• University of Southampton Featured Masters Courses
  • Anglia Ruskin University Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of Cambridge Featured Masters Courses
  • Ross University School of Veterinary Medicine Featured Masters Courses
De Montfort University Featured Masters Courses
Barcelona Executive Business School Featured Masters Courses
Institute for Advanced Architecture of Catalonia Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
Bath Spa University Featured Masters Courses
"rheology"×
0 miles

Masters Degrees (Rheology)

We have 13 Masters Degrees (Rheology)

  • "rheology" ×
  • clear all
Showing 1 to 13 of 13
Order by 
Take your skills in chemistry further with a course that prepares you with the cutting-edge knowledge required for a career in the manufacturing or product development industries. Read more
Take your skills in chemistry further with a course that prepares you with the cutting-edge knowledge required for a career in the manufacturing or product development industries.

Formulation is a vital activity central to manufacturing in a wide range of industries. The course encompasses polymer and colloid science, building understanding of the physical and chemical interactions between multiple components in complex formulations, leading to a competitive advantage in product development and quality control.

You'll learn the trade secrets behind successful formulation,dealing with issues such as product stability, controlling flocculation, rheology and compatibility issues with multi-component systems. Whichever industry sector you're interested in working within, you'll develop the skills to deign formulations for a wealth of scenarios, for example food, cosmetics, pharmaceuticals and more.

Key Course Features

-You will develop skills to design formulations for a wealth of industrial scenarios - from food, cosmetics and personal care, pharmaceuticals, paper production, inks and coatings, oil drilling and mining to name just a few.
-In your research project you will interface with specialists from manufacturing industries and undertake a programme of experiments designed to develop the skills you want to learn.
-On this course you will learn the trade secrets behind successful formulation - dealing with issues such as product stability (stabilising emulsions and dispersions), controlling flocculation, rheology (flow properties, mouthfeel, gelation), and overcoming compatibility issues with multi component systems. You'll be introduced to modelling, new trends in processing and high throughput formulation.

What Will You Study?

The course comprises 6 x 20 credit modules of taught content and a 60 credit Research Project. The taught element is delivered by a varied programme including lectures, seminars, and practical classes and may be studied on a full time or part time basis to suit you.

There is a strong emphasis on development of hands-on practical skills using a wide variety of advanced instrumentation.

TAUGHT MODULES
-Advanced Materials Science
-Chemistry & Technology of Water Soluble Polymers
-Formulation Science
-Research Methods
-Structure and Function of Industrial Biopolymers

The lectures and workshops are designed to train you in understanding interactions between polymer, solvent, and surfactant molecules with particles and surfaces. You will:
-Review the range of formulation types found in various industrial sectors, and their components.
-Master analytical techniques used to optimise product formulation, including measurement of molar mass distribution using gel permeation chromatography with multi angle laser light scattering (GPC-MALLS) and particle sizing techniques such as digital imaging and laser diffraction (to measure aggregates, flocs and emulsion droplets)
-Discover Green Chemistry and eco-formulation- exploring a whole range of biopolymers extracted from natural resources….including antimicrobial polymers from shellfish waste, gelling agents from seaweed, and oligosaccharides from locally grown grasses.
-Learn about man-made polymers and importantly, chemically modified biopolymers.
-Measure the viscosity and rheology of liquid formulations and see how this can be interpreted to yield structural information on thickened systems and gels, and particulate systems including fillers, additives and dispersants.

A module in Research Methods provides training in all aspects of undertaking research, from project management, through data analysis and statistics to communicating your results and writing your dissertation to ensure you are well quipped to undertake your project.

RESEARCH PROJECT
The course culminates in an industry-focused Research Project. For full-time students this may be partly or wholly undertaken within a local manufacturing company. For part-time students the project provider may be your current employer. The Research Project gives you the opportunity to undertake a piece of novel research, and will often be based around solving a formulation problem for the project provider. It allows you to put into practice the knowledge and skills gained in the taught elements of the course.

Because of the individual nature of the research projects, no two projects are the same. Below are some of the titles of previous research projects undertaken by previous masters students in our department:
-Aspects of Adhesive Bonding of Low Energy Polymers
-The Effects of Surfactants on the Rheological Properties of Hydrophobically Modified Cellulose
-Extensional Rheometry and Dynamic Light Scattering of Telechelic Associating Polymer Solutions
-Simple chemical syntheses of polymer/silver nanocomposites
-Phase Separation of Gum Arabic and Hyaluronan in Aqueous Solution
-Shear and extensional Rheology of Electron Beam (EB) Curable Paint

The information listed in this section is an overview of the academic content of the programme that will take the form of either core or option modules. Modules are designated as core or option in accordance with professional body requirements and internal academic framework review, so may be subject to change.

Assessment and Teaching

Assessment of the taught modules is intended to allow the learner to demonstrate skills that cover the entire breadth of the programme aims – knowledge and understanding, key practical skills, intellectual skills in planning experiments/interpreting data and communication of information in writing and verbally.

The research project is examined by a final dissertation.

Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Chemical Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Chemical Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

Key Features of MSc in Chemical Engineering

The MSc Chemical Engineering course is built upon the wide range of research in chemical engineering at Swansea University. This includes engineering applications of nanotechnology, bioengineering, biomedical engineering, cell and tissue engineering, chemical engineering, colloid science and engineering, desalination, pharmaceutical engineering, polymer engineering, rheology, separation processes, transport processes, and water and wastewater engineering.

The MSc Chemical Engineering research project provides an opportunity to work with a member of academic staff in one of the above, or related, area of research. The project may also involve collaboration with industry.

The taught component of the MSc Chemical Engineering course covers specific areas of advanced chemical engineering as well as the complex regulations that are found in the engineering workplace. It also provides an opportunity for the development of personal and transferable skills such as project planning, communication skills, and entrepreneurship.

As a student on the Master's course in Chemical Engineering, you will advance your technical knowledge, which can lead to further research or a career in chemical engineering.

Modules

Modules on the MSc Chemical Engineering course typically include:

Complex Fluids and Rheology

Entrepreneurship for Engineers

Colloid and Interface Science

Communication Skills for Research Engineers

Water and Wastewater Engineering

Membrane Technology

Environmental Analysis and Legislation

Optimisation

Desalination

Polymers: Properties and Design

Principles of Nanomedicine

Nanoscale Structures and Devices

Pollutant Transport by Groundwater Flows

MSc Research Practice

MSc Dissertation - Chemical Engineering

Accreditation

The MSc Chemical Engineering at Swansea University is accredited by the Institution of Chemical Engineers (IChemE).

The MSc Chemical Engineering degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

Accreditation is a mark of assurance that the degree meets the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC). An accredited degree will provide you with some or all of the underpinning knowledge, understanding and skills for eventual registration as an Incorporated (IEng) or Chartered Engineer (CEng). Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.

Links with Industry

One of the major strengths of Chemical Engineering at Swansea University is the close and extensive involvement with local, national and international engineering companies. The companies include:

Acordis

Astra Zeneca

Avecia

BP Chemicals

Bulmers

Dow Corning

GlaxoSmithKline

Nestle

Murco

Phillips 66

Unilever

Valero

Swansea staff have research links with local, national, and international companies. An industrial advisory board, consisting of eight industrialists from a range of chemical engineering backgrounds, ensure our courses maintain their industrial relevance.

Facilities

Our new home at the innovative Bay Campus provides some of the best university facilities in the UK, in an outstanding location.

Careers

The demand for Chemical Engineering graduates remains excellent with the highest starting salaries out of all engineering disciplines.

Chemical engineers find employment in a variety of public and private sector industries, applying the principles of chemical engineering to health, energy, food, the environment, medicine, petrochemicals and pharmaceuticals.

Research

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.

The REF assesses the quality of research in the UK Higher Education sector, assuring us of the standards we strive for.

World-Leading Research

The REF shows that 94% of research produced by our academic staff is of World-Leading (4*) or Internationally Excellent (3*) quality. This has increased from 73% in the 2008 RAE.

Research pioneered at the College of Engineering harnesses the expertise of academic staff within the department. This ground-breaking multidisciplinary research informs our world-class teaching with several of our staff leaders in their fields.



Read less
This course trains graduates with a chemistry background specifically for a career as a polymer or biopolymer scientist. Read more
This course trains graduates with a chemistry background specifically for a career as a polymer or biopolymer scientist. The content reflects global interest in sustainably-derived polymers which are increasing in demand in a variety of applications including food and beverages, pharmaceutical, cosmetics, personal care, paints and inks.

Our specialist course will equip you with the knowledge to understand the behaviour of both naturally occurring and synthetic water soluble polymers at the molecular level, and how this influences their bulk behaviour. Lectures are reinforced and expanded by study of real-life polymer systems in the laboratory.

You'll learn about the vital roles played by polymers in a rage of products, gain knowledge of biopolymer modification, polymer synthesis and a range of specialist characterisation techniques. During your research project you'll work with specialists from manufacturing industries and perform a programme of experiments designed to help you develop your skills.

Key Course Features

-You will learn about the vital roles played by polymers in a diverse range of high value products – e.g in mayonnaise, sun tan lotion, wound gels, liquid pharmaceuticals, paper, ink, water based paints and flotation aids in mining to name just a few.
-You’ll gain first-hand knowledge of biopolymer modification, polymer synthesis, and a wide range of specialist characterisation techniques.
-In your research project you will interface with specialists from manufacturing industries and undertake a programme of experiments designed to develop the skills you want to learn.
-Through case studies and your research project you will learn how to apply acquired knowledge in real world industrial scenarios, leading the way to success in subsequent employment.

What Will You Study?

The course comprises 6 x 20 credit modules of taught content and a 60 credit research project. The taught element is delivered by a varied programme including lectures, seminars, practical classes and may be studied on a full time or part time basis to suit you. There is a strong emphasis on development of hands-on practical skills using a wide variety of advanced instrumentation.

TAUGHT MODULES
-Advanced Materials Science
-Chemistry & Technology of Water Soluble Polymers
-Formulation Science
-Polymer Characterisation Case Study
-Structure and Function of Industrial Biopolymers

The lectures and workshops are designed to train you in understanding polymer molecules themselves, and the way they interact with each other, and with solvents, surfactants, particles and surfaces.

You will:
-Study the basic principles of polymer characterisation through a range of analytical techniques including FT-IR, UV-vis, NMR, ESR and fluorescence spectroscopy.
-Master the measurement of molar mass distribution using gel permeation chromatography with multi angle laser light scattering (GPC-MALLS), and gel electrophoresis.
-Use particle sizing techniques such as digital imaging and laser diffraction to measure aggregates, flocs and emulsion droplets.
-Discover Green Chemistry - exploring a whole range of biopolymers extracted from natural resources….including antimicrobial polymers from shellfish waste, gelling agents from seaweed, and oligosaccharides from locally grown grasses.
-Learn about man-made polymers and importantly, chemically modified biopolymers.
-Measure the viscosity and rheology of liquid formulations and see how this can be interpreted to yield structural information on thickened systems and gels.
-A module in research methods provides training in all aspects of undertaking research, from project management, through data analysis and statistics to communicating your results and writing your dissertation to ensure you are well equipped to undertake your project.

RESEARCH PROJECT
The course culminates in an industry-focussed Research Project. For full-time students this may be partly or wholly undertaken within a local manufacturing company. For part-time students the project provider may be your current employer. The Research Project gives you the opportunity to undertake a piece of novel research, and will often be based around solving a polymer application /characterisation problem for the project provider. It allows you to put into practice the knowledge and skills gained in the taught elements of the course.

Because of the individual nature of the research projects, no two projects are the same. Below are some of the titles of previous research projects undertaken by previous Masters students in our department:
-Aspects of Adhesive Bonding of Low Energy Polymers
-The effects of Surfactants on the Rheological Properties of Hydrophobically Modified Cellulose
-Extensional Rheometry and Dynamic Light Scattering of Telechelic Associating Polymer Solutions
-Simple chemical syntheses of polymer/silver nanocomposites
-Phase separation of Gum Arabic and Hyaluronan in Aqueous Solution
-Shear and extensional Rheology of Electron Beam (EB) Curable Paint

The information listed in this section is an overview of the academic content of the programme that will take the form of either core or option modules. Modules are designated as core or option in accordance with professional body requirements and internal academic framework review, so may be subject to change.

Assessment and Teaching

Assessment of the taught modules is intended to allow the learner to demonstrate skills that cover the entire breadth of the programme aims – knowledge and understanding, key practical skills, intellectual skills in planning experiments/interpreting data and communication of information in writing and verbally.

The research project is examined by a final dissertation.

Career Prospects

The EU is the leading chemical production area in the world and the chemical industry is the UK's largest manufacturing export sector.

MSc Polymer and Biopolymer Science combines delivery of key theoretical knowledge with hands-on application in extraction, modification and testing of polymers / biopolymers.

You’ll learn how to develop experiments at bench scale through to processes at pilot and manufacturing scale. A Masters degree in Polymer & Biopolymer Science from Glyndwr University gives you the skills employers are looking for.

You'll be ready to step confidently into a world of manufacturing with a wealth of information and skills to offer. The course provides excellent career opportunities across a wide range of industrial sectors. Graduates can expect to obtain a research and development position in areas related to biomedical devices, pharmaceutical formulation, food and beverages, petroleum recovery, agrochemicals, functional polymers/speciality chemicals, inks, paints and coatings or cosmetics and personal care products.

The course also provides a direct route to doctoral study, for those wishing to undertake further research training or pursue an academic career.

The Careers & Zone at Wrexham Glyndŵr University is there to help you make decisions and plan the next steps towards a bright future. From finding work or further study to working out your interests, skills and aspirations, they can provide you with the expert information, advice and guidance you need.

Read less
This course gives you the skills you need to start a career as a food processing engineer. This is a role much in demand in the food and drink industry, the largest manufacturing sector in the UK. Read more

This course gives you the skills you need to start a career as a food processing engineer. This is a role much in demand in the food and drink industry, the largest manufacturing sector in the UK.

You learn practical techniques and work with food manufacturers on real projects that prepare you for your career. You also visit factories including • AB World Foods • Burtons Biscuits • KP Snacks • Premier Foods • Thornton's.

The course is designed to be flexible to help you study around your other commitments.

What you study

During the course you gain an overview of engineering principles and key sector issues, giving you a range of knowledge across the food sector. Your learning is based around examples and assessments relevant to the food processing industry.

You undertake a group project to develop a new food product and its processing. This involves working with students from different courses, giving you experience in a multi-disciplinary food processing environment. You explore ethics, sustainability, health and safety and intellectual property rights, as well as business and marketing strategies related to the food industry.

You also study material flow characteristics, which is a core discipline in food processing. Using food materials to illustrate key characteristics, you learn techniques to analyse the rheology and flow of food products through food processing equipment, including understanding the thixotropic behaviour of tomato ketchup.

You then choose two further optional modules, allowing you to focus on your key areas of interest.

The course also gives you the opportunity to take modules on • food • food safety • the management of food production • food processing • food manufacturing techniques • engineering processes.

Course structure

Level one modules

  • engineering principles
  • mechanical engineering
  • sustainability, energy and environmental management
  • lean operations and six sigma

Level two core modules

  • international product development
  • rheology and multi-phase flow
  • food safety engineering and management
  • food manufacturing engineering

Level two optional modules

Choose two from

  • manufacturing systems
  • industrial automation
  • supply chain modelling and simulation
  • logistics and enterprise information systems

Assessment

  • coursework
  • exams
  • project

Employability

The course leads to career opportunities in the food and drink sector, where there is a high demand for scientific and technically qualified individuals. Example roles and potential salaries include • engineering manager (£55,000) • maintenance manager (£40,000) • production area controller (£28,000) • project engineer (£40,000) • site engineering manager (£55,000).

The National Centre of Excellence for Food Engineering has extensive contacts with national and multi-national food and drink companies including • Nestle • PepsiCo • Mondelez • Greencore • Premier Foods • Kellogg’s • William Jackson Food Group. The Centre support students to progress to roles with companies in this significant industrial sector.



Read less
The Mechanical Engineering MSc builds on your undergraduate knowledge base through a number of advanced modules in core subject areas. Read more

About the course

The Mechanical Engineering MSc builds on your undergraduate knowledge base through a number of advanced modules in core subject areas. These are supported by modules in business and electromechanics, providing you with an insight of the engineering business environment and broadening your understanding of other engineering disciplines.

The course provides you with an understanding of the methodology used in research and an awareness of the numerical techniques underpinning the tools employed in mechanical and thermal analysis.

Topicality and direct application to the needs of society are also catered for, providing you with an understanding of the environmental impact of human activities and energy consumption and the role of the mechanical engineer in seeking appropriate solutions.

Course Structure

Modules

First semester (September to January)

• Electromechanics
• Engineering Business Environment and Energy Studies
• Numerical Techniques in Engineering
• Advanced Thermodynamics and Heat Transfer

Second semester (February to May)

• Advanced Solid Mechanics
• Research Methods
• Engineering Systems Dynamics and Control
• Advanced Materials and Design

Third semester (June to September)

• This is a major research-based individual project

Optional placement
We offer a great opportunity to boost your career prospects through an optional one year placement as part of your postgraduate studies. We have a dedicated Placement Unit which will help you obtain this. Once on your placement you will be supported by your Visiting Tutor to ensure that you gain maximum benefit from the experience. Placements begin after the taught component of the course has been completed - usually around June - and last for one year. When you return from your work placement you will begin your dissertation.

Teaching and assessment

The modules are delivered through a mixture of lectures, tutorials and laboratories. This ensures a good balance between theory and practice so that real engineering problems are better understood through an underpinning of strong theoretical and analytical knowledge translated into practical skills.

Contact and learning hours

You will normally attend four hours of timetabled taught sessions each week for each module undertaken during term time; for full-time study this would be 16 hours per week during term time. You can expect to also undertake around 24 further hours of independent study and assignments as required per week.

Academic expertise

Mechanical Engineering teaching staff are active in several important research areas, including: Combustion modelling and energy conversion research using both experimental and CFD methods to analyse efficiencies and emissions of energy systems Computational rheology, non- Newtonian biofluid simulations, viscoelastic effects on lubrication thin film flows Surface engineering via surface modification of materials for enhancement of mechanical, tribological and chemical properties.

To find out more

To learn more about this course and DMU, visit our website:
Postgraduate open days: http://www.dmu.ac.uk/study/postgraduate-study/open-evenings/postgraduate-open-days.aspx

Applying for a postgraduate course:
http://www.dmu.ac.uk/study/postgraduate-study/entry-criteria-and-how-to-apply/entry-criteria-and-how-to-apply.aspx

Funding for postgraduate students
http://www.dmu.ac.uk/study/postgraduate-study/postgraduate-funding-2017-18/postgraduate-funding-2017-18.aspx

Read less
Supervision available; research specialisms of staff fall within following major areas. Read more
Supervision available; research specialisms of staff fall within following major areas: technology in mathematics education; teaching and learning of mechanics; medical image processing; missing and coarsened data; spatial and temporal modelling; modelling environmental flows; rheology; non-linear elastic materials; magnetic recording; model-based approaches to statistical disclosure limitation; applied fluid dynamics; particle physics and gauge theories; twister theory; graphs and knots.

Entry Requirements
Masters degree by a UK university or a degree of a non-UK institution deemed to be of equal standing to a UK degree; or a 1st class or 2nd upper class first degree award by a UK university or a degree of a non-UK institution deemed to be of equal standing to a UK degree; or a professional qualification recognised as equivalent to a degree; or other qualifications and experience that have demonstrated that the applicant can meet the challenges and demands of the programme, and 2 satisfactory reports from academic referees; verbal or e-mail references may not be accepted; applicants may also be asked to provide an example of written work.

Read less
UCC has a history of nearly a century of teaching and research in the food sciences and is amongst Europe’s largest multidisciplinary education and research institutions with world-class academics working in all aspects of the food area. Read more
UCC has a history of nearly a century of teaching and research in the food sciences and is amongst Europe’s largest multidisciplinary education and research institutions with world-class academics working in all aspects of the food area. Our first-rate facilities include extensive and well-equipped laboratories and a large pilot plant with excellent dairy, meat and bakery facilities in addition to a modern pilot-scale brewery.

Course Details

The MSc (Food Science) is a full-time taught postgraduate programme running for 12 months from the date of first registration.

Format

Modules will be chosen with the approval of the Programme Board depending on the student's background.

Part 1 - Taught modules

Students take 60 credits as follows:

- Core Modules -

Students take 15 credits:

PG6001 STEPS - Scientific Training for Enhanced Postgraduate Studies (5 credits)
FS6101 Library Project in Food Science (10 credits)

- Elective Modules -

Student take 45 credits from the following:

FE6101 Food Business: Markets and Policy (5 credits)
FS6105 Material Science for Food Systems (5 credits)
FS6106 Advanced Topics in Dairy Biochemistry (5 credits)
FS6107 Advances in the Science of Muscle Foods (5 credits)
FS6108 Advances in Food Formulation Science and Technology (5 credits)
FS6103 Novel Processing Technologies and Ingredients (5 credits)
FS6120 Cheese and Fermented Dairy Products (5 credits)
FS6121 Meat Science and Technology (5 credits)
MB6114 Hygienic Production of Food (5 credits)
NT6102 Human Nutrition and Health (5 credits)
NT6108 Sensory Analysis in Nutrition Research (5 credits)

Depending on background of the student, the Programme Board may decide to replace some of the above modules to a maximum of 15 credits from:

FS3602 Chemistry of Food Proteins (5 credits)
FS3605 Macromolecules and Rheology (5 credits)
FS4603 Advanced Analytical Methods (5 credits)
FS4606 Cereals and Related Beverages (5 credits)
FS4014 Food Product Development and Innovation (5 credits)
MB4611 Microbial Food Safety (5 credits)

Students who pass Part 1 and achieve a minimum aggregate of 55% are eligible to progress to Part 2. Students who pass Part 1 but who fail to meet the minimum progression standards, or who choose to exit the programme, will be conferred with the Postgraduate Diploma in Food Science.

Part 2

FS6102 Dissertation in Food Science (30 credits)

Assessment

The taught modules of this course are assessed by examination in Winter, Spring and Summer. The research aspect is assessed on the quality of a substantial written dissertation.

Careers

On completing this course, you will be able to:

- conduct original research in food science
- demonstrate an understanding of scientific literature
- apply critical thinking and problem-solving skills in food science
- explain the techniques used in food research, in both principle and practice
- communicate effectively with the food industry and with society at large
- show a comprehensive understanding of current food consumer and food industry trends

How to apply: http://www.ucc.ie/en/study/postgrad/how/

Funding and Scholarships

Information regarding funding and available scholarships can be found here: https://www.ucc.ie/en/cblgradschool/current/fundingandfinance/fundingscholarships/

Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Chemical Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Chemical Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

From authoring definitive text books on chemical engineering to finding solutions to the world's water shortages, Swansea University has a proud tradition of delivering pioneering innovative process engineering solutions. As we have a wide range of research in chemical engineering, Swansea University provides an excellent base for your research as an MSc by Research student in Chemical Engineering.

Key Features of MSc by Research in Chemical Engineering

There is a wide range of research in chemical engineering at Swansea University. This includes:

Membrane separation

Biochemical engineering

Biomanufacturing

Engineering applications of nanotechnology

Bioengineering, biomedical engineering

Cell and tissue engineering

Colloid science and engineering

Desalination

Pharmaceutical engineering

Polymer engineering

Rheology

Separation processes

Transport processes

Water and wastewater engineering

The MSc by Research in Chemical Engineering at Swansea University provides an opportunity to work with a member of academic staff in one of the above, or related, area of research.

The MSc by Research in Chemical Engineering typically lasts one year full-time, two to three years part-time. This is an individual research project written up in a thesis of 30,000 words.

Links with industry

One of the major strengths of Chemical Engineering at Swansea University is the close and extensive involvement with local, national and international engineering companies. The companies include:

Acordis

Astra Zeneca

Avecia

BP Chemicals

Bulmers

Dow Corning

GlaxoSmithKline

Nestle

Murco

Phillips 66

Unilever

Valero

Facilities

Our new home at the innovative Bay Campus provides some of the best university facilities in the UK, in an outstanding location.

Swansea University has resources specific to Chemical Engineering.

Research

Research in Chemical Engineering at Swansea is located within the Systems and Process Engineering Research Centre which has a number of focused research groups including the Centre for Water Advanced Technologies and Environmental Research (CWATER), the Centre for Complex Fluids Processing and the Multidisciplinary Nanotechnology Centre.

The Centre for Water Advanced Technologies and Environmental Research (CWATER) is an internationally leading centre of excellence for the development of advanced technologies in water treatment. The Centre benefits from world-leading expertise in the areas of desalination and membrane technologies for water treatment.

The Centre for Complex Fluids Processing is internationally recognised for its leading and innovative research on the processing of complex fluids which is a major feature of modern industry. Such fluids are extremely diverse in origin and composition - ranging, for example, from fermentation broths and food products to inks and mineral slurries. However, underlying this diversity are certain properties that must be understood if the processing is to be effective and efficient. These include flow behaviour in process equipment, how the components of the fluid determine its overall properties and how individual components may be selectively separated.

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.



Read less
The Higher Diploma in Food Science and Technology will provide you with an excellent education in various aspects of food science, food technology and food microbiology. Read more
The Higher Diploma in Food Science and Technology will provide you with an excellent education in various aspects of food science, food technology and food microbiology.

Subjects that you will cover during the course include:

- food proteins
- food fats
- food macromolecules
- sensory science
- food packaging
- food processing and preservation
- food microbiology

UCC has a 100-year history of teaching and research in the food sciences and is currently one of Europe’s largest multidisciplinary education and research institutions. You will be taught by world-class academics who work in all aspects of food science.

Our first-rate facilities include extensive and well-equipped laboratories and a large pilot plant with excellent dairy, meat and bakery facilities, in addition to a unique pilot-scale brewery.

Visit the website: http://www.ucc.ie/en/cko06/

Course Details

On successful completion of this course, you will be able to:

- apply the principles of food chemistry and technology and food microbiology to food systems
- demonstrate an ability to perform selected techniques in food analysis
- develop the capacity to undertake lifelong learning
- communicate effectively with the food industry and with society at large.

Format

The course is one year full time, or two years part time.

Students take taught modules to the value of 60 credits as follows:
FS3002 Chemistry of Food Proteins (5 credits)
FS3003 Chemistry and Technology of Oils and Fats (5 credits)
FS3004 Sensory Analysis, Flavour and Colour (5 credits)
FS3005 Macromolecules and Rheology (5 credits)
FS3006 Food Processing and Preservation (10 credits)
FS3007 Dairy Product Technology (5 credits)
FS3008 Fundamentals of Food Packaging (5 credits)
FS3012 Library Project (10 credits)
MB3003 Food and Industrial Microbiology I (5 credits)
MB3014 Food and Industrial Microbiology II (5 credits)

Assessment

Assessment is principally by end-of-semester written examinations. There are also some elements of continuous assessment.

Careers

On successful completion of this course, you will have a solid foundation in food science. You will also understand the principles and practical application of the processing and preservation technologies used in the food industry. You can use your knowledge as a basis for further study or for employment in food-related industries.

How to apply: http://www.ucc.ie/en/study/postgrad/how/

Funding and Scholarships

Information regarding funding and available scholarships can be found here: https://www.ucc.ie/en/cblgradschool/current/fundingandfinance/fundingscholarships/

Read less
Petroleum engineering is key to the functioning of the modern world, providing both energy and materials for industry. Teesside is a major European centre for the chemical and petroleum processing sector, making it an ideal location for individuals seeking to study for an MSc with industrial relevance. Read more
Petroleum engineering is key to the functioning of the modern world, providing both energy and materials for industry. Teesside is a major European centre for the chemical and petroleum processing sector, making it an ideal location for individuals seeking to study for an MSc with industrial relevance.

Course details

The programme of lectures and project work, encompasses a wide range of petroleum fundamentals, pertinent to the modern petroleum industry. Project work provides an opportunity for ideas and methods, assimilated through lectures and tutorials, to be applied to real field evaluation and development design problems. The course is applied in nature and has been designed so that on completion, you are technically well prepared for a career in industry.

Professional accreditation

Our MSc Petroleum Engineering is accredited by the Energy Institute, under licence from the Engineering Council. This means that it meets the requirements for further learning for Chartered Engineer (CEng) under the provisions of UK-SPEC.

By completing this professionally accredited MSc you could benefit from an easier route to professional membership or chartered status, and it can help improve your job prospects and enhance your career. Some companies show preference for graduates who have a professionally accredited qualification, and the earning potential of chartered petroleum engineers can exceed £100,000 a year.

Our Society of Petroleum Engineering (SPE) student chapter is one of only nine in the UK. SPE is the largest individual member organisation serving managers, engineers, scientists and other professionals worldwide in the upstream segment of the oil and gas industry. Through our SPE chapter we can invite professional speakers from industry, and increase the industrial networking opportunities for students.

What you study

For the Postgraduate Diploma (PgDip) award you must successfully complete 120 credits of taught modules. For an MSc award you must successfully complete 120 credits of taught modules and a 60-credit master's research project.

You select your master’s research projects from titles suggested by either industry or our academic staff, but you may also, with your supervisor’s agreement, suggest your own titles.

Core modules
-Drill Engineering and Well Completion
-Hydrocarbon Production Engineering
-Material Balance and Recovery Mechanisms
-Petroleum Chemistry
-Petroleum Economics and Simulation
-Petroleum Reservoir Engineering
-Practical Health and Safety Skills
-Research and Study Skills

MSc candidates
-Research Project

Modules offered may vary.

Teaching

The course is delivered using a series of lectures, tutorials and laboratory sessions.

Our MSc Petroleum Engineering is supported by excellent laboratory and engineering machine workshop facilities including fluid flow measurement, computer modelling laboratories, other laboratories and workshops, an excellent library and computing facilities. We have invested around £150,000 in laboratory equipment particularly in within core analysis and enhanced oil recovery.

We have several computer laboratories equipped with specialised and general-purpose software. This generous computing provision gives you extended access to industry-standard software – it allows you to develop skills and techniques using important applications. For upstream processes, Teesside University has access to educational software packages like Petrel, Eclipse, CMG, PIPESIM and Ecrin to simulate the behaviour of oil reservoirs, calculating oil in situ, and oil and gas production optimisation. As for downstream processes, you can use HYSYS to test different scenarios to optimise plant designs.

Facilities include:
Enhanced oil recovery and core analysis laboratory
The flow through porous media, enhanced oil recovery techniques and core analysis is done in the core flooding lab. The lab is equipped with core plugging and trimming, core preparation and conventional core properties measurement equipment. At a higher level, the lab is also equipped to perform some special core analysis measurements such as fluid relative permeabilities as well as rock surface wetting quantification.

Petrophysics laboratory
The petrophysics lab allows you to study the properties of rocks, particularly the measurement of porosity and evaluation of permeability. The lab is equipped with sieve analysis equipment to investigate grain sorting and its effect on permeability and the porosity of rocks. You are able to gauge saturation and fluid flow through porous media.

Surface characterisation laboratory
The rock surface characterisation lab is equipped with a zeta analyser to measure the rock surface electric charge. You study the rock surface wetting state, adsorption and desorption potential using digitised contact angle apparatus and thermos-gravimetric apparatus respectively.

Drilling laboratory
The drilling lab is equipped with mud measurement equipment including mud density, mud rheology and mud filtration systems to enable you to measure mud cake and formation damage. The lab highlights the importance of oilfield drilling fluids.

Assessment varies from module to module. The assessment methodology could include in-course assignments, design exercises, technical reports, presentations or formal examinations. For your MSc project you prepare a dissertation.

Employability

These courses provide specialist education tailored to the requirements of both the upstream and downstream petroleum industry. The relevance of this education combined with careful selection of candidates has encouraged oil and gas companies to target our graduates for recruitment over the years.

The petroleum industry is subject to dramatic changes of fortune over time, with the oil price capable of very rapid rates of change in either direction. Petroleum, however, remains the dominant source of energy, with current world production of oil and gas at record rates. In this environment, companies face increasing technological and commercial challenges to keep their wells flowing and are increasingly dependent on input from petroleum engineers and geoscientists.

It is widely recognised that a steady influx of fresh people and ideas is vital for the longer-term success and stability of an organisation, and it is therefore expected that recruitment will continue, especially for those with motivation and the appropriate qualifications.

Read less
Innovative pharmaceutical processing technologies are becoming highly important. Read more
Innovative pharmaceutical processing technologies are becoming highly important. This exciting, brand-new interdisciplinary MSc has been developed taking into consideration the requirements of the growing global pharmaceutical industry and the strong infrastructure and expertise available across the School of Life Sciences and the School of Engineering Design and Technology.

The programme is designed to enable you to develop a comprehensive understanding and knowledge in the area of pharmaceutical formulation development and its underpinning science and processing technologies. Particularly notable features include theoretical and practical aspects of advanced analytical methods, Process Analytical Technology (PAT), and Quality by Design (QbD).

It will also facilitate the development of professional skills such as good laboratory practice and transferable skills. Students will receive hands-on experience using technologies such as supercritical fluid processing, hot melt extrusion, nano-milling and characterisation techniques such as X-ray diffractometry, Scanning Electron Microscopy, NIR or NMR and Raman Spectrometry and online rheology.

Overall, this programme will widen your thinking horizons and improve your professional abilities.

Why Bradford?

-Strong interdisciplinary approach provides expertise across pharmaceutical sciences and process engineering
-It provides strong practical and research-based components and exposes students to advanced analytical techniques, in-line spectroscopy, computational techniques and particle engineering techniques
-This course will be supported by the Bradford School of Pharmacy, the Centre for Pharmaceutical Engineering and the Analytical Centre with their state-of-the-art infrastructure and expertise

Modules

Core modules
-Fundamentals of Drug Delivery
-Science of Solid Dosage Form and Advanced Pharmaceutical Technologies
-X-Ray Diffraction
-Critical Appraisal of a Current Topic in Pharmaceutical Sciences
-Process Analytical Technologies (PAT) and Quality by Design (QbD)
-Computational Pharmaceutics and Knowledge Management
-Research Project

Option modules
-Separation Science
-Vibrational Spectroscopy

Career support and prospects

The University is committed to helping students develop and enhance employability and this is an integral part of many programmes. Specialist support is available throughout the course from Career and Employability Services including help to find part-time work while studying, placements, vacation work and graduate vacancies. Students are encouraged to access this support at an early stage and to use the extensive resources on the Careers website.

Discussing options with specialist advisers helps to clarify plans through exploring options and refining skills of job-hunting. In most of our programmes there is direct input by Career Development Advisers into the curriculum or through specially arranged workshops.

Graduates from the Bradford School of Pharmacy have an excellent employment record, and graduates can rise to be leaders in pharmaceutical organisations and businesses in the UK and around the world.

Read less

  • 1
Show 10 15 30 per page



Cookie Policy    X