• University of York Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of Leeds Featured Masters Courses
  • Leeds Beckett University Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of Glasgow Featured Masters Courses
  • Regent’s University London Featured Masters Courses
De Montfort University Featured Masters Courses
Cardiff University Featured Masters Courses
University of St Andrews Featured Masters Courses
University of Greenwich Featured Masters Courses
University of Leeds Featured Masters Courses
"reliability"×
0 miles

Masters Degrees (Reliability)

  • "reliability" ×
  • clear all
Showing 1 to 15 of 175
Order by 
Risk has become a key concept in modern society. Read more

Programme Background

Risk has become a key concept in modern society. Growing concern about the environment and a number of disasters have served to focus attention on the hazards and risks involved in a wide range of activities from offshore oil production to rail and air transport; from the design of football stadia to the operation of chemical plants and environmental protection. Today there is a wide range of techniques available to assess risk and reliability, both in relation to safety and in the wider sense. These techniques now underpin new legislation on safety and have relevance over a broad spectrum of activities, including environmental and other systems, where risk and reliability are key concerns.

The MSc/PG Diploma programme in Safety, Risk and Reliability Engineering is designed to give a thorough understanding of these techniques and experience of their application to a variety of real-world problems. It aims to provide students with an understanding of safety, risk and reliability engineering in both a qualitative and quantitative manner, and to develop the skills to apply this understanding. The programme will also introduce students to recent developments in analytical techniques, e.g. computer modelling of risk, reliability and safety problems.

Professional Recognition

This MSc degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng (Hons) undergraduate first degree. See http://www.jbm.org.ukfor further information.

The MSc and PgDip degrees have also been accredited by the Institution of Occupational Safety and Health (IOSH). Graduates are eligible to join IOSH as Graduate members and then undertake an initial professional development process that leads to Chartered membership. http://www.iosh.co.uk for further information.

Programme Content

The MSc/Postgraduate Diploma in Safety, Risk and Reliability Engineering is only available by attendance-free distance learning. The programme comprises eight courses. All courses have written examinations and some have compulsory coursework elements. MSc students are also required to complete an individual project (dissertation). This programme has a stronger engineering bias and you should only attempt this if you have done some University level mathematics or equivalent. Otherwise the Safety and Risk Management course might be more appropriate.

For the project component of the programme distance learners are likely to develop something based in their country of residence with advice and supervision from staff in the School. This may well include work with a local company or may involve independent study. Individual arrangements will be set up with each student.

For more detailed information on this programme please contact the Programme Leader before applying (see above).

Courses

• Risk Assessment and Safety Management
This course aims to give students an appreciation of risk from individual and societal perspectives as well as understanding the basic principles of risk assessment and modelling and how safety management works in practice.

• Systems Reliability
Gives an understanding of the qualitative and quantitative techniques that are used in the reliability, availability and maintainability analysis of all types of engineering systems.

• Learning from Disasters
Provides students with an in depth understanding of some of the classic disasters and their consequences by using a range of practical accident investigation techniques. Students will learn to analyse complex histories in order to find the underlying root cause.

• Safety, Risk and Reliability
Leads to an understanding of the principles of structural reliability theory and its application to risk and reliability engineering.

• Fire Safety, Explosions and Process Safety
Introduces students to the basic principles of fire safety science and engineering, and develops skills in associated modelling leading to an understanding of principal fire/explosion related issues in process safety.

• Data Analysis and Simulation
Develops knowledge of statistical data analysis and its application in engineering and science and introduces the concepts of using simulation techniques for analysis of complex systems. It also teaches linear optimisation techniques and the ability to apply them to solve simple problems.

• Human Factors Methods
This course will equip students from academic and/or industrial backgrounds with knowledge on, and the means to deploy, a wide range of specialist human factors techniques. The emphasis is on method selection, application, combination and integration within existing business practices. Students will develop a critical awareness of what methods exist, how to apply them in practice and their principle benefits and limitations.

•Environmental Impact Assessment
Provides the candidate with the knowledge and understanding of the principles and processes of the Environmental Impact Assessment. By the end of the course, the student should be familiar with the European EIA legislation and its translation into the Scottish planning system, and be able to demonstrate an understanding of the EIA process, the tools and the agents involved in an EIA and the possible problems with using EIA as a decision making tool. It is also intended that the student will be able to appreciate the purpose of the EIA process from a number of perspectives; that of a developer, an EIA practitioner and a policy maker.

Read less
WHAT YOU WILL GAIN. - Skills and know-how in the latest and developing technologies in safety, risk and reliability. - Practical guidance and feedback from industrial automation experts from around the world. Read more
WHAT YOU WILL GAIN:

- Skills and know-how in the latest and developing technologies in safety, risk and reliability
- Practical guidance and feedback from industrial automation experts from around the world
- Live knowledge from the extensive experience of expert instructors
- Credibility and respect as the local safety, risk and reliability expert in your firm
- Global networking contacts in the industry
- Improved career choices and income
- A valuable and accredited Master of Engineering (Safety, Risk and Reliability)** qualification

Next intake is scheduled for June 26, 2017. Applications now open; places are limited.

INTRODUCTION

A powerful force is driving industrial growth and change, and it’s only getting stronger. That force? Uncertainty. Society increasingly demands more efficient transport, more power production, safer energy exploration and processing, less waste, smarter products and of course, all at lower costs. All these demands spotlight uncertainty, and how we need to manage uncertainty through engineering, science and technology. Modern engineers face an intriguing set of challenges when tackling uncertainty and they have developed some of the smartest methods, tools, techniques and approaches for understanding system safety, risk and reliability.

The Master of Engineering (Safety, Risk and Reliability) is the ideal gateway to boost your capacity to tackle these real world increasingly complex issues. In the 21st century, industry will routinely deal with novel hazardous processing technologies, complex energy grid load-balancing from renewables, driverless cars, artificial vision to augment control and feedback in sub-sea exploration – and the infinitesimal scale of nanotechnologies in bionic engineering. Currently, people are at the heart of many hazardous work environments, exposed to the consequences of uncontrolled events; but soon, artificial intelligence will afford more human tasks to be automated (and present a host of newer risks, in exchange for the retired ones). This progress has to be examined in systematic terms – terms that integrate our understandings of technical fallibility, human error and political decision-making.

This program has been carefully designed to accomplish three key goals. First, a set of fundamental concepts is described in useful, manageable ways that encourage rapid and integrated knowledge-acquisition. Second, that knowledge is applied in creative and imaginative ways to afford practical, career-oriented advantages. Third, the learning that results from the integration of knowledge and application is emboldened by activities and projects, culminating in a project thesis that is the capstone of the program. This carefully designed learning journey will develop factual understanding and also exercise participant’s creativity and design-thinking capabilities. Employers are hungry for these skills, and program graduates can expect a significant advantage when interacting with employers, clients, consultants and fellow engineering peers.

ENTRANCE REQUIREMENTS

To gain entry into this program, applicants need one of the following:
a) a recognized 3-year bachelor degree in an engineering qualification in a congruent* field of practice with relevant work experience**.
b) a 4-year Bachelor of Engineering qualification (or equivalent), that is recognized under the Washington Accord or Engineers Australia, in a congruent*, or a different field of practice at the discretion of the Admissions Committee.
c) a 4-year Bachelor of Engineering qualification (or equivalent) that is not recognized under the Washington Accord, in a congruent* field of practice to this program.

AND
An appropriate level of English Language Proficiency equivalent to an English pass level in an Australian Senior Certificate of Education, or an IELTS score of 6.5 (with no individual band less than 6.0) or equivalent as outlined in the EIT Admissions Policy.

* Congruent field of practice means one of the following with adequate Safety, Risk and Reliability content (fields not listed below to be considered by the Dean and the Admissions committee on a case-by-case basis):
• Chemical and Process Engineering
• Electronic and Communication Systems
• Instrumentation, Control and Automation
• Industrial Automation
• Industrial Engineering
• Agricultural Engineering
• Electrical Engineering
• Manufacturing and Management Systems
• Mechanical and Material Systems
• Mechatronic Systems
• Production Engineering
• Mechanical Engineering
• Robotics

**Substantial industrial experience in a related field is preferred, with a minimum of two years’ relevant experience.

PROGRAM STRUCTURE

Students must complete 48 credit points comprised of 12 core subjects and one capstone thesis. The thesis is the equivalent of one full semester of work. There are no electives in this course. The program duration is two years full time, or equivalent. Subjects will be delivered over 4 terms per year. Students will take 2 subjects per term and be able to complete 8 units per year. There will be a short break between terms. Each term is 12 weeks long.

LIVE WEBINARS

During the program you will participate in weekly interactive sessions with the lecturers and other participants from around the world. Each unit's weekly live tutorial will last 60 to 90 minutes. We take student availability into consideration wherever possible before scheduling webinar times. All you need to participate is an adequate Internet connection, speakers and a microphone. The software package and setup details will be sent to you at the start of the program.

COURSE FEES

EIT provides distance education to students located almost anywhere in the world – it is one of the very few truly global training institutes. Course fees are paid in a currency that is determined by the student’s location. A full list of fees in a currency appropriate for every country would be complex to navigate and, with today’s exchange rate fluctuations, difficult to maintain. Instead we aim to give you a rapid response regarding fees that is customized to your individual circumstances.

We understand that cost is a major consideration before a student commences study. For a rapid reply to your query regarding courses fees and payment options, please query via the below button and we will respond within 2 business days.

Read less
The MSc Safety Engineering for Oil & Gas programme provides training in safety engineering, reliability engineering, and loss prevention in the offshore, nuclear, transport, aerospace and process industries and more. Read more
The MSc Safety Engineering for Oil & Gas programme provides training in safety engineering, reliability engineering, and loss prevention in the offshore, nuclear, transport, aerospace and process industries and more. Fully accredited by the Institution of Mechanical Engineers (IMechE), the Institution of Civil Engineers (ICE), the Institution of Structural Engineers (IStructE), the Institute of Highway Engineers (IHE) and the Chartered Institution of Highways & Transportation (CIHT).

COURSES
Semester 1
Fundamental Safety Engineering and Risk Management Concepts
Statistics and Probability for Safety, Reliability, and Quality
Fire and Explosion Engineering
Offshore Oil and Gas Production Systems

Semester 2
Advanced Methods for Risk and Reliability Assessment
Applied Risk Analysis and Management
Process Design, Layout and Materials
Human Factors Engineering

Semester 3
Project

Read less
You study safety engineering, reliability engineering, and loss prevention in the context of legal requirements for wide ranging industry applications such as nuclear, defence, transport, aerospace, manufacturing and process industries. Read more
You study safety engineering, reliability engineering, and loss prevention in the context of legal requirements for wide ranging industry applications such as nuclear, defence, transport, aerospace, manufacturing and process industries.

COURSES
Semester 1
Fundamental Safety Engineering, and Risk Management Concepts
Statistics and Probability for Safety, Reliability and Quality
Fire and Explosion Engineering
Subsea Integrity

Semester 2
Advanced Methods for Risk and Reliability Assessments
Applied Risk Analysis and Management
Process Design, Layout and Materials
Human Factors Engineering

Semester 3
Safety Engineering Project

Read less
Reliability Engineering and Asset Management is a critical field of managerial and technical importance to UK and International industry. Read more
Reliability Engineering and Asset Management is a critical field of managerial and technical importance to UK and International industry. It is estimated that 10% of annual typical plant cost is spent maintaining plant. Maintenance costs are likely to influence competitiveness on a global scale and this allows Maintenance Managers to make major impacts on their companies' bottom line.

The programme is a key element in increasing industrial competitiveness and is a sophisticated discipline which embraces management techniques, organisation, planning and the application of substantial electronic, engineering and analytical knowledge to manufacturing processes, transport, power generation and the efficient operation of industrial, commercial and civic buildings. The aim of the programme is to give companies the technical and managerial expertise to thrive in the global marketplace.

On completion of the course students will be able to obtain one of the following degrees: MSc, Postgraduate Diploma (PGDip), Postgraduate Certificate (PGCert).

The programme consists of course units which include various aspects of applied management and technology in the field of REAM. It is designed such that after enrolment participants already working in industry will benefit from the structure and content of the course in order to enhance their capability in Reliability Engineering and Asset Management. Our teaching staff are internationally recognised professionals with years of experience working in industry and academic institutions.

Teaching and learning

The coherent atmosphere in the classroom is to maintain high standards and quality and as such places are limited. Our teaching methods are similar to knowledge transfer concepts as well as case studies without involving much mathematical theories.

For part-time Distance Learning students, the entire course is delivered via Blackboard, an online virtual learning environment. Two course units per semester are undertaken on-line accessing web-based teaching material which will include text, images, video and animation in parallel, over a three month period. Most importantly web-based teaching generates an interactive environment with real, active communication between students and staff and between groups of students throughout the programme. Distance Learning students will need to visit the University for a 2-day residential per semester for face-to-face discussion with their Unit leader.

Career opportunities

The majority of graduates who have entered the programme to date already occupied senior maintenance related engineering positions within their organisation. Most continued in this discipline in their organisations, often in a more senior position.

Read less
MSc Maintenance Management provides suitably qualified or experienced engineers of all disciplines with, modern cost effective maintenance management techniques for the efficient operation of all types of sophisticated, complex equipment. Read more
MSc Maintenance Management provides suitably qualified or experienced engineers of all disciplines with, modern cost effective maintenance management techniques for the efficient operation of all types of sophisticated, complex equipment.

Graduates of this programme can expect to find work in the areas of maintenance engineering/management, asset management, condition monitoring and reliability and safety engineering.

Description

Maintenance management has grown and developed into a significant major strategic issue for ensuring effective operation of plant and engineering systems in order to meet business objectives. The programme equips engineering graduates from a variety of disciplines with the knowledge and skills to allow them to become effective maintenance managers in a wide range of industries.

Maintenance plays a major part in ensuring the reliability of systems, planning availability of assets, health and safety, environment and product quality standards, customer service and other important areas. If these issues are not addressed, the survival of many organisations is at risk.

Historically, maintenance has been associated with the cost of labour and spare parts. With the advent of modern technology, maintenance has now evolved from a non-issue to a more strategic concern in most organisations. However, other factors such as reliability and availability, downtime and product quality can be key factors when measuring maintenance effectiveness. In addition, the objectives must be attained in accordance with environmental and safety regulations.

The programme provides suitably qualified or experienced engineers of all disciplines with, modern cost effective maintenance management techniques for the efficient operation of all types of sophisticated, complex equipment.

This course has several different available start dates and study options - for more information, view the relevant web-page:
JANUARY 2017 (Part Time) - http://www.gcu.ac.uk/ebe/study/courses/details/index.php/P00855-1PTAB-1617/Maintenance_Management_(January)?utm_source=ZZZZ&utm_medium=web&utm_campaign=courselisting

SEPTEMBER 2017 (Part Time) - http://www.gcu.ac.uk/ebe/study/courses/details/index.php/P00855-1PTA-1718/Maintenance_Management_(Part-time)?utm_source=ZZZZ&utm_medium=web&utm_campaign=courselisting

JANUARY 2018 (Full Time) - http://www.gcu.ac.uk/ebe/study/courses/details/index.php/P01009-1FTAB-1718/Maintenance_Management?utm_source=ZZZZ&utm_medium=web&utm_campaign=courselisting

JANUARY 2018 (Part Time) - http://www.gcu.ac.uk/ebe/study/courses/details/index.php/P00855-1PTAB-1718/Maintenance_Management_(Part-time)?utm_source=ZZZZ&utm_medium=web&utm_campaign=courselisting

Why Choose This Programme?

Today’s modern and efficient companies require top level maintenance strategies to match their investment. This impacts many industries particularly the advanced manufacturing technologies, transport industry, food production and the oil and gas industry.

This has resulted in a considerable gap between current maintenance skill set and the required skills and expertise needed to maximise the potential benefits from the use of technologies.

Assessment

The taught modules are either assessed by coursework only or a combination of coursework and examination. In the latter case the final mark is determined by weighted average of the two elements. The MSc project is assessed by project reports, practical operation and an electronic presentation.

Career Opportunities

Graduates of this programme can expect to find work in the areas of maintenance engineering/management, asset management, condition monitoring and reliability and safety engineering.

Recent graduates have gone on to work for employers including Royal Mail, British Petroleum, British Energy, Scottish Power, First Scotrail, Siemens plc, Sellafield, Babcock International Group, Ciba Speciality Chemicals, Allied Bakeries, Alcan and Albion Automotive amongst others.

Read less
This programme is designed for graduates in mathematics, engineering, or science with excellent numeracy skills, wishing to pursue careers in the application of mathematics, in traditional areas such as engineering and science and in service areas such as finance and banking, where knowledge of modern applications of mathematics would be advantageous. Read more
This programme is designed for graduates in mathematics, engineering, or science with excellent numeracy skills, wishing to pursue careers in the application of mathematics, in traditional areas such as engineering and science and in service areas such as finance and banking, where knowledge of modern applications of mathematics would be advantageous. The core philosophy of the programme is to equip students both with mathematics and its applications and with high-level scientific software and associated numerical skills. The Greenwich campus, near the financial district of Canary Wharf, enables the department to build ties with many modern engineering and applied mathematics practitioners enabling our students to become part of a wider group. The Leslie Comrie seminar series, inviting both academics and industrialists, allows you to interact with our external links creating an advantageous learning experience. We provide you the grounds for building a high profile of understanding of current research practices in the industry. Our classes contain interactive applications that enhance the learning experience by innovative teaching practices. Utilising research expertise within the department you will graduate with a strong understanding of numerical methods. You will also develop an understanding for further applicability in various fields of applied mathematics and engineering.

This programme is suitable both for fresh graduates and also for experienced professional practitioners who wish to further their skills. The programme core modules cover modern mathematical skills together with applications across different industries, and there are optional professional modules directly related to research expertise within the Faculty. This ensures that students have an advanced understanding of both theory and practice in their selected specialist areas. Students will gain knowledge of mathematical skills and applications, computational skills, and relevant professional experience, related to traditional engineering and science modelling, modern enterprise applications, finance, and service industries. They will gain an understanding of emerging applications. There will be hands-on training in various development tools and in the use of computational software related to their professional direction. Assessment takes the form of 100% coursework, based on applications of current market practices. A supervised thesis project takes place at the end of the last teaching term during the summer months. Projects are allocated in March and students are invited to undertake a project that provides genuine insight in an area of the research interests within the department. The programme is also available on a part-time basis.

Visit the website http://www2.gre.ac.uk/study/courses/pg/maths/appmaths

Mathematics

Postgraduate mathematics students benefit from award-winning teaching and great facilities. Our programmes are informed by world-renowned research and our links with industry ensure our students develop the academic and practical skills that will enhance their career prospects.

What you'll study

Full time
- Year 1:
Option Set 1

Students are required to study the following compulsory courses.

English Language Support Course (for Postgraduate Students in the School of Computing and Mathematical Sciences)
Masters Project (Maths) (60 credits)
Computational Methods (15 credits)
Mathematical Approaches to Risk Management (15 credits)
Mathematics and its Applications (30 credits)

Students are required to choose 60 credits from this list of options.

Scientific Software Design and Development (15 credits)
Inverse Problems (15 credits)
Mathematics of Complex Systems (15 credits)
Reliability and Optimisation (15 credits)

Option Set 2
Students are required to study the following compulsory courses.

English Language Support Course (for Postgraduate Students in the School of Computing and Mathematical Sciences)
Masters Project (Maths) (60 credits)
Computational Methods (15 credits)
Mathematical Approaches to Risk Management (15 credits)
Mathematics and its Applications (30 credits)

Students are also required to choose 60 credits from this list of options.

Principles and Practice of Evacuation Modelling (30 credits)
Principles and Practice of Fire Modelling (30 credits)

Option Set 3

Students are required to study the following compulsory courses.

English Language Support Course (for Postgraduate Students in the School of Computing and Mathematical Sciences)
Masters Project (Maths) (60 credits)
Computational Methods (15 credits)
Mathematical Approaches to Risk Management (15 credits)
Mathematics and its Applications (30 credits)

Students are also required to choose 45 credits from this list of options.

Scientific Software Design and Development (15 credits)
Inverse Problems (15 credits)
Mathematics of Complex Systems (15 credits)
Reliability and Optimisation (15 credits)

Students are also required to choose 15 credits from this list of options.

Enterprise Software Engineering Development (15 credits)
Software Tools and Techniques (15 credits)
Actuarial Mathematics and Risk Modelling (15 credits)
Financial Time Series (15 credits)
Advanced Finite Difference Methods for Derivatives Pricing (15 credits)

Part time
- Year 1:
Students are required to study the following compulsory courses.

Inverse Problems (15 credits)
Mathematics and its Applications (30 credits)
Reliability and Optimisation (15 credits)

- Year 2:
Students are required to study the following compulsory courses.

Scientific Software Design and Development (15 credits)
Masters Project (Maths) (60 credits)
Computational Methods (15 credits)
Mathematics of Complex Systems (15 credits)

Students are required to choose 15 credits from this list of options.

Advanced Finite Difference Methods for Derivatives Pricing (15 credits)
Mathematical Approaches to Risk Management (15 credits)

Fees and finance

Your time at university should be enjoyable and rewarding, and it is important that it is not spoilt by unnecessary financial worries. We recommend that you spend time planning your finances, both before coming to university and while you are here. We can offer advice on living costs and budgeting, as well as on awards, allowances and loans.

Find out more about our fees and the support available to you at our:
- Postgraduate finance pages (http://www.gre.ac.uk/finance/pg)
- International students' finance pages (http://www.gre.ac.uk/finance/international)

Assessment

100% coursework: a supervised thesis project (during the summer months).

Career options

Our graduates are equipped with the tools to involve in many engineering applications and computational engineering sectors such as reliability engineering, risk management, complex engineering systems, fire safety and finance. Our expert seminar series gives you the opportunity to interact with leading figures from industry and academia and undertake projects of current industry practice. A postgraduate qualification is a major achievement and a milestone in your specialised career path leading to a professional career. The Department also offers a PhD programme which trains highly skilled candidates towards research careers in academia and industry. Our current collaborations for our PhD candidates lie with the STRIKE project for mathematical and computational applications.

Find out how to apply here - http://www2.gre.ac.uk/study/apply

Read less
This is a unique course relevant for those who aspire to competently manage and co-ordinate physical assets to optimum effect. Combining theory with best practice, this Engineering Asset Management course is aimed at engineers and management personnel working in an engineering/operations environment. Read more
This is a unique course relevant for those who aspire to competently manage and co-ordinate physical assets to optimum effect.

Combining theory with best practice, this Engineering Asset Management course is aimed at engineers and management personnel working in an engineering/operations environment. It marks a significant advance in the delivery of specialised professional development, designed to meet the 'real world' needs of industry.

The implementation of asset management practices within an organisation enables it to see tangible benefits such as lower operating costs, longer asset life, improved asset performance, greater reliability, higher safety standards, enhanced environmental support and better informed investment strategies.

See the website https://www.rgu.ac.uk/engineering/study-options/distance-and-flexible-learning/asset-integrity-management

Course detail

Teaching is delivered through the online university virtual learning environment, CampusMoodle. Each module comprises up to 52 hours of lectures and tutorials. Significant additional private study is expected during each module.

Stage 1

•Problem Solving
•Maintenance and Inspection for Asset Integrity
•Introduction to Integrity and Reliability
•Safety, Health, Environment and Risk Assessment

Exit Award: PgCert Asset Integrity Management

Stage 2

•Asset Life Cycle Analysis
•Corrosion Management
•Engineering Project Management
•Integrity and Reliability Management

Exit Award: PgDip Asset Integrity Management

Stage 3

•Individual Project Report

Award: MSc Asset Integrity Management

Accreditation

This course is accredited by the Energy Institute.

How to apply

To find out how to apply, use the following link: http://www.rgu.ac.uk/applyonline

Funding

For information on funding, including loans, scholarships and Disabled Students Allowance (DSA) please click the following link: http://www.rgu.ac.uk/future-students/finance-and-scholarships/financial-support/uk-students/postgraduate-students/postgraduate-students/

Read less
Maintenance strategies are central to the smooth operation of complex industrial processes in a wide range of industries including automotive, pharmaceutical, nuclear, petrochemical, and aerospace industries. Read more
Maintenance strategies are central to the smooth operation of complex industrial processes in a wide range of industries including automotive, pharmaceutical, nuclear, petrochemical, and aerospace industries. The planning and implementation of professional maintenance strategies can reduce costly breakdowns which may interrupt production, contribute to sustainable engineering practice to the benefit of the environment, improve safety and drive down costs. This MSc course in Maintenance Engineering is suitable for engineers who have recently graduated as well as those with experience who are seeking to extend their knowledge, or update their qualifications with a view to promotion or other new position. The award covers both technical and management aspects of maintenance engineering and forms a suitable basis for a career in a range of roles associated with maintenance engineering on mechanical plants, such as: asset management, plant maintenance, preventative maintenance, etc."

The course will enable students to apply for positions such as Design of ‘products’ for ease of maintenance – in which case the bias will be towards the design processes, Maintenance Engineers – Technicians/Engineers who conduct maintenance of systems, plants, fleets etc, Support Engineers positions for example in an avionic environment referring to the people who look at supportability, maintainability, reliability, testability and the design of support systems and services.

On completion of the course students may be able to obtain one of the following degrees
- Master (MSc) in Maintenance Engineering
- Postgraduate Diploma (PGDip) in Maintenance Engineering
- Postgraduate Certificate (PGCert) in Maintenance Engineering

Course Content
The programme is divided into course credits which cover many management and technological characteristics in the field of maintenance Engineering. The aims of the modules are:
- to undertake a major piece of advanced level work having some significant elements of research and originality.
- to develop the individual skills necessary to conduct technical studies at an advanced level effectively.
- to synthesise bearing designs that minimise power loss, evaluate bearing material or coating selections that minimise friction and wear, employ ISO standards in the design of lubricant management systems, design condition-monitoring solutions of typical industrial machines based on an understanding of their performance and running characteristics, synthesise reliability and maintainability analyses of mechanical or electrical devices.

- to identify the relationships between structures and mechanical properties of engineering materials, including metals, ceramics, polymers and composites; understand types of material failure including, fast facture, fatigue, creep, and corrosion and oxidation, be familiar with design with materials, including modulus-limited design, yield-limited design, fatigue design and creep-limited design; to understand criteria for materials selection.

- To examine the main methods for developing a modern maintenance programme for industrial plants. It provides a comprehensive understanding of theory and practice of reliability centred maintenance and total productive maintenance strategies to achieve high plant availability, optimise on product quality, and address safety and environmental issues.

- To examines the main methods for developing sustainable engineering programme for industrial plants. It provides a comprehensive understanding of theory and practice of sustainable systems engineering strategies to achieve high plant efficiency, optimise on product quality, and address safety and environmental issues.

- to enhance the student's ability to work independently, to provide an opportunity for the investigation of a topic of particular interest to the student, to enhance the student’s skills in report writing and critical evaluation, to enhance the ability to evaluate the results of an investigation.

- to provide students with Engineering knowledge of various renewable energy technologies; Scientific understanding of the contributions which the renewable sources can make, the technologies used to harness them and limitation associated with their uses; Practical skills in developing renewable energy projects.

- to introduce methods of computer interfacing of industrial or scientific instruments and data processing for monitoring and control of engineering processes, to provide students with a sound understanding of the use of advanced instrumentation and sensing methods, to apply signal processing methods and system design methods

- to Gain a deeper understanding of Computer Aided Design (CAD). Students will analyse the requirements for complex 3D CAD models and to build coherent solutions. This will include assemblies, complex surfaces, parametric design, etc...

Study mode
- Full time (2 days per week) or part-time (1 day per week) for compulsory and optional modules
- Modules are delivered on semester base
- Project (core module) is delivered during summer (September entry) or Spring (January entry)

Read less
Computer Science is one of the drivers of technological progress in all economic and social spheres. Those graduating with an M.Sc. Read more

About Computer Science

Computer Science is one of the drivers of technological progress in all economic and social spheres. Those graduating with an M.Sc. in Computer Science are specialists in at least one field of computer science who have wide-ranging science-based methodological expertise.
Graduates are able to define, autonomously and comprehensively, computer science problems and their applications, structure them and build abstract models. Moreover, they are able to define and implement solutions that are at the state of the art of technology and science.

Features

– A broad, international and relevant selection of courses
– As a student, you will work on cutting-edge research projects
– Individual guidance in small learning groups
– Excellent enterprise relations maintained by the chairs and institutes
– Numerous partnerships with universities throughout the world, including a double degree programme with the Institut national des sciences appliquées de Lyon (INSA)

Syllabus

The programme offers the following five focus modules:
1) Algorithms and Mathematical Modelling
2) Programming and Software Systems
3) Information and Communication Systems
4) Intelligent Technical Systems
5) IT Security and Reliability
1) Algorithms and Mathematical Modelling: This module teaches you about determinstic and stochastic algorithms, their implementation, evaluation and optimisation. You will acquire advanced knowledge of computer-based mathematical methods – particularly in the areas of algorithmic algebra and computational stochastics – as well as developing an in-depth expertise in mathematical modelling and complexity analysis of discrete and continuous problems.
2) Programming and Software Systems: This module imparts modern methods for constructing large-scale software systems, as well as creating and using software authoring, analysis and optimisation tools. In this module you will consolidate your knowledge of the various programming paradigms and languages, the structure of language processing systems, and learn to deal with parallelism in program procedures.
3) Information and Communication Systems: In this module you will study the interactions of the classic computer science areas of information systems and computer networks. This focus area represents an answer to the problem of increasing volume and complexity of worldwide information distribution and networks, and for the growing requirements on quality and performance of computer communication. Additionally, you will learn to transfer database results to multimedia data.
4) Intelligent Technical Systems: In this module you are acquainted with digital image and signal processing, embedded systems and applications of intelligent technical systems in industrial and assistance systems, which are necessary for production automation and process control, traffic control, medical and building technology. You will learn to develop complex applications using computer systems and deal with topics such as image reconstruction, camera calibration, sensor data fusion and optical measurement technology.
5) IT Security and Reliability: This module group is concerned with security and reliability of IT systems, e.g. in hardware circuitry and communication protocols, as well as complex, networked application systems. To ensure the secure operation of these systems you will learn design methodology, secure architectures and technical implementation of the underlying components.

Language requirements

Unless English is your native language or the language of your secondary or undergraduate education, you should provide an English language certificate at level B2 CEFR, e.g. TOEFL with a minimum score of 567 PBT, 87 iBT or ITP 543 (silver); IELTS starting from 5.5; or an equivalent language certificate.

To facilitate daily life in Germany, it would be beneficial for you to have German language skills at level A1 CEFR (beginner’s level). If you do not have any German skills when starting out on the programme, you will complete a compulsory beginner’s German course during your first year of study.

Read less
The aim of the MSc programme in Nuclear Engineering is to prepare engineers with the skills necessary to design, build and operate power generation plants, radioactive waste treatment plants, systems using radiation for industrial and medical applications, etc. Read more

Mission and goals

The aim of the MSc programme in Nuclear Engineering is to prepare engineers with the skills necessary to design, build and operate power generation plants, radioactive waste treatment plants, systems using radiation for industrial and medical applications, etc. The educational programme, therefore, gives emphasis to topics referring to energy applications, i.e. fission and fusion plants, nuclear fuel, materials and safety. Topics applied also in non-energy applications are accounted for, as in medical and industrial applications of radiation, material physics, plasma physics and nanotechnologies with a strong link to the nuclear field.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/nuclear-engineering/

Career opportunities

The graduates in Nuclear Engineering, thanks to the MSc multidisciplinary training, can easily be employed in the nuclear sector (e.g. industries operating in nuclear power plants design, construction and operation, in nuclear decommissioning and nuclear waste processing and disposal, in design and construction of radiation sources, in centers for nuclear fusion and high-energy physics), as well as in other areas such as the energy industry, the medical sector, the health, safety and environment sector (e.g. engineering companies, hospitals, consultancy and risk analysis firms) and also research centers and universities.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Nuclear_Engineering.pdf
In this Course emphasis is given to energetic applications, e.g. those referring to fission and fusion plants, the nuclear fuel, materials and safety. Also nonenergetic applications are accounted for, i.e. medical and industrial applications of radiation; radiation detection and measurements; nuclear electronics for radiation detection; radiochemistry; radiation protection and material physics, plasma physics and nanotechnologies with a strong link to their impact in the nuclear field. Graduates in Nuclear Engineering can find employment not only in the nuclear sector (industries operating in electro-nuclear power generation, nuclear plant dismantling, nuclear waste processing and disposal, design and construction of radiation sources, institutes and centers for nuclear fusion and high-energy physics), but also in other areas operating in the field of hightechnology, engineering companies, companies for industrial, medical and engineering advice, hospitals, companies for risk analysis, etc.

Subjects

1st year subjects
Fission reactor physics, nuclear measurements and instrumentation, nuclear plants, nuclear and industrial electronics, reliability safety and risk analysis, solid state physics.

2nd year subjects (subjects differentiated by three specializations)
- Nuclear plants
Nuclear technology and design, Applied Radiation Chemistry, Reliability, Safety and Risk Analysis A+B, Nuclear Material Physics. Fission Reactor Physics II + Radioactive Contaminants Transport, Statistical Physics.

- Nuclear Technology
Medical applications of radiation, Applied Radiation Chemistry, Nuclear technology and design, Reliability, Safety and Risk Analysis A+B, Nuclear material physics, Fission Reactor Physics II + Radioactive Contaminants Transport.

- Physics for Nuclear Systems
Subjects: Nuclear technology and design, Nuclear Material Physics, Medical applications of radiation, Applied Radiation Chemistry, Nuclear material physics, Fission Reactor Physics II + Radioactive Contaminants Transport.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/nuclear-engineering/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/nuclear-engineering/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
EIT is pleased to bring you the Master of Engineering (Electrical Systems)** program. IN THIS ACCREDITED AND PRESTIGIOUS PROGRAM YOU WILL GAIN. Read more
EIT is pleased to bring you the Master of Engineering (Electrical Systems)** program.

IN THIS ACCREDITED AND PRESTIGIOUS PROGRAM YOU WILL GAIN:
- Skills and know-how in the latest and developing technologies in electrical systems
- Practical guidance and feedback from experts from around the world
- Live knowledge from the extensive experience of expert instructors, rather than from just theoretical information gained from books and college
- Credibility and respect as the local electrical systems expert in your firm
- Global networking contacts in the industry
- Improved career choices and income
- A valuable and accredited Master of Engineering (Electrical Systems)** qualification

The next intake will start on the week of June 27, 2016.

Contact us to find out more and apply (http://www.eit.edu.au/course-enquiry).

** A note regarding recognition of this program in the Australian education system: EIT is the owner of this program. The qualification is officially accredited by the Tertiary Education Quality and Standards Agency (TEQSA). EIT delivers this program to students worldwide.

Visit the website http://www.eit.edu.au/master-engineering-electrical-systems

PROFESSIONAL RECOGNITION

This Master Degree (or Graduate Diploma) is officially accredited by the Tertiary Education Quality and Standards Agency (TEQSA) in Australia.

It is a professional development program and is not currently an entry-to-practice qualification. Engineers Australia are considering this and other programs for those students desiring professional status (e.g. CPEng). However, the outcome of this review may or may not result in a student gaining chartered professional status if he or she does not already possess this.

Additional Entry Requirements

An appropriate level of English Language Proficiency equivalent to an English pass level in an Australian Senior Certificate of Education, or an IELTS score of 6.5 (with no individual band less than 6.0) or equivalent as outlined in the EIT Admissions Policy.

Congruent field of practice means one of the following with adequate electrical engineering content (with fields not listed below to be considered by the Dean and the Admissions committee on a case-by-case basis):

• Electrical Engineering

• Electronic and Communication Systems

• Industrial Engineering

• Instrumentation, Control and Automation

• Mechatronic Systems

• Manufacturing and Management Systems

• Industrial Automation

• Production Engineering

Overview

Electrical power is an essential infrastructure of our society. Adequate and uninterrupted supply of electrical power of the required quality is essential for industries, commercial establishments and residences; and almost any type of human activity is impossible without the use of electricity. The ever-increasing cost of fuels required for power generation, restricted availability in many parts of the world, demand for electricity fueled by industrial growth and shortage of skilled engineers to design, operate and maintain power network components are problems felt everywhere today. The Master of Engineering (Electrical Systems) is designed to address the last-mentioned constraint, especially in today’s context where the field of electrical power is not perceived as being ‘cool’ unlike computers and communications and other similar nascent fields experiencing explosive growth. But it is often forgotten that even a highly complex and sophisticated data centre needs huge amounts of power of extremely high reliability, without which it is just so much silicon (and copper).

This program presents the topics at two levels. The first year addresses the design level where the student learns how to design the components of a power system such as generation, transmission and distribution as well as the other systems contributing to the safety of operation. The topics in the first year also cover the automation and control components that contribute to the high level of reliability expected from today’s power systems. Because of the constraints imposed by the fuel for power generation and the environmental degradation that accompanies power generation by fossil fuels, the attention today is focused on renewable energy sources and also more importantly how to make the generation of power more efficient and less polluting so that you get a double benefit of lower fuel usage and lower environmental impact. Even the best designed systems need to be put together efficiently. Setting up power generation and transmission facilities involves appreciable capital input and complex techniques for planning, installation and commissioning. Keeping this in view, a unit covering project management is included in the first year.

The second year of the program focuses on the highly complex theory of power systems. If the power system has to perform with a high degree of reliability and tide over various disturbances that invariably occur due to abnormal events in the power system, it is necessary to use simulation techniques that can accurately model a power system and predict its behavior under various possible disturbance conditions. These aspects are covered in the course units dealing with power system analysis and stability studies for steady-state, dynamic and transient conditions. The aspect of power quality and harmonic flow studies is also included as a separate unit.

The study of power systems has an extensive scope and besides the topics listed above, a student may also like to cover some other related topic of special interest. The ‘Special Topics in Electrical Power Systems’ unit aims to provide students with the opportunity for adding one ‘state-of-the art’ topic from a list of suggested fields. Examples are: Smart grids, Micro-grids and Geographic Information System (GIS) application in utility environment.

The Masters Thesis which spans over two complete semesters is the capstone of the program, requiring a high level of personal autonomy and accountability, and reinforces the knowledge and skill base developed in the preceding units. As a significant research component of the course, this program component will facilitate research, critical evaluation and the application of knowledge and skills with creativity and initiative, enabling the students to critique current professional practice in the electrical power industry.

WHO WOULD BENEFIT

Those seeking to achieve advanced know-how and expertise in industrial automation, including but not limited to:

- Electric Utility engineers

- Electrical Engineers and Electricians

- Maintenance Engineers and Supervisors

- Energy Management Consultants

- Automation and Process Engineers

- Design Engineers

- Project Managers

- Consulting Engineers

- Production Managers

Read less
Develop your knowledge, design and analysis skills, engage with modern challenges in structural engineering and transform your professional profile with this accredited technical MSc in Civil Engineering Structures. Read more
Develop your knowledge, design and analysis skills, engage with modern challenges in structural engineering and transform your professional profile with this accredited technical MSc in Civil Engineering Structures.

Who is it for?

This course is for professional engineers who want to specialise in structural engineering or move into this area of expertise to advance their career. Normally students have an undergraduate degree in engineering or a related discipline. Students who don’t have qualifications in civil engineering usually have relevant work experience in civil engineering structures so they are familiar with working within the specific technical domain.

Objectives

From analysing how carbon nanofibers can reduce the effect of corrosion in concrete to gaining insight from experts developing the new Forth Bridge, this MSc in Civil Engineering Structures has been designed to be broad in scope so you can develop your own area of structural engineering expertise.

As a department, we have broad interests from defining new structural forms to practical application of new materials. We believe civil engineering is a creative and collaborative profession, as much as a technical one. This course gives you the tools to immerse yourself in both the analytical and experimental side of the subject, so you can investigate diverse problems to generate your own structural solutions.

The Civil Engineering Structures MSc mirrors industry practice, so you will work in groups with your peers from the first term onwards and learn from a group of world-leading engineers with diverse research strengths. From earthquake engineering to sustainable construction, you have the opportunity to learn in breadth and depth using high-end industry software to develop safe solutions for real-world projects.

Academic facilities

There is a large dedicated lab on site equipped with facilities to investigate different structures and construction materials from concrete to timber. You also have access to other workshops where you can liaise with mechanical or electrical engineers to develop innovative scale models. There is access to specialist soil labs and large-scale equipment including wind tunnels.

We have an extensive library housing all the references, journals and codes of practice that you will need during your studies.

As part of the University of London you can also become a member of Senate House Library for free with your student ID card.

Teaching and learning

You will be taught by the staff team within the School of Mathematics, Computer Science and Engineering and also from visiting industry experts from around the world.

Teaching mainly takes the form of lectures, but IT sessions and seminars also form part of the Masters degree. Modules are shared between two ten-week teaching terms running from October to December and January to March. Although work for the MSc dissertation starts during the second term, you will conduct most of the research work during the summer months.

The length of the full-time degree is 12 months. A part-time route is also available where you can spend either two or three years completing the programme. If you follow the two-year part-time study route, you will need to attend lectures for up to two days each week. Alternatively, you can complete the degree over three years by attending a single day each week. The timetable has been designed to offer flexibility for part-time students.

In the first term you will consider core technical topics and be introduced to new concepts such as structural reliability. In the second term you will begin to focus your studies by selecting your dissertation topic and by selecting options getting involved in a specific areas of your own interest. Spread over the year you will have design presentations, class tests and reports.

If you select an experimental dissertation you will have the opportunity to use a range of materials. Skilled technical support is available in the workshop and you have access to recently refurbished facilities, including specialist geotechnical labs which accommodate a large flexible laboratory space used for centrifuge model preparation and testing. Adjacent to this you have concrete mixing and casting facilities, a temperature-controlled soil element testing laboratory and a concrete durability laboratory.

Assessment

For the theoretical modules, you will be assessed through a combination of examinations and coursework. Examinations are shared between the January and April/May examination periods. For the design-oriented modules you are normally assessed by coursework only, where you will work both in groups and individually on challenging projects.

Modules

There are six core modules which give you a strong technical foundation and three elective modules from which you can choose two. These reflect the specialist expertise on offer within the academic team. These modules will give you unique insight into computer analysis of structures for blast and fire, bridge engineering, and earthquake analysis where you may look at techniques for analysing structures and safe design. In the final part of the programme you undertake a dissertation in which you can explore an area of interest from a proposed list of themes, some of which are industry-related.

Core modules and dissertation
-Advanced structural analysis and stability (20 credits)
-Finite element methods (15 credits)
-Dynamics of structures (15 credits)
-Structural reliability and risk (10 credits)
-Design of concrete structures (15 credits)
-Design of steel and composite structures (15 credits)
-Dissertation for MSc degree (Research Skills and Individual Project) (60 credits)

Elective modules - you will be able to study two of the following elective modules:
-Earthquake analysis of structures (15 credits)
-Analysis of steel and concrete structures for blast and fire exposure (15 credits)
-Bridge engineering (15 credits)

Career prospects

Graduates have secured employment with leading civil engineering consultants, research institutes and government agencies and pursued doctoral studies both in the UK and internationally. The cohort of 2014 have moved on to jobs and further study working within the following organisations:
-WSP Consultant Engineers
-Tully De'Ath Consultant Civil and Structural Engineers
-SSA Consulting Engineers
-Bradbrook Consulting
-Clarke Nicholls Marcel

Read less
This course is designed to develop knowledge of the critical contribution that human factors/ergonomics plays in the design of products, jobs, workplaces and systems as well as in the wider context of organizations and society. Read more
This course is designed to develop knowledge of the critical contribution that human factors/ergonomics plays in the design of products, jobs, workplaces and systems as well as in the wider context of organizations and society. It also emphasizes the importance of a user-centred focus in the design of human interaction with advanced technologies and sociotechnical systems to ensure effectiveness and reliability as well as comfort, health and safety and satisfaction for the user, consumer or employee.

The consequences of neglecting human factors/ergonomics have been amply demonstrated over the past few years in major
reliability failures and accidents, unsuccessful introduction of technology, and labour relations problems.

Students will develop:
their learning in a world leading active research and teaching
environment
the ability to exercise original thought
the ability to communicate ideas effectively in written
reports, verbally and by the means of presentations to groups
the ability to plan and undertake an individual project
interpersonal, communication and professional skills
their knowledge of fundamental human factors/ergonomics
principles
their ability to apply theory to world problems and issues
key skills that will prepare them for a career in human in
academia or industry

Previous projects have included:

Evaluation of a private eye display for maintenance tasks
Implementing ergonomics in engineering design
Sub-sea engineering supervision
Manual handling on construction sites
What makes a VE (Virtual Environment) usable?
Assembly ergonomics for automotive design engineers
Data visualisation and 3D displays
Situational awareness measurement in rail traffic control
Distance judgement in vehicle navigation systems
Importance of usability in product choice

This course is accredited as the educational qualification for Membership of The Institute for Ergonomics and Human Factors.

Read less
Explore the latest electrical engineering and process control techniques through this Masters in Microelectronic Systems Design. This postgraduate course is accredited by IET and meets Chartered Engineer status. Read more
Explore the latest electrical engineering and process control techniques through this Masters in Microelectronic Systems Design. This postgraduate course is accredited by IET and meets Chartered Engineer status.

•Complete this masters degree in one year (full time)
•Accredited by the Institution of Engineering and Technology (IET), the course meets Chartered Engineer status requirements
•Study at one the UK’s leading Engineering Schools
•Programme informed by internationally-acclaimed research
•Close industry links
•Excellent career opportunities in roles such as system designers, analysts, and senior engineers in the fields of electrical engineering, process control, and related industries

This Masters course will equip you with the technical and management skills you need to progress to senior professional positions, specialising in the design, fabrication and testing of microelectronic devices.

You will study the fundamental principles that drive future developments in microelectronics. We offer the opportunity to develop the critical, analytical and experimental skills to solve practical problems and work at the cutting edge of this rapidly developing field.

You’ll learn how to critically analyse designs, their functionality and expected reliability and it will also be important for you to gain a strong understanding of the capabilities and limitations of modelling and simulation tools.

The programme design provides opportunities to practice communication skills at Chartered Engineer level. You’ll gain sought after professional behavioural traits to prepare you for technical and management roles in microelectrical system design.

You will also undertake an individual project giving the opportunity to focus on your area of interest, working with our world-leading researchers.

Please see guidance below on core and option modules for further information on what you will study.
Level 7
Dynamic systems simulation
Microelectronic systems design
VLSI devices, fabrication and testing
Embedded systems
VLSI design
Research skills
Modelling with Matlab and Simulink
MSc project
Advanced single processing
Operations research
Safety and reliability
Project management
Programming for engineering
LabVIEW
Professional and leadership skills

Further guidance on modules

The information listed in the section entitled ‘What you will study’ is an overview of the academic content of the programme that will take the form of either core or option modules. Modules are designated as core or option in accordance with professional body requirements and internal Academic Framework review, so may be subject to change. Students will be required to undertake modules that the University designates as core and will have a choice of designated option modules. Additionally, option modules may be offered subject to meeting minimum student numbers.

Academic Framework reviews are conducted by LJMU from time to time to ensure that academic standards continue to be maintained. A review is currently in progress and will be operational for the academic year 2016/2017. Final details of this programme’s designated core and option modules will be made available on LJMU’s website as soon as possible and prior to formal enrolment for the academic year 2016/2017.

Please email if you require further guidance or clarification.

Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X