• University of Edinburgh Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • University of Leeds Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses

Postgrad LIVE! Study Fair

Birmingham | Bristol | Sheffield | Liverpool | Edinburgh

University of Hertfordshire Featured Masters Courses
Cranfield University Featured Masters Courses
Durham University Featured Masters Courses
Xi’an Jiaotong-Liverpool University Featured Masters Courses
ETH Zürich Featured Masters Courses
"research" AND "project"×
0 miles

Masters Degrees (Research Project)

We have 9,803 Masters Degrees (Research Project)

  • "research" AND "project" ×
  • clear all
Showing 1 to 15 of 9,803
Order by 
Overview. Our MSc in Geoscience Research is a research-focused postgraduate taught master's course with industry and international placement opportunities designed for a career in research, academia or a discipline related work setting. Read more

Overview

Our MSc in Geoscience Research is a research-focused postgraduate taught master's course with industry and international placement opportunities designed for a career in research, academia or a discipline related work setting.

The course consists of six modules spread over three semesters, including an extensive research project in geoscience, environmental science or physical geography.

Project areas range from applied and environmental geophysics to igneous petrology, volcanology, Quaternary environments, palaeoclimates, palaeoceanography, biogeochemistry, landscape ecology, sedimentology, palaeontology, renewable and alternative energy, and petroleum geoscience.

A distinct feature of this master’s programme is the opportunity for UK students to complete a placement at one of several European, North American and Asian partner institutions, all of which have established research links with Keele staff. However, as a UK student, you can also choose to carry out your research project here at Keele or in collaboration with local or UK-based industry. As an international student, you will undertake your research and placement at Keele University under the supervision of international experts in their chosen research area.

The emphasis on the substantial ‘hands on’ research training with the provision of an international placement option makes this programme unique within the Higher Education Sector in the UK and will thus increase your employability. We believe that this will help to develop future employees with an international outlook.

The MSc Geoscience Research programme at Keele offers the added value of the Distinctive Keele Curriculum (DKC), which develops students' intellectual, personal and professional capabilities (Keele Graduate Attributes) through both subject-specific and generic workshops and activities.

See the website https://www.keele.ac.uk/pgtcourses/geoscienceresearch/

Course Aims

The principal aim of this Masters course is to develop your generic and specific research skills in an area of the Geosciences or related scientific disciplines, which will enhance your employment prospects. On completion of the programme you will:

- Have a systematic understanding of knowledge, and a critical awareness of current problems and/or new insights, much of which is at, or informed by, the forefront of the chosen research area in Geosciences;

- Gain a conceptual understanding to evaluate critically current research and advanced scholarship in the discipline area;

- Be able to evaluate methodologies and develop critiques of them and, where appropriate, to propose new hypotheses;

- Possess developed scientific skills and knowledge, and transferable skills, in a UK-based or international workplace setting;

- Have a comprehensive understanding of techniques applicable to your own research;

- Attain organisational and commercial awareness.

For those students undertaking a placement/research project in Europe the work and achievement on the programme will be documented in the EU Europass, a record of achievement signed by all parties. All students are required to pursue the University’s ‘Realise’ scheme which enables them to identify their personal and professional skills and development needs.

Course Content

The MSc programme is full-time for 12 months, starting in September.

The programme comprises six modules including a research project/placement which is undertaken either at Keele University or on placement with a host institution overseas:

- Research Skills (30 credits)

- Literature Review (15 credits)

- Modern Language Module* or Academic English for Postgraduate Students** or Geoscience Option Module*** (15 credits)

- Research Project Design and Management (30 credits)

- Dissertation (90 credits)

*Students undertaking their research project at a host institution overseas will choose a modern language module or a language and culture module for their international placement.

**International students for whom English is not their first language will take Academic English for Postgraduate Students to further improve their English language skills.

*** UK/Native English speaking international students undertaking their research project at Keele University or a host institution in the UK can take a selected Geoscience option module relevant to their research area. These may include: Natural Hazards; Glaciers & Glacial Geomorphology; Global Environmental Change; Water Resources; Hydrological & Engineering Geology; Structure and Geodynamics; Economic Geology; Advanced Topics in Sedimentology; Exploration Geophysics for the Hydrocarbon Industry; Petroleum Geology; Volcanic and Magmatic Processes.

Teaching & Assessment

You will be taught by experienced, well qualified and enthusiastic staff. All of the staff are research active within the discipline, accomplished at working on research funded work both nationally and internationally. The programme team are enthusiastic to share their teaching, research and professional experience to help you achieve success in your studies.

You will complete formal assessment on all modules. Assessments will include presentations, reflective diary, reports, reviews, portfolio and a dissertation. During your placement this will include keeping an extensive record of the training attended and skills obtained, with a reflective report (for the research training portfolio), as well as a dissertation on the project undertaken during the placement.

The research project/dissertation is based on the submission of a 20,000-25,000 word report that is undertaken in conjunction with an academic supervisor and, where appropriate, an industrial collaborator.

Additional Costs

There will be additional costs in terms of living expenses, travel and insurance related with the placement if you choose to undertake your research project with an overseas host institution. The amount required will be dependent on the cost of living associated with certain countries.

UK Students choosing a placement research project in an EU member state will be eligible to apply for an ERASMUS scholarship.

Employment Case Studies

Our research-focused course with industry and international placement opportunities leads our graduates into a diverse range of careers.

Our students have chosen careers in research, academia or a discipline related work setting, including geotechnical and environmental consultancies, and local, regional, national or multi-national corporations.

For examples of what graduates are doing now, see here - https://www.keele.ac.uk/gge/applicants/postgraduatetaughtcourses/mscgeoscienceresearch/employmentcasestudies/

Find information on Scholarships here - http://www.keele.ac.uk/studentfunding/bursariesscholarships/



Read less
Covering historical and philosophical bases of theatre and performance practices from different parts of the world, on this degree you'll investigate indigenous and contemporary performance and theatre traditions from a variety of cultural contexts. Read more

Covering historical and philosophical bases of theatre and performance practices from different parts of the world, on this degree you'll investigate indigenous and contemporary performance and theatre traditions from a variety of cultural contexts. The MA in World Theatres is one of the few freestanding taught Masters programmes in world theatres and performance in the UK and globally.

The programme aims to train graduates for professional employment in a range of positions in theatre, in government settings, in the culture sector and in HE internationally that require solid intellectual preparation and knowledge of the field. Practitioners who come on the programme can use knowledge acquired to extend the articulation of their career.

Programme Aims 

This one-year full‐time or two-year part-time programme of study aims to cover the historical contexts and philosophical bases of theatre and performance practices from different parts of the world, some of which are rarely introduced in UK HE. It will thus involve the student in a study of indigenous and contemporary performance and theatre traditions from a variety of cultural, national and international contexts. From this vantage context, students will be able to compare and contrast such work critically, within and beyond a European perspective, and in turn use this perspective to consider contemporary theatre in multicultural Britain.

The main aims of the programme are: 

  • To introduce the student to the whole range of drama, theatre and performance practices from many areas of the world 
  • To allow the student scope for creative yet rigorous and critical thinking combined with cumulative knowledge 
  • To enhance understanding of the interaction between practice and theory in all areas of performance study 
  • To encourage and foster independent research, carried out through the scholarly channels of books and visual archives, as well as through access to practice, if/when available 
  • To provide access where possible to industry opportunities to extend their study, in particular with our new Associate Organisation, LIFT and its biennial festival of international theatre as well as its on-going programming of activities.

Modules and Structure 

All students on the programme will undertake four taught modules and a research project. The programme may be taken full-time or part-time for the duration of one year or two years, respectively. For full-time students, the programme runs over three terms, of which Term One is devoted to two modules and students will also be required to undertake training for research and academic writing in preparation for the Research Project. Term Two comprises two modules and the Research Project, while Term Three is devoted entirely to the Research Project. 

Part‐time students have two terms in their first year of study and three terms in their second year.

Full-time students 

Term 1 (Autumn) - World Theatre: Contexts and Practices + Contemporary African Theatre and Research Project (training for research and academic writing) 

Term 2 (Spring) - Asian Theatre: From Bharata to Brecht and Eastern European Theatres and Research Project 

Term 3 (Summer) - Research Project

Part-time students 

Year One 

Term 1 (Autumn) ‐ World Theatre: Contexts and Practices or/and Contemporary African Theatre 

Term 2 (Spring) - Asian Theatre: from Bharata to Brecht and/or Eastern European Theatres 

Year Two 

Term 1 (Autumn) - World Theatres: Contexts and Practices and/or Contemporary African Theatre (depending on how many were taken in Year One) and the Research Project 

Term 2 (Spring) - Asian Theatre: From Bharata to Brecht and/or Eastern European Theatres (depending on how many were taken in Year One) and the Research Project 

Term 3 (Summer) - Research Project

Teaching and Assessment

Teaching is via lectures, seminars, workshops and practice sessions with our resident teaching team alongside guest lecturers and theatre companies. A mixed mode of assessments are used which can either be in the form of a written assignment or PaR submission.

Skills

The department is home to the African Theatre Association (AfTA) and its bi-annual journal, African Performance Review. The Department of Theatre and Performance has close links with two research centres: The Pinter Centre for Performance and Creative Writing and The Centre for the Body, that each generate learning opportunities via programmes of talks, conferences and workshops. The Department runs regular extramural activities, including hosting international practitioners in the Performance Research Forum (Dis-Play) series. The department’s special relationship with the Goldsmiths Confucius Institute and its association to the Beijing Dance Academy, also contributes to the global performance practice opportunities offered. Together, these organisations provide a unique research and professional resource for students on Theatre and Performance programmes. 

Expertise is provided by the Department's resident staff, most of who are not only dedicated and experienced teachers, but are also distinguished practitioners and researchers in their own right, working in national and international contexts. The Department also draws on a large pool of visiting practitioners and academics to provide a breadth of expertise and contact with current practice.

Careers

The broad range of interests combined in this programme will prepare you for a diverse range of employment and/or a portfolio of careers in theatre and performance as well as the arts industry as a whole in different socio-cultural environments:

  • facilitation and animation in both mainstream, applied and community theatre contexts nationally and internationally
  • administrative and support servicescultural leadershipgovernment organisations
  • journalism and broadcasting (including radio, television and print journalism)
  • teaching at all levels
  • interpretation and translation in theatre and performance contexts
  • acting, directing, design, dramaturgy

In addition, you can use this programme as a springboard for further study, either vocational or intellectual (including entry into MPhil/PhD programmes).

In short, the multiple skills – intellectual, critical and creative – developed by this programme will provide you with the flexibility of thought and approach necessary for creative insertion into the global job market. 

Find out more about employability at Goldsmiths



Read less
The MSc in Biotechnology is a one-year course designed to provide you with the theoretical and practical skills for employment in the industries of biomedical research, biopharmaceuticals, agrochemicals and biotechnology. Read more
The MSc in Biotechnology is a one-year course designed to provide you with the theoretical and practical skills for employment in the industries of biomedical research, biopharmaceuticals, agrochemicals and biotechnology. The course curriculum consists of six months of lectures, laboratory practical sessions, career service workshops, industry-based seminars and a six-month research project. The curriculum has been developed with input from staff in local biotechnology and biopharmaceutical industries, to provide you with the necessary skills required by employers. Students have the choice to complete the six-month research project in a national or international industry or university environment.

Visit the website: http://www.ucc.ie/en/ckr01/

Course Details

This is the most established MSc in Biotechnology course in Ireland and is the most popular MSc course in UCC. The international success of this course is attributed to the industry-led curriculum offered to students and the opportunity to complete a six-month placement in industry or an academic research lab. The global recognition of the course is also evident from our international alumni and receipt of several industry-sponsored scholarships available to students entering and on completion of the course.

The course will:

- introduce you to the theory and practice of bioanalytical chemistry?
- introduce you to molecular biotechnology, eukaryotic-, prokaryotic- and plant-biotechnologies, recombinant DNA technologies and their - application in the biotechnology and biopharmaceutical industries
- introduce you to the principles of process and biochemical engineering?
- introduce you to the role of process validation and quality assurance in the pharmaceutical industry, and give you an awareness of the - - latest trends in good manufacturing, laboratory and validation practices
- introduce you to the principles of food and industrial microbiology
- provide you with the opportunity to conduct and complete a body of independent research in a biotechnology-related area and present your research findings in a minor dissertation.

Format

The curriculum consists of approximately 250 contact hours over two academic terms (October to December and January to March), consisting of eight course modules, set practical sessions, career service workshops and an industry lecture series.

During the third academic term (April to September), students complete a six-month research project on a topic related to biotechnology, biopharmaceutical or biomedical research. Industry-based projects in these areas are managed by a dedicated placement officer who facilitates career workshops during which you prepare for and are interviewed by staff from companies interested in hosting students. For students interested in a career in biomedical research or PhD, projects are offered in a broad range of research areas utilising modern research techniques. All research projects are undertaken in consultation with an academic supervisor and examiner.

The MSc in Biotechnology degree course consists of eight course modules, set practical sessions, career service workshops, an industry lecture series and a six-month research project.

Students study the following eight modules and complete a research project:

- Advanced Molecular Microbial Biotechnology
- Biopharmaceuticals: formulation design, secondary processing and regulatory compliance
- Bioprocess Engineering
- Cell and Molecular Biology
- Functional Foods for Health
- Genetic Engineering
- Modern Methods in Analytical Chemistry
- Plant Genetic Engineering

Research Project and Industry Placement

You will be required to complete a six-month research project based on your individual research and development in a selected field of modern science. You carry out your research in UCC’s laboratories or at an approved academic or industrial partner.

When you complete your research dissertation in an industrial setting, it provides the company with an opportunity to assess your skills and abilities and to screen potential future full-time employees.

Students who secure employment upon graduation fit into the organisation and contribute productively much sooner that other graduates. For students with an interest in biomedical research and future careers as PhD researchers, research projects are offered across a broad range of topics including but not limited to; cancer biology, neuroscience, immunology, microbiology and plant biotechnology.

Further details on the content and modules are available on the Postgraduate College Calendar - http://www.ucc.ie/calendar/postgraduate/Masters/science/page05.html#4%20

Assessment

The MSc in Biotechnology is awarded after passing written examinations across taught course units, the continuous assessment of practical work and completion of a six-month research project, which has to be written up in the form of a dissertation and approved by an external examiner. All students must complete written examinations (typically held over a two week period in March) and submit a research project. Full details and regulations governing examinations for each course will be contained in the Marks and Standards 2013 Book and for each module in the Book of Modules, 2015/2016 - http://www.ucc.ie/modules/

Careers

The course is suitable for students wishing to extend their specific undergraduate degree knowledge in biotechnology, and for those wishing to bridge their undergraduate degree and gain more specialised knowledge and training in biotechnology. The course allows you to follow a number of career pathways. Each year, over 70 per cent of our students gain employment while approximately 20 per cent of graduates progress to international PhD opportunities.

How to apply: http://www.ucc.ie/en/study/postgrad/how/

Funding and Scholarships

Information regarding funding and available scholarships can be found here: https://www.ucc.ie/en/cblgradschool/current/fundingandfinance/fundingscholarships/

Read less
This 12-month full-time MSc course explores the interdisciplinary field of oral biology, for those from either a scientific or clinical background. Read more
This 12-month full-time MSc course explores the interdisciplinary field of oral biology, for those from either a scientific or clinical background. It provides the opportunity to develop a systematic understanding of knowledge and a critical awareness of current problems and new insights around the subject.

The course involves four taught core modules and a five-month laboratory research project leading to a dissertation. It encompasses a wide breadth of biomedical research that is also applicable to clinical dentistry and medicine, derived from the research strengths available within the School of Dentistry. The course has a strong research focus in the taught element, as well as the laboratory research projects, and it is envisaged as an entry for postgraduate research.
Distinctive features

The distinctive features of this course include:

• This is a hybrid course, which provides taught components and a laboratory-based research project.
• The taught part of the course has a strong focus on research methodology and modern experimental design/approaches, as well as the relevant Oral Biology background, thus laying a good foundation for the research project.
• Students will develop laboratory research skills.
• Training is provided to enable students to use research equipment independently.

Structure

This is a 12-month full-time multidisciplinary modular programme consisting of four taught core modules (part 1) to a total of 120 credits and a laboratory-based research project (part 2) studied over five months and worth 60 credits.

• Part 1: Taught Component

During Part 1, the modules are delivered concurrently over a 26-week period.

• Part 2: Research Project

Following satisfactory completion of the assessed course work and examinations in Part 1, you will progress to Part 2 of the course, the dissertation, which commences in April. You will be required to complete and submit a laboratory-based research project dissertation and present your work as a poster presentation (total 60 credits) to obtain a Master’s degree.

The research projects offered as part of the MSc course in Oral Biology are all laboratory-based. Research projects will be collated from supervisors in the School of Dentistry and their collaborators. We have an extensive collaborative network with co-supervisors/collaborator based in the Schools of Medicine, Biosciences and Pharmacy. You will be asked to propose a first and second choice of research project, and in most cases students will be able to pursue their first choice.

Those who do not achieve the MSc in Oral Biology may be eligible for the exit awards of a Postgraduate Diploma in Oral Biology (120 credits) or a Postgraduate Certificate (60 credits).

For the Postgraduate Certificate award, students must have completed a particular module together with one other module, which will give them the knowledge and the intellectual, practical and transferable skills appropriate to a qualification in basic science and its practical application.

Core modules:

Research Methods
Cell Biology of Oral Tissues
Microorganisms in Oral Diseases
Tissue Repair, Regeneration & Scientific Methods
Dissertation

Teaching

All taught elements are delivered within the School of Dentistry. Students may attend other Schools (such as Medicine, Pharmacy or Biosciences) to undertake their research project.

A range of teaching methods is used on this programme, including:

Lectures
Small group teaching
Discussion groups
Self-directed learning
Oral scientific presentation
Poster / scientific presentation
Laboratory research skills
Writing a dissertation

Due to the relatively small intake for the MSc course, most teaching is delivered via small group teaching, involving seminars or student-led discussion groups. Such a teaching environment should facilitate a good student-teacher relationship, where academic problems can be identified and addressed with relative ease. Students may arrange for additional mentoring as required via the module leaders.

Additionally, all students will attend Student Induction, which includes presentations on the structure of the course and each module, the student services and graduate centre, a tour of the building and library and IT facilities.

During the taught component, you will be provided with reading lists for each module. To foster the high research element of the course the majority of course reading will be via peer-reviewed research journals which are readily accessible via the University electronic library for e-journals. Text-books are available within the libraries on the Heath Campus.

Assessment

Throughout the course, you will be issued with student assessments that may take the form of essays, presentations and reports. These will be used to monitor your academic progress.

You must pass both parts of the course in order to qualify for the Master’s degree. You must pass Part 1 in order to progress to Part 2.

Module assessments are used to assess learning outcomes and allow you to express Master’s level concepts of understanding, analysis, evaluation and presentation. You will be required to pass all four module assessments in the taught element and the dissertation with a minimum pass mark of 50%.

You must complete each assignment according to the assignment submission schedule issued to students at the start of the course.

Career prospects

A Master's degree in Oral Biology opens the door to a variety of possible future careers. The modules are designed to prepare each student to optimise their learning towards their chosen future career. The core skills modules immerse you in the research environment, developing research skills which will be practised in the laboratory-based research project, leading to a dissertation. This should allow you to distinguish yourself in today's highly competitive job market.

We anticipate that students will pursue further PhD qualification leading to research careers in the biomedical or pharmaceutical industry or an academic career in biomedical or dental research and teaching.

Read less
Catalysis lies at the heart of many chemical processes, from living systems to large-scale industrial reactors. By understanding and applying catalysts, we can make processes faster, cleaner and more sustainable. Read more
Catalysis lies at the heart of many chemical processes, from living systems to large-scale industrial reactors. By understanding and applying catalysts, we can make processes faster, cleaner and more sustainable. Specialists in catalysis are particularly sought after in industry, as more efficient processes can lead to less waste and cost savings.

Our MSc in Catalysis will provide you with a sound foundation in catalysis theory and its applications. We will explore three branches of catalysis – heterogeneous, homogeneous and biological – and you will be given the opportunity to specialise in the area you are most interested in. You will be trained to use a range of laboratory equipment and techniques for testing and characterising catalysts.

Distinctive features:

• Based on the research undertaken in the School of Chemistry and the Cardiff Catalysis Institute.

• Available on a one-year full-time or three-year part-time basis.

• Specialise in heterogeneous, homogeneous or biological catalysis for your research project.

• Tailor the degree to your interests with our range of optional modules.

• Opportunity to carry out research at an overseas partner university.

Structure

This course may be taken on a one-year full-time or three-year part-time basis.

There are two parts to the degree. Part one is comprised of core and optional taught modules which you will take during the autumn and spring semesters. In these modules we will provide you with a foundation in the theory of heterogeneous, homogeneous and biological catalysis. Optional modules will allow you to specialise in your area of interest.

On progression to part two, you will carry out a summer research project in our research laboratories or one of our partner universities. We will make a range of project options available to you from the three areas of catalysis, molecular modelling, or computational chemistry.

If you are on the one-year full-time degree option, you will undertake all modules and your research project in one year.
If you are studying this course on a three-year part-time basis, you will take half the taught modules in year one.

Core modules:

Catalysis and Electrocatalysis
Biocatalysis I - Modern Approaches to Biocatalysts
Colloquium
Catalyst Design Study
Preparation and Evaluation of Heterogeneous Catalysts
Mechanism and Ligand Design in Homogeneous Catalysis
Practical Catalytic Chemistry
Key Skills for Postgraduate Chemists
Research Project

Optional modules:

Modelling of Biological Macromolecules
Applications To Materials Science
Bioinorganic Chemistry
Modern Catalytic Processes
Advanced Techniques in Organic and Biological Chemistry
Molecular Modelling
Catalytic Materials for Green Chemistry

Teaching

The methods of teaching we employ will vary from module to module, as appropriate depending on the subject matter and the method of assessment. We teach using a mixture of lectures, workshops, tutorials, practicals and self-directed learning.

Your research project will be carried out in research laboratories under the supervision of an academic member of staff with interests in a similar field.

Modules relating to computing frequently take place in our computer rooms, while practical work and your research project will be undertaken in our laboratories.

Students will also benefit of the weekly seminars organised by the School of Chemistry, where leading experts in various scientific fields are invited to present their work.

Support

All of our students are allocated a personal tutor when they enrol on the course. A personal tutor is there to support you during your studies, and can advise you on academic and personal matters that may be affecting you. You should have regular meetings with your personal tutor to ensure that you are fully supported. Many of our staff operate an open door policy and meetings can be arranged at mutually convenient times to discuss your work.

You will have access to the Science Library, which holds our collection of chemistry resources, as well as to the other Cardiff University Libraries. In addition to the library facilities the University has extensive electronic resources of text books and research journals that can be accessed online.

Feedback:

We offer written and oral feedback, depending on the coursework or assessment you have undertaken. You will usually receive your feedback from the module leader. If you have questions regarding your feedback, module leaders are usually happy to give advice and guidance on your progress.

Assessment

Taught modules are assessed in a variety of different ways depending on the module content and learning outcomes (found in the module descriptions). We use course work, assessed workshops, presentations and examinations or a combination of these to assess your progress on the course.

Your research project at the end of the course will be assessed through a dissertation, a presentation, and an oral exam.

Career prospects

Upon completion of this course, there are usually two career streams open to graduates: research or industry. Within these two fields there are a variety of career options. For example, many of our graduates choose to follow up their MSc and decide to complete a PhD research degree with us. Other past graduates have found employment in industry with companies such as Johnson Matthey, Thales, Hexion, BAE Systems in the UK, as well as international companies such as Haldor Topsøe, Denmark and the National Science and Technology Development Agency in Thailand.

Placements

There is the opportunity to undertake the research project overseas in one of our partner institutions allowing you to expand your range of chemistry knowledge, laboratory skills and professional network.

Read less
The chemistry of biological processes is the basis of all life on planet Earth. On this course you will develop an understanding of the processes that are core to biological chemistry. Read more
The chemistry of biological processes is the basis of all life on planet Earth. On this course you will develop an understanding of the processes that are core to biological chemistry. We will explore aspects such as biosynthesis, retrosynthetic analysis, molecular biology and the principles of drug development. We will also look at the applications of biological chemistry in catalysts, synthetic methods and spectroscopy, giving our graduates an edge when looking for employment in academia or industry.

Distinctive features:

• Available on a one year full-time or three year part-time basis.

• Explore real life biological systems as well as applications of biological processes, for example in catalysis.

• Specialise in an area of interest to you with an end of course research project.

• Some overseas academic placements may be available for the research project.

Structure

This course may be taken on a one year full-time or three year part-time basis.

There are two parts to the degree. Part one comprises core and optional taught modules which you will take during the autumn and spring semesters. In these modules we will provide you with an understanding of the biological problems and processes at the interface of chemistry and biology. We will study real life systems and explore aspects such as natural product synthesis, biocatalysis, molecular biology, synthetic biology, enzymology, medicinal chemistry and molecular modelling.

Upon successful completion of part one of the degree you will progress to part two, the summer research project. We will make a range of project options available to you from the field of biological chemistry. For this project you may work with a research group in the School of Chemistry. You may also be able to complete this project with one of our academic partner institutions overseas.

If you are on the one year full-time degree option, you will undertake all modules and your research project in one year.

Core modules:

Structure and Mechanism in Organic Chemistry
Biosynthetic Approach to Natural Products
Biocatalysis I - Modern Approaches to Biocatalysts
Colloquium
Biocatalysis II - Industrial Applications of Biocatalysis
Medicinal Chemistry
Bioinorganic Chemistry
Advanced Techniques in Organic and Biological Chemistry
Key Skills for Postgraduate Chemists
Practical Chemical Biology
Research Project

Optional modules:

Modelling of Biological Macromolecules
Asymmetric Synthesis of Pharmaceuticals and Natural Products
Analytical and Structural Techniques in Chemical Biology
Molecular Modelling

Teaching

The methods of teaching we employ will vary from module to module, as appropriate depending on the subject matter and the method of assessment. We teach using a mixture of lectures, workshops, computational sessions, laboratory practicals and tutorials.

Your research project will be carried out in one of our laboratories under supervision of an academic member of staff with interests in a similar field, unless you choose to complete your project during a placement with one of our academic partner institutions overseas, depending on availability.

Modules relating to computing frequently take place in our computer rooms, while practical work will be undertaken in our laboratories. We frequently invite external academic speakers and industry experts to the School for seminars, which our postgraduate students are encouraged to attend.

Support

All of our students are allocated a personal tutor when they enrol on the course. A personal tutor is there to support you during your studies and can advise you on academic and personal matters that may be affecting you. You should have regular meetings with your personal tutor to ensure that you are fully supported.

You will have access to the Science Library, which holds our collection of chemistry resources, as well as to the other Cardiff University Libraries.

Feedback:

We offer written and oral feedback, depending on the coursework or assessment you have undertaken. You will usually receive your feedback from the module leader. If you have questions regarding your feedback, module leaders are usually happy to give advice and guidance on your progress. We aim to provide you with regular feedback on your work after assessments have been submitted.

Assessment

Taught modules are assessed in a variety of ways depending on the module content and learning outcomes (found in the module descriptions). We use course work, assessed workshops, posters and oral presentations or a combination of these to assess your progress on the course.

Your research project at the end of the course will be assessed through a dissertation, a presentation, and an oral exam.

Career prospects

After completing this course there are usually two career streams open to graduates, research or industry. Within these two fields there are a variety of career options. For example, many of our graduates choose to follow up their MSc and decide to complete a PhD research degree with us. Those who have chosen not to continue in academia or teaching have gone on to a wide range of employment in private industries such as Kimberley-Clark group, Thales group, and Imanova Ltd.

Placements

For the end of course research project we may have some placements available with one of our academic partner institutions overseas. Please enquire early for further details

Read less
The MSc in Molecular Medicine gives you the opportunity to develop as a scientist or scientifically-literate clinician through an advanced understanding of the molecular basis of many diseases and their treatments. Read more

The MSc in Molecular Medicine gives you the opportunity to develop as a scientist or scientifically-literate clinician through an advanced understanding of the molecular basis of many diseases and their treatments.

You’ll study how to apply molecular approaches to the diagnosis, prevention and treatment of a range of cancers, chronic, autoimmune and genetic diseases. You’ll also carry out a research project in one of these areas within a research group at the forefront of the field. Project supervision is assured by outstanding academics and clinicians working on cutting-edge research.

This flexible programme allows you to develop core scientific skills and follow your professional interests with a choice of optional modules. You'll be part of a world-renowned School and will be taught by internationally recognised scholars.

The MSc programme comprises 180 credits. You may choose to exit the programme at an earlier stage, with either a PG Certificate (60 credits) or a PG Diploma (120 credits).

Course content

You’ll build core scientific skills through four compulsory modules studied over two terms. Alongside these, your optional modules (two each term) allow you to tailor your study to your interests. Modules typically last 11 weeks.

Throughout the programme you will:

  • gain an in-depth knowledge and understanding of the principles, application and potential of molecular medicine
  • learn techniques in the field of molecular biology, immunology, cell biology and chemistry
  • develop the ability to carry out molecular, biological and bioinformatics research for investigation of human diseases
  • be able to engage in research projects using the latest technologies that generate results with scientific impact and the potential for improving patient health
  • learn to critically evaluate current issues in molecular medicine, translate research findings into clinical applications, and recognise commercial opportunities.

Research project

You’ll spend approximately half of the programme on your individual research project, which usually runs from April to August. The research project allows you to work as part of a research team in a cutting edge discipline.

You will have a wide choice of research opportunities in Applied Health Research, Cancer and Pathology, Cardiovascular, Genes and Development and Musculoskeletal Research. You select your project from a range of research projects offered to MSc Molecular Medicine students.

The research project is based in one of the research laboratories at the St James’s University Hospital campus.

Course structure

Compulsory modules

  • Research Informatics and Dissemination 15 credits
  • Preparing for the Research Project 15 credits
  • Research Project 75 credits
  • Research Methods 15 credits

Optional modules

  • Introduction to Genetic Epidemiology 15 credits
  • Human Molecular Genetics 15 credits
  • Immunity and Disease 15 credits
  • Animal Models of Disease 15 credits
  • Stem Cell Biology: A Genomics and Systems Biology Approach to Haematopoiesis 15 credits
  • Cancer Biology and Molecular Oncology 15 credits

For more information on typical modules, read Molecular Medicine MSc in the course catalogue

Learning and teaching

The taught components of the programme provide a perfect knowledge background and research training to get the best out of your research project.

You’ll be taught by active scientists and clinicians who are world-leading in their research fields, through lectures, workshops, laboratory practicals, seminars and tutorials. All our students judged the programme as “intellectually stimulating” in 2014 student survey.

Teaching is mainly at St James's University Hospital, a busy research facility with research laboratories and a teaching laboratory, computer cluster, library and meeting rooms. You can easily get to and from the University campus with the free NHS shuttlebus.

We encourage you to participate in the School of Medicine Institutes’ activities, such as the invited speaker seminar series. You also have access to all the wider University of Leeds facilities.

Assessment

A major objective of the programme is to train you to formulate your own ideas and express them logically, and this will be tested in every module assessment.

A typical module will be assessed by two assignments. Assessments include written assignments, as well as delivering presentations and posters, and leading discussions.

The MSc programme comprises 180 credits. You may choose to exit the programme at an earlier stage, with either a PG Certificate (60 credits) or a PG Diploma (120 credits).

Career opportunities

This exciting programme provides excellent training for:

  • science graduates looking for an opportunity to go on to do doctoral research, enter academic medicine or pursue a career in industry, clinical service




Read less
UCL Australia's Energy and Resources Management MSc is a two-year full-time programme that provides students with a thorough knowledge of sustainable management of energy and natural resources. Read more
UCL Australia's Energy and Resources Management MSc is a two-year full-time programme that provides students with a thorough knowledge of sustainable management of energy and natural resources. The programme covers both theory and practice, with a focus on modern issues faced by industry.

See the website http://www.ucl.ac.uk/prospective-students/graduate/taught/degrees/energy-resources-management-msc

Key Information

- Application dates
All applicants:
Open: 5 October 2015
We accept applications throughout the year for the two entry dates of late February and mid July.
Optional qualifications: This degree is also available as a PG Diploma and a PG Certificate with fees set accordingly.
Fees note: Part-time fees are available on request from the department.

English Language Requirements

If your education has not been conducted in the English language, you will be expected to demonstrate evidence of an adequate level of English proficiency.
The English language level for this programme is: Good
Further information can be found on http://www.ucl.ac.uk/prospective-students/graduate/life/international/english-requirements .

International students

Country-specific information, including details of when UCL representatives are visiting your part of the world, can be obtained from http://www.ucl.ac.uk/prospective-students/international .

Degree Information

The programme places particular emphasis on policy, strategy and planning. Students develop a depth and breadth of technical and practical skills, up-to-date energy and resources sector knowledge, and have the opportunity to complete a unique and substantial research project with a relevant industrial or governmental partner.

Students undertake modules to the value of 320 credits over two years.

In year one the programme consists of four core modules and four optional modules. In year two students can follow either a coursework stream (the four remaining optional modules listed and two small research projects) or a research stream (industry research project).

A Postgraduate Diploma comprising of three core modules (60 credits) and five optional modules (100 credits) is offered.

A Postgraduate Certificate comprising of four modules (80 credits) is offered.

- Core Courses
Economics of Energy, Resources and the Environment
Law for Energy and Resources
Resource Development and Sustainable Management
Energy Technology Perspectives
Either Research Projects A and B (for Coursework stream)
Or Industry Research Project (for Research stream)

- Options
International Policy and Geopolitics of Energy and Resources
Energy Efficiency and Conservation
Project Management for Energy and Resources
Macroeconomics and Sustainability
Political Economy of Oil and Gas
Financing Resource Projects
Water Resources Management
Social Licensing

- Dissertation/Research Project
All MSc students undertake a research project as part of their study programme. For those who select the coursework stream, they are required to complete two short research projects (80 credits), whilst the students undertaking the research stream complete an industry research project (160 credits).

Teaching and Learning

The programme is delivered through a combination of lectures, tutorials, problem-based learning and workshops. Each taught course will be assessed by a three-hour examination (60%) and coursework (40%). The industry research project is assessed by a dissertation and supported by an oral defence, whilst the short research projects are assessed by a short dissertation and an oral defence.

Further information on modules and degree structure available on the department web site Energy and Resources Management MSc http://www.ucl.ac.uk/australia/study/msc

Funding

There is a small number of highly competitive Santos and BHP Billiton Scholarships available for prospective students.
Further information is available on the UCL Australia Scholarships website http://www.ucl.ac.uk/australia/study/msc/#tabs-6 .
Scholarships relevant to this department are displayed (where available) below. For a comprehensive list of the funding opportunities available at UCL, including funding relevant to your nationality, please visit the Scholarships and Funding website http://www.ucl.ac.uk/prospective-students/scholarships .

Careers

The MSc aims to prepare students for careers with a focus on policy development, strategy and planning in corporations operating in the energy or resources sectors or in government departments whose remit covers these sectors. UCL Australia places the needs of the energy and resources business sector at the centre of all that it does. By working closely with industry, business consultancies and government departments in Australia and beyond we seek to ensure that our MSc curriculum produces highly employable graduates.

Why study this degree at UCL?

Our world-leading approach combines academic research with hands-on industry experience. We are developing the management talent that will help industry to meet their challenges, innovate and prosper into the future.

Students benefit from leading academics with strong industry links and industry professionals contributing to all taught courses. In addition to the theoretical aspect of the studies and research project field trips are organised to provide a real-world context to classroom learning. Our close engagement with local and state government and key energy and resources companies mean that our students are able to network and learn from those in the industry.

This MSc binds together industrial knowledge and expertise in the energy and resources sector. Graduates of the programme gain an internationally-recognised Master's qualification from one of the world's foremost universities.

Student / staff ratios › 12 staff › 79 taught students › 7 research students

Application and next steps

- Applications
Students are advised to apply as early as possible due to competition for places. Those applying for scholarship funding (particularly overseas applicants) should take note of application deadlines.

- Who can apply?
The programme is designed for recent graduates seeking to work in the energy and resources sector. It will also appeal to professionals who have been in the workplace for some time and are now looking to change the focus of their career or to change sector.

For more information see the Applications page http://www.ucl.ac.uk/australia/study/msc .

Read less
This course trains graduates with a chemistry background specifically for a career as a polymer or biopolymer scientist. Read more
This course trains graduates with a chemistry background specifically for a career as a polymer or biopolymer scientist. The content reflects global interest in sustainably-derived polymers which are increasing in demand in a variety of applications including food and beverages, pharmaceutical, cosmetics, personal care, paints and inks.

Our specialist course will equip you with the knowledge to understand the behaviour of both naturally occurring and synthetic water soluble polymers at the molecular level, and how this influences their bulk behaviour. Lectures are reinforced and expanded by study of real-life polymer systems in the laboratory.

You'll learn about the vital roles played by polymers in a rage of products, gain knowledge of biopolymer modification, polymer synthesis and a range of specialist characterisation techniques. During your research project you'll work with specialists from manufacturing industries and perform a programme of experiments designed to help you develop your skills.

Key Course Features

-You will learn about the vital roles played by polymers in a diverse range of high value products – e.g in mayonnaise, sun tan lotion, wound gels, liquid pharmaceuticals, paper, ink, water based paints and flotation aids in mining to name just a few.
-You’ll gain first-hand knowledge of biopolymer modification, polymer synthesis, and a wide range of specialist characterisation techniques.
-In your research project you will interface with specialists from manufacturing industries and undertake a programme of experiments designed to develop the skills you want to learn.
-Through case studies and your research project you will learn how to apply acquired knowledge in real world industrial scenarios, leading the way to success in subsequent employment.

What Will You Study?

The course comprises 6 x 20 credit modules of taught content and a 60 credit research project. The taught element is delivered by a varied programme including lectures, seminars, practical classes and may be studied on a full time or part time basis to suit you. There is a strong emphasis on development of hands-on practical skills using a wide variety of advanced instrumentation.

TAUGHT MODULES
-Advanced Materials Science
-Chemistry & Technology of Water Soluble Polymers
-Formulation Science
-Polymer Characterisation Case Study
-Structure and Function of Industrial Biopolymers

The lectures and workshops are designed to train you in understanding polymer molecules themselves, and the way they interact with each other, and with solvents, surfactants, particles and surfaces.

You will:
-Study the basic principles of polymer characterisation through a range of analytical techniques including FT-IR, UV-vis, NMR, ESR and fluorescence spectroscopy.
-Master the measurement of molar mass distribution using gel permeation chromatography with multi angle laser light scattering (GPC-MALLS), and gel electrophoresis.
-Use particle sizing techniques such as digital imaging and laser diffraction to measure aggregates, flocs and emulsion droplets.
-Discover Green Chemistry - exploring a whole range of biopolymers extracted from natural resources….including antimicrobial polymers from shellfish waste, gelling agents from seaweed, and oligosaccharides from locally grown grasses.
-Learn about man-made polymers and importantly, chemically modified biopolymers.
-Measure the viscosity and rheology of liquid formulations and see how this can be interpreted to yield structural information on thickened systems and gels.
-A module in research methods provides training in all aspects of undertaking research, from project management, through data analysis and statistics to communicating your results and writing your dissertation to ensure you are well equipped to undertake your project.

RESEARCH PROJECT
The course culminates in an industry-focussed Research Project. For full-time students this may be partly or wholly undertaken within a local manufacturing company. For part-time students the project provider may be your current employer. The Research Project gives you the opportunity to undertake a piece of novel research, and will often be based around solving a polymer application /characterisation problem for the project provider. It allows you to put into practice the knowledge and skills gained in the taught elements of the course.

Because of the individual nature of the research projects, no two projects are the same. Below are some of the titles of previous research projects undertaken by previous Masters students in our department:
-Aspects of Adhesive Bonding of Low Energy Polymers
-The effects of Surfactants on the Rheological Properties of Hydrophobically Modified Cellulose
-Extensional Rheometry and Dynamic Light Scattering of Telechelic Associating Polymer Solutions
-Simple chemical syntheses of polymer/silver nanocomposites
-Phase separation of Gum Arabic and Hyaluronan in Aqueous Solution
-Shear and extensional Rheology of Electron Beam (EB) Curable Paint

The information listed in this section is an overview of the academic content of the programme that will take the form of either core or option modules. Modules are designated as core or option in accordance with professional body requirements and internal academic framework review, so may be subject to change.

Assessment and Teaching

Assessment of the taught modules is intended to allow the learner to demonstrate skills that cover the entire breadth of the programme aims – knowledge and understanding, key practical skills, intellectual skills in planning experiments/interpreting data and communication of information in writing and verbally.

The research project is examined by a final dissertation.

Career Prospects

The EU is the leading chemical production area in the world and the chemical industry is the UK's largest manufacturing export sector.

MSc Polymer and Biopolymer Science combines delivery of key theoretical knowledge with hands-on application in extraction, modification and testing of polymers / biopolymers.

You’ll learn how to develop experiments at bench scale through to processes at pilot and manufacturing scale. A Masters degree in Polymer & Biopolymer Science from Glyndwr University gives you the skills employers are looking for.

You'll be ready to step confidently into a world of manufacturing with a wealth of information and skills to offer. The course provides excellent career opportunities across a wide range of industrial sectors. Graduates can expect to obtain a research and development position in areas related to biomedical devices, pharmaceutical formulation, food and beverages, petroleum recovery, agrochemicals, functional polymers/speciality chemicals, inks, paints and coatings or cosmetics and personal care products.

The course also provides a direct route to doctoral study, for those wishing to undertake further research training or pursue an academic career.

The Careers & Zone at Wrexham Glyndŵr University is there to help you make decisions and plan the next steps towards a bright future. From finding work or further study to working out your interests, skills and aspirations, they can provide you with the expert information, advice and guidance you need.

Read less
This two-year studentship at Bristol Veterinary School provides a link between feline clinical and research work, with an opportunity for involvement in multiple projects and completion of an MSc by research on a project entitled ‘The impact of feline degenerative joint disease on mobility and quality of life in cats’ using data from the Bristol Cats study. Read more

This two-year studentship at Bristol Veterinary School provides a link between feline clinical and research work, with an opportunity for involvement in multiple projects and completion of an MSc by research on a project entitled ‘The impact of feline degenerative joint disease on mobility and quality of life in cats’ using data from the Bristol Cats study. The MSc will be undertaken on a part-time basis over 2 years with the remainder of time being devoted to a range of feline-related work such as production of the e-newsletter Feline Update, delivery of CPD and advice to veterinarians, involvement in teaching, journal club, clinical rounds, diagnostic laboratory work and involvement in other research projects ongoing during the fellowship. The studentship provides an insight into an academic/research career and is particularly suitable for a veterinary graduate with some clinical experience who is interested in feline medicine and research. Other current areas of research interest are infectious diseases, feline immunology, genetic disorders, shelter medicine and epidemiology. 94666 189

The MSc by Research project:

Feline degenerative joint disease (DJD) is a common, but challenging condition in cats, with prevalence estimates ranging from 61% to as high as 99% of cats. Whilst DJD can lead to reduced mobility and pain, with significant potential impacts the cat’s quality of life (QoL), little is known about risk factors for this condition. Diagnosis of DJD primarily depends upon owners detecting behavioural changes in activity in their pet. Differences in activity between cats with DJD and normal cats have been detected using accelerometry. Early detection of DJD would allow a multimodal approach to delaying/halting progression of the disease, thereby improving the cat’s QoL. The aims of this project are to: 1) evaluate risk factors associated with the occurrence of feline DJD, 2) identify differences in the activity profiles of cats with signs of DJD, compared with disease free cats and determine whether accelerometry is more sensitive than owner report at detecting DJD and 3) investigate changes in the QoL with this condition. The project will use data from the Bristol Cats study, veterinary orthopaedic examinations, owner reported signs of altered activity, accelerometry and QoL questionnaires to realise these research aims.

How to apply:

Please make an online application for this project at http://www.bris.ac.uk/pg-howtoapply. Please select ‘Faculty of Health Sciences’ and then ‘Veterinary Science (MSc by Research)’ on the Programme Choice page and enter details of the studentship when prompted in the Funding and Research Details sections of the form. Interviews will take place on 2.3.18



Read less
This programme brings together expertise from across the many subject areas in the biomedical sciences to provide you with training in several key areas of current research interest. Read more
This programme brings together expertise from across the many subject areas in the biomedical sciences to provide you with training in several key areas of current research interest. The programme focuses on experimental science and it is research-informed. It will provide you with practical laboratory-based experience with access to specialist techniques, in state-of-the-art facilities.

It is a flexible programme: you will select three units of your choice during your studies, giving you the opportunity to investigate a range of different topics within the biomedical sciences. For your final research project, you again have the flexibility to choose your research area from a wide range of suggested projects or you can design your own research project, working with academic staff. You can also choose a project offered at an off-campus site, such as Southmead Hospital, Bristol Dental School or the Bristol Heart Institute.

You will learn in small teaching and tutorial groups. The taught and research elements of this MSc are carefully balanced: your research project, for example, runs over a 12-week period free of lectures, allowing you to focus solely on your project.

The skills you can develop during this programme include presentation, report-writing and work-planning. Several students have contributed to published papers and many go on to study at PhD level.

Programme structure

Core skills
-A series of practical classes, lecture-based teaching sessions and tutorials that prepare you for the practical project, provide a foundation for further studies and develop a range of transferable skills.

Literary project
-An extended essay on a subject chosen from an extensive list supplied by the unit organiser. You work independently under the guidance of a member of staff.

Project proposal and research project
-Each school provides a number of research project topics within the themes described below. You work independently under the guidance of a member of staff to produce a written project proposal. This is followed by a 12-week research project investigating your chosen topic. The research project forms the basis for a dissertation.

Lecture-based units
You will study three lecture-based units from:
-Cancer Biology
-Cardiovascular Research
-The Dynamic Cell
-Infection, Immunology and Immunity
-Pharmacology
-Neuroscience

Each taught unit is assessed independently by written examinations, or - in the case of Core Skills - by written examinations and coursework. The literary project, project proposal and practical projects are presented as written dissertations.

Careers

Approximately one third of our students have gone on to PhD-level studies at the Universities of Bristol, Bath, Manchester, Glasgow, Dublin and Plymouth, among others. The next largest group of students are those that have gone on to study medicine. Others have gone on to research assistantships, teacher training, biomedical scientist training or non-scientific careers, such as accountancy.

Read less
Who is it for?. This course will help you become part of the newest and fastest growing specialty in healthcare by understanding how to apply informatics solutions to develop high-quality and sustainable healthcare. Read more

Who is it for?

This course will help you become part of the newest and fastest growing specialty in healthcare by understanding how to apply informatics solutions to develop high-quality and sustainable healthcare.

It has been designed for health professionals who wish to enhance their careers with an informatics qualification. It will also appeal to computer scientists, engineers and others with relevant technical or professional qualifications who wish to move into a successful career involving the application of informatics in the health service.

Objectives

The Health Informatics MSc at City, University of London aims to develop future leaders in the field who will transform healthcare with sustainable, informatics-led approaches, and is the only MSc in the UK to be accredited by the British Computer Science Society.

High-quality teaching combines both theory and practice, with a strong focus on real-world applications including electronic health records, clinical data management and analytics, mobile technology and telehealth. Teaching is supported by guest lectures from medicine and industry. Furthermore, you will be part of a multi-professional and strongly international cohort bringing together many points of view on national and international computerised healthcare initiatives.

Accreditation

Accredited by BCS, The Chartered Institute for IT for the purposes of partially meeting the academic requirement for registration as a Chartered IT Professional.

Internships

As a postgraduate student on a Computing and Information Systems course, you will have the opportunity to complete up to six months of professional experience as part of your degree.

Our longstanding internship scheme gives you the chance to apply the knowledge and skills gained from your taught modules within a real business environment. An internship also provides you with professional development opportunities that enhance your technical skills and business knowledge.

Internships delivered by City, University of London offer an exceptional opportunity to help you stand out in the competitive IT industry job market. The structure of the course extends the period for dissertation submission to January, allowing you to work full-time for up to six months. You will be supported by our outstanding Professional Liaison Unit (PLU) should you wish to consider undertaking this route.

Teaching and learning

High-quality teaching is delivered by research-active academics from City, University of London. Specialist industry professionals also participate in teaching and learning, ensuring that students learn the knowledge and skills most valued by industry.

Teaching combines both theory and practice, with a strong focus on real-world applications including electronic health records, clinical data management and analytics, mobile technology and telehealth. You will also undertake an independent research project.

All taught modules are delivered through a combination of lectures, interactive workshops, tutorials and activities supported by the University's online learning environment.

Taught modules are generally assessed through a combination of coursework and examination, although some modules are 100% coursework based (e.g. Data Analysis with Healthcare Application, Information Architecture and Project Management). Examinations focus on applying health informatics theories to realistic clinical scenarios. Coursework assignments centre on analysing real world problems, developing computational models and systems to solve these problems and producing written reports and documentation.

The taught component of the MSc is worth 66.67% and the independent research project is worth 33.33%. The independent research project allows students to conduct original research on a health informatics topic of their choice

Upon successful completion of eight modules and the independent research project, you will be awarded a master’s level qualification. Alternatively, if you do not complete the dissertation but have successfully completed the taught component you will be awarded a postgraduate diploma. Successful completion of four modules will lead to the award of a postgraduate certificate.

Modules

The MSc comprises of 180 credits.

You will study six core modules and two elective modules. You will also undertake an independent research project.

A full-time student is expected to commit 35 hours a week, which includes attendance at lectures, tutorials and workshops, and independent study on coursework, the individual research project and preparation for examinations.

Taught Core Modules

Core modules are mandatory and provide a detailed insight into key areas of health informatics. The modules are designed to complement each other and incrementally build specialist knowledge in the area. For example, the Electronic Health Records module focuses on important standards and techniques for securely capturing, storing and exchanging clinical data. Data Analysis with Healthcare demonstrates how to undertake statistical analyses of clinical data and report the results. In the Modelling Healthcare Decisions and Knowledge Management in Healthcare modules students learn about machine learning techniques that can be applied to clinical data and used to develop intelligent systems to support clinical decision making, including the cost effectiveness of those decisions in a variety of healthcare settings. The Telehealth and Mobile Applicationsmodules examines the emerging role of telehealth with a focus on new technologies and devices such as mobile apps, sensors and cloud computing that can be used to capture clinical data and deliver health services in environments such as patients’ homes. The Research, Methods and Professional Issues module develops students' research skills and helps with planning and carrying out original research in their independent research project.

  • Electronic Health Records (15 credits)
  • Data Analysis with Healthcare Application (15 credits)
  • Modelling Healthcare Decisions (15 credits)
  • Knowledge Management in Healthcare (15 credits)
  • Telehealth and Mobile Applications (15 credits)
  • Research, Methods and Professional Issues (15 credits)

Career prospects

Graduates from the Health Informatics MSc pursue successful careers in health services (both state and private sectors in the UK and overseas), and in related healthcare industries such as Electronic Health Record providers. There are a wide variety of roles and opportunities in health informatics as outlined the NHS Careers in Health Informatics including:

  • Health records designers and developers
  • Health data scientists
  • Data managers
  • Taxonomy managers
  • System and application analysts
  • Information analysts
  • IT project managers
  • Digital transformation leads
  • PACS and RIS managers
  • Education and training.


Read less
This UK masters in Sports and Biomechanical Medicine programme is designed to cover a wide variety of sport-related topics including. Read more
This UK masters in Sports and Biomechanical Medicine programme is designed to cover a wide variety of sport-related topics including:

research design and medical statistics
measurement systems in motion analysis
biomechanics in sport
sports injury management and rehabilitation
dissertation on a substantive laboratory-based or focused research project in the field of sports rehabilitation and biomechanics

We offer you a wide ranging curriculum that will help you to achieve your career goals no matter what your speciality. Our distinguished visiting lecturers are specialists at the forefront of sport, sports injury, biomechanics, exercise physiology and other sports medicine related areas. You will have access to:

Fully equipped Sports Lab (Institute of Motion Analysis and Research)
Opportunities to publish your research in peer-reviewed sports journals
Lectures from leading multi-disciplinary teaching faculty from medicine, sports and biomechanics
Close working relationships with the University of Dundee's Institute of Sports & Exercise (ISE)
Facilities within Ninewells, a large, modern teaching hospital

Graduates from this sports MRes will be able to use their skills and knowledge to successfully increase their level of integration of sport and exercise medicine within their respective professions and disciplines at an advanced practitioner level. Graduates will be able to contribute to team work with a greater understanding of the inter-relationship between movement mechanisms, the fundamental nature of human performance at all levels and clinical outcome.

Aims of the programme

After completing the course, you will be able to demonstrate:

Expert knowledge on the roles of physical activity and sports exercise in rehabilitation.
The means and techniques to ensure athletes and sports people can perform to their maximum capacity whilst limiting the injury process.
The ability to use your skills and knowledge to successfully increase your level of integration of sport, biomechanics, exercise medicine and rehabilitation within your respective profession or discipline.
The skills and knowledge to undertake a substantive research project in your specialty. You will gain new insights and also the foundations for studying for a higher research degree.

What you will study

The MRes programme consists of five mandatory modules.

Taught modules: 90 credits

Research Project: 90 credits

Module 1: Research Design and Medical Statistics
Module 2: Biomechanics in Sport
Module 3: Measurement Systems in Motion Analysis
Module 4: Management of Soft Tissue and Sports Injuries and Rehabilitation
Module 5: Research Project
After completing the research project, the Master of Research (a minimum of 180 credits) will be awarded.

How you will be taught

Teaching of this MRes Sports Biomechanics and Rehabilitation will primarily be through a combination of flexible learning modules and formal lectures.

Assignments and coursework will foster the development of an enquiry-led, self-directed student approach to learning.

Assessment of modules 1-4 will be by examination upon completion of each individual module and a summative assessment on completion of all four modules. Assessment is weighted - 80% exam and 20% coursework.

During the research project, learning will be partly experiential, partly directed and partly self-directed. The research project will be assessed through the presentation of a dissertation, and the final mark will be moderated through an oral exam in Dundee (90 credits).

Careers

This MRes Sports Biomechanics and Rehabilitation will prepare graduates for a research-focused clinical graduate career in either the NHS or academia, and is particularly well positioned to prepare for entry into a clinical academic career path if you are a clinical graduate. Those students not already in academia or the NHS will broaden their scope of being able to do so and additionally benefit from the multitude of opportunities in the public and private sectors involving sport and exercise.

Read less
Electrical and Electronic Engineering is characterised by the need for continuing education and training. Today, most Electrical and Electronic Engineers require more than is delivered in a conventional four-year undergraduate programme. Read more
Electrical and Electronic Engineering is characterised by the need for continuing education and training. Today, most Electrical and Electronic Engineers require more than is delivered in a conventional four-year undergraduate programme. The aim of the MEngSc (Electrical and Electronic Engineering) programme is to provide advanced coursework with options for a research element or industrial element, and additional professional development coursework. Students choose from a range of courses in Analogue, Mixed Signal, and RF Integrated Circuit Design, VLSI Architectures, Intelligent Sensors and Wireless Sensor Networks, Wireless Communications, Robotics and Mechatronics, Advanced Power Electronics and Electric Drives, Optoelectronics, Adaptive Signal Processing and Advanced Control. A range of electives for the coursework-only stream includes modules in Computer Architecture, Biomedical Design, Microsystems, Nanoelectronics, Innovation, Commercialisation, and Entrepreneurship

Visit the website: http://www.ucc.ie/en/ckr47/

Course Details

The MEngSc (EEE) has three Streams which include coursework only, coursework with a research project, or coursework with an industrial placement. Students following Stream 1 take course modules to the value of 60 credits and carry out a Minor Research Project to the value of 30 credits. Students following Stream 2 take course modules to the value of 60 credits and carry out an Industrial Placement to the value of 30 credits. Students following Stream 3 take course modules to the value of 90 credits, up to 20 credits of which can be in topics such as business, law, and innovation.

Format

In all Streams, students take five core modules from the following range of courses: Advanced Analogue and Mixed Signal Integrated Circuit Design, Advanced RF Integrated Circuit Design, Advanced VLSI Architectures, Intelligent Sensors and Wireless Sensor Networks, Wireless Communications, Robotics and Mechatronics, Advanced Power Electronics and Electric Drives, Optoelectronics, and Adaptive Signal Processing and Advanced Control. In addition, students following Stream 1 (Research Project) and Stream 2 (Industry Placement) carry out a Research Report. Following successful completion of the coursework and Research Report, students in Streams 1 and 2 carry out a research project or industry placement over the summer months.

Students who choose the coursework-only option, Stream 3, take additional courses in lieu of the project or placement. These can be chosen from a range of electives that includes modules in Computer Architecture, Biomedical Design, Microsystems, Nanoelectronics, Innovation, Commercialisation, and Entrepreneurship.

Assessment

Part I consists of coursework modules and mini-project to the value of 60 credits. These are assessed using a combination of written examinations and continuous assessment. Successful completion of the initial tranche of coursework modules qualifies the student to progress to Part II, the research project, industrial placement, or additional coursework to the value of 30 credits in the cases of Streams 1, 2, and 3, respectively.

Placement and Study Abroad Information

For students following Streams 1 and 2, research projects and industrial placements are normally in Ireland. Where the opportunity arises, a research project or work placement may be carried out outside Ireland.

Careers

MEngSc (Electrical and Electronic Engineering) graduates will have a competitive advantage in the jobs market by virtue of having completed advanced coursework in Electrical and Electronic Engineering and, in the case of Streams 1 and 2, having completed a significant research project or work placement.

How to apply: http://www.ucc.ie/en/study/postgrad/how/

Funding and Scholarships

Information regarding funding and available scholarships can be found here: https://www.ucc.ie/en/cblgradschool/current/fundingandfinance/fundingscholarships/

Read less
The field of medicinal chemistry is becoming increasingly important as we continue to push the boundaries in the discovery of new drugs and applications in healthcare. Read more
The field of medicinal chemistry is becoming increasingly important as we continue to push the boundaries in the discovery of new drugs and applications in healthcare. This MSc in Medicinal Chemistry will allow you to specialise in this area and explore the wider context of drug discovery, business and healthcare.

On the course, you will develop the specific technical knowledge, understanding and laboratory skills needed to design drugs. You will also investigate the relationship between medicinal chemists and drug discovery companies with stakeholders such as patients, investors and governments.

Distinctive features:

• Available on a one year full-time or three year part-time basis.
• Explore medicinal chemistry in a wider industrial context, including how businesses interact with patients and investors.
• Specialise in an area of interest to you with an end of course research project.
• Some industrial and academic placements are available in the UK or abroad for the research project.
• Network and build contacts with industry professionals who are frequently invited to present guest seminars.

Structure

This course may be taken on a one year full-time or three year part-time basis.

There are two parts to the degree. Part one is comprised of core and optional taught modules which you will take during the autumn and spring semesters. In these modules we will provide you with a foundation in the skills required by contemporary medicinal chemists, such as the techniques and trends in modern drug discovery. We will also look in more detail at the modelling of biological macromolecules and drug targets. We will then follow the process of drug development through from laboratory to clinic.

Upon successful completion of part one, you will progress to part two, the summer research project. We will make a range of project options available to you from the field of medicinal chemistry. For this project, depending on the subject you choose, you may work with a research group in the School of Chemistry or our partner, the School of Pharmacy and Pharmaceutical Studies. You may, if available, also be able to complete this project with one of our industrial partners or within another academic institution in the UK or abroad.

Core modules:

Colloquium
Key Skills for Postgraduate Chemists
Drug Discovery Chemistry
Techniques in Drug Discovery
Drug Targets
Drug Development from Laboratory to Clinic
Trends in Drug Discovery
Practical Medicinal Chemistry
Research Project

Optional modules:

Module title Module code Credits
Modelling of Biological Macromolecules
Structure and Mechanism in Organic Chemistry
Biosynthetic Approach to Natural Products
Biocatalysis I - Modern Approaches to Biocatalysts
Biocatalysis II - Industrial Applications of Biocatalysis
Bioinorganic Chemistry
Asymmetric Synthesis of Pharmaceuticals and Natural Products
Advanced Techniques in Organic and Biological Chemistry
Analytical and Structural Techniques in Chemical Biology
Bio-imaging Applications of Coordination Chemistry
Molecular Modelling

Teaching

The methods of teaching we employ will vary from module to module, as appropriate depending on the subject matter and the method of assessment. We teach using a mixture of lectures, workshops, case studies, computer-aided sessions, practicals and tutorials.

Your research project will be carried out in one of our laboratories under supervision of an academic member of staff with interests in a similar field. You may have the opportunity to complete your project during a placement in industry or with one of our academic partner institutions overseas, depending on availability.

Modules relating to computing frequently take place in our computer rooms, while practical work will be undertaken in our laboratories. We will also invite industry experts for seminars with our students within one of the core modules. Students will also benefit of the weekly seminars organized by the School of Chemistry, where leading experts in various scientific fields are invited to present their work.

Support

All of our students are allocated a personal tutor when they enrol on the course. A personal tutor is there to support you during your studies, and can advise you on academic and personal matters that may be affecting you. You should have regular meetings with your personal tutor to ensure that you are fully supported.

You will have access to the Science Library, which holds our collection of chemistry resources, as well as to the other Cardiff University Libraries.

Feedback:

We will provide regular feedback on your workload, written and oral depending on the coursework or assessment you have undertaken. You will usually receive your feedback from the module leader. If you have questions regarding your feedback, module leaders are happy to give advice and guidance on your progress. We aim to provide you with feedback within two weeks of you submitting an assessment.

Assessment

Taught modules are assessed in a variety of different ways depending on the module content and learning outcomes (found in the module descriptions). We use coursework, assessed workshops and presentations or a combination of these to assess your progress on the course.

Your research project at the end of the course will be assessed through a dissertation, a presentation, and an oral exam.

Career prospects

After completing this course there are usually two career streams open to graduates, research or industry. Within these two fields there are a variety of career options. For example, many of our graduates choose to follow up their MSc and decide to complete a PhD research degree with us. Employment opportunities for successful graduates include the expanding worldwide pharmaceutical industry, where many choose to specialise in the research and development of new drugs. Research-related jobs usually require a PhD, for which this programme provides an ideal preparation.

Placements

For the end of course research project we may have some placements available with one of our industrial partners or at another UK or overseas academic institution that we have an agreement with. Please enquire for further details.

Read less

Show 10 15 30 per page



Cookie Policy    X