local community, who recognised the shortage of qualified pharmacists in all branches of the pharmacy profession in Kent.

The School is now recognised as an established school with accreditation from the General Pharmaceutical Council (GPhC) and the Health and Care Professions Council (HCPC). Graduates are employed in health disciplines in Kent and the south-east and more broadly across the UK.

Course structure

You can register for the full MSc programme or undertake stand-alone modules. Modules can be put together to form a short course programme. Module length varies from five to 15 credits.

For the PCert, you must complete 60 credits, of which at least 20 must be from core modules. Diploma students must complete 120 credits, of which at least 40 credits must be from core modules. To gain the MSc, you must complete a 60-credit research project, write a dissertation and present the results as a poster.

Modules

The following modules are indicative of those offered on this programme. This list is based on the current curriculum and may change year to year in response to new curriculum developments and innovation. Most programmes will require you to study a combination of compulsory and optional modules. You may also have the option to take modules from other programmes so that you may customise your programme and explore other subject areas that interest you.

Assessment

Assessment includes case study analysis, critical appraisal of literature, assignments including short essays, a research project and dissertation.

Programme aims

This programme aims to:

- equip healthcare professionals with the skills and knowledge to contribute effectively to medicines management services and to individual drug therapy decisions in primary and secondary care.

- enable you to incorporate your learning directly into your workplace and to rise to the challenges presented by the new, patient-centred NHS.

Research areas

- Chemistry and drug delivery

This group has laboratories with dedicated state-ofthe art drug delivery, nanotechnology, spectroscopy, chromatography and organic synthesis facilities. It brings together researchers in medicinal chemistry and drug design, nanotechnology and materials science, drug delivery and pharmaceutics encouraging a multidisciplinary approach to research. Research covers synthesis and biological evaluation of potential anti-cancer agents, structurebased drug design, QSAR predication of ADMET properties, controlled release, particle engineering, powder technology, pharmaceutical technology, and novel drug delivery systems, with a focus on respiratory drug delivery.

- Biological sciences

This group is housed in recently refurbished laboratories with dedicated state-of-the-art molecular biological, electrophysiological, tissue culture and microscopy facilities. The research is divided into four main themes; infectious diseases and allergy; neuroscience; renal and cardiovascular physiology; and pharmacology. Examples of current work include: investigation of the use of non-pathogenic virus ‘pseudotypes’ to study pathogenic RNA, study of the properties of neuronal potassium channels and their modulation and the development of new therapies for patients that have developed acute kidney injury in collaboration with a major pharmaceutical company.

- Pharmacy practice

This group conducts research in two areas: public health and medicines optimisation, with a particular focus on cardiovascular diseases and mental health. Work in public health includes studies in physical exercise, alcohol, cardiovascular screening and spirometry testing, plus pharmacovigilance. Studies in medicines optimisation include work in dementia, bipolar disorder and stroke, with an emphasis on the patient perspective.

Careers

Graduates who obtain their PhD from Kent or Greenwich are highly sought after by prospective employers, both within the UK and overseas. Destinations for doctoral graduates include university academic departments, research institutes and leading pharmaceutical and biotechnological companies.

The taught postgraduate programmes are designed to promote the continuing professional development by providing sought-after skills. The programmes are beneficial for those who wish to develop their skills and/or to take the next step in their career.

Find out how to apply here - https://www.kent.ac.uk/courses/postgraduate/apply/

Read less
A Masters’ studentship is available in the group of Dr. Martin Schröder in the School of Biological and Biomedical Sciences at Durham University to study stress signaling mechanisms originating from the endoplasmic reticulum. Read more
A Masters’ studentship is available in the group of Dr. Martin Schröder in the School of Biological and Biomedical Sciences at Durham University to study stress signaling mechanisms originating from the endoplasmic reticulum. Endoplasmic reticulum (ER) stress contributes to the development and progression of many diverse diseases affecting secretory tissues, such as diabetes and neurodegenerative diseases. The successful candidate will employ modern genetic and molecular techniques to understand the underlying cell biological mechanisms in endoplasmic reticulum stress signaling that maintain the homeostasis of the endoplasmic reticulum.

The MRes student will investigate control of ER stress signaling specificity by the dosage of ER stress. You will use a range of molecular biology and biochemical techniques to study (a) how the severity of ER stress alters the signaling outputs of the ER stress sensing protein kinase-endoribonuclease IRE1 or (b) how ER stress regulates transcriptional responses through the Rpd3-Sin3 histone/lysine deacetylase (see for example Schröder et al., 2000; Schröder et al., 2004). These techniques include protein expression and purification, immunoprecipitation, chromatin immunoprecipitation, cloning, transfection, and RNA analysis by real-time PCR or Northern blotting.

Overall, the studentship will provide interdisciplinary training in molecular biology, genetics, and cell biology.

References

M. Schröder, Cell. Mol. Life Sci. 65 (2008) 862-894: Endoplasmic reticulum stress responses.
M. Schröder, C. Y. Liu, R. Clark, and R. J. Kaufman, EMBO J. 23 (2004) 2281-2292: The unfolded protein response represses differentiation through the RPD3-SIN3 histone deacetylase.
M. Schröder, J. S. Chang, and R. J. Kaufman, Genes Dev. 14 (2000) 2962-2975: The unfolded protein response represses nitrogen-starvation induced developmental differentiation in yeast.

To apply

To apply: send a CV including the names of two references and a one page personal statement describing clearly your background, interest and experience in scientific research to . In your cover letter you should clearly identify the funding source to cover living expenses, tuition fees and bench fees. Further information can be found at https://www.dur.ac.uk/martin.schroeder or by contacting Dr. Martin Schroeder.

Read less
With practical experience opportunities built into the curriculum, this programme is aimed at those who wish to build careers as exercise physiologists or exercise specialists within private or public healthcare, health promotion, or the health and fitness industry. Read more
With practical experience opportunities built into the curriculum, this programme is aimed at those who wish to build careers as exercise physiologists or exercise specialists within private or public healthcare, health promotion, or the health and fitness industry.

About the programme

Physical inactivity is a major factor in the national and international epidemic of preventable diseases. The programme examines the
effectiveness of exercise health interventions and investigates the use of exercise as a tool to assess future health risks. It will equip you with the high-level skills required to implement and interpret exercisebased data. With a strong emphasis on research, practical experience is also a key part of this programme.

Modules will look at analysis of individual’s behaviour towards their exercise and health choices, utilising network analyses as a novel method of investigation. Strong emphasis is placed on health screening and the understanding of medical data, covering the theory and interpretation of the tests that patients with chronic lifestyle diseases undergo.

There is also a strong focus on research informed practice. Modules include the design and implementation of exercise and health research, and in the data analyses of such research. These units are key not only in enhancing your ability to find, interpret and critically appraise literature from an expert standpoint, but also prepare you for your MSc project.

Practical experience

Opportunities exist to gain practical experience within specific modules and, if appropriate, within your MSc project.

Your learning

Postgraduate Diploma
• Research Methods for Exercise and Health Science
• Health Behaviour and Network Analyses
• Epidemiology and Health Screening
• Data Analyses for Exercise Science
• Applied Strength and Conditioning
• Exercise Prescription for Special Populations

MSc

Upon successful completion of the taught modules, students will undertake a project which leads to the MSc award.

Further study

Graduates from the programme may wish to pursue further studies i.e. a PhD within the area of exercise and health.

Our Careers Adviser says

Careers for graduates include exercise physiologist or exercise specialist with the NHS, in community health provision, and the private sector.

Note: To obtain the MSc, students will usually take 9 months to gain the Postgraduate Diploma and then normally an additional 3 months of study to gain the MSc, from the date of commencement of the project.

Industry expertise

UWS School of Science and Sport academics are experts in their field, many with international profiles in science, health and sport and experience with organisations such as the Olympic and Commonwealth bodies, the Scottish Football Association and the Welsh Rugby Union. We also work with a range of partners including Glasgow School of Sport, the Scottish Football Association and we have links with organisations such as Sport Scotland, BASES, UK Sport and many more.

First-class facilities

Our Institute for Clinical Exercise and Health Science provides the underpinning science for our sport programmes. Newly developed
facilities, spanning four floors of the Almada Building at Lanarkshire Campus, are equipped to carry out cutting-edge research and deliver state-of-the-art instruction.

Labs and learning areas include an exercise physiology laboratory, strength and conditioning laboratory, exercise biochemistry laboratory, blood analysis laboratory, EMG-ECGUltrasound laboratory, biomechanics laboratory, social psychology laboratory, a computer laboratory equipped with the latest in student research and learning software,
along with a traditional sports hall.

Students can have supervised access and experience with:
• health assessment
• ergometric fitness assessment
• protein analysis in blood and tissues
• RNA and DNA analysis
• electromyography, electrocardiography, and ultrasonography
• sports event management
• commercial fitness practice
• community fitness intervention
• sport performance analysis
• social and psychological analysis
• coaching practice

Read less
Delivered by experts with extensive experience in sports research, this programme prepares you for a career as a coach, strength and. Read more
Delivered by experts with extensive experience in sports research, this programme prepares you for a career as a coach, strength and
conditioner, and for a career in sport science support.

About the programme

You will develop your conceptual and theoretical understanding in the field of sports coaching and learn practical skills in a range of scientific disciplines to enhance the coaching process. You will critically reflect upon contemporary principles and practices in sports coaching with an emphasis on students becoming effective and reflective practitioners. A significant proportion of the programme is vocationally focused and student driven.

Lectures normally account for 50% of class contact time with the remainder consisting of seminars, practical sessions, laboratory sessions, oral presentations, case studies and poster presentations. You will also have the opportunity to gain experience observing and participating in the service delivery of high performance sport with organisations including St. Mirren FC and The Scottish Institute of Sport.

Practical experience

Practical sessions are supervised and take place in our exercise physiology, strength and conditioning, and sports analysis laboratories. Classes involve observation, demonstration, participation, problem-solving and reporting while others are field-based,
providing necessary practical skills to successfully intervene in an athlete’s physical development. All programme units are explicitly devised to address the optimisation of performance.

Your learning

Modules include:
• Coaching Process
• Peak Performance
• Research Process in Sport
• Data Analysis in Exercise Science
• Applied Strength and Conditioning
• Instructional Issues for Coaches

MSc

Upon successful completion of the taught modules, students will undertake a project which leads to the MSc award.

Our Careers Adviser says

Graduates are equipped to collaborate with performers as a coach, strength and conditioner, or in sport science support. The MSc can prepare elite performers to study their own performance and to develop the necessary skills to help their future performance, or prepare them for work opportunities after retirement from sport.

Professional accreditation

The programme provides the necessary foundation knowledge and skills for professional accreditation with a number of bodies including the British Association of Sport and Exercise Sciences (BASES), the United Kingdom Strength and Conditioning Association (UKSCA) or appropriate higher coaching awards (Level 3 or above).

Note: To obtain the MSc, students will usually take 9 months to gain the Postgraduate Diploma and then normally an additional 3 months of study to gain the MSc, from the date of commencement of the project.

Industry expertise

UWS School of Science and Sport academics are experts in their field, many with international profiles in science, health and sport and experience with organisations such as the Olympic and Commonwealth bodies, the Scottish Football Association and the Welsh Rugby Union. We also work with a range of partners including Glasgow School of Sport, the Scottish Football Association and we have links with organisations such as Sport Scotland, BASES, UK Sport and many more.

First-class facilities

Our Institute for Clinical Exercise and Health Science provides the underpinning science for our sport programmes. Newly developed
facilities, spanning four floors of the Almada Building at Lanarkshire Campus, are equipped to carry out cutting-edge research and deliver state-of-the-art instruction.

Labs and learning areas include an exercise physiology laboratory, strength and conditioning laboratory, exercise biochemistry laboratory, blood analysis laboratory, EMG-ECGUltrasound laboratory, biomechanics laboratory, social psychology laboratory, a computer laboratory equipped with the latest in student research and learning software,
along with a traditional sports hall.

Students can have supervised access and experience with:
• health assessment
• ergometric fitness assessment
• protein analysis in blood and tissues
• RNA and DNA analysis
• electromyography, electrocardiography, and ultrasonography
• sports event management
• commercial fitness practice
• community fitness intervention
• sport performance analysis
• social and psychological analysis
• coaching practice

Read less
In recent years, biological research has become increasingly interdisciplinary, focusing heavily on mathematical modeling and on the analysis of system-wide quantitative information. Read more

Computational Life Science

In recent years, biological research has become increasingly interdisciplinary, focusing heavily on mathematical modeling and on the analysis of system-wide quantitative information. Sophisticated high-throughput techniques pose new challenges for data integration and data interpretation. The Computational Life Science (CompLife) MSc program at Jacobs University meets these challenges by covering computational, theoretical and mathematical approaches in biology and the life sciences. It is geared towards students of bioinformatics, computer science, physics, mathematics and related areas.

Program Features

The CompLife program is located at Jacobs University, a private and international English-language academic institution in Bremen, Germany. CompLife students at Jacobs University take a tailor-made curriculum comprising lectures, seminars and laboratory trainings. Courses cover foundational as well as advanced topics and methods. Core components of the program and areas of specialization include:

- Computational Systems Biology
- Computational Physics and Biophysics
- Bioinformatics
- RNA Biology
- Imaging and Modeling in Medicine
- Ecological Modeling
- Theoretical Biology
- Applied Mathematics
- Numerical Methods

For more details on the CompLife curriculum, please visit the program website at http://www.jacobs-university.de/complife.

Career Options

Graduates of the CompLife program are prepared for a career in biotechnology and biomedicine. Likewise, graduates of the program are qualified to move on to a PhD.

Application and Admission

The CompLife program starts in the first week of September every year. Please visit http://www.jacobs-university.de/graduate-admission or use the contact form to request details on how to apply. We are looking forward to receiving your inquiry.

Scholarships and Funding Options

All applicants are automatically considered for merit-based scholarships of up to € 12,000 per year. Depending on availability, additional scholarships sponsored by external partners are offered to highly gifted students. Moreover, each admitted candidate may request an individual financial package offer with attractive funding options. Please visit http://www.jacobs-university.de/study/graduate/fees-finances to learn more.

Campus Life and Accommodation

Jacobs University’s green and tree-shaded campus provides much more than buildings for teaching and research. It is home to an intercultural community which is unprecedented in Europe. A Student Activities Center, various sports facilities, a music studio, a student-run café/bar, concert venues and our Interfaith House ensure that you will always have something interesting to do.

For graduate students who would like to live on campus, Jacobs University offers accommodation in four residential colleges. Each college has its own dining room, recreational lounge, study areas, and common and group meeting rooms. Please visit http://www.jacobs-university.de/study/graduate/campus-life for more information.

Read less
The only Master’s specialisation in the Netherlands covering the function of our epigenome, a key factor in regulating gene expression and in a wide range of diseases. Read more

Master's specialisation in Medical Epigenomics

The only Master’s specialisation in the Netherlands covering the function of our epigenome, a key factor in regulating gene expression and in a wide range of diseases.
Our skin cells, liver cells and blood cells all contain the same genetic information. Yet these are different types of cells, each performing their own specific tasks. How is this possible? The explanation lies in the epigenome: a heritable, cell-type specific set of chromosomal modifications, which regulates gene expression. Radboud University is specialised in studying the epigenome and is the only university in the Netherlands to offer a Master’s programme in this field of research.

Health and disease

The epigenome consists of small and reversible chemical modifications of the DNA or histone proteins, such as methylation, acetylation and phosphorylation. It changes the spatial structure of DNA, resulting in gene activation or repression. These processes are crucial for our health and also play a role in many diseases, like autoimmune diseases, cancer and neurological disorders. As opposed to modifications of the genome sequence itself, epigenetic modifications are reversible. You can therefore imagine the great potential of drugs that target epigenetic enzymes, so-called epi-drugs.

Big data

In this specialisation, you’ll look at a cell as one big and complex system. You’ll study epigenetic mechanisms during development and disease from different angles. This includes studying DNA and RNA by next-generation sequencing (epigenomics) and analysing proteins by mass spectrometry (proteomics). In addition, you‘ll be trained to design computational strategies that allow the integration of these multifaceted, high-throughput data sets into one system.

Why study Medical Epigenomics at Radboud University?

- Radboud University combines various state-of-the-art technologies – such as quantitative mass spectrometry and next-generation DNA sequencing – with downstream bioinformatics analyses in one department. This is unique in Europe.
- This programme allows you to work with researchers from the Radboud Institute for Molecular Life sciences (RIMLS), one of the leading multidisciplinary research institutes within this field of study worldwide.
- We have close contacts with high-profile medically oriented groups on the Radboud campus and with international institutes (EMBL, Max-Planck, Marie Curie, Cambridge, US-based labs, etc). As a Master’s student, you can choose to perform an internship in one of these related departments.
- Radboud University coordinates BLUEPRINT, a 30 million Euro European project focusing on the epigenomics of leukaemia. Master’s students have the opportunity to participate in this project.

Career prospects

As a Master’s student of Medical Epigenomics you’re trained in using state-of-the art technology in combination with biological software tools to study complete networks in cells in an unbiased manner. For example, you’ll know how to study the effects of drugs in the human body.
When you enter the job market, you’ll have:
- A thorough background of epigenetic mechanisms in health and disease, which is highly relevant in strongly rising field of epi-drug development
- Extensive and partly hands-on experience in state-of-the-art ‘omics’ technologies: next-generation sequencing, quantitative mass spectrometry and single cell technologies;
- Extensive expertise in designing, executing and interpreting scientific experiments in data-driven research;
- The computational skills needed to analyse large ‘omics’ datasets.

With this background, you can become a researcher at a:
- University or research institute;
- Pharmaceutical company, such as Synthon or Johnson & Johnson;
- Food company, like Danone or Unilever;
- Start-up company making use of -omics technology.

Apart from research into genomics and epigenomics, you could also work on topics such as miniaturising workflows, improving experimental devices, the interface between biology and informatics, medicine from a systems approach.

Or you can become a:
- Biological or medical consultant;
- Biology teacher;
- Policy coordinator, regarding genetic or medical issues;
- Patent attorney;
- Clinical research associate;

PhD positions at Radboud University

Each year, the Molecular Biology department (Prof. Henk Stunnenberg, Prof. Michiel Vermeulen) and the Molecular Developmental Biology department (Prof. Gert-Jan Veenstra) at the RIMLS offer between five and ten PhD positions. Of course, many graduates also apply for a PhD position at related departments in the Netherlands, or abroad.

Our approach to this field

- Systems biology
In the Medical Epigenomics specialisation you won’t zoom in on only one particular gene, protein or signalling pathway. Instead, you’ll regard the cell as one complete system. This comprehensive view allows you to, for example, model the impact of one particular epigenetic mutation on various parts and functions of the cell, or study the effects of a drug in an unbiased manner. One of the challenges of this systems biology approach is the processing and integration of large amounts of data. That’s why you’ll also be trained in computational biology. Once graduated, this will be a great advantage: you’ll be able to bridge the gap between biology, technology and informatics , and thus have a profile that is desperately needed in modern, data-driven biology.

- Multiple OMICS approaches
Studying cells in a systems biology approach means connecting processes at the level of the genome (genomics), epigenome (epigenomics), transcriptome (transcriptomics), proteome (proteomics), etc. In the Medical Epigenomics specialisation, you’ll get acquainted with all these different fields of study.

- Patient and animal samples
Numerous genetic diseases are not caused by genetic mutations, but by epigenetic mutations that influence the structure and function of chromatin. Think of:
- Autoimmune diseases, like rheumatoid arthritis and lupus
- Cancer, in the forms of leukaemia, colon cancer, prostate cancer and cervical cancer
- Neurological disorders, like Rett Syndrome, Alzheimer, Parkinson, Multiple Sclerosis, schizophrenia and autism

We investigate these diseases on a cellular level, focusing on the epigenetic mutations and the impact on various pathways in the cell. You’ll get the chance to participate in that research, and work with embryonic stem cell, patient, Xenopus or zebra fish samples.

See the website http://www.ru.nl/masters/medicalbiology/epigenomics

Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X