• Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Imperial College London Featured Masters Courses
  • Leeds Beckett University Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of York Featured Masters Courses
  • Regent’s University London Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
Coventry University Featured Masters Courses
University of Sussex Featured Masters Courses
University of Kent Featured Masters Courses
Swansea University Featured Masters Courses
"renewable" AND "energy" …×
0 miles

Masters Degrees (Renewable Energy Management)

  • "renewable" AND "energy" AND "management" ×
  • clear all
Showing 1 to 15 of 243
Order by 
With declining fossil energy resources, environmental pollution and climate change, the need for sustainable energy supply is becoming more important. Read more
With declining fossil energy resources, environmental pollution and climate change, the need for sustainable energy supply is becoming more important. The international community has agreed upon the use of renewable energy as an instrument towards a sustainable energy development. Management of energy resources and technologies is a global issue and it needs well trained workforce – from policy level to practitioner level.

The objective of the program is to form such experts. Focusing on developing countries in the tropics and subtropics the MSc. Renewable Energy Management emphasizes a holistic approach considering both technical and socioeconomic aspects of energy management. Participants are provided with appropriate knowledge, methods and skills to analyze current problems in the field of renewable energy usage and related sectors.

Target groups of the program are recently graduated professionals with working experience in public or private institutions, authorities and enterprises of the energy sector. The applicants should be active in or dealing with energy or natural resources management and have an interest in learning and working in an intercultural and multidisciplinary environment.

The master program “Renewable Energy Management” (REM) provides a practice oriented and skills-based learning experience in which students develop their capacity for critical thinking, and creative problem solving. It addresses bachelor’s degree holders principally in Engineering, Natural Sciences and Social Sciences with experience in the area of energy, who aim to deepen their knowledge in Renewable Energy Resources Management and wish to acquire management and leadership skills as well as regional and intercultural competences. These experts should have a sound knowledge base in one of the many fields of renewable energy management. They ought to be able to assess renewable energy resources and develop appropriate solutions considering the complex linkages of renewable energy with economic, social and ecological aspects.

Contents

The studies cover a period of four semesters. The fourth semester is dedicated to the master thesis.

The didactic concept consists of two components: a technical and a social. The technical component provides the participants with the relevant and up to date knowledge necessary to take decisions towards a sustainable management of natural resources. The social component is equally important and aims at equipping the participants with the communicative, intercultural and managerial skills necessary to take up leadership positions in the natural resources sector and to work effectively in the framework of international cooperation.

Some of the core modules covered in this master include: Management of natural resources systems, International Cooperation and Development, Economics and governance. These are complimented by Methods and Tools such as using the Geographic Information System and Remote Sensing, environmental monitoring and Statistics, and learning to apply the knowledge in Projects.

Tuition

Semester contribution fees, additional fees for field trips, conference participation and course materials. For more information on the semester contribution fees: https://www.th-koeln.de/en/academics/fees_5908.php

Funding

Applicants may receive one of the limited numbers of scholarships. Available are full time scholarships from the DAAD EPOS Program for applicants from DAC-list countries.

Read less
Discover the real-world career opportunities in the energy sector with this MSc in Energy and Environmental Technology and Economics. Read more
Discover the real-world career opportunities in the energy sector with this MSc in Energy and Environmental Technology and Economics.

Who is it for?

Wherever you are, energy has an implication. This course is for students who want to engage with different types of settings to research and establish the energy, environmental and technological implications that exist within them. Energy and Environmental Technology and Economics students will care for the environment as a sustainable system and ultimately have a desire to improve conditions for the wider population.

Students come from a range of backgrounds including engineering, finance and economics – and from within the energy industry itself.

Objectives

This Masters degree has been designed to give you a wide perspective when it comes to analysing and forecasting the future for energy, environmental technology and economics. We engage with the industry so you gain a real-world understanding of the problems that exist, and we consider our own ethical responsibilities in relation to energy use.

Imagine a Grade 1-listed building such as the Guildhall in London. As an energy consultant your task is to analyse the site to make it more efficient. But there is a caveat: you cannot make any structural changes to the walls or the windows. The MSc Energy and Environmental Technology and Economics course gives you the tools to examine and address these kinds of challenges.

The MSc Energy and Environmental Technology and Economics course is not about learning academic theories. Instead we focus on the breadth of the subject in the real world. By engaging with practising businesses and trade associations we identify a range of perspectives, and look at the influence of a myriad of other forces at play, from regulation and government funding, to behavioural psychology and emerging technologies. Here are some of the questions the course poses:
-Does this new form of technology operate as it should?
-How does the UK relate to other European countries when it comes to energy efficiency?
-How does organisational psychology affect energy use within a company?
-How do you decide which energy contract to choose?
-What is the impact of a consumer society on personal energy use?

Placements

There is no formal requirement to do an industry-based placement as part of the programme. However, some students arrange to undertake their dissertation research within a company or within their part of the world. A recent student investigated the future of coal-fired generation in Turkey, and another student is combining a work placement at The World Energy Council with their dissertation.

Academic facilities

As part of the University of London you can become a member of Senate House Library for free with your student ID card.

Teaching and learning

Teaching is organised into modules comprising four consecutive day courses taken at a rate of one a month or so. This format makes the programme accessible for students who want to study part time while working.

Full-time students are also welcome. Whether you choose to take the course as a part-time or full-time student, we will offer a great deal of support when it comes to helping you prepare for the modules and project work. You will be expected to devote a significant part of your non-taught hours to project work as well as private study.

Our course is led by an exceptional group of experts in energy, supply, demand management and policies. As an example, one of our module leaders leads the UK contribution to writing international energy management standards and informing policy through the European Sector Forum for Energy Management. This forum looks at methodologies across the continent. There is also input to global standards development through the International Standards Organisation (ISO). At City we bring on board people with well-established academic careers as well as leaders from the energy industry. The programme has strong links with industry and commerce and involves many visiting lecturers who hold senior positions in their fields.

The Energy and Environmental Technology and Economics MSc gives you the opportunity to consider the role of International Energy Management Standards. You will explore the opportunities these standards provide for global service users and providers in relation to reducing energy costs and the environmental impact of energy use.

You will discover the range of current European and International Standards, explore why they are needed and how they are developed, and examine the benefits they deliver through case studies.

The UK has had a leading role in developing these standards in terms of both their writing and implementation. For example the Energy Audit standard, which forms part of the EU Energy Efficiency Directive, Article 8, mandates audits for private sector, non-SME organisations. In the UK this has been implemented as the Energy Savings Opportunities Scheme (ESOS).

Modules

Each course module is taught over four consecutive days of teaching with one module each month. Alongside the teaching you will have coursework to complete for each module. The modules run from October to April, and in the remaining time, you will concentrate on your dissertation, which forms a significant part of the programme.

The dissertation gives you the opportunity to create your own questions and to decide on your own area of interest. It should be a detailed investigation into a subject on energy supply and/or demand, with your own analysis and conclusions outlining the way forward. You may see the focus of your dissertation as a future career path, but whatever your area of study, these final few months of the degree should embody your vision of the future.

You will take four core modules and have six elective modules from which you can choose four topics from diverse subjects relating to energy supply and demand. These include energy in industry and the built environment, renewables, energy markets from the purchaser’s perspective and water supply and management. The latter has close parallels, and directly engages, with energy. You start the course with an introduction to energy and environmental issues and energy policies and economic dimensions in the first term, but you do not need to follow the course in any particular order from this point onwards.

If you are interested in sustainability, you have the option of taking up to two elective modules from the MSc in Environmental Strategy offered by the University of Surrey.

Completing eight modules and four examinations and four modular assessments will lead to a Postgraduate Diploma. Completing four core and four elective modules and a dissertation will lead to a Masters degree. If you are interested in this course may also be interested in the MSc Renewable Energy and Power Systems Management.

Core modules
-Introduction to energy and environmental issues (15 credits)
-Energy policies and economic dimensions (15 credits)
-The energy market from the purchaser's perspective (15 credits)
-Corporate energy management (15 credits)

Elective modules
-Energy, consumer goods and the home (15 credits)
-Transport energy and emissions (15 credits)
-Energy in industry and the built environment (15 credits)
-Renewable energy and sustainability (15 credits)
-Risk management (15 credits)
-Water supply and management (15 credits)

Career prospects

The story of energy is now part of public debate and climate change drives the international agenda. In the UK, there are additional energy supply issues, through the decline of existing nuclear capacity, growing imports of fossil fuels and challenging medium-term targets for renewables and low carbon supply.

Our priority is to make you employable in a range of sectors in which effective energy supply and demand side management has become an important consideration.

You will graduate with economic and market-based skills relevant to complying with relevant legislation and technical and engineering skills related to energy generation and management.

With strong industry links and working level experience from our exceptional team of expert lecturers, as well as the diverse modules on offer, you will be equipped to become a leader and entrepreneur in your chosen area of specialisation within the realm of energy management, supply or policy making.

Our graduates have gone on to hold high-ranking positions as energy consultants, data analysts and directors of corporate sustainability working within organisations including:
-AK Home Energy
-Enelco Environmental Technology
-Energy Institute
-Equinoxe Services Ltd
-Log Tech Consultancy
-Ofgem
-Peckham Power
-RWE NPower Renewables
-SCFG

Read less
This is a 12 month full-time Masters degree (See http://www.postgraduate.hw.ac.uk/prog/msc-renewable-energy-development-red-/ ) course taught at our Orkney Campus. Read more

Overview

This is a 12 month full-time Masters degree (See http://www.postgraduate.hw.ac.uk/prog/msc-renewable-energy-development-red-/ ) course taught at our Orkney Campus. It involves studying 8 taught courses and completing a research dissertation equivalent to 4 taught courses. If you can demonstrate that you have already mastered the subject, you may apply for an exemption from one of the taught courses and undertake a Design Project instead.

For more information visit http://www.hw.ac.uk/schools/life-sciences/research/icit.htm

Distance learning

The Renewable Energy Development MSc/Diploma is also available for independent distance learning. For distance learners, the main difference is that you will undertake the Development Project alone rather than as part of a group. You can still obtain the full MSc in Renewable Energy Development, or you can opt to study fewer courses, depending on your needs.

Programme content

- Energy in the 21st Century
This course is designed to give you a broad understanding of the environmental, political and socio-economic context for current developments in renewable energy. The course examines the extent of current energy resources and how energy markets function. It covers some energy basics you will need for the rest of the programme (e.g. thermodynamics, efficiency conversions) as well as environmental issues associated with energy use, climate change and the political and policy challenges involved in managing energy supply and achieving energy security.

- Economics of renewable energy
This course gives an understanding of the economic principles and mechanisms which affect energy markets today. It covers price mechanisms, the economics of extracting energy and the cost-efficiency of renewable energy technologies. You will learn about economic instruments used by policy-makers to address environment and energy issues, economic incentives to stimulate renewable energy development and about environmental valuation.

- Environmental Policy & Risk
This course explores the legal and policy context in which renewable energy is being exploited. You will gain an understanding of international law, particularly the Law of the Sea, property rights and how these relate to different energy resources. The course also looks at regulatory issues at the international, European and UK level, which affect how energy developments are taken forward, as well as risk assessment and management in the context of renewable energy developments.

- Environmental Processes
Particularly for those without a natural science background, this course provides a broad overview of the environmental processes which are fundamental to an understanding of renewable energy resources and their exploitation. You will study energy flows in the environment, environmental disturbance associated with energy use, and an introduction to the science of climate change. You will also learn about ecosystems and ecological processes including population dynamics and how ecosystems affect and interact with energy generation.

- Renewable Technology I: Generation
This course explores how energy is extracted from natural resources: solar, biomass, hydro, wind, wave and tide. It examines how to assess and measure the resources, and the engineering solutions which have been developed to extract energy from them. You will develop an understanding of the technical challenges and current issues affecting the future development of the renewable energy sector.

- Renewable Technology II: Integration
This course explores the technical aspects of generating renewable energy and integrating it into distribution networks. You will learn about the electricity grid and how electrical power and distribution systems work. You will find out about different renewable fuel sources and end uses, and the challenges of energy storage.

- Development Appraisal
Looking at what happens when renewable energy technologies are deployed, this course examines development constraints and opportunities: policy and regulatory issues (including strategic environmental assessment, environmental impact assessment, landscape assessment, capacity issues and the planning system). It also looks at the financial aspects (valuation of capital assets, financing projects and the costs of generating electricity) and at project management.

- Development Project
This is a team project, where students have the opportunity to apply what they have learned through the other courses in relation to a hypothetical project. You have to look at a range of issues including resource assessment, site selection, development layout, consents, planning and economic appraisal, applying the knowledge and tools you have studied.

- Optional design project
For students who can demonstrate existing knowledge covered by one of the courses, there is the option of understanding a design project supervised by one of our engineers.

- Dissertation
This research project (equivalent in assessment to 4 taught courses) allows you to focus on a specific area of interest, with opportunities to collaborate with businesses and other stakeholders. You choose your dissertation subject, in discussion with your supervisor.

- Additional information
If you study at our Orkney Campus, you will also benefit from a number of activities including guest lectures and practical sessions, which help to develop your skills and knowledge in your field of study, and offer opportunities to meet developers and others involved in the renewable energy industry.

Scholarships available

We have a number of fully funded Scottish Funding Council (SFC) scholarships available for students resident in Scotland applying for Renewable Energy Development (RED) MSc. Find out more about this scholarship and how to apply http://www.hw.ac.uk/student-life/scholarships/postgraduate-funded-places.htm .

English language requirements

If your first language is not English, or your first degree was not taught in English, we’ll need to see evidence of your English language ability. The minimum requirement for English language is IELTS 6.5 or equivalent. We offer a range of English language courses (See http://www.hw.ac.uk/study/english.htm ) to help you meet the English language requirement prior to starting your masters programme:
- 14 weeks English (for IELTS of 5.5 with no more than one skill at 4.5);
- 10 weeks English (for IELTS of 5.5 with minimum of 5.0 in all skills);
- 6 weeks English (for IELTS 5.5 with minimum of 5.5 in reading & writing and minimum of 5.0 in speaking & listening)

Distance learning students

Please note that independent distance learning students who access their studies online will be expected to have access to a PC/laptop and internet.

Find information on Fees and Scholarships here http://www.postgraduate.hw.ac.uk/prog/msc-renewable-energy-development-red-/

Read less
This is a 12 month full-time MSc degree course (See http://www.postgraduate.hw.ac.uk/prog/msc-marine-renewable-energy/#overview ) taught at our Orkney Campus. Read more

Overview

This is a 12 month full-time MSc degree course (See http://www.postgraduate.hw.ac.uk/prog/msc-marine-renewable-energy/#overview ) taught at our Orkney Campus. It involves studying 8 taught courses. If you can demonstrate that you have already mastered the subject, you may apply for an exemption from one of the taught courses and undertake a Design Project instead. The MSc programme is completed with a research dissertation equivalent to 4 taught courses.

For more information visit http://www.hw.ac.uk/schools/life-sciences/research/icit.htm

Distance Learning

The Marine Renewable Energy MSc/Diploma is also available for independent distance learning. For distance learners, the main difference is that you will undertake the Development Project alone rather than as part of a group. You can still obtain the full MSc in Marine Renewable Energy, or you can opt to study fewer courses, depending on your needs.

Scholarships available

We have a number of fully funded Scottish Funding Council (SFC) scholarships available for students resident in Scotland applying for Marine Renewable Energy. Find out more about this scholarship and how to apply http://www.hw.ac.uk/student-life/scholarships/postgraduate-funded-places.htm .

Programme content

The Diploma and MSc degree course involves studying the 8 taught courses outlined below. If a student can demonstrate that they have already mastered the subject, they may undertake a Development Project instead of one of these courses.

- Energy in the 21st Century
This course is designed to give you a broad understanding of the environmental, political and socio-economic context for current developments in renewable energy. The course examines the extent of current energy resources and how energy markets function. It covers some energy basics you will need for the rest of the programme (e.g. thermodynamics, efficiency conversions) as well as environmental issues associated with energy use, climate change and the political and policy challenges involved in managing energy supply and achieving energy security.

- Economics of renewable energy
This course gives an understanding of the economic principles and mechanisms which affect energy markets today. It covers price mechanisms, the economics of extracting energy and the cost-efficiency of renewable energy technologies. You will learn about economic instruments used by policy-makers to address environment and energy issues, economic incentives to stimulate renewable energy development and about environmental valuation.

- Environmental Policy & Risk
This course explores the legal and policy context in which renewable energy is being exploited. You will gain an understanding of international law, particularly the Law of the Sea, property rights and how these relate to different energy resources. The course also looks at regulatory issues at the international, European and UK level, which affect how energy developments are taken forward, as well as risk assessment and management in the context of renewable energy developments.

- Oceanography & Marine Biology
This course is designed to give you an understanding of the science of waves and tides, and how this affects efforts to exploit energy from these resources. You will also learn about marine ecosystems and how these may be impacted by energy extraction and about the challenges and impacts associated with carrying out engineering operations in the marine environment.

- Marine Renewable Technologies
You will gain an understanding of renewable energy technologies which exploit wind, wave and tidal resources. The focus is on technical design issues which developers face operating in the marine environment, as well as the logistics of installation, operations and maintenance of marine energy converters.

- Renewable Technology: Integration
This course explores the technical aspects of generating renewable energy and integrating it into distribution networks. You will learn about the electricity grid and how electrical power and distribution systems work. You will find out about different renewable fuel sources and end uses, and the challenges of energy storage.

- Development Appraisal
Looking at what happens when renewable energy technologies are deployed, this course examines development constraints and opportunities: policy and regulatory issues (including strategic environmental assessment, environmental impact assessment, landscape assessment, capacity issues and the planning system). It also looks at the financial aspects (valuation of capital asses, financing projects and the costs of generating electricity) and at project management.

- Development Project
This is a team project, where students have the opportunity to apply what they have learned through the other courses in relation to a hypothetical project. You have to look at a range of issues including resource assessment, site selection, development layout, consents, planning and economic appraisal, applying the knowledge and tools you have studied.

- Dissertation
This research project (equivalent in assessment to 4 taught courses) allows you to focus on a specific area of interest, with opportunities to collaborate with businesses and other stakeholders. You choose your dissertation subject, in discussion with your supervisor.

- Additional information
If you study at our Orkney Campus, you will also benefit from a number of activities including guest lectures and practical sessions which help to develop your skills and knowledge in your field of study, and offer opportunities to meet developers and other involved in the renewable energy industry.

English language requirements

If your first language is not English, or your first degree was not taught in English, we’ll need to see evidence of your English language ability. The minimum requirement for English language is IELTS 6.5 or equivalent. We offer a range of English language courses (http://www.hw.ac.uk/study/english.htm ) to help you meet the English language requirement prior to starting your masters programme:
- 14 weeks English (for IELTS of 5.5 with no more than one skill at 4.5);
- 10 weeks English (for IELTS of 5.5 with minimum of 5.0 in all skills);
- 6 weeks English (for IELTS 5.5 with minimum of 5.5 in reading & writing and minimum of 5.0 in speaking & listening)

Distance learning students

Please note that independent distance learning students who access their studies online will be expected to have access to a PC/laptop and internet.

Find information on Fees and Scholarships here http://www.postgraduate.hw.ac.uk/prog/msc-marine-renewable-energy/#overview

Visit the Marine Renewable Energy MSc/Diploma page on the Heriot-Watt University web site for more details!

Read less
The Renewable Energy programme was created to allow BEng graduates to achieve the educational requirements to become a Chartered Engineer under the Engineering Council’s UK-SPEC scheme. Read more
The Renewable Energy programme was created to allow BEng graduates to achieve the educational requirements to become a Chartered Engineer under the Engineering Council’s UK-SPEC scheme. The course is currently accredited by the Chartered Institute of Building Services Engineers (CIBSE) and the Energy Institute as suitable for further learning towards Chartered Status for engineering graduates. This accreditation has international acceptance under the Washington Accord. Please note that the programme is only suitable as further learning in conjunction with an accredited BEng programme.

Key benefits

- Accredited by the Chartered Institution of Building Services Engineers (CIBSE) on behalf of the Engineering Council for the purposes of partially meeting the academic requirement for registration as a Chartered Engineer.

- Accredited by the Energy Institute (EI) on behalf of the Engineering Council as further learning for the academic requirement for registration as a Chartered Engineer.

Visit the website: https://www.ulster.ac.uk/courses/course-finder/201617/renewable-energy-and-energy-management-9049

Course detail

- Description -

This course seeks to provide an opportunity for graduates and professionals to acquire knowledge of renewable energy and energy management, and to develop skills appropriate to its practice. To achieve this it seeks to increase capacity for understanding the theoretical concepts and socio-economic principles and techniques upon which renewable energy technologies and energy management strategies are founded. To this end, the course is designed to produce graduates who have an in-depth knowledge and understanding of the scientific, technological issues concerning energy systems.

- Purpose -

The programme seeks to develop graduates who will have the knowledge, insight and skills to lead programmes of change, new design or retrofit solutions that require the deployment of either or both energy efficiency measures and renewable energy technologies.

- Teaching and learning assessment -

All modules are delivered fully online through Ulster University's virtual learning environment. All modules are currently assessed by 100% coursework. The exercises include projects, essays, group discussion boards, blogs and online quizzes.

The dissertation is also assessed by a Viva which can be conducted via video call.

Career options

Students are encouraged to consider their career development throughout the course. The delivery mode gives the students the chance to obtain an MSc in a modern and relevant subject while still working and gaining experience. This combination has impressed employers and prospective employers. Student feedback states that “the impact of learning this course enabled them to improve their capacity to manage work, personal life and college workload at the same time.”, “Personally I feel more confident speaking with and more understanding about the area of renewable technologies. It has also helped me to improve curricular areas in engineering to introduce renewable technologies.”

The demand for well-educated energy engineers is increasing dramatically, with wide ranging opportunities in the field of renewable energy and energy management generally. Graduates from the Ulster Univerrsity are employed in interesting and diverse careers in fields related to energy both in the UK and worldwide. Many are employed as design consultants, while others have embarked upon careers in local government.

How to apply: https://www.ulster.ac.uk/apply/how-to-apply#pg

Why study at Ulster?

1. Over 92% of our graduates are in work or further study six months after graduation.
2. We are a top UK university for providing courses with a period of work placement.
3. Our teaching and the learning experience we deliver are rated at the highest level by the Quality Assurance Agency.
4. We are an international university with more than 2,000 international students from over 80 countries and Alumni from 121 countries.
5. More than 4,000 students from over 50 countries have successfully completed eLearning courses at Ulster University.

Flexible payment

To help spread the cost of your studies, tuition fees can be paid back in monthly instalments while you learn. If you study for a one-year, full-time master’s, you can pay your fees up-front, in one lump sum, or in either five or ten equal monthly payments. If you study for a master’s on a part-time basis (e.g. over three years), you can pay each year’s fees up-front or in five or ten equal monthly payments each year. This flexibility allows you to spread the payment of your fees over each academic year. Find out more by visiting http://www.ulster.ac.uk/learnyourway

Scholarships

A comprehensive range of financial scholarships, awards and prizes are available to undergraduate, postgraduate and research students. Scholarships recognise the many ways in which our students are outstanding in their subject. Individuals may be able to apply directly or may automatically be nominated for awards. Visit the website: https://www.ulster.ac.uk/apply/fees-and-finance/scholarships

English Language Tuition

CELT offers courses and consultations in English language and study skills to Ulster University students of all subjects, levels and nationalities. Students and researchers for whom English is an additional language can access free CELT support throughout the academic year: https://www.ulster.ac.uk/international/english-language-support

Read less
This programme is idea for graduates from engineering, science or other relevant backgrounds and who have an interest in pursuing a successful career in research, technological change and the commercialisation of renewable-energy systems. Read more
This programme is idea for graduates from engineering, science or other relevant backgrounds and who have an interest in pursuing a successful career in research, technological change and the commercialisation of renewable-energy systems.

This programme will give you opportunities to learn about major renewable-energy technologies, energy-sector economics, supply-chain management and sustainable development.

PROGRAMME OVERVIEW

Created in the context of the rapid advancement of the renewable-energy industry, this Masters programme investigates both renewable energy and systems technologies.

It is designed to build your competence and confidence in the R&D and engineering tasks that are demanded of scientific engineers in the renewable and sustainable-development sector.

PROGRAMME STRUCTURE

This programme is studied full-time over one academic year and part-time students must study at least two taught technical modules per academic year. It consists of eight taught modules and a dissertation. The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.
-Optimisation and Decision-Making
-Process Modelling and Simulation
-Technology, Business & Research Seminars
-Renewable Energy Technologies
-Refinery and Petrochemical Process
-Solar Energy Technology
-Advanced Process Control
-Energy Economics and Technology
-Process Systems Design
-Biomass Processing Technology
-Wind Energy Technology
-Process and Energy Integration
-Knowledge-based Systems and Artificial Intelligence
-Supply Chain Management
-Introduction to Petroleum Production
-Process Safety and Operation Integrity
-Economics of International Oil & Gas
-Dissertation

FACILITIES, EQUIPMENT AND ACADEMIC SUPPORT

Modules related to the different groups are taught by a total of six full-time members of staff and a number of visiting lecturers.

As part of their learning experience, students have at their disposal a wide range of relevant software needed to support the programme material dissertation projects. In recent years, this work included the design of various knowledge-based and business systems on the internet, the application of optimisation algorithms, and semantic web applications.

Numerous laboratory facilities across the Faculty and the University are also available for those opting for technology-based projects, such as the process engineering facility, a control and robotics facility and signal processing labs.

The work related to the MSc dissertation can often be carried out in parallel with, and in support of, ongoing research. In the past, several graduates have carried on their MSc research to a PhD programme.

CAREER PROSPECTS

Engineers and scientists are increasingly expected to have skills in information systems engineering and decision-support systems alongside their main technical and/or scientific expertise.

Graduates of this programme will be well prepared to help technology-intensive organisations make important decisions in view of vast amounts of information by adopting, combining, implementing and executing the right technologies.

EDUCATIONAL AIMS OF THE PROGRAMME

This programme investigates both renewable energy and systems technologies in order to produce scientific researchers and engineers who are competent in the R&D and engineering tasks applicable to the renewable energy and sustainable development sectors.

Its primary aims lie in developing a global understanding of the major types of renewable energy technologies, in-depth knowledge of the technology for biomass-based renewable energy, and knowledge and skills in systems modelling and optimisation.

A balanced curriculum will be provided with a core of renewable energy and systems engineering modules supplemented by a flexible element by way of elective modules that permit students to pursue an element of specialisation relevant to their backgrounds, interests and/or career aspirations.

An integrated approach is taken so as to provide a coherent view that explores the interrelationships between the various components of the programme.

PROGRAMME LEARNING OUTCOMES

Knowledge and understanding
-State-of- the-art knowledge in renewable energy technologies, in terms of: the sources, technologies, systems, performance, and applications of all the major types of renewable energy; approaches to the assessment of renewable energy technologies; the processes, equipment, products, and integration opportunities of biomass-based manufacturing
-State-of- the-art knowledge in process systems engineering methods, in the areas of: modelling and simulation of process systems; mathematical optimization and decision making; process systems design
-Advanced level of understanding in technical topics of preference, in one or more of the following aspects: process and energy integration, economics of the energy sector, sustainable development, supply chain management

Intellectual / cognitive skills
-Select, define and focus upon an issue at an appropriate level
-Collect and digest knowledge and information selectively and independently to support a particular scientific or engineering enquiry
-Develop and apply relevant and sound methodologies for analysing the issue, developing solutions, recommendations and logical conclusions, and for evaluating the results of own or other’s work

Professional practical skills
-Assess the available renewable energy systems
-Design and select appropriate collection and storage, and optimise and evaluate system design
-Apply generic systems engineering methods such as modelling, simulation, and optimization to facilitate the assessment and development of renewable energy technologies and systems

Key / transferable skills
-Preparation and delivery of communication and presentation
-Report and essay writing
-Use of general and professional computing tools
-Collaborative working with team members
-Organizing and planning of work
-Research into new areas, particularly in the aspect of literature review and skills acquisition

GLOBAL OPPORTUNITIES

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.

Read less
Energy Engineering is the branch of engineering concerned with the design and the management of energy plants and their components in order to ensure the best use of the available resources with the minimum environmental impact. Read more

Mission and goals

Energy Engineering is the branch of engineering concerned with the design and the management of energy plants and their components in order to ensure the best use of the available resources with the minimum environmental impact. Energy plants are systems in which energy forms are transformed and utilized. To name a few examples: large thermal power stations, air-conditioning and climate control equipment for residences and offices, vehicle engines, airplane propellers, solar panels etc.
The Master of Science in Energy Engineering prepares professionals to design, select and use the main technologies in energy transformation, to actively follow scientific improvements and to operate effectively in a competitive and multi-disciplinary industrial context, characterized by significant environmental, regulatory and safety constraints. Students will analyze broad themes as well as specific subjects for which both a rigorous methodological approach to thermodynamics and an open attitude towards related interdisciplinary topics are required.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/energy-engineering/energy-engineering-track/

Professional opportunities

Graduates can find employment in several sectors: in the technical area of designing, testing, running, and maintaining the energy systems, like heating and cooling systems, thermal power and hydro-electric power plants, engines, oil and gas fields; in the energy management area; and in utilities and public boards that supply energy as electricity and natural gas.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Energy_Engineering_MI.pdf
Energy Engineering is the branch of engineering concerned with the design and the management of energy plants and their components in order to ensure the best use of the available resources with the minimum environmental impact. Energy plants are
systems in which energy forms are transformed and utilized. To name a few examples: large thermal power stations, air-conditioning and climate control equipment for residences and offices, vehicle engines, airplane propellers, solar panels etc. The Master of Science in Energy Engineering prepares professionals to design, select and use the main technologies in energy transformation, to actively follow scientific improvements and to operate effectively in a competitive and multi-disciplinary industrial context, characterized by significant environmental, regulatory and safety constraints. Students will analyze broad themes as well as specific subjects for which both a rigorous methodological approach to thermodynamics and an open attitude towards related interdisciplinary topics are required.
Graduates can find employment in several sectors: in the technical area of designing, testing, running, and maintaining the energy systems, like heating and cooling systems, thermal power and hydro-electric power plants, engines, oil and gas fields; in the energy management area; and in utilities and public boards that supply energy as electricity and natural gas. The programme is taught in English.

Subjects

- Five tracks available: Power Production; Heating, Ventilation and Air-Conditioning; Oil and Gas Engineering; Energy Engineering for an Environmentally Sustainable World (offered on Piacenza campus, see separate leaflet); Energy for Development.

- Subjects and courses common to all the tracks: Heat and Mass Transfer; Fundamentals of Chemical Processes; Advanced Energy Engineering and Thermoeconomics;; Combustion and Safety; Energy Conversion or Refrigeration, Heat Pumps and Thermal Power Systems and Components; Energy Economics or Project Management or Management Control Systems; Graduation Thesis.

- Optional subjects according to the selected track: Development Economy; Engineering and Cooperation for Development; Power Production from Renewable Sources; Engineering of Solar Thermal Processes; Petroleum Reservoir Engineering; Petroleum Technology and Biofuel; Transport Phenomena in the Reservoirs; CFD for Energy Engineering Analysis; System and Electrical Machines; Advanced Energy Systems; Dynamic Behavior and Diagnostics of Machines; Materials for Energy; Turbomachinery; Internal Combustion Engines; Air Conditioning and Room Pollutant-Controlling Plants, Energy Savings and Renewable Energies in Buildings; Applied Acoustics and Lighting; Design of Thermal Systems; Energy Systems and Low-Carbon Technologies; Air Pollutions and Control Engineering; Operation and Control of Machines for Power Generation; Bio-energy and Waste-to-Energy Technologies; Smart Grids and Regulation for Renewable Energy Sources.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/energy-engineering/energy-engineering-track/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/energy-engineering/energy-engineering-track/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
Energy has been considered a core research area within the broadly-based disciplines of environmental science and technology. It is one of the most salient emerging disciplines amongst many in the fields of engineering, science and social science. Read more
Energy has been considered a core research area within the broadly-based disciplines of environmental science and technology. It is one of the most salient emerging disciplines amongst many in the fields of engineering, science and social science. Energy Technology research covers many areas, including sustainable technology, conventional technology, and energy efficiency and conservation. The interdisciplinary postgraduate research program in Energy Technology in the School of Engineering at the Hong Kong University of Science and Technology provides long-term support to our ongoing educational training and fast-developing research in technology in general.

Due to the multi-disciplinary nature of Energy Technology, research and training in the field is integrated with different disciplines so that students can be equipped with the necessary knowledge and experience. The School of Engineering has introduced an Energy Technology Concentration in different disciplines including Chemical and Biomolecular Engineering, Civil and Environmental Engineering, Computer Science and Engineering, Electronic and Computer Engineering, Industrial Engineering and Logistics Management and Mechanical Engineering. Students can enroll in a particular discipline for research with a special focus on topic(s) in Energy Technology.

The Energy Technology Concentration is open exclusively to research postgraduates in the School of Engineering. Students interested in energy technology can enroll in one of the following research degree programs:
-MPhil/PhD in Chemical Engineering and Biomolecular Engineering
-MPhil/PhD in Civil Engineering
-MPhil/PhD in Computer Science and Engineering
-MPhil/PhD in Electronic and Computer Engineering
-MPhil/PhD in Industrial Engineering and Logistics Management
-MPhil/PhD in Mechanical Engineering

Research Foci

The School of Engineering has unrivaled strength in Energy Technology with a strong team of more than 40 faculty members working in one or multiple topics related to energy. The following core research areas represent the current expertise and research activities across the six departments in the School:

Sustainable Technology
Sustainable energy sources including all renewable sources, such as plant matter, solar power, wind power, wave power, geothermal power and tidal power, improving energy efficiency, fuel cells for transportation and power generation, nanostructured materials for energy storage devices including fuel cells, advanced batteries and supercapacitors, nanostructured electrodes, graphene-based anode and cathode materials, battery system and package management, organic and inorganic photovoltaic materials, gasification of biomass for energy production, biorefinery and bioprocessing for energy generation, and innovative technologies for converting and recovering solid wastes into energy.

Production of Ethanol from Cellulosic Materials
Enhanced use of biogas produced from microbial conversion in landfills of municipal solid wastes, wastewater, industrial effluents, and manure wastes, use of planted forests for production of electricity either by direct combustion or by gasification, use of highly efficient gas turbines, energy scavenging for mobile and wireless electronics which enable systems to scavenge power from human activity or derive limited energy from ambient heat, light, radio, or vibrations.

Conventional Technology
Three main types of fossil fuels, namely coal, petroleum, and natural gas, liquefied petroleum gas (LPG) derived from the production of natural gas, nuclear energy, solid waste treatment and management, radioactive waste treatment, reactor materials, durability and fracture mechanics of reactor materials and structure, nuclear reprocessing, environmental effect of nuclear power, hydropower dam structures, turbine materials and design, hydrology and sediment, water quantity and quality, sources of water, environmental consideration in the design of waterway systems, advanced technologies for conventional energy production, such as gas hydrates, microwave refining, and synthetic fuel involving the conversion process from coal, natural gas and biomass into liquid fuel.

Energy Efficiency and Conservation
In electronics: energy integration for chemical and energy industries, energy-efficient computation, high-efficiency power electronics, power management integrated circuits, low power ICs, green radio, customized building for energy-saving, LED for solid state lighting, smart grids, wireless sensor networks, battery-powered electronics, and mobile electronics. In energy-efficient building: lightweight heat-insulating building material, customized building for energy-saving, energy-saving from solid state lighting.

Economy and Society
Clean production process for reducing material consumption and pollution, software for waste minimization and pollution prevention, green materials for industrial application and building environment, hazards impacting environmental health, analysis of environmental risk, socio-economic and life-cycle analysis for policy-making and planning, novel compounds from marine organisms, and policy on efficient energy use.

Facilities

A total of six research centers are actively involved in energy-related topics: the Center for Sustainable Energy Technology, Center for Display Research, Center for Advanced Microsystems Packaging, Finetex-HKUST R&D Center, Photonics Technology Center, and Building Energy Research Center at Nansha.

Read less
The Renewable Energy programme was created to allow BEng graduates to achieve the educational requirements to become a Chartered Engineer under the Engineering Council’s UK-SPEC scheme. Read more
The Renewable Energy programme was created to allow BEng graduates to achieve the educational requirements to become a Chartered Engineer under the Engineering Council’s UK-SPEC scheme. The course is currently accredited by the Chartered Institute of Building Services Engineers (CIBSE) and the Energy Institute as suitable for further learning towards Chartered Status for engineering graduates. This accreditation has international acceptance under the Washington Accord. Please note that the programme is only suitable as further learning in conjunction with an accredited BEng programme.
The aim of the course is straightforward, in that it is designed to meet a need for engineers and energy professionals to deliver energy conscious and environmentally sustainable solutions for use by the public, industry, services and government.
It seeks to provide an opportunity for graduates and professionals to acquire knowledge of renewable energy and energy management, and to develop skills appropriate to its practice. To achieve this it seeks to increase capacity for understanding the theoretical concepts and socio-economic principles and techniques upon which renewable energy technologies and energy management strategies are founded. To this end, the course is designed to produce graduates who have an in-depth knowledge and understanding of the scientific, technological issues concerning energy systems.
The programme seeks to develop graduates who will have the knowledge, insight and skills to lead programmes of change, new design or retrofit solutions that require the deployment of either or both energy efficiency measures and renewable energy technologies.
The eight taught modules are designed to give students a broad expertise in the ever expanding range of Renewable Energy technologies combined with the more fundamental requirements demanded by Energy Management.
Graduates are expected to achieve skills in identifying, developing, analysing and critically appraising solutions and to apply those skills in a professional manner. The students who progress to the MSc from the PgD will also be expected to demonstrate a comprehensive understanding of techniques applicable to their own research, combined with the management of an independent investigation in an area related to energy technology, with the aim of producing graduates with the capability to pursue a career in research and development through independence, self motivation and initiative.

Read less
The course is based in the Sustainable Environment Research Centre (SERC) a leading and internationally recognised centre for over 30 years. Read more
The course is based in the Sustainable Environment Research Centre (SERC) a leading and internationally recognised centre for over 30 years. SERC is home to The Wales Centre of Excellence for Anaerobic Digestion and the University of South Wales Centre for Renewable Hydrogen Research and Demonstration,

The UK Governments Low Carbon Transition Plan details how the Government plans to meet its 2020 GHG emissions targets. It predicts that as a result of its actions that 1.2 million green jobs will be created and 40% of electricity production will be from low carbon resources. It is predicted that £110bn of investment will be necessary to meet the targets as currently set out. The picture is similar across the EU and the rest of the world. There is a significant need for individuals with the expertise necessary to help meet those targets.

This MSc in Renewable Energy and Resource Management will provide the wealth of knowledge and skills needed for employment in a range of public and fast-growing commercial green sector roles. Your studies will increase your knowledge and understanding of the generation and provision of renewable energy, hydrogen, water, wastewater treatment and solid wastes management. You will become familiar with the impact of policy and legislation, renewable energy technologies, waste management hierarchy and techniques, and water and wastewater treatment. You will also train in relevant computing software, and analytical and monitoring equipment used by industry.

See the website http://courses.southwales.ac.uk/courses/374-msc-renewable-energy-and-resource-management

What you will study

Students will study the following taught modules:
- Renewable Energy I & Hydro, Tidal, Wave, and Bio-energy
- Renewable Energy II & Wind, Solar, and Geothermal
- Solids Resource Management
- Water and Wastewater Treatment Processes

Plus 2 from the following optional modules:
- Hydrogen& Fuel Vector for the Future
- Energy and Environmental Legislation and Policy
- Advanced Materials for Energy Applications
- Anaerobic Treatment Processes
- Analytical Science and the Environment

You will also complete a substantial project, usually in conjunction with industry, energy/environmental consultancy firms, governmental regulatory agencies, local authorities or within our Sustainable Environment Research Centre.

The subjects taught within the MSc are underpinned by high quality research which was rated as being mainly internationally excellent or world leading in RAE 2008. This included research in hydrogen energy, bio-energy, anaerobic digestion, process monitoring and control, combustion processes, and waste and wastewater treatment systems.

Learning and teaching methods

Full-time students spend about 12 hours in lectures, seminars, tutorials, and computing and laboratory-based practical sessions each week, plus research and background reading. We have an exciting programme of site visits and fieldwork trips.

Work Experience and Employment Prospects

This MSc is designed to develop cutting-edge knowledge and high-level practical skills relevant to many areas of postgraduate employment, particularly managerial, regulatory, scientific and technological roles related to energy and the environment. These include local authorities, government regulatory agencies, manufacturing industries, energy and environmental consultancy companies, waste management companies, water companies, environmental and energy advice centres, research centres, academia, and national and international non-governmental organisations.

Assessment methods

The taught modules are assessed by a mixture of coursework and examinations. The project is assessed by a written dissertation and an oral examination (viva voce).

Coursework involves individual and group mini-projects, fieldwork and visit reports, and poster and oral presentations. Part-time students attend generally one day per week, plus visits and fieldwork.

Read less
Gain the theoretical and practical skills to explore the growing field of renewable energy technologies. Renewable energy technologies have become an important part of energy production. Read more
Gain the theoretical and practical skills to explore the growing field of renewable energy technologies.

Renewable energy technologies have become an important part of energy production. Strong initiatives and investments from the public and private sectors have made this a rapidly growing field and created further career opportunities in the sector.

This is one of the few courses offered at Masters level which not only encompasses renewable energy technologies but also complements with the essential related elements of renewable energy finance and environmental law.

These elements touch on financial analytical tools, project structuring, finance and management in renewable energy, while the law element will consider legal framework impacting upon renewable energy provision.

See the website http://www.napier.ac.uk/en/Courses/MSc-Renewable-Energy-Postgraduate-FullTime

What you'll learn

The course will extend your skills into various renewable energy technologies such as wind, solar, hydro, biomass, wave etc.

Study renewable energy capture, energy storage, energy audit and life-cycle analysis, as well as learning the concept of the system, design, development and applications.

The course is accredited by the Energy Institute, UK. Combined with a suitable accredited undergraduate degree, the MSc degree would then satisfy the academic requirements of the UK Engineering Council for Chartered Engineer (CEng) status.

Modules

• Sustainable energy technologies
• Solar energy: technology, modelling and analysis
• Renewable energy finance and environmental law
• Research skills and project management
• Distributed generation systems
• MSc Project module

Module choice of
• Control engineering
• Energy materials
• Mechatronic systems
• Sustainable urban property development

Study modules mentioned above are indicative only. Some changes may occur between now and the time that you study.

Career opportunities

• Consultancies
• Renewable energy industries
• Renewable energy technology/design
• Building services
• Research & development

How to apply

http://www.napier.ac.uk/study-with-us/postgraduate/how-to-apply

SAAS Funding

Nothing should get in the way of furthering your education. Student Awards Agency Scotland (SAAS) awards funding for postgraduate courses, and could provide the help you need to continue your studies. Find out more: http://www.napier.ac.uk/study-with-us/postgraduate/fees-and-funding/saas-funded-courses

Read less
The Master in Global Energy Transition and Governance aims to give a deep understanding of the complexity of the current energy transformations in Europe and worldwide. Read more
The Master in Global Energy Transition and Governance aims to give a deep understanding of the complexity of the current energy transformations in Europe and worldwide. The programme offers a unique, multidisciplinary approach which distinguishes it from other Master’s courses in the field of energy studies: It analyses the links between the different levels of energy governance, from an international to a local level, offering problem-focused learning at the crossroads of theory and practice. The one-year Master’s programme stretches over three terms and takes place in two study locations: Nice and Berlin.

Overview of the year

Nice

The first term in Nice encompasses classes on the basics of the four energy modules (International energy governance, Economic energy governance, the EU energy governance and Energy and territories). Each module is complemented by seminars dealing with current energy issues. An academic or professional expert is invited for each event.

Berlin

For their second term students move on to Berlin where teaching in the four modules continues in the form of workshops. Each module organises a half-day workshop with an expert. Students prepare the workshops in group work delivering papers on themes linked to the topic of the seminar (climate negotiations, energy stock exchange, the role of the EU interconnections in the European energy market, the EU funds and the territorial energy policy). To better understand the local energy challenges in the framework of the German Energy Transition Field, visits will also be organised in co-operation with local institutions and companies. Another focus of this term will be put on the methodology classes, one dedicated to the research work and the Master’s thesis, the second one to project management.

Nice

In April students return to Nice. The third term aims at deepening their knowledge on the four energy modules. A special focus is also given to the methodological support for the students’ work on their thesis including individual meetings with the academic supervisors. In the two simulations the participants will forge their negotiation techniques with regard to the construction of wind farms at local level and work out of a strategy for an international energy cooperation. Written and oral exams in June will conclude this term.

During this term students will finalise their work on their thesis in close contact with their academic supervisors. The thesis will be delivered in mid-June and defended at the end of June.

Curriculum

International energy governance

This module delivers the theoretical knowledge on the main international energy related issues and conflicts (resource curse, neoinstitutionalism, developmentalism, weak/strong States etc.).
It also provides the participants with concrete examples of the emergence and regulation of energy conflicts worldwide in order to analyse better how they exert pressure on the security and diversification of the energy supply. (10 ECTS)

Economic energy governance

Economic and market fundamentals are applied to the energy sector in order to understand the current multiple national, regional, and local low carbon energy pathways in the world.
The module examines how the different markets are regulated and how they influence the transitions from fossil fuels to renewable energies. The economic perspective will highlight the role of liberalisation, privatisation and regulation of the sector. (10 ECTS)

European energy governance

The aim of this module is to highlight the EU priorities and its decision-making process regarding clean energy transition in Europe, thus helping to understand political economy factors that both inhibit and accelerate it.
While focusing on how the different EU policies challenge institutional architectures and multilevel governance schemes, the module provides an insight into issues currently facing European policy makers such as social acceptance, sustainability of renewable energies as well as rapid advancement in clean energy technologies. (10 ECTS)

Energy and territories

Participants will examine how EU regions and cities and more generally territories develop their own low carbon strategy at the crossroads of many policies (housing, waste management, transport, fuel poverty, environment and energy) and in the framework of a multilevel governance system.
Concrete examples of local and regional strategies will be delivered in order to analyse the levers and obstacles for more decentralisation. (10 ECTS)

Methodology modules

Students will acquire skills in research methodology, energy project management and the elaboration of energy strategies. They will concretely experiment different methodological tools: first of all through the research work for their thesis, second thanks to the methodological tools of project management. Students will be involved in a simulation game in which they will have to decide on the construction of a wind park in a territory. In a negotiation game, participants will have to elaborate a common strategy in the perspective of international energy cooperation. (20 ECTS)

Thesis

For their Master’s thesis participants will carry out a profound research work on an energy issue, chosen and elaborated in regular coordination with their supervisor.
The thesis will require the application of the methodological tools which the students have acquired during the programme.
The academic work will involve in-depth desk research, possible interviews with external partners and the writing of a thesis of approximately 17,000 words. Candidates will defend their thesis in an oral exam. (30 ECTS)

Applications and Scholarships

Candidates can submit their application dossier by using the form available on the Institute’s website. They should also include all the relevant documents, or send them by post or e-mail. An academic committee meets regularly in order to review complete applications.
A limited number of scholarship funds can be awarded to particularly qualified candidates to cover some of the costs related to studies or accommodation. The deadline for applications is: 1 July

Please do not hesitate to contact us for any enquiry.

Read less
Energy has been considered a core research area within the broadly-based disciplines of environmental science and technology. It is one of the most salient emerging disciplines amongst many in the fields of engineering, science and social science. Read more
Energy has been considered a core research area within the broadly-based disciplines of environmental science and technology. It is one of the most salient emerging disciplines amongst many in the fields of engineering, science and social science. Energy Technology research covers many areas, including sustainable technology, conventional technology, and energy efficiency and conservation. The interdisciplinary postgraduate research program in Energy Technology in the School of Engineering at the Hong Kong University of Science and Technology provides long-term support to our ongoing educational training and fast-developing research in technology in general.

Due to the multi-disciplinary nature of Energy Technology, research and training in the field is integrated with different disciplines so that students can be equipped with the necessary knowledge and experience. The School of Engineering has introduced an Energy Technology Concentration in different disciplines including Chemical and Biomolecular Engineering, Civil and Environmental Engineering, Computer Science and Engineering, Electronic and Computer Engineering, Industrial Engineering and Logistics Management and Mechanical Engineering. Students can enroll in a particular discipline for research with a special focus on topic(s) in Energy Technology.

The Energy Technology Concentration is open exclusively to research postgraduates in the School of Engineering. Students interested in energy technology can enroll in one of the following research degree programs:
-MPhil/PhD in Chemical Engineering and Biomolecular Engineering
-MPhil/PhD in Civil Engineering
-MPhil/PhD in Computer Science and Engineering
-MPhil/PhD in Electronic and Computer Engineering
-MPhil/PhD in Industrial Engineering and Logistics Management
-MPhil/PhD in Mechanical Engineering

Research Foci

The School of Engineering has unrivaled strength in Energy Technology with a strong team of more than 40 faculty members working in one or multiple topics related to energy. The following core research areas represent the current expertise and research activities across the six departments in the School:

Sustainable Technology
Sustainable energy sources including all renewable sources, such as plant matter, solar power, wind power, wave power, geothermal power and tidal power, improving energy efficiency, fuel cells for transportation and power generation, nanostructured materials for energy storage devices including fuel cells, advanced batteries and supercapacitors, nanostructured electrodes, graphene-based anode and cathode materials, battery system and package management, organic and inorganic photovoltaic materials, gasification of biomass for energy production, biorefinery and bioprocessing for energy generation, and innovative technologies for converting and recovering solid wastes into energy.

Production of Ethanol from Cellulosic Materials
Enhanced use of biogas produced from microbial conversion in landfills of municipal solid wastes, wastewater, industrial effluents, and manure wastes, use of planted forests for production of electricity either by direct combustion or by gasification, use of highly efficient gas turbines, energy scavenging for mobile and wireless electronics which enable systems to scavenge power from human activity or derive limited energy from ambient heat, light, radio, or vibrations.

Conventional Technology
Three main types of fossil fuels, namely coal, petroleum, and natural gas, liquefied petroleum gas (LPG) derived from the production of natural gas, nuclear energy, solid waste treatment and management, radioactive waste treatment, reactor materials, durability and fracture mechanics of reactor materials and structure, nuclear reprocessing, environmental effect of nuclear power, hydropower dam structures, turbine materials and design, hydrology and sediment, water quantity and quality, sources of water, environmental consideration in the design of waterway systems, advanced technologies for conventional energy production, such as gas hydrates, microwave refining, and synthetic fuel involving the conversion process from coal, natural gas and biomass into liquid fuel.

Energy Efficiency and Conservation
In electronics: energy integration for chemical and energy industries, energy-efficient computation, high-efficiency power electronics, power management integrated circuits, low power ICs, green radio, customized building for energy-saving, LED for solid state lighting, smart grids, wireless sensor networks, battery-powered electronics, and mobile electronics. In energy-efficient building: lightweight heat-insulating building material, customized building for energy-saving, energy-saving from solid state lighting.

Economy and Society
Clean production process for reducing material consumption and pollution, software for waste minimization and pollution prevention, green materials for industrial application and building environment, hazards impacting environmental health, analysis of environmental risk, socio-economic and life-cycle analysis for policy-making and planning, novel compounds from marine organisms, and policy on efficient energy use.

Facilities

A total of six research centers are actively involved in energy-related topics: the Center for Sustainable Energy Technology, Center for Display Research, Center for Advanced Microsystems Packaging, Finetex-HKUST R&D Center, Photonics Technology Center, and Building Energy Research Center at Nansha.

Read less
Energy has been considered a core research area within the broadly-based disciplines of environmental science and technology. It is one of the most salient emerging disciplines amongst many in the fields of engineering, science and social science. Read more
Energy has been considered a core research area within the broadly-based disciplines of environmental science and technology. It is one of the most salient emerging disciplines amongst many in the fields of engineering, science and social science. Energy Technology research covers many areas, including sustainable technology, conventional technology, and energy efficiency and conservation. The interdisciplinary postgraduate research program in Energy Technology in the School of Engineering at the Hong Kong University of Science and Technology provides long-term support to our ongoing educational training and fast-developing research in technology in general.

Due to the multi-disciplinary nature of Energy Technology, research and training in the field is integrated with different disciplines so that students can be equipped with the necessary knowledge and experience. The School of Engineering has introduced an Energy Technology Concentration in different disciplines including Chemical and Biomolecular Engineering, Civil and Environmental Engineering, Computer Science and Engineering, Electronic and Computer Engineering, Industrial Engineering and Logistics Management and Mechanical Engineering. Students can enroll in a particular discipline for research with a special focus on topic(s) in Energy Technology.

The Energy Technology Concentration is open exclusively to research postgraduates in the School of Engineering. Students interested in energy technology can enroll in one of the following research degree programs:
-MPhil/PhD in Chemical Engineering and Biomolecular Engineering
-MPhil/PhD in Civil Engineering
-MPhil/PhD in Computer Science and Engineering
-MPhil/PhD in Electronic and Computer Engineering
-MPhil/PhD in Industrial Engineering and Logistics Management
-MPhil/PhD in Mechanical Engineering

Research Foci

The School of Engineering has unrivaled strength in Energy Technology with a strong team of more than 40 faculty members working in one or multiple topics related to energy. The following core research areas represent the current expertise and research activities across the six departments in the School:

Sustainable Technology
Sustainable energy sources including all renewable sources, such as plant matter, solar power, wind power, wave power, geothermal power and tidal power, improving energy efficiency, fuel cells for transportation and power generation, nanostructured materials for energy storage devices including fuel cells, advanced batteries and supercapacitors, nanostructured electrodes, graphene-based anode and cathode materials, battery system and package management, organic and inorganic photovoltaic materials, gasification of biomass for energy production, biorefinery and bioprocessing for energy generation, and innovative technologies for converting and recovering solid wastes into energy.

Production of Ethanol from Cellulosic Materials
Enhanced use of biogas produced from microbial conversion in landfills of municipal solid wastes, wastewater, industrial effluents, and manure wastes, use of planted forests for production of electricity either by direct combustion or by gasification, use of highly efficient gas turbines, energy scavenging for mobile and wireless electronics which enable systems to scavenge power from human activity or derive limited energy from ambient heat, light, radio, or vibrations.

Conventional Technology
Three main types of fossil fuels, namely coal, petroleum, and natural gas, liquefied petroleum gas (LPG) derived from the production of natural gas, nuclear energy, solid waste treatment and management, radioactive waste treatment, reactor materials, durability and fracture mechanics of reactor materials and structure, nuclear reprocessing, environmental effect of nuclear power, hydropower dam structures, turbine materials and design, hydrology and sediment, water quantity and quality, sources of water, environmental consideration in the design of waterway systems, advanced technologies for conventional energy production, such as gas hydrates, microwave refining, and synthetic fuel involving the conversion process from coal, natural gas and biomass into liquid fuel.

Energy Efficiency and Conservation
In electronics: energy integration for chemical and energy industries, energy-efficient computation, high-efficiency power electronics, power management integrated circuits, low power ICs, green radio, customized building for energy-saving, LED for solid state lighting, smart grids, wireless sensor networks, battery-powered electronics, and mobile electronics. In energy-efficient building: lightweight heat-insulating building material, customized building for energy-saving, energy-saving from solid state lighting.

Economy and Society
Clean production process for reducing material consumption and pollution, software for waste minimization and pollution prevention, green materials for industrial application and building environment, hazards impacting environmental health, analysis of environmental risk, socio-economic and life-cycle analysis for policy-making and planning, novel compounds from marine organisms, and policy on efficient energy use.

Facilities

A total of six research centers are actively involved in energy-related topics: the Center for Sustainable Energy Technology, Center for Display Research, Center for Advanced Microsystems Packaging, Finetex-HKUST R&D Center, Photonics Technology Center, and Building Energy Research Center at Nansha.

Read less
Energy has been considered a core research area within the broadly-based disciplines of environmental science and technology. It is one of the most salient emerging disciplines amongst many in the fields of engineering, science and social science. Read more
Energy has been considered a core research area within the broadly-based disciplines of environmental science and technology. It is one of the most salient emerging disciplines amongst many in the fields of engineering, science and social science. Energy Technology research covers many areas, including sustainable technology, conventional technology, and energy efficiency and conservation. The interdisciplinary postgraduate research program in Energy Technology in the School of Engineering at the Hong Kong University of Science and Technology provides long-term support to our ongoing educational training and fast-developing research in technology in general.

Due to the multi-disciplinary nature of Energy Technology, research and training in the field is integrated with different disciplines so that students can be equipped with the necessary knowledge and experience. The School of Engineering has introduced an Energy Technology Concentration in different disciplines including Chemical and Biomolecular Engineering, Civil and Environmental Engineering, Computer Science and Engineering, Electronic and Computer Engineering, Industrial Engineering and Logistics Management and Mechanical Engineering. Students can enroll in a particular discipline for research with a special focus on topic(s) in Energy Technology.

The Energy Technology Concentration is open exclusively to research postgraduates in the School of Engineering. Students interested in energy technology can enroll in one of the following research degree programs:
-MPhil/PhD in Chemical Engineering and Biomolecular Engineering
-MPhil/PhD in Civil Engineering
-MPhil/PhD in Computer Science and Engineering
-MPhil/PhD in Electronic and Computer Engineering
-MPhil/PhD in Industrial Engineering and Logistics Management
-MPhil/PhD in Mechanical Engineering

Research Foci

The School of Engineering has unrivaled strength in Energy Technology with a strong team of more than 40 faculty members working in one or multiple topics related to energy. The following core research areas represent the current expertise and research activities across the six departments in the School:

Sustainable Technology
Sustainable energy sources including all renewable sources, such as plant matter, solar power, wind power, wave power, geothermal power and tidal power, improving energy efficiency, fuel cells for transportation and power generation, nanostructured materials for energy storage devices including fuel cells, advanced batteries and supercapacitors, nanostructured electrodes, graphene-based anode and cathode materials, battery system and package management, organic and inorganic photovoltaic materials, gasification of biomass for energy production, biorefinery and bioprocessing for energy generation, and innovative technologies for converting and recovering solid wastes into energy.

Production of Ethanol from Cellulosic Materials
Enhanced use of biogas produced from microbial conversion in landfills of municipal solid wastes, wastewater, industrial effluents, and manure wastes, use of planted forests for production of electricity either by direct combustion or by gasification, use of highly efficient gas turbines, energy scavenging for mobile and wireless electronics which enable systems to scavenge power from human activity or derive limited energy from ambient heat, light, radio, or vibrations.

Conventional Technology
Three main types of fossil fuels, namely coal, petroleum, and natural gas, liquefied petroleum gas (LPG) derived from the production of natural gas, nuclear energy, solid waste treatment and management, radioactive waste treatment, reactor materials, durability and fracture mechanics of reactor materials and structure, nuclear reprocessing, environmental effect of nuclear power, hydropower dam structures, turbine materials and design, hydrology and sediment, water quantity and quality, sources of water, environmental consideration in the design of waterway systems, advanced technologies for conventional energy production, such as gas hydrates, microwave refining, and synthetic fuel involving the conversion process from coal, natural gas and biomass into liquid fuel.

Energy Efficiency and Conservation
In electronics: energy integration for chemical and energy industries, energy-efficient computation, high-efficiency power electronics, power management integrated circuits, low power ICs, green radio, customized building for energy-saving, LED for solid state lighting, smart grids, wireless sensor networks, battery-powered electronics, and mobile electronics. In energy-efficient building: lightweight heat-insulating building material, customized building for energy-saving, energy-saving from solid state lighting.

Economy and Society
Clean production process for reducing material consumption and pollution, software for waste minimization and pollution prevention, green materials for industrial application and building environment, hazards impacting environmental health, analysis of environmental risk, socio-economic and life-cycle analysis for policy-making and planning, novel compounds from marine organisms, and policy on efficient energy use.

Facilities

A total of six research centers are actively involved in energy-related topics: the Center for Sustainable Energy Technology, Center for Display Research, Center for Advanced Microsystems Packaging, Finetex-HKUST R&D Center, Photonics Technology Center, and Building Energy Research Center at Nansha.

Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X