• University of Leeds Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses

Postgrad LIVE! Study Fair

Birmingham | Bristol | Sheffield | Liverpool | Edinburgh

Kingston University Featured Masters Courses
Xi’an Jiaotong-Liverpool University Featured Masters Courses
University of Reading Featured Masters Courses
Durham University Featured Masters Courses
Teesside University Featured Masters Courses
"regenerative" AND "biolo…×
0 miles

Masters Degrees (Regenerative Biology)

We have 67 Masters Degrees (Regenerative Biology)

  • "regenerative" AND "biology" ×
  • clear all
Showing 1 to 15 of 67
Order by 
This is a research-focused Master's training course in Stem Cells and Regenerative Biology. It is ideal preparation for future PhD progression or early career industrial entry. Read more
This is a research-focused Master's training course in Stem Cells and Regenerative Biology. It is ideal preparation for future PhD progression or early career industrial entry.

This course focuses on developing investigative laboratory-based research skills while addressing theoretical and applicable questions in stem cells and regenerative biology. The course provides an intensive research-led environment, which will give you the opportunity to develop a career in academic or applied biomedical or biological sciences.

Why study Stem Cell and Regenerative Biology with us?

Our lecturers have specialist knowleadge and work with a diverse range of skill sets that have application in the field of stem cell research and regenerative biology.

The Faculty of Medicine, Dentistry and Life Sciences at Chester is unique in having academic staff who’s research involves a variety of relevant model organisms. As well as humans, the team researches into fundamental biology of a variety of other mammallian species, birds, fish, amphibians and invertebrates. Students undertaking the MRes are able to draw on this expertise.

In addition, Chester is an active member of the Mercia Stem Cell Alliance and the UK Mesenchymal Stem Cell research community.

What will I learn?

In the module Models of Regenerative Biology, you will attend lectures, small group teaching and practical sessions relating to:

- various model systems of regeneration, with cell culture based models and in vivo systems, e.g. planaria; responses to injury;
- regulatory factors governing tissue regeneration;
- aspects of regenerative medicine.

In the module on Stem Cells and Tissue Engineering, you will attend lectures, small group teaching and practical sessions relating to:

- how to define stem cells;
- stem cell culture and maintenance;
- the principles of tissue engineering;
- the application of stem cell and tissue engineering, e.g. in the clinic or in drug screening and development.

The individual research project is undertaken following completion of these two taught modules and is the primary focus of this course.

Read less
Cell-to-cell signalling in development and disease. Do you have a clear and specific interest in cancer, stem cells or developmental biology? Our Master’s programme. Read more

Cell-to-cell signalling in development and disease

Do you have a clear and specific interest in cancer, stem cells or developmental biology? Our Master’s programme Cancer, Stem Cells and Developmental Biology combines research in three areas: oncology, molecular developmental biology and genetics. The focus is on molecular and cellular aspects of development and disease, utilising different model systems (mice, zebrafish, C. elegans, organoids and cell lines). The programme will guide you through the mysteries of embryonic growth, stem cells, signalling, gene regulation, evolution, and development as they relate to health and disease.

The right choice for you?

Given that fundamental developmental processes are so often impacted by disease, an understanding of these processes is vital to the better understanding of disease treatment and prevention. Adult physiology is regulated by developmental genes and mechanisms which, if deregulated, may result in pathological conditions. If you have a specific interest in cancer, stem cells or developmental biology, this Master’s programme is the right choice for you. Cancer, Stem Cells and Developmental Biology offers you international, high ranked research training and education that builds on novel methodology in genomics, proteomics, metabolomics and bioinformatics technology applied to biomedical and developmental systems and processes.

What you’ll learn

In the Cancer, Stem Cells and Developmental Biology programme you will learn to focus on understanding processes underlying cancer and developmental biology using techniques and applications of post-genomic research, including microarray analysis, next generation sequencing, proteomics, metabolomics and advanced microscopy techniques. You explore research questions concerning embryonic growth, stem cells, signaling pathways, gene regulation, evolution and development in relation to health and disease using various model systems. As a Master’s student you will take theory courses and seminars, as well as master classes led by renowned specialists in the field. The courses are interactive, and challenge you to further improve your writing and presenting skills.

Why study Cancer, Stem Cells and Developmental Biology at Utrecht University?

Compared to most other Master’s programmes in cancer and stem cell biology in the Netherlands, in Utrecht we offer:

  • Strong focus on fundamental molecular aspects of disease related questions, particularly questions related to cancer and the use of stem cells in regenerative medicine
  • A unique emphasis on Developmental Biology, a process with many connections to cancer
  • The opportunity to carry out two extensive research projects at renowned research groups
  • An intensive collaboration with national and international research institutes, allowing you to do your internship at prestigious partner institutions all around the world

Career in Cancer, Stem Cells and Developmental Biology

As a MSc graduate trained in both fundamental and disease-oriented aspects of biomedical genetics you are in great demand. You’ll be prepared for PhD study in one of the participating or associated groups. Alternatively, leaving after obtaining your MSc degree you will profit from a solid education in molecular genetics, in addition to your specialised knowledge of developmental biology. You’ll find your way to biotechnology, the pharmaceutical industry or education.



Read less
ENGINEERING THE FUNCTIONAL RESTORATION OF TISSUES AND ORGANS. Regenerative Medicine and Technology. (RMT) combines fundamental disciplines such as stem cell biology, materials science and biomechanics with more applied disciplines such as cell therapy, implantology and imaging. Read more

ENGINEERING THE FUNCTIONAL RESTORATION OF TISSUES AND ORGANS

Regenerative Medicine and Technology (RMT) combines fundamental disciplines such as stem cell biology, materials science and biomechanics with more applied disciplines such as cell therapy, implantology and imaging. New collaborations amongst these disciplines can assist in innovation in fundamental life sciences but also in new patient therapies and clinical applications with the ultimate goal to restore lost tissue or organ function.

This Master’s programme aims to train multidisciplinary scientists and to stimulate innovative research at the interface between biomedical sciences, engineering and clinical application. The rapidly emerging multidisciplinary field of regenerative medicine has significant effects on current and future health care applications. Our strong focus on technology will equip you with an understanding of processes ranging from specific cell culturing techniques and the use of biomaterials to computer models and imaging modalities.

Utrecht University offers the Master’s programme in cooperation with the University Medical Center Utrecht and the Faculty of Biomedical Engineering at Eindhoven University of Technology (TU/e). The programme combines the expertise of both universities and provides access to their state-of-the-art laboratories and research groups.

WHY STUDY REGENERATIVE MEDICINE AND TECHNOLOGY AT UTRECHT UNIVERSITY?

  • A unique combination of the TU/e technological with the UMC Utrecht clinical and UU biomedical approach
  • Excellent international reputation in the RM field and partners in innovative research projects with partners worldwide allowing students to do their internship at prestigious partner institutions all around the world .
  • New Utrecht Regenerative Medicine Center realized in 2015 at the Uithof campus gives students the opportunity to familiarize themselves with innovative science and to collaborate with the scientists associated with it
  • As a student you will have the opportunity to carry out two hands-on research projects at renowned research groups.

STUDY PROGRAMME

As a Master’s student of Regenerative Medicine and Technology you will take theoretical courses and seminars as well as master classes led by renowned specialists in the field in both Eindhoven and Utrecht. The courses are interactive, and challenge students to further improve their communication, writing and presenting skills. During your six to nine month internships you work in a lively research environment in academia or in consultancy companies and industry.

CAREER IN REGENERATIVE MEDICINE AND TECHNOLOGY

Regenerative Medicine and Technology will address the shortage of donor organs/tissue by providing the opportunity to produce tissue substitutes. As a graduates you can pursue a career in academic (PhD) or in industrial and commercial directions, including R&D, sales and consultancy.



Read less
Regenerative Medicine. MSc ( 1 year Full-time ). Overview. Regenerative medicine is an interdisciplinary field, which aims to repair diseased or damaged tissues using biological or cell-based technologies. Read more
Regenerative Medicine
MSc ( 1 year Full-time )

Overview

Regenerative medicine is an interdisciplinary field, which aims to repair diseased or damaged tissues using biological or cell-based technologies. It is a rapidly growing area of biomedical research that encompasses stem cell biology, tissue engineering, drug delivery, and nanotechnology. This MSc course provides advanced, multi-disciplinary training in the scientific principles and clinical applications of regenerative medicine, and is delivered jointly by Barts and The London School of Medicine and Dentistry and the School of Engineering and Materials Science.

Taught modules will develop a strong scientific foundation in the biology of stem cells and regeneration and the fundamental principles of biomaterials, tissue engineering and cellular reprogramming. Through an intensive 12-week research project, students will then gain hands on experience applying these concepts to problems in human health and the development of novel regenerative technologies.

Upon completion of the MSc in Regenerative Medicine, students will be well placed for further training at the PhD level or professional careers in the biotechnology and pharmaceutical industries.

Structure
The MSc in Regenerative Medicine is a one year, full-time programme. Students are required to complete 180 credits comprising taught and research modules.


Taught Modules (15 credits each)

o Cellular and Molecular Basis of Regeneration
o Stem Cell and Developmental Biology
o Advanced Tissue Engineering and Regenerative Medicine
o Research Skills and Methodology
o Biomaterials in Regenerative Medicine
o Tissue-specific Stem Cells
o Induced Pluripotent Stem Cells and Genome Engineering
o Ethics and Regulatory Affairs

Research Project in Regenerative Medicine (60 credits)
During the final 12 weeks of the course, students will work full time on their laboratory-based research projects. Students will select research projects from a wide range of topics in regenerative medicine. Examples include research on the cellular and molecular aspects of tissue regeneration, disease pathogenesis, development of stem cell therapies, design of novel nano-biotechnologies, or engineering biomaterials and tissue scaffolds.


Entry requirements
As a multi-disciplinary course, the MSc is appropriate for a wide range of students. Graduates with degrees in biological sciences or medicine will gain an in-depth understanding of the cellular and molecular aspects of regenerative medicine as well as an introduction to the interdisciplinary fields of biomaterials and tissue engineering. Similarly, students with a physical sciences background will have the opportunity to broaden their experiences and acquire new skills in the biological sciences.
Admission to the course is selective, and based upon academic credentials, research experience, and motivation. At a minimum, students must have an undergraduate degree equivalent to UK second-class honours from a recognised academic institution. Applicants are required to submit a statement of purpose and letter of recommendation with their application.
Applications are accepted all year round, but there are limited places to ensure high-quality training, so please apply early to avoid disappointment.

Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Tissue Engineering and Regenerative Medicine at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Tissue Engineering and Regenerative Medicine at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

Every day we are hearing of ground breaking advances in the field of tissue engineering which offer tremendous potential for the future of regenerative medicine and health care. Staff at Swansea University are active in many aspects of tissue engineering.

Key Features of Tissue Engineering and Regenerative Medicine

We are actively researching many aspects of tissue engineering including the following areas:

- Characterisation and control of the stem cell niche

- Mechanical characterisation of stem cells and tissues

- Production of novel scaffolds for tissue engineering

- Electrospinning of scaffold materials

- Cartilage repair and replacement

- Bone repair and replacement

- The application of nanotechnology to regenerative medicine

- Wound healing engineering

- Reproductive Immunobiology

- Bioreactor design

As an MSc By Research Tissue Engineering and Regenerative Medicine student, you will join one of the teams at Swansea University working in tissue engineering and use state of the art research equipment within the Centre for NanoHealth, a collaborative initiative between the College of Engineering and Swansea University Medical School.

The MSc by Research in Tissue Engineering and Regenerative Medicine typically lasts one year full-time, two to three years part-time. This is an individual research project written up in a thesis of 30,000 words.

Aim of Tissue Engineering and Regenerative Medicine programme

The aim of this MSc by Research in Tissue Engineering and Regenerative Medicine is to provide you with a solid grounding within the field of tissue engineering and its application within regenerative medicine.

This will be achieved through a year of research in a relevant area of tissue engineering identified after discussion with Swansea academic staff. Working with two academic supervisors you will undertake a comprehensive literature survey which will enable the formulation of an experimental research programme.

As a student on the MSc by Research Tissue Engineering and Regenerative Medicine course, you will be given the relevant laboratory training to undertake the research program. The research will be written up as a thesis that is examined. You will also be encouraged to present your work in the form of scientific communications such as journals and conference poster presentation.

The MSc by Research in Tissue Engineering and Regenerative Medicine will equip you with a wealth of research experience and knowledge that will benefit your future career in academia or the health care industries.

Recent MSc by Research theses supervised in the area of Tissue Engineering at Swansea University include:

- Quality assurance of human stem cell/primary cell bank

- The development of electrospinning techniques for the production of novel tissue engineering scaffolds.

- The incorporation of pulsed electromagnetic fields into wound dressings.

- The application of pulsed electromagnetic fields for improved wound healing.

- The use of nanoparticles in the control of bacterial biofilms in chronic wounds.

- The control of bacterial adhesion at surfaces relevant to regenerative medicine.

- The production of micro-porous particles for bone repair

Facilities

The £22 million Centre for Nanohealth is a unique facility linking engineering and medicine, and will house a unique micro-nanofabrication clean room embedded within a biological research laboratory and with immediate access to clinical research facilities run by local NHS clinicians.

Links with industry

The academic staff of the Medical Engineering discipline have always had a good relationship with industrial organisations. The industrial input ranges from site visits to seminars delivered by clinical contacts.

The close proximity of Swansea University to two of the largest NHS Trusts in the UK outside of London also offers the opportunity for collaborative research.

Research

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.

World-leading research

The REF shows that 94% of research produced by our academic staff is of World-Leading (4*) or Internationally Excellent (3*) quality. This has increased from 73% in the 2008 RAE.

Research pioneered at the College of Engineering harnesses the expertise of academic staff within the department. This ground-breaking multidisciplinary research informs our world-class teaching with several of our staff leaders in their fields.

Highlights of the Engineering results according to the General Engineering Unit of Assessment:

Research Environment at Swansea ranked 2nd in the UK

Research Impact ranked 10th in the UK

Research Power (3*/4* Equivalent staff) ranked 10th in the UK



Read less
Regenerative Medicine harnesses the intrinsic developmental programs by which the tissues and organs of the body are laid down, as well as the natural repair and regenerative capacity of the body, to provide solutions to the problems of degenerative diseases. Read more

Regenerative Medicine harnesses the intrinsic developmental programs by which the tissues and organs of the body are laid down, as well as the natural repair and regenerative capacity of the body, to provide solutions to the problems of degenerative diseases.

These solutions may concern direct tissue replacement, indirect mechanisms to ameliorate disease or enhance intrinsic tissue repair, or the development of pharmaceutical therapies. As such, it is of increasing interest to Life Sciences industries that seek to provide products and processes to the healthcare sector, and to healthcare providers such as the NHS.

This programme is intended to meet current and future needs of the pharmaceutical industry and health care providers by providing a cadre of well-trained scientists capable of fulfilling managerial, administrative, research and technical roles within the developing commercial regenerative medicine sector.

Our programme covers key theoretical and practical aspects of the growth and maintenance of pluripotent stem cell lines, the directed differentiation of these cells into defined tissue phenotypes, and the maintenance of the differentiated state under conditions suitable for drug testing/screening programs.

Essential elements of good practice will also be included, such as quality assurance and the regulatory framework that surrounds the derivation, storage and use of human cells. The course has a strong element fostering entrepreneurship and innovation.

Our teaching is multidisciplinary, with contributions from the fields of medicine, biology, chemistry and bioinformatics.

Programme structure

The programme contains both taught and independent project components.

Compulsory courses

  • Fundamental Biology of Stem Cells
  • Basic Techniques in Regenerative Medicine
  • Stem Cells and Regenerative Medicine
  • Production of Differentiated Cells
  • Regenerative Medicine Regenerative Medicine and Industry

Industrial placement

The laboratory placement is a key component of the course where students gain real world experience of regenerative medicine. The placements may be in an industrial or academic environment depending on the aspirations and career interests of the student. In some cases the placements may not involve hands-on laboratory research but may include aspects of the regulation of regenerative therapies or development of new businesses.

Financial assistance may be available to cover travel expenses to the location of the industrial placement.

Career opportunities

Graduates will be equipped for a variety of roles within the developing commercial regenerative medicine sector.



Read less
We offer an opportunity to train in one of the newest areas of biology. the application of engineering principles to the understanding and design of biological networks. Read more

We offer an opportunity to train in one of the newest areas of biology: the application of engineering principles to the understanding and design of biological networks. This new approach promises solutions to some of today’s most pressing challenges in environmental protection, human health and energy production.

This MSc will provide you with a thorough knowledge of the primary design principles and biotechnology tools being developed in systems and synthetic biology, ranging from understanding genome-wide data to designing and synthesising BioBricks.

You will learn quantitative methods of modelling and data analysis to inform and design new hypotheses based on experimental data. The University’s new centre, SynthSys, is a hub for world-leading research in both systems and synthetic biology.

Programme structure

The programme consists of two semesters of taught courses followed by a research project and dissertation, which can be either modelling-based or laboratory-based.

Compulsory courses:

  • Information Processing in Biological Cells
  • Social Dimensions of Systems and Synthetic Biology
  • Dissertation project
  • Practical Systems Biology
  • Applications of Synthetic Biology
  • Tools for Synthetic Biology

Option courses:

  • Neural Computation
  • Probabilistic Modelling and Reasoning
  • Functional Genomic Technologies
  • Bioinformatics Programming & System Management
  • Stem Cells & Regenerative Medicine
  • Statistics and Data Analysis
  • Biobusiness
  • Gene Expression & Microbial Regulation
  • Bioinformatics Algorithms
  • Biological Physics
  • Computational Cognitive Neuroscience
  • Molecular Phylogenetics
  • Next Generation Genomics
  • Drug Discovery
  • Biochemistry A & B
  • Environmental Gene Mining & Metagenomics
  • Economics & Innovation in the Biotechnology Industry
  • Industry & Entrepreneurship in Biotechnology
  • Introduction to Scientific Programming
  • Practical Skills in Biochemistry A & B
  • Mathematical Biology

Career opportunities

The programme is designed to give you a good basis for managerial or technical roles in the pharmaceutical and biotech industries. It will also prepare you for entry into a PhD programme.



Read less
This programme aims to provide a high level of scientific knowledge and understanding of stem cell biology and regenerative medicine - from the molecular to the whole system level. Read more
This programme aims to provide a high level of scientific knowledge and understanding of stem cell biology and regenerative medicine - from the molecular to the whole system level.

Course Outline & Modules

This programme aims to provide a high level of scientific knowledge and understanding of stem cell biology and regenerative medicine - from the molecular to the whole system level. The programme aims to enable students to develop an informed and critical appreciation of recent scientific developments in these areas of modern biomedical sciences and its clinical and industrial application, as well as a practical skill set for further research and learning, e.g. PhD studies.

The opportunity to undertake a work experience placement will enable students to further their employability and transferable skills and develop links with participating clinical and industrial partners.

This course offers a flexible framework of core and optional modules. The core modules are:
-Advanced Laboratory Skills with data analysis and interpretation
-Understanding Professional Practice & Enhancing your Employability
-Mammalian Cell Biology and Culture
-Stem Cells and Tissue Engineering Technology
-Tissue Formation, Function and Repair
-Models of Regeneration I

Optional modules include, but are not limited to:
-Ageing and Regenerative Medicine
-Transplantation Biology
-Finance and Business Management

Note that not all options may be available in any one year and that options will not proceed if the minimum student intake number is not reached.

Learning, Teaching & Assessment

The programme is delivered using a combination of lectures, practical classes, tutorials and seminars. Some modules will include group work. The core employability module will use visiting lecturers from industry to illustrate the potential employment avenues for graduates of this course. The course includes a research project, this is likely to be a laboratory-based project where students will collect and analyse their own data. Assessment methods employed include examinations and continuous assessment through coursework; these will differ for individual modules.

Career Opportunities

Completion of this course prepares students for a research-focussed role in industry, including the developing clinical field of stem cell therapies of regenerative medicine, or academia. Graduates can therefore expect to enter further research, in the form of a PhD or research assistant, or may undertake a career in the commercial or clinical sector.

Personal Development

Completion of this course prepares students for a research-focussed role in industry, including the developing clinical field of stem cell therapies of regenerative medicine, or academia. Graduates can therefore expect to enter further research, in the form of a PhD or research assistant, or may undertake a career in the commercial or clinical sector.

Read less
This academically challenging and career-developing programme focuses on research and development using biological and chemical principles and systems to create new products, services and industries. Read more

This academically challenging and career-developing programme focuses on research and development using biological and chemical principles and systems to create new products, services and industries.

You will employ elements of the developing field of synthetic biology to bring about significant changes and major innovations that address the challenges of rapidly changing human demographics, resource shortages, energy economy transition and the concomitant growth in demand for more and healthier food, sustainable fuel cycles, and a cleaner environment.

Programme structure

You will learn through a variety of activities, including:

  • lectures
  • workshops
  • presentations
  • laboratory work
  • field work
  • tutorials
  • seminars
  • discussion groups and project groups
  • problem-based learning activities

You will attend problem-based tutorial sessions and one-to-one meetings with your personal tutor or programme director.

You will carry out research at the frontier of knowledge and can make a genuine contribution to the progress of original research. This involves carrying out project work in a research laboratory, reviewing relevant papers, analysing data, writing reports and giving presentations.

Compulsory courses:

  • Applications of Synthetic Biology
  • Tools for Synthetic Biology
  • Social Dimensions of Systems & Synthetic Biology
  • Environmental Gene Mining & Metagenomics
  • Research Project Proposal
  • MSc Project and Dissertation

Option courses:

  • Biochemistry A & B
  • Introduction to Scientific Programming
  • Commercial Aspects of Drug Discovery
  • Stem Cells & Regenerative Medicine
  • Biological Physics
  • Enzymology & Biological Production
  • Next Generation Genomics
  • Machine Learning & Pattern Recognition
  • Drug Discovery
  • Biophysical Chemistry
  • Bioinformatics Programming & System Management
  • Economics & Innovation in the Biotechnology Industry
  • BioBusiness
  • Molecular Modelling & Database Mining
  • Industry & Entrepreneurship in Biotechnology
  • Practical Skills in Biochemistry A & B
  • Functional Genomic Technologies
  • Information Processing in Biological Cells
  • Data Mining & Exploration
  • Gene Expression & Microbial Regulation
  • Bioinformatics
  • Principles of Industrial Biotechnology

Learning outcomes

By the end of the programme you will have gained:

  • a strong background knowledge in the fields underlying synthetic biology and biotechnology
  • an understanding of the limitations and public concerns regarding the nascent field of synthetic biology including a thorough examination of the philosophical, legal, ethical and social issues surrounding the area
  • the ability to approach the technology transfer problem equipped with the skills to analyse the problem in scientific and practical terms
  • an understanding of how biotechnology relates to real-world biological problems
  • the ability to conduct practical experimentation in synthetic biology and biotechnology
  • the ability to think about the future development of research, technology, its implementation and its implications
  • a broad understanding of research responsibility including the requirement for rigorous and robust testing of theories and the need for honesty and integrity in experimental reporting and reviewing

Career opportunities

You will enhance your career prospects by acquiring current, marketable knowledge and developing advanced analytical and presentational skills, within the social and intellectual sphere of a leading European university.

The School of Biological Sciences offers a research-rich environment in which you can develop as a scientist and entrepreneur.



Read less
This research-based course has a taught component that is the same as an MSc. It provides a springboard into a career that involves a working knowledge of scientific research. Read more

This research-based course has a taught component that is the same as an MSc. It provides a springboard into a career that involves a working knowledge of scientific research.

The course is designed for graduates with a BSc in the life sciences or other science disciplines, and for intercalating and fully qualified MBBS or BDS students. It can be taken either as a stand-alone qualification or as an entry route onto a PhD or MD.

What you'll learn

The taught component of the course includes subject-specific content in the area of systems biology. You have the flexibility to develop your own bespoke course by selecting additional, complementary modules. You will also participate in training in general research principles, and other professional and key skills.

Subject-based modules aim to develop a new generation of creative, innovative scientists and engineers, whose expertise spans the biological and physical domains. It introduces you to systems biology approaches that enable you to understand and manipulate complex biological systems, particularly the vulnerability of such systems to stress.

Your project

Your research project comprises the major element of the course. This project will involve 24 weeks of research in an area of systems biology under the supervision of an expert academic researcher in the field.

The course allows you to experience an internationally competitive research area, predominantly in academia but also potentially in industry.

Our MRes courses

Systems Biology MRes is closely linked to a suite of MRes courses that you may also be interested in:

Faculty of Medical Sciences Graduate School

Our Medical Sciences Graduate School is dedicated to providing you with information, support and advice throughout your research degree studies. We can help and advise you on a variety of queries relating to your studies, funding or welfare.

Our Research Student Development Programme supports and complements your research whilst developing your professional skills and confidence.

You will make an on-going assessment of your own development and training needs through personal development planning (PDP) in the ePortfolio system. Our organised external events and development programme have been mapped against the Vitae Researcher Development Framework to help you identify how best to meet your training and development needs.



Read less
Regenerative Medicine is a vibrant area multidisciplinary area, encompassing life science and medicine, pharmaceutical-related approaches, as well as the use of cell-based therapies, to include also various types of stem-cells, bioactive scaffolds and drug delivery modalities. Read more

The Exciting Area of Regenerative Medicine

Regenerative Medicine is a vibrant area multidisciplinary area, encompassing life science and medicine, pharmaceutical-related approaches, as well as the use of cell-based therapies, to include also various types of stem-cells, bioactive scaffolds and drug delivery modalities. This 21st Century Medicine holds the promise of contributing to the development of alternatives to long-term, high-cost care approaches for many degenerative and age-related diseases, but at the same time is a rich area for question-driven research.

About the Course

The MSc Regenerative Medicine (taught masters) will provide students with a multidisciplinary approach to gaining a critical knowledge and training in the biological and chemical basis of tissue regeneration. You will cover subject such as stem cell biology, biotechnology, and tissue engineering. Students will be also made aware of the basics of intellectual property law, regulatory affairs, and ethical issues playing a role in the regenerative medicine industry. The delivery of the course comprises a mixture of structured taught modules, practical activities and self-directed study. The degree culminates in a laboratory-based research dissertation project.
Students will access high-specification laboratory facilities and benefit from the expertise of academics active in research projects at national and international level, with numerous opportunities to network with expert in the fields.

It is a vibrant area of endeavour, involving multidisciplinary interactions and strong employment opportunities for those trained in the field. Master Graduates will be well placed to secure jobs in academic research, as well as a wide range of careers outside the laboratory to include biotechnology business, legal sciences, and science communication. Additionally, the course prepares students for studies at PhD level.

Module on this Course

The delivery of the course Comprises a mixture of structured taught modules, practical activities and self-directed study. Students are set regular tasks and formative assessments helping strengthening skills of communication, team working, and self-evaluation. The Master degree culminates with a research project dissertation providing you with the opportunity to fully engage with contemporary research in the field; numerous opportunities for conducting part or the entirety of this research project outside the University or abroad can be discussed as required.

These are the Modules on this Course:
• Cell Biology and Biotechnology
• Developmental Biology and regeneration
• Advanced Laboratory Skills
• Research Methods
• Stem Cell Biology
• Cell Therapy and Tissue Engineering
• Dissertation Project

Read less
Gain professional level knowledge of tissue regeneration, stem cell biology and biochemistry. Develop skills in a fast growing area of biomedical research. Read more

Gain professional level knowledge of tissue regeneration, stem cell biology and biochemistry. Develop skills in a fast growing area of biomedical research.

This course is ideal if you want to gain experience and knowledge in the sought-after field of regenerative medicine.

You’ll focus in particular on modern research in developmental biology, stem cell biology and tissue engineering, and how these can be applied to human health. You will develop an insight into the scientific principles and clinical applications, and how to apply these to human health. The course is a collaborative programme within the Centre for Regenerative Medicine.

The MRes provides a unique mix of taught components, extended laboratory projects, literature reviews and preparation of a grant proposal based on a research dissertation. You’ll gain an insight into a range of research activities and techniques, gaining the transferable skills training needed for all early stage researchers. You’ll also address the scientific, ethical and commercial context within which the research takes place.

All of the MRes courses can be studied as the first year of our Integrated PhD course.

Visit the website http://www.bath.ac.uk/courses/postgraduate-2018/taught-postgraduate-master-s-courses/mres-regenerative-medicine/

Why study Biology and Biochemistry with us?

- 90% of our research judged to be internationally recognised, excellent or world-leading

- Our current research funding portfolio stands at £14 million, supporting internationally excellent research in the biosciences

What will I learn?

MRes degree programmes are designed for graduates who are contemplating a research career and who may go on to study for a PhD or to a position in industry involving interaction with research scientists.

If these do not apply, you might consider an MSc programme (http://www.bath.ac.uk/science/graduate-school/taught-programmes/).

For further information please visit our department pages (http://www.bath.ac.uk/bio-sci/)

Career opportunities

Since graduating, our students have gone on to employment or further research at institutions in the US, Europe, Australia, Asia and Africa.

Recent employers include:

Morvus-Technology Ltd

Janssen-Cilag

Royal United Hospital, Bath

Ministry of Defence

State Intellectual Property Office, Beijing

Wellcome Trust Centre for Human Genetics, Oxford University

AbCam

Salisbury Foundation Trust Hospital

BBSRC

Lonza

Find out more about the department here - http://www.bath.ac.uk/bio-sci/

Find out how to apply here - http://www.bath.ac.uk/science/graduate-school/taught-programmes/how-to-apply/



Read less
This unique specialist course gives you practical experience in human embryonic stem cell techniques, helping you develop the professional skills employers want. Read more

About the course

This unique specialist course gives you practical experience in human embryonic stem cell techniques, helping you develop the professional skills employers want. You’ll also spend time in seminars considering the ethical and legal issues associated with the field.

Where your masters can take you

Graduates with skills in stem cell and regenerative medicine are in demand. Your degree will prepare you for a career in research in academia or industry, or in a clinical-related field. Our graduates are working all over the world – from the UK to China, India and the USA – and over half go on to doctoral study.

Learn from the experts

The 2014 Research Excellence Framework (REF) rates us No 1 in the UK for research in this field. Our international reputation attracts highly motivated staff and students. Sheffield is a vibrant place to take a masters based on pioneering research.

Regular seminars from distinguished international experts help you to connect your studies to the latest developments. We’re also part of collaborative research groups for developmental biology, cell biology, physiology, pharmacology, neuroscience, models of human disease, stem cell science and regenerative medicine.

Our three research centres focus on translating laboratory research to the clinical environment: Bateson Centre, the Centre for Stem Cell Biology, and the Centre for Membrane Interactions and Dynamics.

Leaders in our field

We have a long track record of groundbreaking discoveries. These include breakthroughs in human stem cells for hearing repair, and the generation of animal models for Parkinson’s disease, schizophrenia, muscular dystrophies and their use for therapeutic studies.

Labs and equipment

We have purpose-built facilities for drosophila, zebrafish, chick and mouse genetics and for molecular physiology. Other facilities provide all the tools you’ll need to examine and analyse a range of cellular structures. We have an electron and a light microscopy centre, a PCR robotics facility, a flow cytometry unit and an RNAi screening facility.

Teaching and assessment

There are lectures, practical classes, tutorials and seminars. In small group teaching classes you’ll discuss, debate and present on scientific and ethical topics. Laboratory placements within the department provide you with one-to-one attention, training and support to do your individual research project. Assessment is by formal examinations, coursework assignments, debates, poster presentations and a dissertation.

Our teaching covers ethics, practical scientific skills and an overview of the current literature. You’ll also develop useful career skills such as presentation, communication and time management.

Core modules

Literature Review; Practical Research Project; Analysis of Current Science; Ethics and Public Understanding.

Examples of optional modules

Stem Cell Techniques; Practical Cell Biology; Practical Developmental Genetics; Bionanomaterials; Modelling Human Diseases; Stem Cell Biology.

Read less
Discover the science of the processes behind the growth and development of organisms. Develop specialist knowledge of cell and developmental biology. Read more

Discover the science of the processes behind the growth and development of organisms. Develop specialist knowledge of cell and developmental biology.

This course is ideal for you if you want to go into a research career or study for a PhD in the field of Developmental Biology. You’ll study the genes and molecules that control cell growth, differentiation and morphogenesis that create tissues, organs and individuals. You’ll learn in facilities with outstanding provision for experimental work, using a range of model, plant and vertebrate organisms.

The MRes provides a unique mix of taught components, extended laboratory projects, literature reviews and preparation of a grant proposal based on a research dissertation. You’ll gain an insight into a range of research activities and techniques, gaining the transferrable skills training needed for all early stage researchers. You’ll also address the scientific, ethical and commercial context within which the research takes place. You will have the opportunity to study as part of the Centre for Regenerative Medicine at Bath. The Centre enables work in regenerative medicine to be underpinned by an understanding of normal developmental organisms.

All of the MRes courses can be studied as the first year of our Integrated PhD course.

Visit the website http://www.bath.ac.uk/courses/postgraduate-2018/taught-postgraduate-master-s-courses/mres-developmental-biology/

Why study Biology and Biochemistry with us?

- 90% of our research judged to be internationally recognised, excellent or world-leading

- Our current research funding portfolio stands at £14 million, supporting internationally excellent research in the biosciences

What will I learn?

MRes degree programmes are designed for graduates who are contemplating a research career and who may go on to study for a PhD or to a position in industry involving interaction with research scientists.

If these do not apply, you might consider an MSc programme (http://www.bath.ac.uk/science/graduate-school/taught-programmes/).

For further details please visit our department pages (http://www.bath.ac.uk/bio-sci/)

Career opportunities

Since graduating, our students have gone on to employment or further research at institutions in the US, Europe, Australia, Asia and Africa.

Recent employers include:

Morvus-Technology Ltd

Janssen-Cilag

Royal United Hospital, Bath

Ministry of Defence

State Intellectual Property Office, Beijing

Wellcome Trust Centre for Human Genetics, Oxford University

AbCam

Salisbury Foundation Trust Hospital

BBSRC

Lonza

Find out more about the department here - http://www.bath.ac.uk/bio-sci/

Find out how to apply here - http://www.bath.ac.uk/science/graduate-school/taught-programmes/how-to-apply/



Read less
This innovative master program enables you to meet the demands of employers in the scientific field worldwide. You will be trained in all aspects of cutting edge molecular stem cell biology including legal and ethical aspects, good medical practice and acquisition of third party funding. Read more

Overview

This innovative master program enables you to meet the demands of employers in the scientific field worldwide. You will be trained in all aspects of cutting edge molecular stem cell biology including legal and ethical aspects, good medical practice and acquisition of third party funding. The course combines cutting edge approaches such as iPSC and bioprinting with traditional basic disciplines such as histology to secure an in-depth understanding towards innovative translational approaches in medicine. The course is entirely taught in English.

Learning outcome

Holding our degree means you have acquired a robust expertise in theory and practice in one of the most scientifically and ethically demanding biomedical fields of today.

During the first year of the program, students achieve a fundamental understanding of developmental processes that are linked to the current progress of stem cell research. This theoretical knowledge is further deepened and expanded on by hands-on experience in the relevant laboratories.

The inclusion of local national and international guest lecturers gives students the opportunity to get an idea what is going on in the field of stem cell research and which labs can be chosen for specialized practicals.

During the second year, the curriculum emphasizes application-oriented courses suited to understand the cellular and molecular basis of human diseases and to familiarize with the complex demands of modern medicine. The 4th semester is reserved for the master thesis; multiple international collaborations and a mobility window offer the chance to perform practicals and master thesis abroad.

Modules

The major modules in the program are listed below:

Stem Cell Physiology (I and II)
3x Lecture Series on recent developments in stem cell research (by national and international experts)
Bioinformatics
Stem Cell Practical Courses- 2 weeks-long practical courses (4 times)
Molecular Tracing Methods
Molecular Genetic Methods
Tissue Engineering
Lab Rotation
Pathology of Degenerative Diseases
Course in Animal Care and Handling
Scientific Responsibility in Biomedicine
Lab Bench Project & Grant Writing
Master Project
Language Courses

Possibility for International Double degree program `Stem Cell Biology and Regenerative Medicine´

In addition to the regular master program, we also offer a double degree master program in `Stem Cell Biology and Regenerative Medicine’ in collaboration with Jinan University in China. This program is supported by the DAAD (Deutscher Akademischer Austauschdienst) with a stipend of 800, -- Euros/month plus travel expenses (flight) for every participating student. The selection for this program will be made from the regular master students. More information is available on our website.

Ruhr University Bochum (RUB)

Ruhr University Bochum (RUB) has a very international outlook and it is closely interconnected with the thriving research and business initiatives of the surrounding Ruhr region. Aside from the RUB, the surrounding Ruhr region offers a lot of opportunities to young researchers, such as 15 universities, 4 Fraunhofer institutes, 4 Leibnitz institutes and 3 Max-Planck institutes, which makes it easy for the students to interact with the experts and get hands-on experience in the state-of-the-art laboratories.

Read less

Show 10 15 30 per page



Cookie Policy    X