• Leeds Beckett University Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Imperial College London Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Regent’s University London Featured Masters Courses
  • University of York Featured Masters Courses
London Metropolitan University Featured Masters Courses
Southampton Solent University Featured Masters Courses
Cass Business School Featured Masters Courses
University of Southampton Featured Masters Courses
Coventry University Featured Masters Courses
"renewables"×
0 miles

Masters Degrees (Renewables)

  • "renewables" ×
  • clear all
Showing 1 to 15 of 51
Order by 
MBA Renewables is the first and only distance learning. program worldwide with the chance of obtaining. the degree „Master of Business Administration“ and. Read more
MBA Renewables is the first and only distance learning
program worldwide with the chance of obtaining
the degree „Master of Business Administration“ and
which focuses on renewable energy and
energy efficiency. The programme includes economic,
technical, legal, political and organisational knowledge
which is tailored to the specific needs of the renewable
energy branches. It imparts advanced interdisciplinary
skills necessary for working in executive positions
in the highly globalised market of renewable energy
and energy efficiency technologies. The program
has been designed to equip students for a career in
management.
The MBA Renewables is FIBAA accredited.

Read less
Discover the real-world career opportunities in the energy sector with this MSc in Energy and Environmental Technology and Economics. Read more
Discover the real-world career opportunities in the energy sector with this MSc in Energy and Environmental Technology and Economics.

Who is it for?

Wherever you are, energy has an implication. This course is for students who want to engage with different types of settings to research and establish the energy, environmental and technological implications that exist within them. Energy and Environmental Technology and Economics students will care for the environment as a sustainable system and ultimately have a desire to improve conditions for the wider population.

Students come from a range of backgrounds including engineering, finance and economics – and from within the energy industry itself.

Objectives

This Masters degree has been designed to give you a wide perspective when it comes to analysing and forecasting the future for energy, environmental technology and economics. We engage with the industry so you gain a real-world understanding of the problems that exist, and we consider our own ethical responsibilities in relation to energy use.

Imagine a Grade 1-listed building such as the Guildhall in London. As an energy consultant your task is to analyse the site to make it more efficient. But there is a caveat: you cannot make any structural changes to the walls or the windows. The MSc Energy and Environmental Technology and Economics course gives you the tools to examine and address these kinds of challenges.

The MSc Energy and Environmental Technology and Economics course is not about learning academic theories. Instead we focus on the breadth of the subject in the real world. By engaging with practising businesses and trade associations we identify a range of perspectives, and look at the influence of a myriad of other forces at play, from regulation and government funding, to behavioural psychology and emerging technologies. Here are some of the questions the course poses:
-Does this new form of technology operate as it should?
-How does the UK relate to other European countries when it comes to energy efficiency?
-How does organisational psychology affect energy use within a company?
-How do you decide which energy contract to choose?
-What is the impact of a consumer society on personal energy use?

Placements

There is no formal requirement to do an industry-based placement as part of the programme. However, some students arrange to undertake their dissertation research within a company or within their part of the world. A recent student investigated the future of coal-fired generation in Turkey, and another student is combining a work placement at The World Energy Council with their dissertation.

Academic facilities

As part of the University of London you can become a member of Senate House Library for free with your student ID card.

Teaching and learning

Teaching is organised into modules comprising four consecutive day courses taken at a rate of one a month or so. This format makes the programme accessible for students who want to study part time while working.

Full-time students are also welcome. Whether you choose to take the course as a part-time or full-time student, we will offer a great deal of support when it comes to helping you prepare for the modules and project work. You will be expected to devote a significant part of your non-taught hours to project work as well as private study.

Our course is led by an exceptional group of experts in energy, supply, demand management and policies. As an example, one of our module leaders leads the UK contribution to writing international energy management standards and informing policy through the European Sector Forum for Energy Management. This forum looks at methodologies across the continent. There is also input to global standards development through the International Standards Organisation (ISO). At City we bring on board people with well-established academic careers as well as leaders from the energy industry. The programme has strong links with industry and commerce and involves many visiting lecturers who hold senior positions in their fields.

The Energy and Environmental Technology and Economics MSc gives you the opportunity to consider the role of International Energy Management Standards. You will explore the opportunities these standards provide for global service users and providers in relation to reducing energy costs and the environmental impact of energy use.

You will discover the range of current European and International Standards, explore why they are needed and how they are developed, and examine the benefits they deliver through case studies.

The UK has had a leading role in developing these standards in terms of both their writing and implementation. For example the Energy Audit standard, which forms part of the EU Energy Efficiency Directive, Article 8, mandates audits for private sector, non-SME organisations. In the UK this has been implemented as the Energy Savings Opportunities Scheme (ESOS).

Modules

Each course module is taught over four consecutive days of teaching with one module each month. Alongside the teaching you will have coursework to complete for each module. The modules run from October to April, and in the remaining time, you will concentrate on your dissertation, which forms a significant part of the programme.

The dissertation gives you the opportunity to create your own questions and to decide on your own area of interest. It should be a detailed investigation into a subject on energy supply and/or demand, with your own analysis and conclusions outlining the way forward. You may see the focus of your dissertation as a future career path, but whatever your area of study, these final few months of the degree should embody your vision of the future.

You will take four core modules and have six elective modules from which you can choose four topics from diverse subjects relating to energy supply and demand. These include energy in industry and the built environment, renewables, energy markets from the purchaser’s perspective and water supply and management. The latter has close parallels, and directly engages, with energy. You start the course with an introduction to energy and environmental issues and energy policies and economic dimensions in the first term, but you do not need to follow the course in any particular order from this point onwards.

If you are interested in sustainability, you have the option of taking up to two elective modules from the MSc in Environmental Strategy offered by the University of Surrey.

Completing eight modules and four examinations and four modular assessments will lead to a Postgraduate Diploma. Completing four core and four elective modules and a dissertation will lead to a Masters degree. If you are interested in this course may also be interested in the MSc Renewable Energy and Power Systems Management.

Core modules
-Introduction to energy and environmental issues (15 credits)
-Energy policies and economic dimensions (15 credits)
-The energy market from the purchaser's perspective (15 credits)
-Corporate energy management (15 credits)

Elective modules
-Energy, consumer goods and the home (15 credits)
-Transport energy and emissions (15 credits)
-Energy in industry and the built environment (15 credits)
-Renewable energy and sustainability (15 credits)
-Risk management (15 credits)
-Water supply and management (15 credits)

Career prospects

The story of energy is now part of public debate and climate change drives the international agenda. In the UK, there are additional energy supply issues, through the decline of existing nuclear capacity, growing imports of fossil fuels and challenging medium-term targets for renewables and low carbon supply.

Our priority is to make you employable in a range of sectors in which effective energy supply and demand side management has become an important consideration.

You will graduate with economic and market-based skills relevant to complying with relevant legislation and technical and engineering skills related to energy generation and management.

With strong industry links and working level experience from our exceptional team of expert lecturers, as well as the diverse modules on offer, you will be equipped to become a leader and entrepreneur in your chosen area of specialisation within the realm of energy management, supply or policy making.

Our graduates have gone on to hold high-ranking positions as energy consultants, data analysts and directors of corporate sustainability working within organisations including:
-AK Home Energy
-Enelco Environmental Technology
-Energy Institute
-Equinoxe Services Ltd
-Log Tech Consultancy
-Ofgem
-Peckham Power
-RWE NPower Renewables
-SCFG

Read less
This programme takes a multi-disciplinary approach to sustainable solutions for future energy needs, with an in-depth knowledge of the new emerging alternative technologies. Read more
This programme takes a multi-disciplinary approach to sustainable solutions for future energy needs, with an in-depth knowledge of the new emerging alternative technologies. It will prepare you for immediate contribution to the renewable energy sector, entering public, environmental, industry and commercial industries.

Why Renewable Energy and Environmental Modelling at Dundee?

Climate change is possibly the most significant threat that humanity has ever faced. A new generation of scientists, engineers and policy-makers will need to be equipped with skills to enable them to make informed decisions on all aspects of this important and rapidly developing subject.

Our Masters degree in Renewable Energy and Environmental Modelling is designed to produce graduates with a broad and balanced skills base.

We provide the opportunity for you to go on field trips and external conferences as a part of your coursework, and you will have the option of undertaking either an industry-based or research-related project.

What's great about this course at Dundee?

The Dundee MSc is intended to interact with the renewables industry on many levels, enabling frequent networking opportunities during the year. The conference-style modules also allow delegates from industry to attend and enhance their skills in an informal and friendly setting. Graduates from this degree will be able to make an immediate contribution to the renewable energy sector.

Dundee University Centre for Renewable Energy (DUCRE)

DUCRE brings together a wide range of scientists with strong interests in renewable energy and evironmental issues. Staff and students in the Centre are engaged in a wide range of diverse renewable energy and environmental research. Projects range from electric vehicle technologies, to wind, solar, and hydro technologies, and from energy policy issues to Third World environmental development analysis.

Who should study this course?

The MSc in Renewable Energy and Environmental Modelling suits students and professionals from diverse backgrounds, including scientists, engineers, environmentalists, and policy-makers.

The programme has been designed to appeal to graduates with first degrees in the physical sciences, engineering, environmental science and related subjects. However, all applications will be assessed on their merits, regardless of background, and any relevant experience will also be taken into consideration.

The start date is September each year, and lasts for 12 months.

How you will be taught

This course utilizes conference-style teaching - delivered in one week intensive bursts.

The taught element will be delivered using a lively mix of lectures, seminars, peer-based problem-solving, practical sessions and site visits.

What you will study

Modules cover environmental physics, law and policy, renewable energy technologies, environmental monitoring, and the hydrogen economy.

You will study/take part in:

Foundation in renewable energy
Energy regulation law and security of supply
Hydrogen economy (incorporating fuel cells)
Physical concepts: A primer in energy, electromagnetism & electronic materials
Renewables technologies: In depth investigation of existing & emerging technologies, supply & demand issues, conservation & architectural issues
Environmental modelling: hydrology, carbon cycling, wind, wave & solar modelling
Field trips
Project

How you will be assessed

Students are assessed on written and practical work, formal presentations and a project dissertation.

Careers

Graduates from this programme will be able to make an immediate contribution to the renewable energy sector and make informed decisions that will have an impact on the development of national programmes to meet future targets.

Each graduate will have a firm grasp of the predominant and emerging technologies, and will be able to set these in context using a range of environmental monitoring techniques.

"The MSc provided a good base to research renewable technologies and understand how they fit into the energy mix and government policy. After graduation, I am now employed as Chief Technical Officer at Scottish Renewables."
David Cameron, class of 2008

Read less
The extensive consumption of fossil fuels worldwide has been contributing increasingly to global warming, air pollution and imminent energy crisis. Read more
The extensive consumption of fossil fuels worldwide has been contributing increasingly to global warming, air pollution and imminent energy crisis. One of the global challenges of the 21st century is to tackle these risks surrounding excessive CO2 emissions by replacing fossil fuels with renewable energy sources such as solar, wind and biomass. However, a report by the Intergovernmental Panel for Climate Change (IPCC) shows that the world's current use of renewable energy is only 13% of its overall energy consumption. In response to this, European Commission directives aim for a 20% reduction in fossil fuel usage throughout Europe by 2020, and a 15% increase in the use of renewable energy in the UK within the same time period. For Scotland, the Scottish Executive has a target of generating 17% to 18% of electricity from renewables by 2010, a figure rising to 80% by 2020. Renewables located in Scotland count towards both the Scottish target and to the overall target for the UK. Consequently, according to the UK Low Carbon Transition Plan (LCTP) by 2020: 34% of carbon emissions will be cut, over 1.2 million people will be employed in ‘green’ jobs; the efficiency of 7 million homes will be improved, with over 1.5 million of them generating renewable energy. With any luck, more than 50% of the world‘s energy supply could be met with renewables by 2050 .

It follows through that huge business incentives, markets and a wide variety of employment opportunities throughout the world can be expected with the development of renewable energy resources as a substitute for fossil fuel technology. The purpose of the MSc programme is to help meet this demand by cultivating qualified and skilled professionals with specialist knowledge into the relevant technology within the renewable energy sector.

Read less
This MSc teaches an international community of students about the latest advances in clean power developments and enables graduates to design and develop benign renewable energy solutions that can be implemented in countries around the world. Read more
This MSc teaches an international community of students about the latest advances in clean power developments and enables graduates to design and develop benign renewable energy solutions that can be implemented in countries around the world.

It is aimed at engineers and natural scientists pursuing or wishing to pursue a career in the renewable energy sector, particularly those in technical positions e.g. systems designers, technical consultants and R&D engineers and scientists.

Core study areas include solar power, wind power, water power, biomass, sustainability and energy systems, integration of renewables and a research project.

Optional study areas include advanced solar thermal, advanced photovoltaics, advanced wind, energy storage, energy system investment and risk management.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/eese/renewable-energy-systems-tech/

Programme modules

Compulsory Modules:
- Solar Power
- Wind Power 1
- Water Power
- Biomass
- Sustainability and Energy Systems
- Integration of Renewables
- Research Project

Optional Modules (choose three):
- Advanced Solar Thermal
- Advanced Photovoltaics
- Wind Power 2
- Energy Storage
- Energy System Investment and Risk Management

How will you learn

You can select options to develop a chosen specialism in greater depth, including through your individual project which is often carried out with renewable energy companies or alongside the research portfolio of our international experts.

This is a very practical course backed up by strong theoretical understanding of the principles and facts behind renewable energy production.

Assessment is via a mixture of written and practical coursework and examinations. The individual research project is also assessed by viva. Because of its multidisciplinary nature, assessment may be done in collaboration with academic colleagues from Civil Engineering, Mechanical Engineering and Materials.

Facilities

We have current industrial equipment and laboratories for PV cell production, PV module production, qualification testing, PV quality control, energy storage research facilities, vacuum glazing, wind flow measurement, and instrumentation for energy consumption and monitoring.

You will benefit from experience with industrial tools and software for system design (e.g. PV Syst, WASP, ReSoft Windfarm, DNV GL Windfarmer), materials research hardware (e.g. pilot lines for commercial solar cell production) and quality control laboratories.

This enables you to acquire the practical skills that industry uses today and builds the foundations for developing your knowledge base throughout their career.

Careers and further study

There is a world-wide shortage of skilled engineers in this field and so the combination of hands on experience with global industry standard tools and techniques and the strong theoretical knowledge which graduates of this course acquire, makes them highly attractive to employers.

Students may carry out their projects as part of a short-term placement in a company and graduates of this course are often fast-tracked in their applications. Consequently we have an extensive network of alumni, many in top jobs.

Why choose electronic, electrical and systems engineering at Loughborough?

We develop and nurture the world’s top engineering talent to meet the challenges of an increasingly complex world. All of our Masters programmes are accredited by one or more of the following professional bodies: the IET, IMechE, InstMC, Royal Aeronautical Society and the Energy Institute.

We carefully integrate our research and education programmes in order to support the technical and commercial needs of society and to extend the boundaries of current knowledge.

Consequently, our graduates are highly sought after by industry and commerce worldwide, and our programmes are consistently ranked as excellent in student surveys, including the National Student Survey, and independent assessments.

- Facilities
Our facilities are flexible and serve to enable our research and teaching as well as modest preproduction testing for industry.
Our extensive laboratories allow you the opportunity to gain crucial practical skills and experience in some of the latest electrical and electronic experimental facilities and using industry standard software.

- Research
We are passionate about our research and continually strive to strengthen and stimulate our portfolio. We have traditionally built our expertise around the themes of communications, energy and systems, critical areas where technology and engineering impact on modern life.

- Career prospects
90% of our graduates were in employment and/or further study six months after graduating. They go on to work with companies such as Accenture, BAE Systems, E.ON, ESB International, Hewlett Packard, Mitsubishi, Renewable Energy Systems Ltd, Rolls Royce and Siemens AG.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/eese/renewable-energy-systems-tech/

Read less
This course was developed response to the demand for design engineers who can design and assess new ships and offshore structures. Read more

Why this course?

This course was developed response to the demand for design engineers who can design and assess new ships and offshore structures.

This programme is designed for graduate engineers in naval architecture, offshore engineering, mechanical engineering and other related disciplines.

You'll be introduced to ultimate strength, fatigue and design concepts for structural components of ships and offshore floating systems. You'll also gain the knowledge of material behaviour together with factors influencing the dynamic behaviour of offshore installations.

The Department of Naval Architecture, Ocean & Marine Engineering (NAOME), a leading institution in Scotland, offers excellent teaching and research facilities in Naval Architecture, Ocean and Marine engineering, which expands your career opportunities in naval architecture, marine, offshore oil and gas industry.

See the website https://www.strath.ac.uk/courses/postgraduatetaught/shipoffshorestructures/

You'll study

Your course is made up of three components:
- instructional modules
- group project
- individual project (MSc only)

- Group project
You’ll be part of a group of three to five people in ‘consultant teams’ for 10 weeks addressing a practical engineering problem. You’ll then have the opportunity to present the report to a panel of industrial experts.
This project will enhance your team working and communication skills. It also provides valuable access to industrial contacts.
It will give you a good understanding of all aspects of research work. In addition, the technological study must be accompanied by survey of the relevance and applicability of the findings to the maritime industries at large.
You'll learn efficient ways to gather information, to distribute workload and to delegate amongst the group, to analyse their results and to appreciate the broader implications of the whole project. In-depth technological studies will be accompanied by increasingly important competence in managerial skills, quality assurance and a sound appreciation of the economic, political, social and environmental issues crucial to professional success.

- Individual project (MSc only)
MSc students will take on an individual dissertation on a topic of their own interest. The aim of the individual project is to develop your research skills and to combine many of aspects learned from other modules within a specific topic. This will be achieved by you carrying out work into a particular topic relating to your chosen theme and preparing a dissertation.

Facilities

We have excellent teaching facilities including:
- Catalina - our departmental racing yacht
- Kelvin Hydrodynamics Lab - the largest ship-model experiment tank in any UK university
- Towing/wave tank exclusively for teaching purposes
- Marine engine laboratory
- Hydrogen fuel cell laboratory
- Cutting-edge computer facilities
- Industry standard software

Teaching staff

You’re taught by dedicated staff with diverse expertise and research activities.

Accreditation

All of our degree programmes are and to be (2014) professionally by the Royal Institution of Naval Architects (RINA) and The Institute of Marine Engineering, Science and Technology, (IMarEST) on behalf of the UK Engineering Council.

Student competitions

NAOME supports and promotes students in various competitions and awards, from cash bursaries for top performing students to the highest of awards from international organisations.

In recent years students from NAOME have been triumphant in the following high profile competitions:
- Science, Engineering & Technology Student of the Year (SET Awards)
- Best Maritime Technology Student (SET Awards)
- Double winner of BP’s Ultimate Field Trip Competition
- Strathclyder of the Year

Pre-Masters preparation course

The Pre-Masters Programme is a preparation course for international students (non EU/UK) who do not meet the entry requirements for a Masters degree at University of Strathclyde. The Pre-Masters programme provides progression to a number of degree options.

To find out more about the courses and opportunities on offer visit isc.strath.ac.uk or call today on +44 (0) 1273 339333 and discuss your education future. You can also complete the online application form. To ask a question please fill in the enquiry form and talk to one of our multi-lingual Student Enrolment Advisers today.

Learning & teaching

There are two teaching periods (semesters) of 12 weeks each. Some of the second semester subjects are taught over eight weeks. This is so that you can devote as much time as possible to your individual project work.

Course modules are delivered in form of formal lectures supported with tutorials and laboratory experiment.

- Guest lectures
During term time, we arrange weekly seminars in which leaders and pioneers of the maritime, oil and gas and marine renewables industries visit the department and present to students. This is a great way of supplementing your education with the latest developments and gaining industry contacts for your future career.

Industrial visits are also made to a variety of companies.

Assessment

There are two types of method for module assessment. One is course work assessment only, the other is examination assessment. For examined modules the final assessment mark consists of 30-40% course work and 60-70% examination.

Careers

Career destinations include:
- Naval Architect
- Marine Engineer
- Graduate Engineer
- Marine Surveyor
- Offshore Renewables Engineer
- Project Engineer

Find information on Scholarships here http://www.strath.ac.uk/search/scholarships/index.jsp

Read less
Renewable energy is a cornerstone of the green economy and marine wind, wave and tidal energy are key elements of the UK, European and global renewable energy roadmaps. Read more
Renewable energy is a cornerstone of the green economy and marine wind, wave and tidal energy are key elements of the UK, European and global renewable energy roadmaps. Begin your voyage to being a part of this vital transformation by studying on the UK’s first MSc Marine Renewable Energy programme. Building on our international reputation for marine research and teaching along with regional and national initiatives, this distinctive degree focuses on the growing marine renewable energy sector.

Key features

-Be at the forefront of the emerging field of marine renewable energy at a time when such expertise is increasingly sought after.
-Develop knowledge and confidence in the critical areas which will help you to be an integral part of the effort to develop and promote marine renewable energy.
-Benefit from our research team’s expertise – our staff achieved ratings of ‘world leading’ and ‘internationally excellent’ in the UK Government’s most recent Research Excellence Framework (REF 2014).
-Take advantage of Plymouth University’s active role in the Southwest Marine Energy Park and the Offshore Renewables Development Programme to stay abreast of the latest developments and make contacts with key players in the field.
-Gain experience in the use of world leading facilities such as the COAST Lab test tanks and the Falcon Spirit research vessel as part of your taught programme and your research.
-Learn in an environment which benefits from PRIMaRE investment in new staff expertise and facilities.
-Benefit from a programme fully-integrated with the £42 million wave hub project, the world's largest wave energy test site, off north Cornwall.
-Live and study in ‘Britain’s Ocean City’, with easy access to businesses and the natural environment involved in your area of study this is an ideal location to study marine renewables.
-Take the opportunity to study abroad in the research project phase and be supported by one Plymouth University supervisor and one supervisor overseas.

Course details

The taught modules in the first period are compulsory and are designed to provide you with a broad background on marine renewable as well as a solid basis for the option modules in period two. You’ll undertake three modules in period one that provide a background in marine renewable energy: introduction to marine renewable energy, economics, law and policy for marine renewable energy, research skills and research methods. In period two you can choose three options from a choice of five: assessment of coastal resources and impacts, marine planning, economics of the marine environment, mechanics of marine renewable energy structures, and wave and current modelling for marine renewable energy. During period three you’ll undertake a research project and dissertation. Due to the extensive staff research expertise there is a wide range of potential projects spanning marine science, engineering and socio-economics. You may also carry out projects with external organisations that have interests in marine renewable energy.

Core modules
-MAR513 Research Skills and Methods
-MAR526 Introduction to Marine Renewable Energy
-MAR527 Economics, Law and Policy for Marine Renewable Energy
-MAR524 MSc Dissertation

Optional modules
-MAR529 Marine Planning
-MATH523 Modelling Coastal Processes
-MAR528 Mechanics of MRE Structures
-MAR507 Economics of the Marine Environment
-MAR512 Assessment of Coastal Resources and Impacts

Every postgraduate taught course has a detailed programme specification document describing the programme aims, the programme structure, the teaching and learning methods, the learning outcomes and the rules of assessment.

Read less
The Masters in Sustainable Energy is an interdisciplinary programme that will equip you for employment within the international energy sector. Read more
The Masters in Sustainable Energy is an interdisciplinary programme that will equip you for employment within the international energy sector. This programme addresses all the key aspects of sustainable energy, from the most advanced technologies through to ethical and economic considerations.

Why this programme

◾This programme provides an in-depth knowledge of the social and economic drivers of the current UK and international energy industry, and insights in the behavioural, business and technical aspects concerned with energy production and distribution.
◾Students will learn a range of technical knowledge in the science and engineering of energy production and use, with emphases towards chemical, electrical and mechanical engineering, dependent on the students’ preferences and past experience.
◾Electronic and Electrical Engineering at the University of Glasgow is consistently highly ranked recently achieving 1st in Scotland and 4th in the UK (Complete University Guide 2017).
◾Students will graduate from this programme with a complete scientific knowledge and appreciation of the relevance of traditional and emerging energy technologies.
◾Learning will be underpinned with regular industrial lectures and commentary so that the context is maintained and highlighted throughout the year.

Programme structure

Modes of delivery of the MSc in Sustainable Energy include lectures, seminars and tutorials and allow students the opportunity to take part in lab, project and team work.

You will take a combination of core and optional courses, and a project which you will select from a list of standard projects or you can suggest a project of your own choosing.

Core courses
◾Energy and environment
◾Energy conversion systems
◾Energy from waste
◾Integrated system design project
◾Renewable energy
◾MSc project.

Optional courses
◾Electrical energy systems
◾Environmental biotechnology
◾Environmental ethics and behavioural change
◾Impacts of climate change
◾Introduction to wind engineering
◾Nuclear power reactors
◾Power electronics
◾Project planning, appraisal and implementation
◾Theory and principles of sustainability.

Projects

-◾To complete the MSc degree you must undertake a project worth 60 credits, which will integrate subject knowledge and skills that you acquire during the MSc programme
◾The project is an important part of your MSc where you can apply your newly learned skills and show to future employers that you have been working on cutting edge projects relevant to the industry.
◾You can choose a topic from a list of MSc projects in Sustainable Energy. Alternatively, should you have your own idea for a project, department members are always open to discussion of topics.

Example projects

Examples of projects can be found online

*Posters shown are for illustrative purposes

Industry links and employability

◾You will be taught by academic staff with expertise from across a range of disciplines within the Colleges of Science & Engineering and Social Sciences. This interdisciplinary approach will provide you with high quality teaching of contemporary, industrially relevant courses which will together provide an excellent background in sustainable energy.
◾You will benefit from significant input from industry to our teaching programme, including teaching on some courses, guest lectures and seminars. There are also informal opportunities to meet people from industry at open events and visits to company offices. Projects may be carried out in conjunction with industry.
◾Many of the courses within the programme will be backed up by specific project work and much of this will be linked in to research activities across the University.

Career prospects

The degree is designed to develop future leaders and decision makers in the growing international energy business. Graduates may expect to forge careers in established energy generation and transmission companies (for instance in the UK, National Grid, Scottish and Southern Energy, etc.), energy consultancy businesses, traditional oil, gas and construction companies who are moving rapidly into renewables, or fresh new companies in the wind, marine, solar or biomass sectors. Scotland, in particular, has seen great expansion in sustainable energy businesses in the last decade, with some of the best worldwide potential for wind, wave and tidal generation.

Graduates of this programme have gone on to positions such as:
Research Assistant at a university
Geothermal Energy Engineer at Town Rock Energy
Hydropower Engineer at Renewables First
Research Analyst at Cognolink
Research and Development Consultant.

Accreditation

The MSc Sustainable Energy is accredited by the Institution of Mechanical Engineering. An accredited degree will provide you with some or all of the underpinning knowledge, understanding and skills for eventual registration as an Incorporated (IEng) or Chartered Engineer (CEng).

Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.

Read less
This internationally-leading joint EngD with IDCORE aims to meet the UK’s ambitious deployment targets for offshore renewable energy technologies. Read more
This internationally-leading joint EngD with IDCORE aims to meet the UK’s ambitious deployment targets for offshore renewable energy technologies.

An EngD is a four year research degree awarded for industrially relevant research, the degree provides a more vocationally oriented approach to obtaining a doctorate in engineering commensurate with that of a PhD.

Led by the University of Exeter at its Penryn Campus and based at the University of Edinburgh, this EngD programme is delivered through a partnership with the universities of Edinburgh, Strathclyde and Exeter together with the Scottish Association for Marine Science and HR-Wallingford.

The programme will allow you to receive postgraduate-level technical and transferable skills training at three leading UK universities in the renewable energy research field together with the Scottish Association for Marine Science and HRWallingford. This university and industry collaboration forms the Engineering and Physical Sciences Research Council (EPSRC), RCUK Energy programme/ETI-funded Industrial Doctorate Centre in Offshore Renewable Energy (IDCORE).

Students will benefit from a vibrant learning environment and, in partnership with industry, will learn to deliver world-class industrially-focused research outcomes that will accelerate the deployment of offshore wind, wave and tidal-current technologies. This will help the UK to meet its 2020 and 2050 targets for renewable energy generating capacity, and expand and sustain a community of high-quality post-doctoral staff for the UK offshore renewable energy industry.

This programme will produce highly trained scientists and engineers, they will gain the skills, knowledge and confidence to tackle current and future offshore renewable energy challenges. This includes developing new techniques and technologies to design, build, install, operate and maintain devices in hostile environments at an affordable economic cost with minimal environmental impact.

This will reinforce and support the UK’s conjoined infrastructure, which begins in the best academic research centres with leading test facilities and extends through a unique combination of demonstration facilities, ultimately to test and deployment sites.

Programme structure

Each Research Engineer will spend approximately 25% (180 credits) of his or her time in a structured training programme.
The following are some examples of the taught modules;
Introduction to Offshore Renewable Technologies; Hydrodynamics of Offshore Renewable Energy Devices; Electromechanical & Electronic Energy Conversion Systems; Marine Renewable Resource Assessment; Economics Tools for Offshore Renewables; Physical Model Testing for Offshore Renewables; Structural Behaviour of Offshore Renewable Energy Devices; Electricity Network Interaction, Integration and Control; Moorings and Reliability and Innovation Design and Manufacturing Management.

Research project

Research Projects will comprise 540 credits, amounting to 75% of the research engineer effort on the EngD. Research Engineers will attend a total of three summer schools during their projects, and will attend the annual Company Day, and appropriate technical conferences

Research projects are proposed by renewable energy companies in wave, tidal and offshore wind energy. Projects are allocated during the first year of the programme, at the beginning of the second semester (in January). The Research Engineer will take an active role in defining his or her professional development programme in line with the needs of the research project and his or her individual aims.

The modules we outline here provide examples of what you can expect to learn on this degree course based on recent academic teaching. The precise modules available to you in future years may vary depending on staff availability and research interests, new topics of study, timetabling and student demand.

Read less
This is the distance learning version of the full time MSc in Renewable Energy Systems Technology. By using the same course materials distance learning students are able to achieve the same outcomes as the full-time MSc in Renewable Energy Systems Technology. Read more
This is the distance learning version of the full time MSc in Renewable Energy Systems Technology.

By using the same course materials distance learning students are able to achieve the same outcomes as the full-time MSc in Renewable Energy Systems Technology. We have developed new ways of learning, which offer students flexibility in place, pace and mode to meet the demand for this highly sought after qualification but who cannot attend traditional university classes.

By the end of the course, our renewable energy MSc graduates, will have gained a comprehensive understanding of renewable energy technologies and developed a range of important transferable
skills.

Core study areas include solar power, wind power, water power, biomass, sustainability and energy systems, integration of renewables and a research project.

Optional study areas include advanced solar thermal, advanced photovoltaics, energy storage, energy system investment and risk management.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/eese/renewable-energy-system-tech-dl/

Programme modules

Compulsory Modules:
- Sustainability and Energy Systems
- Integration of Renewables
- Solar 1
- Wind 1
- Water Power
- Biomass
- Research Project

Optional Modules (choose three):
- Energy Storage
- Advanced Solar Thermal
- Advanced Photovoltaics
- Wind 2
- Energy System Investment and Risk Management

Normally students are required to obtain 180 Master's level credits in these modules to become a Master of Science in Renewable Energy Systems Technology graduate. However optional leave awards of Postgraduate Diploma (120 credits) or Postgraduate Certificate (60 credits) are possible.

How you will learn

All of our renewable energy MSc Modules consist of a series of Study Units, each covering a specific subject area (see programme modules). Instead of face-to-face lectures and tutorials, the main learning routes for distance learning students are via the University’s virtual learning environment (LEARN). The learning resources for each Study Unit include:
- On line study materials
- Live streamed and recorded lectures
- Virtual and remote laboratories
- Tutorials, assignments and computer aided assessments
- Access to past exam papers

In addition there are several important communication features built into LEARN which include:
- Discussion forums (for communicating with tutors and fellow learners)
- Specialist tutor groups
- Assignment and tutorial upload facility (to allow tutors to check your progress and provide you with feedback)
- Online tutorial sessions with module lectures

Distance learning students also have the option to attend on campus modules.

- Assessment
By examination, coursework, group work and research project. Examinations are held in January and May/June with coursework and group work throughout the programme. The individual MSc research project is assessed by written report and viva voce. Students receive regular feedback on their progress from on-line support officers, tutors and academic staff.

It is also possible for distance learning students to take exams at a suitable local venue either a local British council or a recognised university. For further information about this process please contact the course administrator.

- Technical Requirements
To make full use of distance learning resources, the following are minimum requirements:
- Good specification PC or laptop running the latest operating system
- A printer if you wish to print out materials
- Good computer skills (see below)
- Fast and reliable access to the Internet via Broadband

You will require the skills that allow one to:
- Open, copy, and move files and directories on your hard drive
- Move around the desktop with several applications (programmes) opened at the same time
- Create documents using a software package such as MS Word or similar.
- Be able to zip files and make pdf files
- Manipulate and analyse data using spread sheet software such as MS Excel

Careers and further study

The flexibility offered by this MSc allows graduates already working in or seeking to enter the sector, the opportunity to gain strong technical knowledge whilst continuing to work.This combination of knowledge and practical experience makes them highly attractive to existing and future employers worldwide.

Fees: Structure and scholarships

Unlike the full time course distance learning students pay as they study and will pay for modules prior to registration at the beginning of each semester. There are no additional registration fees.
However please note that distance learning fees are reviewed annually and may increase during your period of study.

Why choose electronic, electrical and systems engineering at Loughborough?

We develop and nurture the world’s top engineering talent to meet the challenges of an increasingly complex world. All of our Masters programmes are accredited by one or more of the following professional bodies: the IET, IMechE, InstMC, Royal Aeronautical Society and the Energy Institute.

We carefully integrate our research and education programmes in order to support the technical and commercial needs of society and to extend the boundaries of current knowledge.

Consequently, our graduates are highly sought after by industry and commerce worldwide, and our programmes are consistently ranked as excellent in student surveys, including the National Student Survey, and independent assessments.

- Facilities
Our facilities are flexible and serve to enable our research and teaching as well as modest preproduction testing for industry.
Our extensive laboratories allow you the opportunity to gain crucial practical skills and experience in some of the latest electrical and electronic experimental facilities and using industry standard software.

- Research
We are passionate about our research and continually strive to strengthen and stimulate our portfolio. We have traditionally built our expertise around the themes of communications, energy and systems, critical areas where technology and engineering impact on modern life.

- Career prospects
90% of our graduates were in employment and/or further study six months after graduating. They go on to work with companies such as Accenture, BAE Systems, E.ON, ESB International, Hewlett Packard, Mitsubishi, Renewable Energy Systems Ltd, Rolls Royce and Siemens AG.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/eese/renewable-energy-system-tech-dl/

Read less
This MSc is based at our ORKNEY CAMPUS in the far north of Scotland. A unique opportunity to study a live marine environment. Marine planning, including spatial planning, is a fast developing discipline of global interest with excellent employment prospects. Read more
This MSc is based at our ORKNEY CAMPUS in the far north of Scotland. A unique opportunity to study a live marine environment.

Marine planning, including spatial planning, is a fast developing discipline of global interest with excellent employment prospects. Ambition to create jobs and growth in the ‘Blue Economy’ is made real by new technologies giving access to the wealth of resources in the oceans and seas. New approaches are needed to govern the interactions among marine industries while maintaining the aspiration for healthy seas and the conservation of ecosystems. Adaptation to the effects of climate change adds to the importance of marine planning as an essential tool in marine management.

The MSc in Marine Planning for Sustainable Development is based at the Orkney Campus but is available also at the Edinburgh Campus. Orkney is a global centre for marine energy research and development. A unique concentration of marine expertise and activity provides students with unparalleled access to key participants in the sustainable development and planning of marine industries.

The MSc involves studying eight taught courses. If you can demonstrate that you have already mastered the subject, you may apply for an exemption from one of the taught courses and undertake a Design Project instead. The MSc programme is completed with a research dissertation equivalent to 4 taught courses.

SEMESTER 1

A11MP Introduction to Marine Planning
Introduces students to the emerging policy and practice of marine planning (global and regional). It examines political, jurisdictional and rights issues in the introduction of economic activities into the marine commons (the ‘Blue Growth Agenda’). The framework of marine legislation is explained and methods of conflict resolution are explored. A series of international case studies will identify the various tools and techniques being used around the world to manage human activity and balance conservation interests with demands for economic growth.

A11OC Oceanography & Marine Ecology
Designed to give an understanding of the science of waves and tides, and how this affects efforts to exploit energy from these resources and to develop other maritime industries. Marine ecosystems are also studied and how these may be impacted by human activities and about the challenges and impacts associated with carrying out engineering operations in the marine environment.

A11ER Economics of Renewable Energy
Orkney is a world leading centre for the research and testing of marine renewables. The economics of the energy sector are studied in the context of the whole renewable energy sector, both marine and terrestrial, with particular focus on wave and tidal projects underway in the vicinity of the University.

A11DM Marine Resource Development
Examines the exploitation and use of marine resources (including oil and gas, fisheries, shipping, marine renewables, aquaculture and tourism), issues associated with development in the marine environment (including pollution and waste) and how these activities are regulated. You will learn about marine technologies in the Blue Economy and the challenges of developing and deploying technologies to exploit resources in the marine environment.


SEMESTER 2

A11PK Environmental Policy & Risk
This course explores the legal and policy context of marine governance. You will gain an understanding of international law, particularly the Law of the Sea, property rights and how these relate to different energy resources. The course also looks at regulatory issues at the international, European and UK level, which affect how energy developments are taken forward, as well as risk assessment and management in the context of marine developments. A practical EIA exercise is undertaken.


A11GI GIS for Marine and Environmental Scientists
Geographic Information System mapping is a tool which is now widely used by both developers and regulators in the management and development of marine resources. Within the context of Marine Spatial Planning the use of GIS has rapidly become the standard means of collating and analysing spatial information regarding resource use. This course will explain the principles and provide hands-on experience of applying state of the art mapping software in project based case studies.

A11DA Development Appraisal
Looking at what happens when renewable energy technologies are deployed, this course examines development constraints and opportunities: policy and regulatory issues (including strategic environmental assessment, environmental impact assessment, landscape assessment, capacity issues and the planning system). It also looks at the financial aspects (valuation of capital asses, financing projects and the costs of generating electricity) and at project management.

A11VY Practical Marine Survey
A practical field study course into the methods and techniques of marine survey. The opportunity for dive study if suitably qualified.

Additional information
This MSc is based at our ORKNEY CAMPUS. By studying in Orkney you will benefit from a number of activities including field trips, guest lectures and practical activities, which help to develop your skills and knowledge in your field of study, and offer opportunities to meet developers and others involved in the renewable energy industry.


Assistance with funding is available, please visit our website for further details and information on how to apply.

English language requirements

If your first language is not English, or your first degree was not taught in English, we’ll need to see evidence of your English language ability. The minimum requirement for English language is IELTS 6.5 or equivalent. We offer a range of English language courses to help you meet the English language requirement prior to starting your masters programme:

- 14 weeks English (for IELTS of 5.5 with no more than one skill at 4.5);
- 10 weeks English (for IELTS of 5.5 with minimum of 5.0 in all skills);
- 6 weeks English (for IELTS 5.5 with minimum of 5.5 in reading & writing and minimum of 5.0 in speaking & listening)

Read less
With the global agenda on climate change focusing on the role of renewable and sustainable technologies and energy, this course provides you with a dynamic and exciting overview of this constantly changing industry. Read more
With the global agenda on climate change focusing on the role of renewable and sustainable technologies and energy, this course provides you with a dynamic and exciting overview of this constantly changing industry. The course provides an up-to-date overview of all the major renewable energy sources. This includes the engineering applications of clean energy, energy economics and markets, as well as socio-economic, energy security ad political issues.

Key Course Features

-The course looks at the engineering aspects of clean energy, energy economics and markets. The cost/ benefit/ tariff/risk analysis of renewables is compared with traditional fossil fuel and nuclear energy sources. Socio-economic, energy security and political issues are addressed as well as environmental factors of different energy sources.
-The MSc in Renewable Engineering and Sustainable Energy is accredited by the Institute of Engineering and Technology (IET) and Energy Institute (EI), and provides you with the required training for registering for Chartered Engineer status.

What Will You Study?

FULL-TIME MODE (SEPTEMBER INTAKE)
The taught element, Part One, of the programmes will be delivered in two 12 week trimesters and each trimester has a loading of 60 credits.

The six taught modules will have lectures and tutorials/practical work on a weekly basis. The expected timetable per module will be a total of 200 hours, which includes 40 hours of scheduled learning and teaching hours and 160 independent study hours.

Part Two will then take a further 15 weeks having a notional study time of 600 hours. During this time the student will be responsible for managing his/her time in consultation with an academic supervisor.

FULL-TIME MODE (JANUARY INTAKE)
For the January intake, students will study three specialist modules first during the second trimester from January to May.

Other three common modules the students will study in the first trimester of the next academic year from September to January. On successful completion of the taught element of the programme the students will be progressed to the Part Two, MSc dissertation to be submitted in April/May.

PART-TIME MODE
The taught element, part one, of the programmes will be delivered in two academic teaching years. 80 credits or equivalent worth of modules will be delivered in the first year and 40 credits or equivalent in the second year.

The part time students would join the full time delivery with lectures and tutorials/practical work during one day on a weekly basis. The dissertation element (i.e. Part Two) will start in trimester 2 taking a further 30 weeks having a total notional study time of 600 hours.

During this time the student will be responsible for managing his/her time in consultation with an academic supervisor.

AREAS OF STUDY INCLUDE
-Engineering Research Methods
-Sustainable Design & Innovation
-Engineering Systems Modelling & Simulation
-Control Systems Engineering
-Renewable Engineering
-Renewables: Environment, economic, social and political.
-Dissertation

The information listed in this section is an overview of the academic content of the programme that will take the form of either core or option modules. Modules are designated as core or option in accordance with professional body requirements and internal academic framework review, so may be subject to change.

Assessment and Teaching

You will be assessed throughout your course by a variety of methods including portfolios, presentations and, for certain subjects, examinations.

Career Prospects

The Engineering Council now requires a Chartered Engineer to be qualified to Masters level or its equivalent, so there has never been a better time to consider studying for an engineering masters qualification. This course has been tailored to meet the needs of employers in this area, for you to be able to gain career advancement or specialise in renewable energy.

The Careers & Zone at Wrexham Glyndŵr University is there to help you make decisions and plan the next steps towards a bright future. From finding work or further study to working out your interests, skills and aspirations, they can provide you with the expert information, advice and guidance you need.

Read less
Measuring, describing and depicting the seabed is crucial to the maintenance and development of ports, safe navigation, offshore renewables and the continuing search for hydrocarbons. Read more
Measuring, describing and depicting the seabed is crucial to the maintenance and development of ports, safe navigation, offshore renewables and the continuing search for hydrocarbons. Yet there is an international shortage of hydrographic surveyors. Seize this opportunity to gain a thorough knowledge of the science and technology of hydrography, experiencing the latest methods and equipment involved in exploring and managing the seabed whilst preparing for a career in this growth area.

Key features

-Graduate from a course that crosses different disciplines and is accredited by the Royal Institution of Chartered Surveyors (RICS) and the Chartered Institute of Civil Engineering Surveyors (CICES).
-Study with the ocean right on your doorstep in our waterfront city. Benefit from the practical research opportunities and links to international marine businesses this brings, as well as access to the University’s specialist Marine Institute.
-Study aboard the University’s own survey vessel the Falcon Spirit, and develop hands-on experience in current survey techniques and different methods of data collection and analysis.
-Prepare yourself on a commercially focused programme that’s been developed in response to industry requirements and an expressed commercial need. Progress to a career in hydrographic research and development, port and offshore/ nearshore surveying or environmental support.
-Equip yourself with the latest knowledge relating to hydrography in the fields of marine geophysics, oceanography, land survey techniques, geodesy, bathymetric surveying, tides, acoustic theory and marine resource management. Learn to use equipment including GNSS, SBES, MBES, ADCP and sidescan sonar.
-Engage in debates around the wider aspects of hydrography and the implications for data capture, data management, processing and information systems.
-Attend lectures and receive support from our specialist staff, as well as access to a series of industrial speakers and demonstrations of the latest technologies.
-Gain the knowledge and skills you need to design, develop and implement a final research project at postgraduate level.
-Benefit from our good relationship with industry – a number of companies visit each year. There is excellent recruitment from the programme to the marine sector with global opportunities and the potential to travel in conjunction with your employment.

Course details

Period 1 — an intensive 15 week programme of classroom learning and field activities prepare you for the technical aspects of surveying and the research required in master’s study. 70 per cent lectures/seminars and 30 per cent practical, either within the laboratory or afloat. Assessment is continual or by coursework.

Period 2 — includes specialisms in advanced studies with a combination of the digital mapping and survey project management modules, designed to prepare students for practical roles and management decisions when completing hydrographic tasks on behalf of future employers. Modules are selected based on industrial expectations and potential career requirements. 80 per cent lectures/seminars, 20 per cent practical. Assessment is 50/50 coursework and formal examination for core modules, continuous for the one optional module.

Period 3 — undertake a self-managed final dissertation, supervised by an assigned academic. May comprise a desk study, laboratory experimentation, field observations, data acquisitions and processing.

Core modules
-MAR513 Research Skills and Methods
-MAR520 Hydrography
-MAR521 Acoustic and Oceanographic Surveying
-MAR524 MSc Dissertation
-MAR522 Survey Project Management
-MAR523 Digital Mapping

Optional modules
-MAR517 Coastal Erosion and Protection
-MAR529 Marine Planning
-MAR530 Managing Marine Ecosystems
-MAR507 Economics of the Marine Environment
-MAR518 Remote Sensing and GIS

Every postgraduate taught course has a detailed programme specification document describing the programme aims, the programme structure, the teaching and learning methods, the learning outcomes and the rules of assessment.

Read less
This MSc Programme is based at our ORKNEY CAMPUS in the far north of Scotland - a unique opportunity to study a live marine environment. Read more

MSc Marine Resource Management

This MSc Programme is based at our ORKNEY CAMPUS in the far north of Scotland - a unique opportunity to study a live marine environment.

As man increases his demands upon the oceans, their sustainable development will depend on a rational management strategy for the total resource.

The professional working in the marine environment is constantly required to be multidisciplinary, and able to appreciate the conflicts that arise between conservation and development.

The MRM programme (See http://www.postgraduate.hw.ac.uk/prog/msc-marine-resource-management-mrm-/ ) considers the sustainable development, use, conservation and management of marine resources.

Core themes include:
- Marine environmental systems.
- Resource management and conservation.
- Valuation and project management.

For more information visit http://www.hw.ac.uk/schools/life-sciences/research/icit.htm

Overview

This is a 12 month full-time MSc degree course taught at our Orkney Campus. It involves studying 8 taught courses. If you can demonstrate that you have already mastered the subject, you may apply for an exemption from one of the taught courses and undertake a Design Project instead. The MSc programme is completed with a research dissertation equivalent to 4 taught courses.

Programme content

- Conservation, Sustainable Development & Resource Management
This course takes a broad look at the principles of sustainability and sustainable resource use, including environmental ethics. You will explore the challenges faced by policy makers and marine managers when incorporating these broad principles into policy and practice. You will learn about how sensitive habitats and the species they support are managed and protected, and how impacts from development are mitigated. The course gives an introduction to biodiversity conservation and the biodiversity action planning process, as well as examining issues around the relationship between conservation and science.

- Environmental Policy & Risk
This course explores the legal and policy context in which renewable energy is being exploited. You will gain an understanding of international law, particularly the Law of the Sea, property rights and how these relate to different energy resources. The course also looks at regulatory issues at the international, European and UK level, which affect how energy developments are taken forward, as well as risk assessment and management in the context of renewable energy developments.

- Oceanography & Marine Biology
This course is designed to give you an understanding of the science of waves and tides, and how this affects efforts to exploit energy from these resources. You will also learn about marine ecosystems and how these may be impacted by energy extraction and about the challenges and impacts associated with carrying out engineering operations in the marine environment.

- Resource Development
This course examines the exploitation and use of marine resources (including oil and gas, fisheries, transport, renewables, aquaculture and tourism), issues associated with development in the marine environment (including pollution and waste) and how these activities are regulated. You will learn about marine technologies and the challenges of developing and deploying technologies to exploit resources in the marine environment.

- Introduction to Marine Spatial Planning
This course introduces students to the emerging policy and practice of marine planning (global and regional). It examines political, jurisdictional and rights issues in the introduction of economic activities into the marine commons (the ‘Blue Growth Agenda’). The framework of marine legislation is explained and methods of conflict resolution are explored. A series of international case studies will identify the various tools and techniques being used around the world to manage human activity and balance conservation interests with demands for economic growth.

- GIS
Geographic Information System mapping is a tool which is now widely used by both developers and regulators in the management and development of marine resources. Within the context of Marine Spatial Planning the use of GIS has rapidly become the standard means of collating and analysing spatial information regarding resource use. This course will explain the principles and provide hands-on experience of applying state of the art mapping software in project based case studies.

- Development Appraisal
Looking at what happens when renewable energy technologies are deployed, this course examines development constraints and opportunities: policy and regulatory issues (including strategic environmental assessment, environmental impact assessment, landscape assessment, capacity issues and the planning system). It also looks at the financial aspects (valuation of capital asses, financing projects and the costs of generating electricity) and at project management.

- Development Project
This is a team project, where students have the opportunity to apply what they have learned through the other courses in relation to a hypothetical project. You have to look at a range of issues including resource assessment, site selection, development layout, consents, planning and economic appraisal, applying the knowledge and tools you have studied.

- Additional information
If you study at our Orkney Campus, you will also benefit from a number of activities including field trips, guest lectures and practicals, which help to develop your skills and knowledge in your field of study, and offer opportunities to meet developers and others involved in the renewable energy industry.

English language requirements

If your first language is not English, or your first degree was not taught in English, we’ll need to see evidence of your English language ability. The minimum requirement for English language is IELTS 6.5 or equivalent. We offer a range of English language courses (See http://www.hw.ac.uk/study/english.htm ) to help you meet the English language requirement prior to starting your masters programme:
- 14 weeks English (for IELTS of 5.5 with no more than one skill at 4.5);
- 10 weeks English (for IELTS of 5.5 with minimum of 5.0 in all skills);
- 6 weeks English (for IELTS 5.5 with minimum of 5.5 in reading & writing and minimum of 5.0 in speaking & listening)

Find information on Fees and Scholarships here http://www.postgraduate.hw.ac.uk/prog/msc-marine-resource-management-mrm-/

Read less
Electrical energy networks and the methods by which electrical energy is generated are changing. Generating resources are being connected to the distribution network rather than the transmission network. Read more

Overview

Electrical energy networks and the methods by which electrical energy is generated are changing. Generating resources are being connected to the distribution network rather than the transmission network. These distributed resources include renewables and conventional thermal plant. The techniques used to generate electrical power are also changing. This includes increased renewable generation, primarily from wind resources, and embedded generation which includes co-generating (thermal and electrical) plant. The integration of distributed generation within existing networks causes particular problems in the control of power flow, power quality and protection. Also exploiting renewable resources requires novel and innovative engineering.

Graduates of this course will develop critical understanding of the significant changes electrical energy networks and the methods of electrical generation are currently, and for the foreseeable future, engaged in and the implications of these changes. This course will develop graduates of a calibre capable of developing and implementing creative solutions to the problems encountered in renewable energy and distributed generation and the supply of electrical energy in general.

See website http://www.postgraduate.hw.ac.uk/prog/msc-renewable-energy-and-distributed-generation/

- Scholarship Opportunity
Scottish Funding Council has made available 20 scholarships covering fees only to students with Scottish backgrounds. These will be spread over all our Energy based MSc programmes. There is no separate application process for this. If you are eligible, you will be considered automatically. You will be notified through the summer if you have been selected.

Programme content

Core courses
- Foundations of Energy
- Electrical Power Systems
- Renewable Energy Technologies
- Research Methods Critical Analysis and Project Planning
- Distributed Generation
- Project Phase 1
- Renewable Generation and Conversion
- Demand Management and Energy Storage
- MSc Project

English language requirements

If your first language is not English, or your first degree was not taught in English, we’ll need to see evidence of your English language ability. The minimum requirement for English language is IELTS 6.5 or equivalent. We offer a range of English language courses (See http://www.hw.ac.uk/study/english.htm ) to help you meet the English language requirement prior to starting your masters programme:
- 14 weeks English (for IELTS of 5.5 with no more than one skill at 4.5);
- 10 weeks English (for IELTS of 5.5 with minimum of 5.0 in all skills);
- 6 weeks English (for IELTS 5.5 with minimum of 5.5 in reading & writing and minimum of 5.0 in speaking & listening)

Find information on Fees and Scholarships here http://www.postgraduate.hw.ac.uk/prog/msc-renewable-energy-and-distributed-generation/

Find out how to apply here http://www.hw.ac.uk/student-life/how-to-apply/postgraduate.htm

Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X