• University of Leeds Featured Masters Courses
  • University of York Featured Masters Courses
  • Leeds Beckett University Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of Glasgow Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Regent’s University London Featured Masters Courses
De Montfort University Featured Masters Courses
University of Birmingham Featured Masters Courses
Imperial College London Featured Masters Courses
Coventry University Featured Masters Courses
University of Leeds Featured Masters Courses
"renewable" AND "energy" …×
0 miles

Masters Degrees (Renewable Energy Systems)

  • "renewable" AND "energy" AND "systems" ×
  • clear all
Showing 1 to 15 of 237
Order by 
This is the distance learning version of the full time MSc in Renewable Energy Systems Technology. By using the same course materials distance learning students are able to achieve the same outcomes as the full-time MSc in Renewable Energy Systems Technology. Read more
This is the distance learning version of the full time MSc in Renewable Energy Systems Technology.

By using the same course materials distance learning students are able to achieve the same outcomes as the full-time MSc in Renewable Energy Systems Technology. We have developed new ways of learning, which offer students flexibility in place, pace and mode to meet the demand for this highly sought after qualification but who cannot attend traditional university classes.

By the end of the course, our renewable energy MSc graduates, will have gained a comprehensive understanding of renewable energy technologies and developed a range of important transferable
skills.

Core study areas include solar power, wind power, water power, biomass, sustainability and energy systems, integration of renewables and a research project.

Optional study areas include advanced solar thermal, advanced photovoltaics, energy storage, energy system investment and risk management.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/eese/renewable-energy-system-tech-dl/

Programme modules

Compulsory Modules:
- Sustainability and Energy Systems
- Integration of Renewables
- Solar 1
- Wind 1
- Water Power
- Biomass
- Research Project

Optional Modules (choose three):
- Energy Storage
- Advanced Solar Thermal
- Advanced Photovoltaics
- Wind 2
- Energy System Investment and Risk Management

Normally students are required to obtain 180 Master's level credits in these modules to become a Master of Science in Renewable Energy Systems Technology graduate. However optional leave awards of Postgraduate Diploma (120 credits) or Postgraduate Certificate (60 credits) are possible.

How you will learn

All of our renewable energy MSc Modules consist of a series of Study Units, each covering a specific subject area (see programme modules). Instead of face-to-face lectures and tutorials, the main learning routes for distance learning students are via the University’s virtual learning environment (LEARN). The learning resources for each Study Unit include:
- On line study materials
- Live streamed and recorded lectures
- Virtual and remote laboratories
- Tutorials, assignments and computer aided assessments
- Access to past exam papers

In addition there are several important communication features built into LEARN which include:
- Discussion forums (for communicating with tutors and fellow learners)
- Specialist tutor groups
- Assignment and tutorial upload facility (to allow tutors to check your progress and provide you with feedback)
- Online tutorial sessions with module lectures

Distance learning students also have the option to attend on campus modules.

- Assessment
By examination, coursework, group work and research project. Examinations are held in January and May/June with coursework and group work throughout the programme. The individual MSc research project is assessed by written report and viva voce. Students receive regular feedback on their progress from on-line support officers, tutors and academic staff.

It is also possible for distance learning students to take exams at a suitable local venue either a local British council or a recognised university. For further information about this process please contact the course administrator.

- Technical Requirements
To make full use of distance learning resources, the following are minimum requirements:
- Good specification PC or laptop running the latest operating system
- A printer if you wish to print out materials
- Good computer skills (see below)
- Fast and reliable access to the Internet via Broadband

You will require the skills that allow one to:
- Open, copy, and move files and directories on your hard drive
- Move around the desktop with several applications (programmes) opened at the same time
- Create documents using a software package such as MS Word or similar.
- Be able to zip files and make pdf files
- Manipulate and analyse data using spread sheet software such as MS Excel

Careers and further study

The flexibility offered by this MSc allows graduates already working in or seeking to enter the sector, the opportunity to gain strong technical knowledge whilst continuing to work.This combination of knowledge and practical experience makes them highly attractive to existing and future employers worldwide.

Fees: Structure and scholarships

Unlike the full time course distance learning students pay as they study and will pay for modules prior to registration at the beginning of each semester. There are no additional registration fees.
However please note that distance learning fees are reviewed annually and may increase during your period of study.

Why choose electronic, electrical and systems engineering at Loughborough?

We develop and nurture the world’s top engineering talent to meet the challenges of an increasingly complex world. All of our Masters programmes are accredited by one or more of the following professional bodies: the IET, IMechE, InstMC, Royal Aeronautical Society and the Energy Institute.

We carefully integrate our research and education programmes in order to support the technical and commercial needs of society and to extend the boundaries of current knowledge.

Consequently, our graduates are highly sought after by industry and commerce worldwide, and our programmes are consistently ranked as excellent in student surveys, including the National Student Survey, and independent assessments.

- Facilities
Our facilities are flexible and serve to enable our research and teaching as well as modest preproduction testing for industry.
Our extensive laboratories allow you the opportunity to gain crucial practical skills and experience in some of the latest electrical and electronic experimental facilities and using industry standard software.

- Research
We are passionate about our research and continually strive to strengthen and stimulate our portfolio. We have traditionally built our expertise around the themes of communications, energy and systems, critical areas where technology and engineering impact on modern life.

- Career prospects
90% of our graduates were in employment and/or further study six months after graduating. They go on to work with companies such as Accenture, BAE Systems, E.ON, ESB International, Hewlett Packard, Mitsubishi, Renewable Energy Systems Ltd, Rolls Royce and Siemens AG.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/eese/renewable-energy-system-tech-dl/

Read less
The MSc in Renewable Energy Systems and Technologies is a unique course for graduates, scientists and technologists who are either working in a research role within the renewable energy and technologies field or who are looking to begin their career in the sector. Read more
The MSc in Renewable Energy Systems and Technologies is a unique course for graduates, scientists and technologists who are either working in a research role within the renewable energy and technologies field or who are looking to begin their career in the sector.

What you will study

Studying on the course will enhance your range of knowledge and expertise and support your personal and career development. You will examine current issues in global energy, consider energy use in different areas of society and consider possible scenarios for energy consumption in the future. You will develop a full understanding of the key materials used in renewable energy systems, learn about their functionalities and look at processes for the fabrication of energy conversion devices and systems.

You will study the principles of operation, design, performance and installation of the key renewable technologies of solar, wind, biomass, wave and tidal and also consider energy storage options and the environmental and socio-economic effects of these technologies.

You will carry out a personal research project in which you will use your knowledge and skills to carry out a relevant and original study in an area that will be agreed with your course tutor. This research will be carried out either in your workplace or at the University of Bolton.

The course is offered by the University of Bolton’s Institute for Materials Research and Innovation (IMRI).

IMRI is a multidisciplinary centre in which research and innovation is carried out in collaboration with industry and other academic institutions. It is the leader in the UK – and is known internationally – for its research and applications development in the field of applied materials science and engineering.

Teaching for each module is carried out at the University of Bolton and will be delivered as a short course lasting no more than 2 weeks. The rest of your study is very flexible and may be carried out away from the University.

Special features

Teaching for each module is delivered as a short course that will last no more than two weeks. The rest of your study is very flexible and may be carried out away from the University.

Class sizes are small which means you will be able to work closely with your fellow students and your tutor.

Your subject of study and your personal project means you have the opportunity to work in an area that is of personal interest or that is related to your career.

For more information please visit http://www.bolton.ac.uk/postgrad

Read less
This MSc teaches an international community of students about the latest advances in clean power developments and enables graduates to design and develop benign renewable energy solutions that can be implemented in countries around the world. Read more
This MSc teaches an international community of students about the latest advances in clean power developments and enables graduates to design and develop benign renewable energy solutions that can be implemented in countries around the world.

It is aimed at engineers and natural scientists pursuing or wishing to pursue a career in the renewable energy sector, particularly those in technical positions e.g. systems designers, technical consultants and R&D engineers and scientists.

Core study areas include solar power, wind power, water power, biomass, sustainability and energy systems, integration of renewables and a research project.

Optional study areas include advanced solar thermal, advanced photovoltaics, advanced wind, energy storage, energy system investment and risk management.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/eese/renewable-energy-systems-tech/

Programme modules

Compulsory Modules:
- Solar Power
- Wind Power 1
- Water Power
- Biomass
- Sustainability and Energy Systems
- Integration of Renewables
- Research Project

Optional Modules (choose three):
- Advanced Solar Thermal
- Advanced Photovoltaics
- Wind Power 2
- Energy Storage
- Energy System Investment and Risk Management

How will you learn

You can select options to develop a chosen specialism in greater depth, including through your individual project which is often carried out with renewable energy companies or alongside the research portfolio of our international experts.

This is a very practical course backed up by strong theoretical understanding of the principles and facts behind renewable energy production.

Assessment is via a mixture of written and practical coursework and examinations. The individual research project is also assessed by viva. Because of its multidisciplinary nature, assessment may be done in collaboration with academic colleagues from Civil Engineering, Mechanical Engineering and Materials.

Facilities

We have current industrial equipment and laboratories for PV cell production, PV module production, qualification testing, PV quality control, energy storage research facilities, vacuum glazing, wind flow measurement, and instrumentation for energy consumption and monitoring.

You will benefit from experience with industrial tools and software for system design (e.g. PV Syst, WASP, ReSoft Windfarm, DNV GL Windfarmer), materials research hardware (e.g. pilot lines for commercial solar cell production) and quality control laboratories.

This enables you to acquire the practical skills that industry uses today and builds the foundations for developing your knowledge base throughout their career.

Careers and further study

There is a world-wide shortage of skilled engineers in this field and so the combination of hands on experience with global industry standard tools and techniques and the strong theoretical knowledge which graduates of this course acquire, makes them highly attractive to employers.

Students may carry out their projects as part of a short-term placement in a company and graduates of this course are often fast-tracked in their applications. Consequently we have an extensive network of alumni, many in top jobs.

Why choose electronic, electrical and systems engineering at Loughborough?

We develop and nurture the world’s top engineering talent to meet the challenges of an increasingly complex world. All of our Masters programmes are accredited by one or more of the following professional bodies: the IET, IMechE, InstMC, Royal Aeronautical Society and the Energy Institute.

We carefully integrate our research and education programmes in order to support the technical and commercial needs of society and to extend the boundaries of current knowledge.

Consequently, our graduates are highly sought after by industry and commerce worldwide, and our programmes are consistently ranked as excellent in student surveys, including the National Student Survey, and independent assessments.

- Facilities
Our facilities are flexible and serve to enable our research and teaching as well as modest preproduction testing for industry.
Our extensive laboratories allow you the opportunity to gain crucial practical skills and experience in some of the latest electrical and electronic experimental facilities and using industry standard software.

- Research
We are passionate about our research and continually strive to strengthen and stimulate our portfolio. We have traditionally built our expertise around the themes of communications, energy and systems, critical areas where technology and engineering impact on modern life.

- Career prospects
90% of our graduates were in employment and/or further study six months after graduating. They go on to work with companies such as Accenture, BAE Systems, E.ON, ESB International, Hewlett Packard, Mitsubishi, Renewable Energy Systems Ltd, Rolls Royce and Siemens AG.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/eese/renewable-energy-systems-tech/

Read less
Renewable Energy Systems and the Environment is one of the pathways offered in the Sustainable Engineering programme. This course examines the design and operation of the energy systems that provide the environments in which people live and work. Read more

Why this course?

Renewable Energy Systems and the Environment is one of the pathways offered in the Sustainable Engineering programme.

This course examines the design and operation of the energy systems that provide the environments in which people live and work. It explores how quality of life can be balanced by the need for conservation of world resources.

You’ll learn about different energy resources:
- renewable
- fossil
- nuclear

You’ll look at the systems that are employed to control these resources such as:
- combined heat & power schemes
- heat pumps
- solar capture devices
- high efficiency condensing boilers
- advanced materials
- adaptive control systems

You’ll explore the impact energy has on the environment and how it can be reduced.

Our course has been running for over 20 years and has over 400 graduates. External examiners consistently refer to our beneficial links with industry and the high quality of our project work.

Study mode and duration:
- MSc:12 months full-time, up to 36 months part-time
- PgDip: 9 months full-time

See the website https://www.strath.ac.uk/courses/postgraduatetaught/sustainableengineeringrenewableenergysystemstheenvironment/

You’ll study

Studying at least three generic modules will meet the key requirements to attain Chartered Engineer status.

You must take three specialist modules if you’re studying for the Postgraduate Certificate and up to five if you’re studying for a Postgraduate Diploma or MSc.

Successful completion of six modules leads to the award of a Postgraduate Certificate.

Major projects

- Group project
This usually involves four or five students working together. Each project focuses on a particular energy/environment system and includes a technical appraisal, and, where appropriate, an assessment of its cost effectiveness and environmental impact.
At the end of the project, students perform a presentation during the University’s Knowledge Exchange week to invited guests from industry. This event provides an important networking opportunity for students.

- Individual project
The individual project is an opportunity for students to work independently on an energy topic with a more in-depth analysis than the group project.

Accreditation

The course is approved by the Energy Institute, the Institution of Mechanical Engineers and the Royal Aeronautical Society and meets the academic requirements for Chartered Engineer (CEng) status.
Students are encouraged to take up free membership of these professional organisations.

Facilities

Students have access to departmental laboratories with a range of testing equipment. For example, a recent MSc project included the use of sophisticated thermal measurement of thermal storage materials undertaken in the Advanced Materials Research Laboratory.

Student competitions

Students can enter a number of competitions, which vary year-to-year. Recent examples include:
- District Heating and Cooling (DHC+) Student Competition
- Chartered Institution of Building Services Engineers Simulation Group Award for Best MSc Dissertation

- Guest lectures
Students are regularly invited to talks by research visitors from the Energy Systems Research Unit. Talks on career options are also given by representatives of the Energy Institute.

Pre-Masters preparation course

The Pre-Masters Programme is a preparation course for international students (non EU/UK) who do not meet the entry requirements for a Masters degree at University of Strathclyde. The Pre-Masters programme provides progression to a number of degree options.

To find out more about the courses and opportunities on offer visit isc.strath.ac.uk or call today on +44 (0) 1273 339333 and discuss your education future. You can also complete the online application form. To ask a question please fill in the enquiry form and talk to one of our multi-lingual Student Enrolment Advisers today.

Learning & teaching

The course comprises compulsory technical modules, a choice of broader generic modules, which are recommended by accrediting professional bodies, group projects with industry input, and individual projects.

Teaching methods are varied, and include lectures, discussions, group work, informal reviews, on-line questionnaires, and computer modelling laboratories.

Assessment

Assessment of taught modules are by written assignments and exams. Group projects are assessed by project websites and presentations. Individual projects are assessed on the submitted thesis.

Careers

- Where are they now?
100% of our graduates are in work or further study.*

Job titles include:
- Artificial Intelligence Engineer
- Biomass Engineer
- Renewable Energy Consultant
- Renewable Energy Development Officer
- Technical Analyst

Employers include:
- Greenspan
- Mott Macdonald
- Natural Power
- SSE
- Scottish Power Energy Networks
- The Campbell Palmer Partnership
- RSP Consulting Engineers

*Based on the results of the national Destinations of Leavers from Higher Education Survey (2010/11 and 2011/12).

Find information on Scholarships here http://www.strath.ac.uk/search/scholarships/index.jsp

Read less
This programme is idea for graduates from engineering, science or other relevant backgrounds and who have an interest in pursuing a successful career in research, technological change and the commercialisation of renewable-energy systems. Read more
This programme is idea for graduates from engineering, science or other relevant backgrounds and who have an interest in pursuing a successful career in research, technological change and the commercialisation of renewable-energy systems.

This programme will give you opportunities to learn about major renewable-energy technologies, energy-sector economics, supply-chain management and sustainable development.

PROGRAMME OVERVIEW

Created in the context of the rapid advancement of the renewable-energy industry, this Masters programme investigates both renewable energy and systems technologies.

It is designed to build your competence and confidence in the R&D and engineering tasks that are demanded of scientific engineers in the renewable and sustainable-development sector.

PROGRAMME STRUCTURE

This programme is studied full-time over one academic year and part-time students must study at least two taught technical modules per academic year. It consists of eight taught modules and a dissertation. The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.
-Optimisation and Decision-Making
-Process Modelling and Simulation
-Technology, Business & Research Seminars
-Renewable Energy Technologies
-Refinery and Petrochemical Process
-Solar Energy Technology
-Advanced Process Control
-Energy Economics and Technology
-Process Systems Design
-Biomass Processing Technology
-Wind Energy Technology
-Process and Energy Integration
-Knowledge-based Systems and Artificial Intelligence
-Supply Chain Management
-Introduction to Petroleum Production
-Process Safety and Operation Integrity
-Economics of International Oil & Gas
-Dissertation

FACILITIES, EQUIPMENT AND ACADEMIC SUPPORT

Modules related to the different groups are taught by a total of six full-time members of staff and a number of visiting lecturers.

As part of their learning experience, students have at their disposal a wide range of relevant software needed to support the programme material dissertation projects. In recent years, this work included the design of various knowledge-based and business systems on the internet, the application of optimisation algorithms, and semantic web applications.

Numerous laboratory facilities across the Faculty and the University are also available for those opting for technology-based projects, such as the process engineering facility, a control and robotics facility and signal processing labs.

The work related to the MSc dissertation can often be carried out in parallel with, and in support of, ongoing research. In the past, several graduates have carried on their MSc research to a PhD programme.

CAREER PROSPECTS

Engineers and scientists are increasingly expected to have skills in information systems engineering and decision-support systems alongside their main technical and/or scientific expertise.

Graduates of this programme will be well prepared to help technology-intensive organisations make important decisions in view of vast amounts of information by adopting, combining, implementing and executing the right technologies.

EDUCATIONAL AIMS OF THE PROGRAMME

This programme investigates both renewable energy and systems technologies in order to produce scientific researchers and engineers who are competent in the R&D and engineering tasks applicable to the renewable energy and sustainable development sectors.

Its primary aims lie in developing a global understanding of the major types of renewable energy technologies, in-depth knowledge of the technology for biomass-based renewable energy, and knowledge and skills in systems modelling and optimisation.

A balanced curriculum will be provided with a core of renewable energy and systems engineering modules supplemented by a flexible element by way of elective modules that permit students to pursue an element of specialisation relevant to their backgrounds, interests and/or career aspirations.

An integrated approach is taken so as to provide a coherent view that explores the interrelationships between the various components of the programme.

PROGRAMME LEARNING OUTCOMES

Knowledge and understanding
-State-of- the-art knowledge in renewable energy technologies, in terms of: the sources, technologies, systems, performance, and applications of all the major types of renewable energy; approaches to the assessment of renewable energy technologies; the processes, equipment, products, and integration opportunities of biomass-based manufacturing
-State-of- the-art knowledge in process systems engineering methods, in the areas of: modelling and simulation of process systems; mathematical optimization and decision making; process systems design
-Advanced level of understanding in technical topics of preference, in one or more of the following aspects: process and energy integration, economics of the energy sector, sustainable development, supply chain management

Intellectual / cognitive skills
-Select, define and focus upon an issue at an appropriate level
-Collect and digest knowledge and information selectively and independently to support a particular scientific or engineering enquiry
-Develop and apply relevant and sound methodologies for analysing the issue, developing solutions, recommendations and logical conclusions, and for evaluating the results of own or other’s work

Professional practical skills
-Assess the available renewable energy systems
-Design and select appropriate collection and storage, and optimise and evaluate system design
-Apply generic systems engineering methods such as modelling, simulation, and optimization to facilitate the assessment and development of renewable energy technologies and systems

Key / transferable skills
-Preparation and delivery of communication and presentation
-Report and essay writing
-Use of general and professional computing tools
-Collaborative working with team members
-Organizing and planning of work
-Research into new areas, particularly in the aspect of literature review and skills acquisition

GLOBAL OPPORTUNITIES

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.

Read less
This is a 12 month full-time Masters degree (See http://www.postgraduate.hw.ac.uk/prog/msc-renewable-energy-development-red-/ ) course taught at our Orkney Campus. Read more

Overview

This is a 12 month full-time Masters degree (See http://www.postgraduate.hw.ac.uk/prog/msc-renewable-energy-development-red-/ ) course taught at our Orkney Campus. It involves studying 8 taught courses and completing a research dissertation equivalent to 4 taught courses. If you can demonstrate that you have already mastered the subject, you may apply for an exemption from one of the taught courses and undertake a Design Project instead.

For more information visit http://www.hw.ac.uk/schools/life-sciences/research/icit.htm

Distance learning

The Renewable Energy Development MSc/Diploma is also available for independent distance learning. For distance learners, the main difference is that you will undertake the Development Project alone rather than as part of a group. You can still obtain the full MSc in Renewable Energy Development, or you can opt to study fewer courses, depending on your needs.

Programme content

- Energy in the 21st Century
This course is designed to give you a broad understanding of the environmental, political and socio-economic context for current developments in renewable energy. The course examines the extent of current energy resources and how energy markets function. It covers some energy basics you will need for the rest of the programme (e.g. thermodynamics, efficiency conversions) as well as environmental issues associated with energy use, climate change and the political and policy challenges involved in managing energy supply and achieving energy security.

- Economics of renewable energy
This course gives an understanding of the economic principles and mechanisms which affect energy markets today. It covers price mechanisms, the economics of extracting energy and the cost-efficiency of renewable energy technologies. You will learn about economic instruments used by policy-makers to address environment and energy issues, economic incentives to stimulate renewable energy development and about environmental valuation.

- Environmental Policy & Risk
This course explores the legal and policy context in which renewable energy is being exploited. You will gain an understanding of international law, particularly the Law of the Sea, property rights and how these relate to different energy resources. The course also looks at regulatory issues at the international, European and UK level, which affect how energy developments are taken forward, as well as risk assessment and management in the context of renewable energy developments.

- Environmental Processes
Particularly for those without a natural science background, this course provides a broad overview of the environmental processes which are fundamental to an understanding of renewable energy resources and their exploitation. You will study energy flows in the environment, environmental disturbance associated with energy use, and an introduction to the science of climate change. You will also learn about ecosystems and ecological processes including population dynamics and how ecosystems affect and interact with energy generation.

- Renewable Technology I: Generation
This course explores how energy is extracted from natural resources: solar, biomass, hydro, wind, wave and tide. It examines how to assess and measure the resources, and the engineering solutions which have been developed to extract energy from them. You will develop an understanding of the technical challenges and current issues affecting the future development of the renewable energy sector.

- Renewable Technology II: Integration
This course explores the technical aspects of generating renewable energy and integrating it into distribution networks. You will learn about the electricity grid and how electrical power and distribution systems work. You will find out about different renewable fuel sources and end uses, and the challenges of energy storage.

- Development Appraisal
Looking at what happens when renewable energy technologies are deployed, this course examines development constraints and opportunities: policy and regulatory issues (including strategic environmental assessment, environmental impact assessment, landscape assessment, capacity issues and the planning system). It also looks at the financial aspects (valuation of capital assets, financing projects and the costs of generating electricity) and at project management.

- Development Project
This is a team project, where students have the opportunity to apply what they have learned through the other courses in relation to a hypothetical project. You have to look at a range of issues including resource assessment, site selection, development layout, consents, planning and economic appraisal, applying the knowledge and tools you have studied.

- Optional design project
For students who can demonstrate existing knowledge covered by one of the courses, there is the option of understanding a design project supervised by one of our engineers.

- Dissertation
This research project (equivalent in assessment to 4 taught courses) allows you to focus on a specific area of interest, with opportunities to collaborate with businesses and other stakeholders. You choose your dissertation subject, in discussion with your supervisor.

- Additional information
If you study at our Orkney Campus, you will also benefit from a number of activities including guest lectures and practical sessions, which help to develop your skills and knowledge in your field of study, and offer opportunities to meet developers and others involved in the renewable energy industry.

Scholarships available

We have a number of fully funded Scottish Funding Council (SFC) scholarships available for students resident in Scotland applying for Renewable Energy Development (RED) MSc. Find out more about this scholarship and how to apply http://www.hw.ac.uk/student-life/scholarships/postgraduate-funded-places.htm .

English language requirements

If your first language is not English, or your first degree was not taught in English, we’ll need to see evidence of your English language ability. The minimum requirement for English language is IELTS 6.5 or equivalent. We offer a range of English language courses (See http://www.hw.ac.uk/study/english.htm ) to help you meet the English language requirement prior to starting your masters programme:
- 14 weeks English (for IELTS of 5.5 with no more than one skill at 4.5);
- 10 weeks English (for IELTS of 5.5 with minimum of 5.0 in all skills);
- 6 weeks English (for IELTS 5.5 with minimum of 5.5 in reading & writing and minimum of 5.0 in speaking & listening)

Distance learning students

Please note that independent distance learning students who access their studies online will be expected to have access to a PC/laptop and internet.

Find information on Fees and Scholarships here http://www.postgraduate.hw.ac.uk/prog/msc-renewable-energy-development-red-/

Read less
This Master Program is unique throughout Europe's postgraduate education landscape. It is the first cross-border course dealing with the future issues of alternative energy production. Read more
This Master Program is unique throughout Europe's postgraduate education landscape. It is the first cross-border course dealing with the future issues of alternative energy production. In the beginning the focus of this program relied on contributions from Austria, Hungary and Slovakia. Meanwhile the international orientation was enlarged.

The program is designed more and more cross-border in view of the growing markets in Central and Eastern Europe and the expected investments of enterprises in these countries. The international orientation of the program is reflected not only in the curriculum, but also in the cross-border cooperation with universities and organizations of other countries in the scope of country modules.

Tailor-made country modules are offered to gain in-depth knowledge on energy markets in CEE.

Contents
During the first academic year basic knowledge is taught in order to achieve a uniform level of knowledge on renewable energy among the students. A systematic integration of theory, practice and case studies ensures that the knowledge acquired by the participants can be directly put into practice in their respective companies:

Introduction on Renewable Energy
Biomass, Biofuels and Biogas
Solar Energy – Solar Heating and Photovoltaics
Geothermal Energy, Wind Power, and Small Hydro Power
Efficient Energy Use and Thermal Building Optimization
General Legal and Economical Frameworks
Integration of Renewable Energy Sources into the Energy System
Management and Soft Skills
Perspectives on the Use of Renewable Energy
Master´s Thesis

Target Group

Individuals within companies, organisations, and authorities who are engaged in planning, operating or evaluation of renewable energy or who are involved in financing, promotion, legal licensing, operation of facilities for the use of renewable energy or environmental issues.

Read less
Renewable energy and cutting carbon emissions now top the global environmental agenda. This programme addresses the fundamentals of renewable energy and shows how solar, wind and other such energy sources can be efficiently integrated into practical power systems. Read more
Renewable energy and cutting carbon emissions now top the global environmental agenda. This programme addresses the fundamentals of renewable energy and shows how solar, wind and other such energy sources can be efficiently integrated into practical power systems.

You’ll study core power engineering topics such as power electronic converters, machines and control alongside modules specific to renewable energy sources, on topics like power system modelling, analysis and power converters.

At the same time, you’ll study a unique set of modules on the efficient generation of electricity from solar and wind power, as well as integrating renewable generators into micro-grids, with stability analysis and active power management. Power electronics design is covered in depth, including conventional and emerging converter topologies and advances in semiconductor power devices.

You’ll be prepared to meet the renewable energy challenges of the 21st century in a wide range of careers.

Read less
This is a 12 month full-time MSc degree course (See http://www.postgraduate.hw.ac.uk/prog/msc-marine-renewable-energy/#overview ) taught at our Orkney Campus. Read more

Overview

This is a 12 month full-time MSc degree course (See http://www.postgraduate.hw.ac.uk/prog/msc-marine-renewable-energy/#overview ) taught at our Orkney Campus. It involves studying 8 taught courses. If you can demonstrate that you have already mastered the subject, you may apply for an exemption from one of the taught courses and undertake a Design Project instead. The MSc programme is completed with a research dissertation equivalent to 4 taught courses.

For more information visit http://www.hw.ac.uk/schools/life-sciences/research/icit.htm

Distance Learning

The Marine Renewable Energy MSc/Diploma is also available for independent distance learning. For distance learners, the main difference is that you will undertake the Development Project alone rather than as part of a group. You can still obtain the full MSc in Marine Renewable Energy, or you can opt to study fewer courses, depending on your needs.

Scholarships available

We have a number of fully funded Scottish Funding Council (SFC) scholarships available for students resident in Scotland applying for Marine Renewable Energy. Find out more about this scholarship and how to apply http://www.hw.ac.uk/student-life/scholarships/postgraduate-funded-places.htm .

Programme content

The Diploma and MSc degree course involves studying the 8 taught courses outlined below. If a student can demonstrate that they have already mastered the subject, they may undertake a Development Project instead of one of these courses.

- Energy in the 21st Century
This course is designed to give you a broad understanding of the environmental, political and socio-economic context for current developments in renewable energy. The course examines the extent of current energy resources and how energy markets function. It covers some energy basics you will need for the rest of the programme (e.g. thermodynamics, efficiency conversions) as well as environmental issues associated with energy use, climate change and the political and policy challenges involved in managing energy supply and achieving energy security.

- Economics of renewable energy
This course gives an understanding of the economic principles and mechanisms which affect energy markets today. It covers price mechanisms, the economics of extracting energy and the cost-efficiency of renewable energy technologies. You will learn about economic instruments used by policy-makers to address environment and energy issues, economic incentives to stimulate renewable energy development and about environmental valuation.

- Environmental Policy & Risk
This course explores the legal and policy context in which renewable energy is being exploited. You will gain an understanding of international law, particularly the Law of the Sea, property rights and how these relate to different energy resources. The course also looks at regulatory issues at the international, European and UK level, which affect how energy developments are taken forward, as well as risk assessment and management in the context of renewable energy developments.

- Oceanography & Marine Biology
This course is designed to give you an understanding of the science of waves and tides, and how this affects efforts to exploit energy from these resources. You will also learn about marine ecosystems and how these may be impacted by energy extraction and about the challenges and impacts associated with carrying out engineering operations in the marine environment.

- Marine Renewable Technologies
You will gain an understanding of renewable energy technologies which exploit wind, wave and tidal resources. The focus is on technical design issues which developers face operating in the marine environment, as well as the logistics of installation, operations and maintenance of marine energy converters.

- Renewable Technology: Integration
This course explores the technical aspects of generating renewable energy and integrating it into distribution networks. You will learn about the electricity grid and how electrical power and distribution systems work. You will find out about different renewable fuel sources and end uses, and the challenges of energy storage.

- Development Appraisal
Looking at what happens when renewable energy technologies are deployed, this course examines development constraints and opportunities: policy and regulatory issues (including strategic environmental assessment, environmental impact assessment, landscape assessment, capacity issues and the planning system). It also looks at the financial aspects (valuation of capital asses, financing projects and the costs of generating electricity) and at project management.

- Development Project
This is a team project, where students have the opportunity to apply what they have learned through the other courses in relation to a hypothetical project. You have to look at a range of issues including resource assessment, site selection, development layout, consents, planning and economic appraisal, applying the knowledge and tools you have studied.

- Dissertation
This research project (equivalent in assessment to 4 taught courses) allows you to focus on a specific area of interest, with opportunities to collaborate with businesses and other stakeholders. You choose your dissertation subject, in discussion with your supervisor.

- Additional information
If you study at our Orkney Campus, you will also benefit from a number of activities including guest lectures and practical sessions which help to develop your skills and knowledge in your field of study, and offer opportunities to meet developers and other involved in the renewable energy industry.

English language requirements

If your first language is not English, or your first degree was not taught in English, we’ll need to see evidence of your English language ability. The minimum requirement for English language is IELTS 6.5 or equivalent. We offer a range of English language courses (http://www.hw.ac.uk/study/english.htm ) to help you meet the English language requirement prior to starting your masters programme:
- 14 weeks English (for IELTS of 5.5 with no more than one skill at 4.5);
- 10 weeks English (for IELTS of 5.5 with minimum of 5.0 in all skills);
- 6 weeks English (for IELTS 5.5 with minimum of 5.5 in reading & writing and minimum of 5.0 in speaking & listening)

Distance learning students

Please note that independent distance learning students who access their studies online will be expected to have access to a PC/laptop and internet.

Find information on Fees and Scholarships here http://www.postgraduate.hw.ac.uk/prog/msc-marine-renewable-energy/#overview

Visit the Marine Renewable Energy MSc/Diploma page on the Heriot-Watt University web site for more details!

Read less
Discover the real-world career opportunities in the energy sector with this MSc in Energy and Environmental Technology and Economics. Read more
Discover the real-world career opportunities in the energy sector with this MSc in Energy and Environmental Technology and Economics.

Who is it for?

Wherever you are, energy has an implication. This course is for students who want to engage with different types of settings to research and establish the energy, environmental and technological implications that exist within them. Energy and Environmental Technology and Economics students will care for the environment as a sustainable system and ultimately have a desire to improve conditions for the wider population.

Students come from a range of backgrounds including engineering, finance and economics – and from within the energy industry itself.

Objectives

This Masters degree has been designed to give you a wide perspective when it comes to analysing and forecasting the future for energy, environmental technology and economics. We engage with the industry so you gain a real-world understanding of the problems that exist, and we consider our own ethical responsibilities in relation to energy use.

Imagine a Grade 1-listed building such as the Guildhall in London. As an energy consultant your task is to analyse the site to make it more efficient. But there is a caveat: you cannot make any structural changes to the walls or the windows. The MSc Energy and Environmental Technology and Economics course gives you the tools to examine and address these kinds of challenges.

The MSc Energy and Environmental Technology and Economics course is not about learning academic theories. Instead we focus on the breadth of the subject in the real world. By engaging with practising businesses and trade associations we identify a range of perspectives, and look at the influence of a myriad of other forces at play, from regulation and government funding, to behavioural psychology and emerging technologies. Here are some of the questions the course poses:
-Does this new form of technology operate as it should?
-How does the UK relate to other European countries when it comes to energy efficiency?
-How does organisational psychology affect energy use within a company?
-How do you decide which energy contract to choose?
-What is the impact of a consumer society on personal energy use?

Placements

There is no formal requirement to do an industry-based placement as part of the programme. However, some students arrange to undertake their dissertation research within a company or within their part of the world. A recent student investigated the future of coal-fired generation in Turkey, and another student is combining a work placement at The World Energy Council with their dissertation.

Academic facilities

As part of the University of London you can become a member of Senate House Library for free with your student ID card.

Teaching and learning

Teaching is organised into modules comprising four consecutive day courses taken at a rate of one a month or so. This format makes the programme accessible for students who want to study part time while working.

Full-time students are also welcome. Whether you choose to take the course as a part-time or full-time student, we will offer a great deal of support when it comes to helping you prepare for the modules and project work. You will be expected to devote a significant part of your non-taught hours to project work as well as private study.

Our course is led by an exceptional group of experts in energy, supply, demand management and policies. As an example, one of our module leaders leads the UK contribution to writing international energy management standards and informing policy through the European Sector Forum for Energy Management. This forum looks at methodologies across the continent. There is also input to global standards development through the International Standards Organisation (ISO). At City we bring on board people with well-established academic careers as well as leaders from the energy industry. The programme has strong links with industry and commerce and involves many visiting lecturers who hold senior positions in their fields.

The Energy and Environmental Technology and Economics MSc gives you the opportunity to consider the role of International Energy Management Standards. You will explore the opportunities these standards provide for global service users and providers in relation to reducing energy costs and the environmental impact of energy use.

You will discover the range of current European and International Standards, explore why they are needed and how they are developed, and examine the benefits they deliver through case studies.

The UK has had a leading role in developing these standards in terms of both their writing and implementation. For example the Energy Audit standard, which forms part of the EU Energy Efficiency Directive, Article 8, mandates audits for private sector, non-SME organisations. In the UK this has been implemented as the Energy Savings Opportunities Scheme (ESOS).

Modules

Each course module is taught over four consecutive days of teaching with one module each month. Alongside the teaching you will have coursework to complete for each module. The modules run from October to April, and in the remaining time, you will concentrate on your dissertation, which forms a significant part of the programme.

The dissertation gives you the opportunity to create your own questions and to decide on your own area of interest. It should be a detailed investigation into a subject on energy supply and/or demand, with your own analysis and conclusions outlining the way forward. You may see the focus of your dissertation as a future career path, but whatever your area of study, these final few months of the degree should embody your vision of the future.

You will take four core modules and have six elective modules from which you can choose four topics from diverse subjects relating to energy supply and demand. These include energy in industry and the built environment, renewables, energy markets from the purchaser’s perspective and water supply and management. The latter has close parallels, and directly engages, with energy. You start the course with an introduction to energy and environmental issues and energy policies and economic dimensions in the first term, but you do not need to follow the course in any particular order from this point onwards.

If you are interested in sustainability, you have the option of taking up to two elective modules from the MSc in Environmental Strategy offered by the University of Surrey.

Completing eight modules and four examinations and four modular assessments will lead to a Postgraduate Diploma. Completing four core and four elective modules and a dissertation will lead to a Masters degree. If you are interested in this course may also be interested in the MSc Renewable Energy and Power Systems Management.

Core modules
-Introduction to energy and environmental issues (15 credits)
-Energy policies and economic dimensions (15 credits)
-The energy market from the purchaser's perspective (15 credits)
-Corporate energy management (15 credits)

Elective modules
-Energy, consumer goods and the home (15 credits)
-Transport energy and emissions (15 credits)
-Energy in industry and the built environment (15 credits)
-Renewable energy and sustainability (15 credits)
-Risk management (15 credits)
-Water supply and management (15 credits)

Career prospects

The story of energy is now part of public debate and climate change drives the international agenda. In the UK, there are additional energy supply issues, through the decline of existing nuclear capacity, growing imports of fossil fuels and challenging medium-term targets for renewables and low carbon supply.

Our priority is to make you employable in a range of sectors in which effective energy supply and demand side management has become an important consideration.

You will graduate with economic and market-based skills relevant to complying with relevant legislation and technical and engineering skills related to energy generation and management.

With strong industry links and working level experience from our exceptional team of expert lecturers, as well as the diverse modules on offer, you will be equipped to become a leader and entrepreneur in your chosen area of specialisation within the realm of energy management, supply or policy making.

Our graduates have gone on to hold high-ranking positions as energy consultants, data analysts and directors of corporate sustainability working within organisations including:
-AK Home Energy
-Enelco Environmental Technology
-Energy Institute
-Equinoxe Services Ltd
-Log Tech Consultancy
-Ofgem
-Peckham Power
-RWE NPower Renewables
-SCFG

Read less
Energy Engineering is the branch of engineering concerned with the design and the management of energy plants and their components in order to ensure the best use of the available resources with the minimum environmental impact. Read more

Mission and goals

Energy Engineering is the branch of engineering concerned with the design and the management of energy plants and their components in order to ensure the best use of the available resources with the minimum environmental impact. Energy plants are systems in which energy forms are transformed and utilized. To name a few examples: large thermal power stations, air-conditioning and climate control equipment for residences and offices, vehicle engines, airplane propellers, solar panels etc.
The Master of Science in Energy Engineering prepares professionals to design, select and use the main technologies in energy transformation, to actively follow scientific improvements and to operate effectively in a competitive and multi-disciplinary industrial context, characterized by significant environmental, regulatory and safety constraints. Students will analyze broad themes as well as specific subjects for which both a rigorous methodological approach to thermodynamics and an open attitude towards related interdisciplinary topics are required.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/energy-engineering/energy-engineering-track/

Professional opportunities

Graduates can find employment in several sectors: in the technical area of designing, testing, running, and maintaining the energy systems, like heating and cooling systems, thermal power and hydro-electric power plants, engines, oil and gas fields; in the energy management area; and in utilities and public boards that supply energy as electricity and natural gas.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Energy_Engineering_MI.pdf
Energy Engineering is the branch of engineering concerned with the design and the management of energy plants and their components in order to ensure the best use of the available resources with the minimum environmental impact. Energy plants are
systems in which energy forms are transformed and utilized. To name a few examples: large thermal power stations, air-conditioning and climate control equipment for residences and offices, vehicle engines, airplane propellers, solar panels etc. The Master of Science in Energy Engineering prepares professionals to design, select and use the main technologies in energy transformation, to actively follow scientific improvements and to operate effectively in a competitive and multi-disciplinary industrial context, characterized by significant environmental, regulatory and safety constraints. Students will analyze broad themes as well as specific subjects for which both a rigorous methodological approach to thermodynamics and an open attitude towards related interdisciplinary topics are required.
Graduates can find employment in several sectors: in the technical area of designing, testing, running, and maintaining the energy systems, like heating and cooling systems, thermal power and hydro-electric power plants, engines, oil and gas fields; in the energy management area; and in utilities and public boards that supply energy as electricity and natural gas. The programme is taught in English.

Subjects

- Five tracks available: Power Production; Heating, Ventilation and Air-Conditioning; Oil and Gas Engineering; Energy Engineering for an Environmentally Sustainable World (offered on Piacenza campus, see separate leaflet); Energy for Development.

- Subjects and courses common to all the tracks: Heat and Mass Transfer; Fundamentals of Chemical Processes; Advanced Energy Engineering and Thermoeconomics;; Combustion and Safety; Energy Conversion or Refrigeration, Heat Pumps and Thermal Power Systems and Components; Energy Economics or Project Management or Management Control Systems; Graduation Thesis.

- Optional subjects according to the selected track: Development Economy; Engineering and Cooperation for Development; Power Production from Renewable Sources; Engineering of Solar Thermal Processes; Petroleum Reservoir Engineering; Petroleum Technology and Biofuel; Transport Phenomena in the Reservoirs; CFD for Energy Engineering Analysis; System and Electrical Machines; Advanced Energy Systems; Dynamic Behavior and Diagnostics of Machines; Materials for Energy; Turbomachinery; Internal Combustion Engines; Air Conditioning and Room Pollutant-Controlling Plants, Energy Savings and Renewable Energies in Buildings; Applied Acoustics and Lighting; Design of Thermal Systems; Energy Systems and Low-Carbon Technologies; Air Pollutions and Control Engineering; Operation and Control of Machines for Power Generation; Bio-energy and Waste-to-Energy Technologies; Smart Grids and Regulation for Renewable Energy Sources.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/energy-engineering/energy-engineering-track/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/energy-engineering/energy-engineering-track/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
This course is for engineers who wish to develop their skills and knowledge in energy systems that will meet future energy needs. Read more
This course is for engineers who wish to develop their skills and knowledge in energy systems that will meet future energy needs. Such energy systems will need to be designed and implemented in accordance with principles of sustainability.

The course content is designed to be relevant to international, national and local government energy policies and strategies, and will be of value to anyone working in an energy related engineering discipline. The primary focus of the course is for graduates in building services, mechanical, electrical and chemical engineering.

The aims of the course are to:
- Present and take forward arguments for sustainability in the design and implementation of energy delivery systems

- Provide you with a broad basis of advanced understanding in the technologies that deliver high quality energy services with minimum environmental impact

- Design appropriate decentralised energy delivery systems, based on a range of criteria including environment, cost and engineering potential

- Develop your understanding of policy, market and institutional factors that promote or constrain innovation.

Excellent scholarship opportunity

Students who have accepted an offer for a full-time place on this course are encouraged to apply for LSBU's Kevin Herriott scholarship. Find out more about the Kevin Herriott scholarship.

Students on this course are also eligible to apply for a bursary from the Panasonic Trust fellowship scheme, worth £8,000.

See the website http://www.lsbu.ac.uk/courses/course-finder/sustainable-energy-systems-msc

Modules

An indicative list of topics covered on this course are:

- Renewable energy technologies 1
This module provides the necessary knowledge and skills to analyse the technical performance, environmental impact and economic feasibility of a variety of solar and wind powered systems. The module provides a systematic understanding of current knowledge, and a critical awareness of current problems and new insights at the forefront of professional practice; train students to evaluate critically current research and advanced scholarship in the field of solar and wind power; enables students to evaluate solar and wind power technologies, develop critiques of them and, where appropriate, to propose novel solutions.

- Renewable energy technologies 2
The module provides the necessary knowledge and skills to analyse the technical performance, environmental impact and economic feasibility of a number renewable energy technologies such as fuel cells, biofuels, geothermal, and micro-hydropower systems.

- Energy resource and use analysis
This module is designed to develop strategic and operational management skills in the fields of infrastructure asset management and project appraisal. It covers design life extensions, risk and asset management techniques for infrastructure, and techniques for physical appraisal of infrastructure, and their economic, environmental and social impacts.

- Electrical power
The module covers electrical power engineering as applied to the design of systems in buildings. In particular, this includes the connection of, and the effects of, small-scale embedded generation as might be employed to exploit renewable energy sources. The module aims to provide appreciation and understanding of electrical services design in buildings with particular reference to safety requirements and the effects of embedded generation on the supplier and the consumer.

- Sustainable refrigeration
The module introduces the principles of thermodynamics, and applies them to the study and design of energy efficient refrigeration systems. Vapour compression, absorption and other novel cycles are analysed and modelled Practical applications of sustainable refrigeration are investigated through case studies.

- Environmental management
The module is designed to develop understanding of the way in which human social and economic activities impact on the environment. The emphasis is on how managers can assess and influence the environmental impact of their particular organisation, with reference to key technologies and the political and legal constraints within which organisations must operate.

- Energy engineering project

Employability

The emergence of sustainable energy technologies, together with targets for implementation, mean that specialist engineers will increasingly be in demand to specify, design and install these systems. Many engineering consultancies and energy service companies are developing specialist sustainability teams, and already there is a shortage of skilled personnel.

Professional accreditation

The course provides the Masters level academic requirements leading to Chartered Engineer status when following on from an appropriate accredited BEng degree.

The course is accredited on behalf of the Engineering Council as meeting the requirements for Further Learning for registration as a Chartered Engineer. Candidates must hold a CEng accredited BEng/BSc (Hons) undergraduate first degree to comply with full CEng registration requirements.

LSBU Employability Services

LSBU is committed to supporting you develop your employability and succeed in getting a job after you have graduated. Your qualification will certainly help, but in a competitive market you also need to work on your employability, and on your career search. Our Employability Service will support you in developing your skills, finding a job, interview techniques, work experience or an internship, and will help you assess what you need to do to get the job you want at the end of your course. LSBU offers a comprehensive Employability Service, with a range of initiatives to complement your studies, including:

- direct engagement from employers who come in to interview and talk to students
- Job Shop and on-campus recruitment agencies to help your job search
- mentoring and work shadowing schemes.

Professional links

Accreditation:
This course is accredited by the Chartered Institution of Building Services Engineers (CISBE) and the Energy Institute as masters further learning to meet the academic requirements of becoming a Chartered Engineer (with a suitable first degree).

The course is accredited on behalf of the Engineering Council as meeting the requirements for Further Learning for registration as a Chartered Engineer. Candidates must hold a CEng accredited BEng/BSc (Hons) undergraduate first degree to comply with full CEng registration requirements.

The Chartered Institution of Building Services Engineers (CIBSE) is the standard setter and authority on building services engineering in the UK and overseas. It speaks for the profession and supports career development.

The Energy Institute is the professional members' body for the energy industry, delivering good practice and professionalism across the sector. Its purpose is to develop and disseminate knowledge, skills and good practice towards a safer, more secure and sustainable energy system.

Read less
Effective use of renewable energy and improvements in the efficiency of power generation facilities will enable better energy management in the future and help reduce environmental impact. Read more

Why take this course?

Effective use of renewable energy and improvements in the efficiency of power generation facilities will enable better energy management in the future and help reduce environmental impact. This course responds to an urgent need for specialists in energy and power systems management, as well as a growing skills shortage of people with core knowledge in this field.

The course provides relevant, up-to-date skills that will equip both graduates and working professionals in the advanced concepts of sustainable electrical power and energy generation. It offers skills for operation, control, design, regulation and management of power systems and networks of the future. You will also receive training in and understanding of energy production, delivery, consumption and efficiency.

What will I experience?

On this course you will:

Benefit from experts in the industry who will deliver part of the course as visiting lecturers, bringing professional expertise and industry-relevant material
Be encouraged to reach a level of competence and professionalism where you can effectively integrate your technical and non-technical knowledge to solve a range of problems of a complex nature
Learn in a challenging and stimulating study environment
Develop a range of key skills by means of opportunities provided in the study units
Being an MSc course, you are encouraged and expected to be able to reach a level of competence and professionalism where you can effectively integrate your technical and non-technical knowledge to solve a range of problems of a complex nature.

What opportunities might it lead to?

The course will help to maximise your career potential in this field and equips you to work as an engineer, at an advanced level, in the fields of energy and power systems management.

Module Details

You will study several key topics and complete a four-month individual project in which you apply your knowledge to a significant, in-depth piece of analysis or design. Projects are tailored to your individual interests and may take place in our own laboratories or, by agreement, in industry. Experts from Industry (STS Nuclear) deliver part of the course as visiting lecturers, bringing professional expertise and industry-relevant material to the programme.

Here are the units you will study:

Power Systems Technology: This unit provides an in-depth overview of contemporary electrical power systems. It covers the elements of electrical power systems including generation, transmission and distribution in the mixed energy source paradigm.

Electrical Machines and drives: Provides an in-depth overview of the operational principles and physical design of DC and AC electrical machines as well as broad understanding of concepts of power electronics and power electronic converters, so that you can describe their application and selection criteria. You will develop an understanding of the issues present in converter design, including the impact of physical layout and heat dissipation.

Energy Systems: Focuses on the techniques and principles of operation of thermodynamics and combustion systems, as well as the provision and management of energy. It also focuses on power generation and combined systems, BioMass processers application of heat and fluid transfer.

Renewable and Alternative Energy: Provides an in-depth coverage of the principles of renewable and alternative energy systems: Winds, Solar, BioMass, Geothermal, Fuel Cells, Hydrogen Technologies and Nuclear Energy.

Nuclear Technology: A study of nuclear engineering including the theory of atomic and nuclear physics, methods and benefits of generating electricity from nuclear power plants, and the effects of ionising radiation. The nuclear fuel cycle and the associated environmental impacts are also considered. The development of international guidance on nuclear and radiological safety and a comparison of national regulatory structures are analysed. The importance of safety cultures, safety behaviours and safety cases is a key element throughout this module.

Energy Management: The unit is specifically designed to provide the students with the basic of economical analysis and evaluation of energy projects and asset management as well as risk and hazard assessment, comprising legislation, hazard identification and quantification, quantified risk analyses, methods of elimination/mitigation, economic appraisal of integrated renewable, and petroleum projects; with numerous pertinent case studies.

Programme Assessment

You will be taught through a mixture of lectures, seminars, tutorials (personal and academic), laboratory sessions and project work. The course has a strong practical emphasis and you will spend a significant amount of time in our Energy, Power systems and Electronic laboratories.

A range of assessment methods encourages a deeper understanding of engineering and allows you to develop your skills. Here’s how we assess your work:

Written examinations
Coursework
Laboratory-based project work
A major individual project/dissertation

Student Destinations

This course is designed to respond to a growing skills shortage of people with core knowledge in energy and power systems management. It is an excellent preparation for a successful career in this ever expanding and dynamic field.

On successful completion of the course, you will have gained the skills and knowledge that will make you attractive to a wide variety of employers with interests ranging from overall system design to the more detailed development of subsystems. You will acquire the ability to critically evaluate methodologies, analytical procedures and research methods in energy and power systems management and in the use of state-of-the-art computational tools, the design of sustainable electrical power systems and networks and regulatory frameworks. For practicing engineers with professional business experience, the course is an opportunity to update your knowledge of current design practice and also to familiarise themselves with developments in codes and methods of analysis.

Read less
Gain the theoretical and practical skills to explore the growing field of renewable energy technologies. Renewable energy technologies have become an important part of energy production. Read more
Gain the theoretical and practical skills to explore the growing field of renewable energy technologies.

Renewable energy technologies have become an important part of energy production. Strong initiatives and investments from the public and private sectors have made this a rapidly growing field and created further career opportunities in the sector.

This is one of the few courses offered at Masters level which not only encompasses renewable energy technologies but also complements with the essential related elements of renewable energy finance and environmental law.

These elements touch on financial analytical tools, project structuring, finance and management in renewable energy, while the law element will consider legal framework impacting upon renewable energy provision.

See the website http://www.napier.ac.uk/en/Courses/MSc-Renewable-Energy-Postgraduate-FullTime

What you'll learn

The course will extend your skills into various renewable energy technologies such as wind, solar, hydro, biomass, wave etc.

Study renewable energy capture, energy storage, energy audit and life-cycle analysis, as well as learning the concept of the system, design, development and applications.

The course is accredited by the Energy Institute, UK. Combined with a suitable accredited undergraduate degree, the MSc degree would then satisfy the academic requirements of the UK Engineering Council for Chartered Engineer (CEng) status.

Modules

• Sustainable energy technologies
• Solar energy: technology, modelling and analysis
• Renewable energy finance and environmental law
• Research skills and project management
• Distributed generation systems
• MSc Project module

Module choice of
• Control engineering
• Energy materials
• Mechatronic systems
• Sustainable urban property development

Study modules mentioned above are indicative only. Some changes may occur between now and the time that you study.

Career opportunities

• Consultancies
• Renewable energy industries
• Renewable energy technology/design
• Building services
• Research & development

How to apply

http://www.napier.ac.uk/study-with-us/postgraduate/how-to-apply

SAAS Funding

Nothing should get in the way of furthering your education. Student Awards Agency Scotland (SAAS) awards funding for postgraduate courses, and could provide the help you need to continue your studies. Find out more: http://www.napier.ac.uk/study-with-us/postgraduate/fees-and-funding/saas-funded-courses

Read less
*Why do energy efficiency measures often fail?. *How will we transition into a post-carbon energy system?. *Why do some energy technologies spread, while others disappear?. Read more
*Why do energy efficiency measures often fail?
*How will we transition into a post-carbon energy system?
*Why do some energy technologies spread, while others disappear?
*How can people be persuaded to change their energy habits?

The MSc in Energy and Society investigates energy systems from all angles. On this course you will look at energy in practice, what it means to make an energy transition, what we mean by energy justice, and how energy practices change.

The programme brings in leading experts in energy studies at Durham from Anthropology, Engineering, Economics, Law, Geography, Geosciences and many other departments. It is taught through intensive block-teaching, field-study, original dissertation research and a range of optional modules that complement the core teaching. You will learn about current and new energy technologies, histories of energy, how to understand energy policy, and how to study energy practices.

A broad range of optional subjects enables you to tailor the course according to your particular interests – you can take modules in law, international politics, advanced engineering, geography, risk, development or resilience, depending on your prior qualifications. In your fully supported personal research project you will deepen your expertise in your chosen area.

The full-time course consists of two terms of teaching, during which students are introduced to the range of research questions and methods, and a dissertation, involving the design, development and implementation of an independent research project. Students work closely with academic staff, and have the opportunity to become involved in active research projects.

Compulsory modules

-Dissertation
-Energy in Practice (Field Study)
-Context and Challenges in Energy
-Energy Society and Energy Practices

Optional modules from across the University and have previously included:

-Academic and Professional Skills in Anthropology
-Fieldwork and Interpretation
-Group Renewable Energy Design Project
-Key Issues in Sociocultural Theory
-Society, Energy, Environment and Resilience
-Computational Methods for Social Sciences
-Anthropology and Development
-Negotiating the Human
-Statistical Analysis in Anthropology
-Energy, Markets and Risk
-Renewable Energy and the Environment
-Risk Frontiers

Please see http://www.durham.ac.uk/anthropology/postgraduatestudy/taughtprogrammes/mscenergyandsociety for further information on modules.

Dissertation

We place an emphasis on independent learning. This is supported by the University’s virtual learning environment, extensive library collections and informal contact with tutors and research staff. We consider the development of independent learning and research skills to be one of the key elements of our postgraduate taught curriculum and one which helps our students cultivate initiative, originality and critical thinking.

The dissertation is a significant piece of independent research that constitutes a synthesis of theory, method and practice in anthropology and is supported by an individual supervisor and the dissertation coordinator.

Previous dissertations and research projects as part of the course have been undertaken in partnership with DONG Energy UK, Haringey Borough of London, National Energy Action, Durham County Council, energy enterprises and community energy schemes.

Careers

This course attracts high quality applicants from all over the world and delivers highly-skilled graduates who are able to communicate across disciplines and countries to further environmental progress and energy justice. Graduates of the MSc will be in demand from industry, community organisations, Non-Governmental Organisations and governments around the world. Graduates have gone on to work in Energy justice organisations, local authorities, energy consultancies and further Doctoral study.

Student support

Throughout the programme, all students meet regularly with the degree tutor, who provides academic support and guidance. Furthermore, all members of teaching staff have weekly office hours when they are available to meet with students on a ‘drop-in’ basis. In term time, the department also has an extensive programme of departmental and research group seminars which postgraduate students are encouraged and expected to attend. The undergraduate Anthropology Society also organises its own visiting lecturer programme. We ensure that we advertise any other relevant seminars and lectures in Durham, Newcastle and further afield, and encourage students to attend relevant conferences.

Before the academic year starts, we provide information on preparation for the course. On arrival we have induction sessions and social events, headed by the Director of Postgraduate Studies and attended by both academic and administrative staff. Students also attend an “Introduction to Research Groups in Anthropology”.

Postgraduate study at Durham University

The MSc Energy and Society is based in Durham University’s Department of Anthropology in association with the Durham Energy Institute. Durham has one of the largest Anthropology departments in the world with 40 research active academic teaching staff working across the full range of the discipline. Our Anthropology department is ranked in the top 50 of the prestigious QS World University Subject Rankings. The overall QS rankings also placed Durham 54th in the world for citations, recognising the impact and influence of its research among other academics, and 31st globally for employer reputation, giving recognition to the quality of, and international demand for, Durham’s graduates.

Students on this course can become members of the Durham Energy Institute (DEI) community and can attend its wide range of seminars and events, benefitting from its extensive network of contacts in the energy sector. DEI ( http://www.durham.ac.uk/dei/ ) covers the spectrum of energy research from technological innovation, to the social, political and economic dimensions of energy. DEI addresses energy challenges collaboratively through strong partnerships with industry, international partners, governments, community groups and other academic institutions. This ensures our research is relevant, timely and effective.

Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X