• Anglia Ruskin University Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Cambridge Featured Masters Courses
  • Durham University Featured Masters Courses
  • Ross University School of Veterinary Medicine Featured Masters Courses
King’s College London Featured Masters Courses
University of Reading Featured Masters Courses
Leeds Beckett University Featured Masters Courses
National Film & Television School Featured Masters Courses
Bath Spa University Featured Masters Courses
"reproductive" AND "techn…×
0 miles

Masters Degrees (Reproductive Technology)

We have 25 Masters Degrees (Reproductive Technology)

  • "reproductive" AND "technology" ×
  • clear all
Showing 1 to 15 of 25
Order by 
This MSc aims to provide medical and science-based students with a comprehensive knowledge and understanding of the field of reproductive science and women's health. Read more
This MSc aims to provide medical and science-based students with a comprehensive knowledge and understanding of the field of reproductive science and women's health. There is a strong focus on development of key skills and careers advice in the programme.

Degree information

Students will develop knowledge and understanding of the theoretical (including clinical) and laboratory aspects of reproductive science and women's health, specifically in the areas of basic genetics, gametogenesis and IVF, female reproductive anatomy, physiology and pathology, pregnancy and childbirth, breast and reproductive cancers, prenatal diagnosis and screening, reproductive health, and preimplantation genetic diagnosis and developing technology. They gain transferable skills including information technology, analysis of scientific papers, essay writing, seminar presentation, research techniques, peer review and laboratory skills.

Students undertake modules to the value of 180 credits.

The programme consists of eight core modules (120 credits) and a research project (60 credits).

A Postgraduate Diploma comprising eight core modules (120 credits, full-time nine months or flexible study two to five years) is offered. There are no optional modules for this programme.

Mandatory modules
-Basic Genetics and Technology
-Gametogenesis, Preimplantation Development and IVF
-Female Reproductive Physiology and Anatomy, Physiology and Pathology
-Pregnancy and Childbirth
-Breast and Reproductive Cancers
-Prenatal Diagnosis and Screening
-Reproductive Health
-Preimplantation Genetic Diagnosis and Developing Technology

Dissertation/research project
All MSc Students undertake a clinical, laboratory, audit or library-based research project, which culminates in a dissertation of 10,000 words.

Teaching and learning
The programme is delivered through a combination of lectures, seminars, tutorials, practical demonstrations in laboratories, observation days in fetal medicine, reproductive medicine and IVF units, and student presentations. There are a number of peer-led learning activities. Assessment is through essays, patient case reports, critical reviews of papers, online problem booklet, examinations and the dissertation.

Careers

On completion of the programme, all students will have gained knowledge of both the clinical and laboratory aspects of reproductive science and women's health. This will enable the science-orientated students to go on to pursue research degrees, careers in embryology, or other careers in the field or in general science. Medically-orientated students will be able to develop their careers in the field of reproductive science and women's health.

Top career destinations for this degree:
-Research Fellow, NHS Harris Birthright Research Center for Fetal Medicine
-Trainee Embryologist, Assisted Reproduction and Gynaecological Centre
-University Teaching Assistant, King Saud University
-Medical Laboratory Assistant, Imperial College Healthcare NHS Trust
-Senior House Officer (Obstetrics and Gynaecology), NHS Health Education South London / St Thomas' Hospital (NHS

Employability
Throughout the MSc programme students learn key skills through peer-led activities, such as evaluating and presenting orally on patient cases and media coverage of scientific papers. Basic laboratory techniques are taught as are essay writing, critical evaluation of papers, debates and ethical discussions. We also offer a comprehensive careers programme involving our alumni, covering job applications, CV writing, general careers in science and specific advice on careers in embryology, clinical genetics, medicine and research degrees.

Why study this degree at UCL?

The Institute for Women's Health delivers excellence in research, clinical practice, education and training in order to make a real and sustainable difference to women's and babies' health worldwide.

The institute houses the UK's largest group of academics working in women's health and the UCL/UCL Hospitals NHS Foundation Trust collaboration at its core provides an academic environment in which students can pursue graduate studies taught by world-class researchers and clincians.

Our diversity of expertise in maternal and fetal medicine, neonatology, reproductive health and women's cancer ensures a vibrant environment in which students develop subject-specific and generic transferable skills, supporting a broad range of future employment opportunities.

Read less
Infertility is a common problem with approximately 1 in 7 couples of reproductive age being diagnosed as infertile - equating to 72.5 million people globally - and there is an increasing demand for assisted reproductive technology (ART). Read more
Infertility is a common problem with approximately 1 in 7 couples of reproductive age being diagnosed as infertile - equating to 72.5 million people globally - and there is an increasing demand for assisted reproductive technology (ART). This course will provide a robust and wide ranging education in human clinical embryology and ART.

Professor Barratt, Programme Director of the new programme MSc Human Clinical Embryology and Assisted Conception has been confirmed as one of the lecturers at the forthcoming Campus Workshop "From gametes to blastocysts – a continuous dialogue" to be held in Apex City Quay Hotel, Dundee, 7-8th November 2014. This programme is organised by the ESHRE Special Interest Group Embryology.

Why study Human Clinical Embryology and Assisted Conception at Dundee?

The MSc in Human Clinical Embryology and Assisted Conception is a new taught master’s programme which has been designed to provide a robust and wide ranging education in human clinical embryology and ART (assisted reproductive technology). Students will gain a systematic understanding of clinical embryology and ART whilst developing high level laboratory skills in various aspects of clinical embryology, andrology and ART.

The emphasis of the course is on humans and clinical ART/embryology and offers practical experience in handling and preparing HUMAN gametes.

FOLLOW US

Follow us at https://www.facebook.com/mscembryologyassistedconception/ to keep up to date with our latest news

The University of Dundee has excellent clinical links and a close working relationship with the NHS and students will benefit from a scientifically rigorous programme with teaching drawn from experienced embryologists, scientists and clinicians.

A key benefit of the programme is that it offers a unique opportunity to gain substantial exposure to an NHS IVF clinic (NHS Tayside). This will allow students to observe the practice and management of a working IVF clinic and benefit from teaching by staff involved in ART, and will be of considerable benefit for those wanting a clinical based career. The NHS Tayside IVF clinic has recently benefitted from a substantial investment in its facilities which has created a high quality clinical environment.

The blend of scientific, practical skills and the integration with an NHS facility giving students first hand experience and exposure to the workings of an NHS IVF clinic will provide students with an excellent base to enter a career in ART either in a clinical or research setting.

How you will be taught

The MSc is full time programme (September to August) and will consist of 5 taught modules and a research project. The course consists of a combination of lectures, seminars, tutorials, discussion and journal clubs as well as self-directed study. The research project will be carried out under either in the research laboratory or in the IVF clinic.

What you will study

The course is divided into 6 modules:

Module 1: Fundamental science (Semester1)
Module 2 Advanced Applied laboratory skills in ART (Semester 1 and 2)
Module 3: Statistics (Semester 1)
Module 4: Running a successful ART laboratory and clinical service (Semester 2).
Module 5: Clinical Issues and Controversies in ART (Semester 2)
Module 6: Research Project (Semester 3)

How you will be assessed

The programme is assessed using a variety of traditional and more innovative approaches. We use essays, portfolios, folders of evidence, research proposals, learning contracts, exams, OSCEs, and assessed online activities such as debates and team work.

Careers

Due to the increased demand for infertility treatment there has been a substantial growth in the demand for high quality laboratory and clinical staff in this area.

Approximately 1:7 couples are infertile and IVF is the predominant treatment for infertility contributing ~2% of the births in the UK and up to 5% in some EU countries. IVF is a rapidly growing field and as an example of this the number of cycles treated in the UK has increased by almost 30% in the last 4 years (http://www.hfea.gov.uk).

Following successful completion of the MSc students could apply for a training position in ART e.g. in embryology and/or andrology. Alternatively the MSc would be an ideal preparation for undertaking a PhD or applying for a research position. Clinically qualified graduates would gain valuable skills to enable them to specialise in reproductive medicine and assume responsibility within an ART clinic.

Skills that students will acquire include:

* In-depth understanding of basic reproductive physiology and a detailed knowledge of human ART;
* Sperm preparation and cryopreservation
* Recruitment of patients and donors for research
* Preparation of ethical approvals and appreciation for the ethical issues in ART
* Detailed work with human eggs and sperm (including assessment of gamete quality)
* Time lapse imaging of human embryos
* Business planning for running an ART laboratory and clinical service.
* QA and QC in the ART laboratory
* Troubleshooting in an ART lab
* The role of media and marketing in the development of an ART service.
* Detailed and practical knowledge of the HFEA and legislative and regulatory framework.
* Knowledge of basic IVF laboratory techniques e.g. preparation of dishes, witnessing
* Appreciation of the clinical diagnostic and pathways in ART

Read less
This vocational training programme is for recent biology, biomedical, biochemistry and medical graduates who want to develop a career in the field of clinical embryology and assisted reproductive technology (ART) and/or the associated reproductive sciences. Read more

This vocational training programme is for recent biology, biomedical, biochemistry and medical graduates who want to develop a career in the field of clinical embryology and assisted reproductive technology (ART) and/or the associated reproductive sciences. It provides a detailed knowledge of the underpinning theory and practices and is a laboratory-based science degree not a clinically-based infertility treatment course.

The programme emphasises all aspects of practical training for clinical embryology and assisted reproduction technology. You’ll receive hands-on training from specialist practitioners in andrology, gamete handling, IVF, ICSI, embryo culture, gamete and embryo freezing, vitrification and biopsy and will interact with established, clinical embryologists and reproductive medicine specialists. You’ll also be trained in research methods.

You will be part of a world-renowned School, being taught by and working with internationally recognised scholars.

More information

The programme has been developed by the Division of Reproduction and Early Development within the Leeds Institute of Genetics, Health and Therapeutics, in association with the clinicians and embryologists working at the Leeds Centre of Reproductive Medicine in the Leeds NHS Trust. The programme leaders have over 20 years of experience of training clinical embryologists, reproductive medicine practitioners and reproductive scientists.

You can also study this subject at Postgraduate Diploma level. 

Through a series of compulsory modules you’ll learn about:

  • the cell and molecular biology of human reproduction, fertility, andrology and embryology
  • the management and efficient running of an ART laboratory
  • the practices, genetic and epigenetic concepts of micromanipulation and techniques, such as intracytoplasmic sperm injection (ICSI) and pre-implantation genetic diagnosis (PGD)
  • advances in cryobiology and its application to gamete and embryo freezing and fertility preservation.

The programme also gives you valuable insights into the theory underpinning clinical treatments and the ethical and legal controversies surrounding assisted reproduction in humans.

Course structure

Compulsory modules

  • Research in Reproduction, Embryology & Assisted Reproduction Technology 60 credits
  • Fundamentals of Clinical Embryology 45 credits
  • IVF and Embryo Culture 35 credits
  • Micromanipulation 15 credits
  • Cryobiology and Cryopreservation 15 credits
  • Ethics and Law for Embryologists 10 credits

For more information on typical modules, read Clinical Embryology and Assisted Reproduction Technology MSc in the course catalogue

Learning and teaching

The programme is delivered using a blended learning approach, which combines lectures, seminars, tutorials, interactive group discussions, presentations and problem-based-learning sessions or case studies, with self-directed learning.

Theoretical training is complemented by the original research conducted by the student and by an extensive series of laboratory-based ART practical and skills training sessions.

The course content is enhanced by extensive online resources and the provision of printed versions of all module workbooks, as appropriate.

Assessment

Course assessments will include essays, presentations, projects, practical log books, a research dissertation and examinations.

Career opportunities

The Clinical Embryology and Associated Reproductive Technology MSc equips graduates to pursue a career in human assisted reproduction (eg clinical embryology, infertility treatment) and/or research in the reproductive sciences.

Careers support

We encourage you to prepare for your career from day one. That’s one of the reasons Leeds graduates are so sought after by employers.

The Careers Centre and staff in your faculty provide a range of help and advice to help you plan your career and make well-informed decisions along the way, even after you graduate. Find out more at the Careers website.




Read less
This vocational training programme is for recent biology, biomedical, biochemistry and medical graduates who want to develop a career in the field of clinical embryology and assisted reproductive technology (ART) and/or the associated reproductive sciences. Read more

This vocational training programme is for recent biology, biomedical, biochemistry and medical graduates who want to develop a career in the field of clinical embryology and assisted reproductive technology (ART) and/or the associated reproductive sciences. It provides a detailed knowledge of the underpinning theory and practices and is a laboratory-based science degree not a clinically-based infertility treatment course.

The programme emphasises all aspects of practical training for clinical embryology and assisted reproduction technology. You’ll receive hands-on training from specialist practitioners in andrology, gamete handling, IVF, ICSI, embryo culture, gamete and embryo freezing, vitrification and biopsy and will interact with established, clinical embryologists and reproductive medicine specialists.

You will be part of a world-renowned School, being taught by and working with Internationally recognised scholars.

More information

The programme has been developed by the Division of Reproduction and Early Development within the Leeds Institute of Genetics, Health and Therapeutics, in association with the clinicians and embryologists working at the Leeds Centre of Reproductive Medicine in the Leeds NHS Trust. The programme leaders have over 20 years of experience of training clinical embryologists, reproductive medicine practitioners and reproductive scientists.

You can also study this subject at Master of Science level.

Course content

Through a series of compulsory modules you’ll learn about:

  • the cell and molecular biology of human reproduction, fertility, andrology and embryology
  • the management and efficient running of an ART laboratory
  • the practices, genetic and epigenetic concepts of micromanipulation and techniques, such as intracytoplasmic sperm injection (ICSI) and pre-implantation genetic diagnosis (PGD)
  • advances in cryobiology and its application to gamete and embryo freezing and fertility preservation.

The programme also gives you valuable insights into the theory underpinning clinical treatments and the ethical and legal controversies surrounding assisted reproduction in humans.

Course structure

Compulsory modules

  • Fundamentals of Clinical Embryology 45 credits
  • IVF and Embryo Culture 35 credits
  • Micromanipulation 15 credits
  • Cryobiology and Cryopreservation 15 credits
  • Ethics and Law for Embryologists 10 credits

For more information on typical modules, read Clinical Embryology and Assisted Reproduction Technology PGDip in the course catalogue

Learning and teaching

The programme is delivered using a blended learning approach, which combines lectures, seminars, tutorials, interactive group discussions, presentations and problem-based-learning sessions or case studies, with self-directed learning.

Theoretical training is complemented by a small number of laboratory-based practical sessions.

The course content is enhanced by extensive online resources and the provision of printed versions of all module workbooks.

Assessment

Course assessments will include essays, presentations, projects, practical log books, a research dissertation and examinations.

Career opportunities

The Clinical Embryology and Associated Reproductive Technology PGDip will educate graduates who want to pursue a career in human assisted reproduction (eg clinical embryology, infertility treatment) and/or research in the reproductive sciences.

Careers support

We encourage you to prepare for your career from day one. That’s one of the reasons Leeds graduates are so sought after by employers.

The Careers Centre and staff in your faculty provide a range of help and advice to help you plan your career and make well-informed decisions along the way, even after you graduate. Find out more at the Careers website.



Read less
The Graduate School of Heath Sciences of Koç University offers a 2-year MSc program in reproductive biology and a 4-year PhD program in reproductive medicine… Read more
The Graduate School of Heath Sciences of Koç University offers a 2-year MSc program in reproductive biology and a 4-year PhD program in reproductive medicine, both of which aim to provide modern up-to-date biological research in the field of reproductive sciences at molecular and cellular levels in an inspiring, challenging and vibrant research atmosphere, at the interface between basic science and clinical patient care.

A thorough understanding of reproductive functioning in both sexes at molecular level using a wide range of experimental models, and studying at translational level a number of important problems associated with human reproductive health and disease in testis, ovary, the uterus during the menstrual cycle and throughout pregnancy and labour, in the fetus and neonate, and in fetal programming resulting in increased risk of chronic disease in adulthood are the major goals of the programmes.

As a result of rapid advances in life science technology and medicine at molecular level, reproductive sciences have evolved into four different disciplines as Reproductive biology, Reproductive endocrinology (Embryology and assisted reproduction technologies), Reproductive immunology and Reproductive genetics. Both MSc and PhD students will undertake some core teaching and conduct research projects, performed on this very wide range of research fields within the reproductive sciences.

Read less
Combining theory and practice with placements, this programme offers registered nurses and midwives the opportunity to study sexual and reproductive health theory and apply new knowledge and skills to clinical practice. Read more
Combining theory and practice with placements, this programme offers registered nurses and midwives the opportunity to study sexual and reproductive health theory and apply new knowledge and skills to clinical practice.

About the programme

Sexual health is a national priority in Scotland. Many traditional family planning and genito-urinary services have integrated in order to provide a holistic, one-stop-shop approach to care.

Clinical practice is integrated with the theoretical component of the programme and may be started after the first six days of theory. Health boards allocate clinical placements to students and clinic times vary depending on the health boards.

The focus is on working in partnership with clients to promote excellence in sexual and reproductive healthcare.

Your learning

Three modules are taken together in one trimester:

Reproductive Health – explores contemporary issues in contraception and reproductive health

Genito-urinary Medicine – offers you an opportunity to explore contemporary issues in genitourinary medicine (GUM)

Sexual and Reproductive Health Practice – gives you the opportunity to apply theory learned from Reproductive Health and Genitourinary Medicine modules to clinical practice within sexual and reproductive health clinics in health boards throughout the west of Scotland.

Practical experience

Students will undertake fifty hours clinical practice which must be completed by December. Clinical placements will be allocated to the
student by the health board.

Our Careers Adviser says

New knowledge and skills can be applied to sexual and reproductive healthcare practice in a variety of settings such as primary care,
schools, gynaecology, midwifery, youth clinics, and specialist sexual health services. Successful completion of the programme may enhance employment opportunities in these areas of healthcare.

State-of-the-art facilities

Our campuses are equipped with artificial simulated environments with contemporary healthcare technology, where you’ll learn in a realistic context, to put your knowledge into practice. The unpredictability of patient symptoms are mimicked using sophisticated software in a clinical ward setting, ranging from low to high dependency beds.

Investment in the Domus Initiative – an older adult artificial home environment – provides you with experience in caring for older people and dementia care. In a first for the Scottish university sector, we have established A Community Orientated Resource for Nursing (ACORN) where students can practice within a simulated primary care environment.

Lanarkshire and Paisley campuses also provide midwifery students with excellent learning and teaching environments with facilities and equipment that includes a birthing room with maternal simulator and a birthing pool for simulated water births.

Life-changing research

We work jointly with a range of partners, both nationally and internationally, on our research interests, and this directly informs teaching at UWS – which means that you’ll learn from the experts.

Our programmes are informed by practice and all of our academic staff are members of the School’s Institute of Healthcare Policy and
Practice. Some of our most recent initiatives include –

• the launch of a new resource, ‘Jenny’s Diary’, which will provide an invaluable tool for families and practitioners to help people with a learning disability understand their diagnosis of dementia

• the development of a new ‘Philosophy of Care’ in partnership with Broomfield Court Care Home in Glasgow, which will look at ways of enhancing the culture and care within a care setting

• we have collaborated with Ayrshire Hospice to launch the first University Hospice in Scotland to help improve the lives of people with life-limiting illness, their families, partners and carers across Ayrshire & Arran; and Ardgowan Hospice in Greenock, with it becoming a University Teaching Hospice and launching a two-year research project with the University aimed at revolutionising the way palliative
care is delivered to improve the patient journey

• the launch of Dumfries & Galloway Recovery College – the first of its kind in Scotland – which offers short courses designed to enhance self-belief, identify ambitions and encourage learning

• in partnership with Edinburgh Napier University and the University of Edinburgh, the mental health team lead research into the relationship between emotional intelligence and clinical and academic performance in student nurses

• we are working with the Glasgow Improving Cancer Journey Programme to evaluate this groundbreaking intervention in cancer care in Scotland

• we have launched a new state-of-the-art microbiology lab which will form a research base in the fight against Healthcare Associated Infection

• a collaboration with a number of European partners to develop shared academic and practicebased programmes to prepare family health nurses in Europe

Read less
The UCL Institute for Women’s Health is an internationally recognised centre of excellence and leading provider of postgraduate taught programmes in women’s health. Read more
The UCL Institute for Women’s Health is an internationally recognised centre of excellence and leading provider of postgraduate taught programmes in women’s health. This new MRes gives students the opportunity to take a programme with greater emphasis on research skills and experience, and on development of transferable academic and professional skills.

Degree information

Students choose taught modules and select research areas from a variety of subjects across reproductive science and women's health, spanning the four themes of the institute: maternal and fetal health; neonatology; women’s cancer; and reproductive health. Students learn how to conduct an independent research project. They will also gain practical experience and theoretical understanding in research methodologies and critical analysis.

Students undertake modules to the value of 180 credits.

The programme consists of four optional modules (60 credits) and a research project (120 credits).

Core modules
All students undertake an independent research project in women's health.

Students may choose to focus on a laboratory or non-laboratory project (such as a social or ethical-based project), or an epidemiology project (analysing cohort or registry data).

Optional modules
Students choose four optional modules; a minimum of three from the reproductive science and women's health modules listed below. One option can also be chosen from the transferable skills modules marked * below.

-Basic Genetics and Technology
-Breast and Reproductive Cancer
-Female Reproductive Anatomy, Physiology and Pathology
-Gametogenesis, Preimplantation Development and IVF
-Pregnancy and Childbirth
-Preimplantation Genetic Diagnosis and New Technology
-Prenatal Diagnosis and Screening
-Reproductive Health
-Leadership and Professional Development*
-Research Methodology and Statistics*
-Understanding Research and Critical Appraisal*

Dissertation/research project
The independent research project in women's health culminates in a dissertation of 20,000 words. Students will be involved in the conceptualisation, design, data collection, analysis, interpretation and presentation of the project. This will allow the development of research skills in a specific field as well as a range of transferable skills, including literature searching, statistical analysis and written and verbal communication.

Teaching and learning
In addition to taught modules and the long research project, there is a full induction week at the start of the programme and six careers afternoons. A comprehensive range of assessment methods cover the key research, communication and practical skills required for future employment.

Careers

The first cohort of students on this proramme will graduate in 2018. We expect the programme will prepare science-orientated students to go on to further research. Medically-orientated students may wish to develop their careers in the field of reproductive science and women’s health or undertake further research.

Employability
The programme provides students with an excellent introduction to research both in the UK and overseas. It will equip them with the general and scientific skills required to embark on lifelong careers in research and related fields.

Why study this degree at UCL?

The UCL Institute for Women's Health delivers excellence in research, clinical practice, education and training in order to make a real and sustainable difference to women's and babies' health worldwide.

The institute houses the UK's largest group of academics working in women's health. The UCL/UCL Hospitals NHS Foundation Trust collaboration provides an academic environment in which students can pursue graduate studies with world-class researchers and clincians. We offer excellent basic science facilities, opportunities to work in cutting-edge clinical and translational research, and expertise in study methodology.

A comprehensive careers programme is embedded in all our degrees. This ensures students are exposed to a range of different job opportunities. We have alumni who give talks on their disparate career journeys.

Read less
This a one year (academic) full time course which, upon completion of a course of study leads to an M.Med.Sci Degree in Assisted Reproduction Technology. Read more

Overview

This a one year (academic) full time course which, upon completion of a course of study leads to an M.Med.Sci Degree in Assisted Reproduction Technology. This course provides an avenue for both scientists and clinicians to enter the field of reproductive biology; and for those already familiar with this area, an opportunity to gain greater appreciation of the biological processes of mammalian reproduction that are relevant to the manipulation of fertility and the treatment of reproductive disease.

The course was established in 1993, making it the longest running taught masters in the UK providing full-time training in human ART, and aims to furnish graduates with the theoretical and practical training within this highly specialised discipline. Designed to broaden knowledge of the underlying scientific principles and to enhance appreciation of the clinical management of infertility, it aims to encourage independent thought and a research oriented approach to the practice of assisted conception.

A major feature and strength of this course is that the primary components, in terms of reproductive physiology, research methods, clinical embryology, and clinical medicine are all provided by experts who are highly active within their own areas of expertise, giving the information provided to the students an immediacy and relevance that it would be impossible to achieve using a more static and established teaching base.

The course is studied over a period of one year, full time, and has three basic components:
1) Theoretical and Practical Training modules (95 Credits)
2) Development of Research and Presentation skills and Observation (25 Credits)
3) Research project & dissertation (60 Credits)

Delivery method

The taught component of the course is delivered in the Autumn and Spring semesters through a combination of lectures, practicals, seminars, tutorials and other associated activities, such as journal club and guest speakers.

Approximately one third of the total course duration is dedicated to the construction, preparation and investigation of a laboratory-based research project of up to 15,000 words. This is written up in thesis presentation form.

IMPORTANT NOTE

ALL applicants, especially those from a predominantly clinical background, please note:

• This is a laboratory-based, science degree course and not a clinically based infertility treatment course.
• There is no direct contact with patients or tuition in gynaecological/surgical procedures.
• That although training is given in all laboratory aspects of assisted conception (including semen evaluation, IVF, IVM, ICSI and cryopreservation) in the time available, this training can only represent an introduction to these techniques and those graduates wishing to become clinical embryologists will need further training to become competent in those highly specialised techniques.

Course aims

• To encourage independent thought and a research oriented approach to the practice of assisted conception
• To provide theoretical and practical training in Assisted Reproduction Technology
• To broaden the students knowledge of the underlying scientific basis of ART and clinical management of infertility
• To equip graduates with the ability to pursue a career in assisted conception (e.g. clinical embryology, infertility treatment) and/or research in reproductive biology

Course objectives

• To provide successful candidates with a career path within one of the many disciplines that encompass modern assisted reproduction technology and to this end, students are taught by and given the opportunity to interact with, both full-time reproductive biologists and the consultants, clinical embryologists, andrologists and counsellors.

Requirements

Candidates must normally be graduates of an approved university, or other institution of higher education in medicine, nursing or the biological sciences. Normally the minimum requirement for entry is a 2(ii) degree or equivalent, although candidates with a third class degree may be considered at the Course Directors discretion in special circumstances. If you are not sure if you qualify, please do not hesitate to contact the Course Administrator

Candidates will be required to follow a prescribed course of study for one academic year (two 15-week semesters and summer period)

All candidates will be required to undertake a theoretical and practical training programme. Candidates will also be required to submit a dissertation of not more that 15,000 words on a topic relating to an aspect of Assisted Reproduction agreed by the Director of the Course.

English Language Requirements

International students whose first language is not English must achieve an appropriate level in an approved test in English before they can register.

The requirements for this course are above the University minimum standards and are as follows:

• IELTS minimum score of 6.5 (with no less than 6.0 in any element)
or
• TOEFL iBT 87 (minimum 19 in listening, 20 in speaking and 21 in reading and writing)

Examinations should be taken within two years of registering to study at Nottingham. Completion of a previous degree studied in the English language does not exempt applicants from requiring one of the above English qualifications, unless the degree was taken in a country where the first language is English.

Read less
This one year, residential, taught M.Sc. Read more

This one year, residential, taught M.Sc. provides graduate students, scientists and clinicians with highly advanced theoretical and practical understanding of human reproductive biology, embryology, infertility and assisted reproductive technology (ART) along with intensive ‘hands-on’ practical training in essential laboratory skills and the sophisticated gamete micromanipulation techniques associated with ART. The MSc course is based alongside Oxford Fertility in purpose-built premises, the Institute of Reproductive Sciences, with dedicated state-of-the-art teaching and research facilities.

Course Aims

Our broad intention is to inspire, motivate and train a network of future leaders in clinical embryology throughout the world. Additionally, our students benefit from intensive training in a range of laboratory skills highly suitable for a research career in reproductive science.

Course Structure

The course runs over a period of one year, from October to September, incorporating the three University terms: Michaelmas, Hilary and Trinity. Fundamental reproductive science and laboratory methods/practical skills are taught in the first term (Michaelmas) over five discrete modules. Applied and clinical aspects are delivered in the second term (Hilary) over a further set of five modules. Each module is delivered over a period of one to three weeks and together, the ten modules comprise the ‘core content’ of the course. The third term (Trinity) is extended to allow sufficient time for a high quality research project.

Application Deadline

The deadline for applications for the MSc in Clinical Embryology starting in October 2018 is 12 noon (midday) GMT on Monday 8th January 2018. Please see our Graduate Admissions page for further details: http://www.ox.ac.uk/admissions/graduate/courses/msc-clinical-embryology



Read less
Lead academic 2016. Dr Mark Fenwick. The course provides training in reproductive and developmental medicine for scientists, clinicians and others, for instance ethical advisers or lawyers looking to specialise. Read more

About the course

Lead academic 2016: Dr Mark Fenwick

The course provides training in reproductive and developmental medicine for scientists, clinicians and others, for instance ethical advisers or lawyers looking to specialise. It’s a good platform for a research career or a career in clinical laboratory training for IVF or embryology.

Through the taught modules you’ll develop a solid understanding of reproductive science relevant to clinical applications. We cover the breadth of processes from gonadal development and production of gametes through to pregnancy and parturition. Each module is taught by leading scientists and clinicians in that field.

You’ll also have the opportunity to learn about the ethical issues and international laws regulating reproductive medicine. Finally, you’ll undertake a research project to develop a depth of knowledge in a specialist topic.

Our study environment

You’ll be based in teaching hospitals that serve a population of over half a million people and refer a further two million. We also have close links with the University’s other health-related departments.

Our research funding comes from many sources including the NIHR, MRC, BBSRC, EPSRC, the Department of Health, EU, and prominent charities such as the Wellcome Trust, ARC, YCR, Cancer Research UK and BHF. Our partners and sponsors include Novartis, GlaxoSmithKline, Pfizer, Astra Zeneca and Eli Lilly.

You’ll also benefit from our collaboration with the Department of Biomedical Sciences.

How we teach

Classes are kept small (15–20 students) to make sure you get the best possible experience in laboratories and in clinical settings.

Our resources

We have a state-of-the-art biorepository and a £30m stem cell laboratory. The Sheffield Institute of Translational Neuroscience (SITraN) opened in November 2010. We also have microarray, genetics, histology, flow cytometry and high-throughput screening technology, and the latest equipment for bone and oncology research.

At our Clinical Research Facility, you’ll be able to conduct studies with adult patients and volunteers. The Sheffield Children’s Hospital houses a complementary facility for paediatric experimental medical research.

Hepatitis B policy

If your course involves a significant risk of exposure to human blood or other body fluids and tissue, you’ll need to complete a course of Hepatitis B immunisation before starting. We conform to national guidelines that are in place to protect patients, health care workers and students.

Core modules

Research Skills in Reproductive Medicine; Gonads to Gametes: fundamentals of reproduction; Fertilisation, Implantation and Embryology; Fetal Development, Pregnancy and Parturition; Reproductive Technology and Infertility; Law, Ethics and Policy in Reproductive Medicine.

Read less
This specialist pathway has been designed for those interested in reproductive endocrinology, fertility, assisted reproductive technology, prenatal development, birth defects, embryogenesis, molecular biology and genetics. Read more
This specialist pathway has been designed for those interested in reproductive endocrinology, fertility, assisted reproductive technology, prenatal development, birth defects, embryogenesis, molecular biology and genetics.

Highlights

-Shared campus with one of the largest teaching hospitals in the UK.
-Expertise in clinical, epidemiological and laboratory research within the University and St George’s Hospital

Reproduction and Development Module

The 30 credit Reproduction and Development module will begin with the exploration of the science of reproduction covering a range of aspects of women’s health including normal sexual differentiation, endocrine disorders, hormonal control of fertility, pregnancy and contraception amongst others.

The module will also explore development and disease covering embryonic development with an emphasis on molecular mechanisms and human congenital disorders. It will also include an introduction to experimental techniques, terminology, model organisms and the use of transgenic mouse technology.

This pathway will take advantage of active reproduction and development research taking place at St George’s, laboratory skills sessions and clinical case-based lectures giving you an understanding of the cellular processes involved in reproduction and development can help design strategies to aid fertility and treat/manage defects in development. The module will also provide you with insight into how new sequencing technologies and ‘omics’ methodologies are helping to decipher the cellular mechanisms involved in reproduction and development.

Careers

The course is highly effective for accelerating your development within your general healthcare career. As a direct result of the depth and quality of the academic research that you’ll undertake on your nin8e month project, you will also be in primary position when it comes to successfully applying for PhDs.

Application

Apply at https://sgul.ac.uk/study/postgraduate/taught-degrees-postgraduate/biomedical-science-mres-reproduction-and-development/apply

Read less
This module is for those with an interest in fertility who wish to improve their understanding of the principles and practices of assisted reproduction technology. Read more
This module is for those with an interest in fertility who wish to improve their understanding of the principles and practices of assisted reproduction technology. Students will gain an understanding of the complex issues surrounding modern infertility treatments and current management strategies for infertile couples.

Suitable for specialist nurse practitioners, hospital doctors, clinicians, GPs and related scientist/health professionals, teaching will be through a combination of lectures, seminars, case studies and small group work. The module is conducted at the Centre for Reproductive Medicine, University Hospital of Coventry & Warwickshire, Coventry

Topics covered include

-Definition & diagnosis of infertility.
-Hormonal control of the menstrual cycle.
-Andrology.
-Embryology & blastocyst culture.
-Initiating pregnancy.
-Micromanipulation.
-Fertility preservation.
-PCOS & OHSS.
-Male factor infertility.
-Patient support including management of recurrent miscarriage.
-Donated sperm & eggs.
-Follow up of pregnancies & children born.
-Regulation & the law.
-Ethics.
-Treatment pathways.
-Preimplantation genetic diagnosis (PGD).
-Gamete & tissue cryopreservation.
-Role of the infertility nurse.

Read less
This MSc aims to provide medical and science students with a comprehensive knowledge and understanding of the field of prenatal genetics and fetal medicine, specifically human genetics, human embryonic development and fetal medicine. Read more
This MSc aims to provide medical and science students with a comprehensive knowledge and understanding of the field of prenatal genetics and fetal medicine, specifically human genetics, human embryonic development and fetal medicine. There is a strong focus on the development of key skills and careers advice in the programme.

Degree information

Students will develop a knowledge and understanding of the field of prenatal genetics and fetal medicine, specifically in the areas of basic genetics and technology, genetic mechanisms, medical genetics, organogenesis and fetal development, gametogenesis and IVF, prenatal diagnosis and screening, fetal and perinatal medicine, and preimplantation genetic diagnosis and developing technology. They gain transferable skills including information technology, analysis of scientific papers, essay writing, seminar presentation, research techniques, peer review and laboratory skills.

Students undertake modules to the value of 180 credits.

The programme consists of eight core modules (120 credits) and a research project (60 credits). A Postgraduate Diploma consisting of eight core modules (120 credits, full time nine months, flexible study two to five years) is offered. There are no optional modules for this programme.

Mandatory modules
-Basic Genetics and Technology
-Gametogenesis, Preimplantation Development and IVF
-Genetic Mechanisms
-Medical Genetics
-Organogenesis and Fetal Development
-Prenatal Diagnosis and Screening
-Fetal and Perinatal Medicine
-Preimplantation Genetic Diagnosis and Developing Technology

Dissertation/report
All MSc students undertake a clinical, laboratory, audit or library-based research project, which culminates in a dissertation of 10,000 words.

Teaching and learning
The programme is delivered through a combination of lectures, seminars, tutorials, practical demonstrations in laboratories, observation days in fetal medicine and IVF units, and student presentations. There are a number of peer-led learning activities. Assessment is through essays, patient case reports, critical reviews of papers, online problem booklet, examinations and the dissertation.

Careers

On completion of the programme, all students will have gained knowledge of both the clinical and laboratory aspects of prenatal genetics and fetal medicine. This will enable the science-orientated students to go on to pursue research degrees, careers in embryology or prenatal diagnosis, or other careers in the field or in general science. Medically-orientated students will be able to develop their careers in the field of fetal medicine.

Top career destinations for this degree:
-Ob/Gyn Surgeon, Ente Ospedaliero Cantonale
-Trainee Embryologist, Homerton University Hospital (NHS)
-PhD Medical Genetics, The Cyprus Institute of Neurology and Genetics (CI
-Clinical Research Nurse, University College London (UCL)
-Trainee Embryologist, Life Hospital

Employability
Throughout the MSc programme students learn key skills through peer-led activities, such as evaluating and presenting orally on patient cases and media coverage of scientific papers. Basic laboratory techniques are taught as are essay writing, the critical evaluation of papers, debates and ethical discussions. We also offer a comprehensive careers programme involving our alumni, covering job applications, CV writing, general careers in science and specific advice on careers in embryology, clinical genetics, medicine and research degrees.

Why study this degree at UCL?

The UCL Institute for Women’s Health delivers excellence in research, clinical practice, education and training in order to make a real and sustainable difference to women's and babies' health worldwide.

The institute houses the UK's largest group of academics working in women's health and the UCL/UCL Hospitals NHS Foundation Trust collaboration at its core provides an academic environment in which students can pursue graduate studies taught by world-class reseachers and clinicians.

Our diversity of expertise in maternal and fetal medicine, neonatology, reproductive health and women's cancer ensures a vibrant environment in which students develop subject-specific and generic transferable skills, supporting a broad range of future employment opportunities.

Read less
Livestock are vital to the lives of millions of people, but endemic and epidemic diseases that affect livestock limit productivity and exacerbate poverty. Read more

Livestock are vital to the lives of millions of people, but endemic and epidemic diseases that affect livestock limit productivity and exacerbate poverty.

The diseases that can be transmitted between animals and people also threaten the health of livestock keepers, their families and their communities. In many developing regions farmers and animal health workers are often ill equipped to deal with this risk.

This programme draws together expertise from across the University to deliver first-class teaching and research to tackle these issues.

Building on a solid foundation of biological, immunological, pathological and epidemiological principles, this online MSc will equip you with the skills needed to identify, control and manage animal diseases and the expertise to tackle the international animal health challenges of the 21st Century.

This programme is affiliated with the University's Global Health Academy.

Online learning

Our online learning technology is fully interactive, award-winning and enables you to communicate with our highly qualified teaching staff from the comfort of your own home or workplace.

Our online students not only have access to Edinburgh’s excellent resources, but also become part of a supportive online community, bringing together students and tutors from around the world.

Programme structure

Students may study to certificate, diploma or masters level.

Year 1: certificate

  • Applied Epidemiology and Surveillance
  • Host Responses to Infection
  • Pathogen Strategies for Transmission and Survival

Year 2: diploma

You will undertake the following compulsory course:

  • Zoonotic disease

Choose one one of the following two courses:

  • Surveillance and control of transboundary diseases affecting international trade
  • An introduction to transboundary diseases and their impact on trade and wildlife populations

Then choose from the following electives (up to 60 credits):

  • Control of economically important parasites
  • Environmental and nutritional diseases of livestock of international importance
  • New developments in epidemiology and the control of vector borne disease
  • Veterinary vaccinology
  • Wildlife animal health and environment
  • Technology advances in veterinary diagnostics
  • Animal disease survey design and analysis
  • Project planning and decision support for animal disease control
  • Animal healthcare systems in the post-privatisation era
  • Introduction to health and production of aquatic species
  • Introduction to GIS and spatial data analysis
  • Advanced GIS and spatial epidemiology and modelling
  • An Introduction of Project Cycle Management
  • Globalisation and health
  • The Modern Zoo
  • The Use of Artificial Reproductive Technologies in Threatened Species
  • Pastoralism and herd health
  • Zoonotic diseases in a global setting
  • Socioeconomic Principles for One Health

Year 3: masters

For a masters, you will choose either to conduct a written reflective element of 10–15,000 words or to take Project Cycle Management and Funding Application Preparation.

Postgraduate Professional Development (PPD)

Postgraduate Professional Development (PPD) is aimed at working professionals who want to advance their knowledge through a postgraduate-level course(s), without the time or financial commitment of a full Masters, Postgraduate Diploma or Postgraduate Certificate.

You may take a maximum of 50 credits worth of courses over two years through our PPD scheme. These lead to a University of Edinburgh postgraduate award of academic credit. Alternatively, after one year of taking courses you can choose to transfer your credits and continue on to studying towards a higher award on a Masters, Postgraduate Diploma or Postgraduate Certificate programme. Although PPD courses have various start dates throughout a year you may only start a Masters, Postgraduate Diploma or Postgraduate Certificate programme in the month of September. Any time spent studying PPD will be deducted from the amount of time you will have left to complete a Masters, Postgraduate Diploma or Postgraduate Certificate programme.

Please contact the programme team for more information about available courses and course start dates.

Career opportunities

This programme has been designed to enhance your career in animal management throughout the world with first-rate expertise and a highly regarded qualification.



Read less
The world’s aquatic ecosystems and environment are increasingly under threat. Pollution, overfishing, global climate change and many other impacts have highlighted the importance for us to understand their function at all levels, from the molecular to the global. Read more

Why take this course?

The world’s aquatic ecosystems and environment are increasingly under threat. Pollution, overfishing, global climate change and many other impacts have highlighted the importance for us to understand their function at all levels, from the molecular to the global.

This is what our course sets out to do and thanks to our close proximity to many types of temperate marine habitats and internationally protected conservation areas, we offer the perfect location for investigation.

What will I experience?

On this course you can:

Research at our internationally-renowned Institute of Marine Sciences or carry out microbiological work at the University’s Field Centre for Environmental Technology at Petersfield Sewage Works
Rear coldwater species for restocking programmes or trial fish food at Sparsholt College’s National Aquatics Training Centre
Study abroad through Erasmus or various other conservation and research schemes

What opportunities might it lead to?

You’ll be taught by leading international researchers and the course has been designed with strong input from outside agencies including environmental consultancies, a range of government bodies and industry. This ensures your training links directly to UK and international employment opportunities.

Here are some routes our graduates have pursued:

Consultancy work
Government-based research
Conservation
Teaching
Further study

Module Details

You will cover a variety of topics in advanced laboratory and field skills, and choose from units that cover marine ecology, aquaculture, ecotoxicology and pollution, and scientific journalism. A large amount of your time will also be spent on the research project that will enable you to apply the skills and knowledge you have gained.

Core units are:

• Research Toolkit: This covers a range of key professional skills for research methods (communication skills, ethics and report writing), advanced field skills (boat sampling, taxonomy, and marine and freshwater sampling methods), advanced laboratory skills (genomics, monitoring and pollution monitoring methods) and remote sensing technology (such as GIS).

• Research Project: Your final project allows you to select from a range of marine and freshwater projects provided by staff within the School, government research laboratories, NGOs and private research companies. During the project you will write literature reviews and develop skills in data analysis and presentation.

Then choose any three optional units from:

• Ecotoxicology and Pollution: This provides an introduction to environmental toxicology using model and non-model organisms.

• Aquaculture: This unit focuses on the principles of aquaculture production, global production and diversity of aquaculture species. It is taught by academic staff and staff from the National Aquatics Training Centre at Sparsholt College. Areas covered include larval culture, diseases and pathology, feeding and growth, reproductive manipulation, and business and management.

• Marine Policy, Planning and Conservation: Planning and Conservation: This unit explores contemporary debates on coastal and marine management with a specific focus on marine policy, planning and conservation.

• Science and the Media: Science communication is increasingly becoming an important part of science. This unit firstly addresses the skills required by scientists to effectively communicate with the media and general public and secondly, provides an understanding of the skills needed for a career in science journalism.

• Subtidal Marine Ecology: Selected topics of current interest in marine ecology, incorporating both theory and applied aspects, culminating in a week-long practical field course in the Mediterranean Sea. The unit carries an additional cost for the field trip, and requires a minimum level of training and experience in SCUBA diving to participate.

Programme Assessment

Hands-on laboratory-based work teamed with field trips means that practical learning underpins the theory learned in lectures, seminars, tutorials and workshops. You’ll also find that some aspects of your course may be taught online using our virtual learning environment.

You will be assessed using a range of methods from exams to coursework and presentations, with great opportunities to present your final-year projects to industry and researchers from other departments and organisations.

Student Destinations

Once you have completed this course, you will be particularly well placed to enter a wide range of interesting and rewarding careers in the UK and abroad. We will ensure you have all the relevant knowledge and skills that employers require, giving you the opportunity to either pursue a scientific career, enter the teaching profession, or further study should you want to continue your research.

Read less

Show 10 15 30 per page



Cookie Policy    X