• University of Southampton Featured Masters Courses
  • University of Cambridge Featured Masters Courses
  • Durham University Featured Masters Courses
  • Anglia Ruskin University Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Ross University School of Veterinary Medicine Featured Masters Courses
De Montfort University Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
Nottingham Trent University Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
Bath Spa University Featured Masters Courses
"refinery"×
0 miles

Masters Degrees (Refinery)

We have 7 Masters Degrees (Refinery)

  • "refinery" ×
  • clear all
Showing 1 to 7 of 7
Order by 
This programme will equip you with the essential knowledge for engineering careers in the oil, gas and petrochemical sectors. Read more

This programme will equip you with the essential knowledge for engineering careers in the oil, gas and petrochemical sectors.

Upon completion of the course you will have gained a comprehensive understanding of oil refining and associated downstream processing technologies, operations and economics; process safety and operations integrity; and methods for the optimal design of process systems.

You will learn about the general economics of the energy sector, oil exploration and production, as well as renewable energy systems.

Furthermore, your study of the various aspects of petroleum refining will be augmented by unique work assignments at a virtual oil-refining and chemical company.

Programme structure

This programme is studied full-time over one academic year and part-time students must study at least two taught technical modules per academic year. It consists of eight taught modules and a dissertation.

Example module listing

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Educational aims of the programme

The programme aims to provide a highly vocational education that equips the students with the essential knowledge and skills required to work as competent engineers in the petrochemical sector.

This is to be achieved through combining proper material in two popular and complementary topics: process systems engineering and petroleum refining. The key objective is to develop a sound understanding of oil refining and downstream processing technologies, process safety and operation integrity, as well as systems methods for the optimal design of process systems.

A balanced curriculum is provided with essential modules from these two areas supplemented by a flexible element by way of elective modules that permit students to pursue subjects of preference relevant to their backgrounds, interests and/or career aspirations.

An integrated approach is taken so as to provide a coherent view that explores the interrelationships between the various components of the programme.

Programme learning outcomes

Knowledge and understanding

The programme aims to develop the knowledge and understanding in both petroleum refining and systems engineering. The key learning outcomes include:

  • State-of- the-art knowledge in petroleum refining and petrochemical processing, in terms of the technologies of processes that comprise a modern refinery and petrochemicals complex
  • The principles for analysing and improving the profitability of refining and petrochemicals processing
  • General Safety, health, and environment (SHE) principles on a refinery and petrochemicals complex
  • Methods and systems for ensuring safe and reliable design and operation of process units
  • State-of- the-art knowledge in process systems engineering methods, in the areas of: modelling and simulation of process systems, mathematical optimization and decision making, process systems design and process and energy integration
  • Advanced level of understanding in technical topics of preference, in one or more of the following aspects: petroleum exploration and production, economics of the energy sector, sustainable and renewable systems, supply chain management

Intellectual / cognitive skills

The programme aims to strengthen cognitive skills of the students, particularly in the aspects of problem definition, knowledge and information acquiring, synthesis, and creativity, as collectively demonstrable through the successful completion of the research dissertation.

The key learning outcomes include the abilities to:

  • Select, define and focus upon an issue at an appropriate level
  • Collect and digest knowledge and information selectively and independently to support a particular scientific or engineering enquiry
  • Develop and apply relevant and sound methodologies for analysing the issue, developing solutions, recommendations and logical conclusions, and for evaluating the results of own or other’s work

Professional practical skills

The programme primarily aims to develop skills for applying appropriate methods to the design and operation of petroleum refining processes. The key learning outcomes include the abilities to:

  • Apply knowledge of the operation of refineries to analyze and to improve the profitability of refining and petrochemical processing
  • Apply relevant principles, methods, and tools to improve the safety and operation integrity of refineries
  • Apply systems engineering methods such as modelling, simulation, optimization, and energy integration to improve the design of petroleum refining units and systems

Key / transferable skills

The programme aims to strengthen a range of transferable skills that are relevant to the needs of existing and future professionals in knowledge intensive industries irrespective of their sector of operation.

The key learning outcomes include the further development of the skills in the following areas:

  • Preparation and delivery of communication and presentation
  • Report and essay writing
  • Use of general and professional computing tools
  • Collaborative working with team members
  • Organizing and planning of work
  • Research into new areas, particularly in the aspect of literature review and skills acquisition

Global opportunities

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.



Read less
This Masters programme trains graduates of engineering, science or related disciplines in general and specialist process systems engineering subjects. Read more

This Masters programme trains graduates of engineering, science or related disciplines in general and specialist process systems engineering subjects.

Such areas are not generally covered in engineering and science curricula, and BSc graduates tend to be ill prepared for the systems challenges they will face in industry or academia on graduation.

Programme structure

This programme is studied full-time over one academic year and part-time students must study at least two taught technical modules per academic year. It consists of eight taught modules and a dissertation.

Example module listing

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Facilities, equipment and academic support

Modules related to the different groups are taught by a total of six full-time members of staff and a number of visiting lecturers.

As part of their learning experience, students have at their disposal a wide range of relevant software needed to support the programme material dissertation projects. In recent years, this work included the design of various knowledge-based and business systems on the internet, the application of optimisation algorithms, and semantic web applications.

Numerous laboratory facilities across the Faculty and the University are also available for those opting for technology-based projects, such as the process engineering facility, a control and robotics facility and signal processing labs.

The work related to the MSc dissertation can often be carried out in parallel with, and in support of, ongoing research. In the past, several graduates have carried on their MSc research to a PhD programme.

Career prospects

Engineers and scientists are increasingly expected to have skills in information systems engineering and decision-support systems alongside their main technical and/or scientific expertise.

Graduates of this programme will be well prepared to help technology-intensive organisations make important decisions in view of vast amounts of information by adopting, combining, implementing and executing the right technologies.

Educational aims of the programme

The programme aims to provide a highly vocational education which is intellectually rigorous and up-to-date. It also aims to provide the students with the necessary skills required for a successful career in the process industries.

This is achieved through a balanced curriculum with a core of process systems engineering modules supplemented by a flexible element by way of elective modules that permit students to pursue an element of specialisation relevant to their backgrounds, interests and/or career aspirations.

An integrated approach is taken so as to provide a coherent view that explores the interrelationships between the various components of the programme. The programme draws on the stimulus of the Faculty’s research activities.

The programme provides the students with the basis for developing their own approach to learning and personal development.

Programme learning outcomes

Knowledge and understanding

  • State-of- the-art knowledge in process systems engineering methods, in the areas of: modelling and simulation of process systems, mathematical optimization and decision making, process systems design, supply chain management, process and energy integration, and advanced process control technologies
  • Advanced level of understanding in technical topics of preference, in one or more of the following aspects: renewable energy technologies, refinery and petrochemical processes, biomass processing technologies, and knowledge-based systems

Intellectual / cognitive skills

The programme aims to strengthen cognitive skills of the students, particularly in the aspects of problem definition, knowledge and information acquiring, synthesis, and creativity, as collectively demonstrable through the successful completion of the research dissertation. The key learning outcomes include the abilities to:

  • Select, define and focus upon an issue at an appropriate level
  • Collect and digest knowledge and information selectively and independently to support a particular scientific or engineering enquiry
  • Develop and apply relevant and sound methodologies for analysing the issue, developing solutions, recommendations and logical conclusions, and for evaluating the results of own or other’s work

Professional practical skills

The programme primarily aims to develop skills for applying appropriate methods to analyse, develop, and assess process systems and technologies. The key learning outcomes include the abilities to:

  • Assess the available systems in the process industries
  • Design and/or select appropriate system components, and optimise and evaluate system design
  • Apply generic systems engineering methods such as modelling, simulation, and optimization to facilitate the assessment and development of advanced process technologies and systems

Key / transferable skills

The programme aims to strengthen a range of transferable skills which are relevant to the needs of existing and future professionals in knowledge intensive industries irrespective of their sector of operation. The key learning outcomes include the further development of the skills in the following areas:

  • Preparation and delivery of communication and presentation
  • Report and essay writing
  • Use of general and professional computing tools
  • Collaborative working with team members
  • Organising and planning of work
  • Research into new areas, particularly in the aspect of literature review and skills acquisition

Global opportunities

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.



Read less
This programme will provide you with the advanced knowledge and skills to pursue a successful career in the oil and gas industry. Read more

This programme will provide you with the advanced knowledge and skills to pursue a successful career in the oil and gas industry.

You’ll study modules covering core topics related to the downstream activities of the industry including drilling and production technology, oilfield chemistry and corrosion, and chemical reaction processes. You’ll also have the option to take modules in topics such as separation processes, process optimisation and control, and multi-scale modelling and simulation.

Practical work supports your lectures and seminars, as you split your time between the lab and the classroom. You’ll also undertake a major research project investigating a specific topic in petroleum production engineering, which could relate to your own interests or career intentions. Taught by experts in our world-class facilities, you’ll gain the knowledge and skills to thrive in a challenging and exciting industry.You’ll benefit from the chance to study in cutting-edge facilities where our researchers are pushing the boundaries of chemical and process engineering. We have facilities for characterising particulate systems for a wide range of technological materials, as well as facilities for fuel characterisation, environmental monitoring and pollution control. In our Energy Building, you’ll find an engine testing fuel evaluation and transport emissions suite and other characterisation equipment.

Accreditation

We are seeking accreditation from the Energy Institute.

Course content

Most of the course revolves around core modules, giving you a range of knowledge relating to different aspects of downstream petroleum production processes. These will include chemical reaction processes, drilling and production technologies and oilfield chemistry and corrosion.

You’ll look at the principles of process performance analysis, refining theory, enhanced oil recovery, chemicals used in corrosion control and strategies for new or mature assets. On top of this, you’ll take an optional module that allows you to develop your knowledge in an area that suits your own interests.

In the summer months you’ll undertake a research project, which will demonstrate the skills you’ve gained and may even be linked to your future career plans.

Want to find out more about your modules?

Take a look at the Petroleum Production Engineering module descriptions for more detail on what you will study.

Course structure

Compulsory modules

  • Research Project (MSc) 60 credits
  • Chemical Reaction Processes 15 credits
  • Fuel Processing 15 credits
  • Advanced Drilling and Production Technology 15 credits
  • Drilling and Production Technology 30 credits
  • Unconventional Oil and Gas Reservoirs 15 credits

Optional modules

  • Separation Processes 30 credits
  • Multi-Scale Modelling and Simulation 30 credits
  • Rock Mechanics 15 credits
  • Petroleum Reservoir Engineering 15 credits

For more information on typical modules, read Petroleum Production Engineering MSc in the course catalogue

Learning and teaching

Our groundbreaking research feeds directly into teaching, and you’ll have regular contact with staff who are at the forefront of their disciplines. You’ll have regular contact with them through lectures, seminars, tutorials, small group work and project meetings. Independent study is also important to the programme, as you develop your problem-solving and research skills as well as your subject knowledge.

Assessment

You’ll be assessed using a range of techniques including case studies, technical reports, presentations, in-class tests, assignments and exams. Optional modules may also use alternative assessment methods.

Projects

The research project is one of the most satisfying elements of this course. It allows you to apply what you’ve learned to a piece of research focusing on a real-world problem, and it can be used to explore and develop your specific interests.

Examples of project topics would include:

  • Enhancement of mechanical strength and corrosion inhibition in oil pipelines
  • Reducing oil pipeline scaling using nano-particle seeding agents
  • Monitoring pipeline flows using electrical resistance tomography (ERT)
  • The application of nano-technology in enhancing oil recovery
  • Application of polymer-based nano-particles in absorbing and controlling oil spillages
  • Tribo-electrostatic beneficiation of oil shale using a powder dispersal system

A proportion of research projects are formally linked to industry, and can include spending time at the collaborator’s site over the summer.

Career opportunities

The programme’s main focus is on downstream petroleum industry activities such as drilling, production, refining and distribution.

With an MSc degree in Petroleum Production Engineering you could expect to pursue a successful career in the oil and gas industries in a wide range of areas as diverse as field engineering, production drilling engineering, pipeline and transportation logistics, refinery operations and management, refinery control and optimisation, and sales and marketing.

Careers support

You’ll have access to the wide range of engineering and computing careers resources held by our Employability team in our dedicated Employability Suite. You’ll have the chance to attend industry presentations book appointments with qualified careers consultants and take part in employability workshops. Our annual Engineering and Computing Careers Fairs provide further opportunities to explore your career options with some of the UK’s leading employers.

The University's Careers Centre also provide a range of help and advice to help you plan your career and make well-informed decisions along the way, even after you graduate. Find out more at the Careers website.



Read less
The modern society relies on the work of Chemical Engineers who develop and design the processes that make the useful products for the society by efficient use and management of resources including water and energy while controlling health and safety procedures and protecting the environment. Read more
The modern society relies on the work of Chemical Engineers who develop and design the processes that make the useful products for the society by efficient use and management of resources including water and energy while controlling health and safety procedures and protecting the environment.

Chemical Engineering provides essential tools based on the concept of sustainability and low carbon footprint for changing raw materials into useful products in a safe and cost effective way. Chemical Engineers understand how to alter the chemical, biochemical or physical state of a substance, to create everything from health care products (face creams, shampoo, perfume, drugs) to food (dairy products, cereals, agro-chemicals) and water (desalination for freshwater) to energy (petroleum to nuclear fuels).

Your study at MSc level at Bradford will be a foundation for life aimed at developing a deep understanding of advanced technical principles, analytical tools, and competence in their application together with a wide range of management, personal and professional skills. The course will provide you with essential tools based on the concept of sustainability and low carbon footprint for changing raw materials into useful products in a safe and cost effective way.

Why Bradford?

Flexibility of career path – Choice of three routes:
-Chemical Engineering - advanced chemical engineering and process technology skills for exciting and challenging careers in chemical and process industries
-Petroleum Engineering -matches the needs in different areas of oil and gas production and in medium/small operating and consulting companies
-Polymer Engineering - design and operation of processes to engineer materials with advanced properties leading to careers in diverse manufacturing sectors

Research Strengths - Internationally acclaimed research activities in the following areas:
-Chemical and Petrochemical Engineering
-Polymers
-Energy
-Water
-Pharmaceutical engineering
-Coating and advanced materials engineering

Rankings

Top Five: Chemical Engineering at the University of Bradford is ranked 5th in the UK in the Guardian University League Table 2017/

[[Modules
MSc Chemical & Petroleum Engineering (Chemical Engineering Background)
-Desalination Technology
-Materials & Manufacturing Processes
-Transport Phenomena
-Design Optimisation
-Computational Fluid Dynamics
-Upstream Production & Refinery Operations
-Research Skills
-Food & Pharmaceutical Processes Engineering
-Polymer Engineering
-Risk Management
-Engineering Computational Methods
-MSc Project

MSc Chemical & Petroleum Engineering (non-Chemical Engineering Background)
-Desalination Technology
-Transport Phenomena
-Chemical Engineering Practice
-Material & Manufacturing Processes
-Design Optimisation
-Computational Fluid Dynamics
-Upstream Production & Refinery Operations
-Research Skills
-Food & Pharmaceutical Processes Engineering
-Polymer Engineering
-Risk Management
-Engineering Computational Methods
-MSc Project

Career support and prospects

The University is committed to helping students develop and enhance employability and this is an integral part of many programmes. Specialist support is available throughout the course from Career and Employability Services including help to find part-time work while studying, placements, vacation work and graduate vacancies. Students are encouraged to access this support at an early stage and to use the extensive resources on the Careers website.

Discussing options with specialist advisers helps to clarify plans through exploring options and refining skills of job-hunting. In most of our programmes there is direct input by Career Development Advisers into the curriculum or through specially arranged workshops.

Read less
The MSc in Advanced Process Integration and Design started in the Department of Chemical Engineering (UMIST) over twenty years ago. Read more
The MSc in Advanced Process Integration and Design started in the Department of Chemical Engineering (UMIST) over twenty years ago. The programme was a result of emerging research from the Centre for Process Integration, initially focused on energy efficiency, but expanded to include efficient use of raw materials and emissions reduction. Much of the content of the course stems from research related to energy production, including oil and gas processing.

The MSc in Advanced Process Integration and Design aims to enable students with a prior qualification in chemical engineering to acquire a deep and systematic conceptual understanding of the principles of process design and integration in relation to the petroleum, gas and chemicals sectors of the process industries.

Overview of course structure and content
In the first trimester, all students take course units on energy systems, utility systems and computer aided process design. Energy Systems develops systematic methods for designing heat recovery systems, while Utility Systems focuses on provision of heat and power in the process industries. Computer Aided Process Design develops skills for modelling and optimisation of chemical processes.

In the second trimester, the students choose three elective units from a range covering reaction systems, distillation systems, distributed and renewable energy systems, biorefining, and oil and gas processing. These units focus on design, optimisation and integration of process technologies and their associated heat and power supply systems.

In two research-related units, students develop their research skills and prepare a proposal for their research project. These units develop students skills in critical assessment of research literature, group work, written and oral communication, time management and research planning.

Students then carry out the research project during the third trimester. In these projects, students apply their knowledge and skills in process design and integration to investigate a wide range of process technologies and design methodologies. Recent projects have addressed modelling, assessment and optimisation of petroleum refinery hydrotreating processes, crude oil distillation systems, power plants, waste heat recovery systems, refrigeration cycles with mixed refrigerants, heat recovery steam generators, biorefining and biocatalytic processes and waste-to-energy technologies.

The course also aims to develop students' skills in implementing engineering models, optimisation and process simulation, in the context of chemical processes, using bespoke and commercially available software.

Industrial relevance of the course
A key feature of the course is the applicability and relevance of the learning to the process industries. The programme is underpinned by research activities in the Centre for Process Integration within the School. This research focuses on energy efficiency, the efficient use of raw materials, the reduction of emissions reduction and operability in the process industries. Much of this research has been supported financially by the Process Integration Research Consortium for over 30 years. Course units are updated regularly to reflect emerging research and design technologies developed at the University of Manchester and also from other research groups worldwide contributing to the field.

The research results have been transferred to industry via research communications, training and software leading to successful industrial application of the new methodologies. The Research Consortium continues to support research in process integration and design in Manchester, identifying industrial needs and challenges requiring further research and investigation and providing valuable feedback on practical application of the methodologies. In addition, the Centre for Process Integration has long history of delivering material in the form of continuing professional development courses, for example in Japan, China, Malaysia, Australia, India, Saudi Arabia, Libya, Europe, the United States, Brazil and Colombia.

Career opportunities

The MSc course in Advanced Process Design and Integration typically attracts 40 students; our graduates have found employment with major international oil and petrochemical companies (e.g. Shell, BP, Reliance and Petrobras and Saudi Aramco), chemical and process companies (e.g. Air Products), engineering, consultancy and software companies (e.g. Jacobs and Aspen Tech) and academia.

Accrediting organisations

This programme is accredited by the IChemE (Institution of Chemical Engineers).

Read less
Your programme of study. Read more

Your programme of study

Do you have an undergraduate degree in Chemistry or a substantive element within the subject and are you wondering what to study next to get into a specialised field? An oil and gas chemist is a highly skilled, highly paid professional with a vital impact on the world's energy industry production both now and in the future. You would not only look at the production side of energy exploration but you are looking at bioremediation, analysis, flow risk, natural gas and in depth analysis to ensure that energy producers supply the correct quality constantly.

You also get involved in corrosion prevention in terms of facilities and development of a new supply of chemical products to ensure improved production and remediation techniques are applied. This is a highly skilled profession with international applications across global facilities often working within interdisciplinary teams. The programme draws on expertise at Aberdeen which has been known for its energy production since the 1970s. This has allowed for both strong academic rigour and industry input to develop a consistently high standard of industry relevant vocational advanced degrees specifically for the oil and gas industry. Programmes are run from the university or online from Aberdeen where it is possible to do this. Aberdeen, Scotland is located at the heart of the European oil and gas industry and on a par with Houston, Texas in terms of knowledge and skills in the city.

The programme addresses a growing need for environmental responsibility looking at production and refining materials, energetics and environmental impact remediation in a constantly evolving oil and gas environment and within a constantly changing regulatory environment internationally.

Courses listed for the programme

Semester 1

Materials for the Oil and Gas Industry

Processes, Materials and Bioremediation for the Energy Industry

Chemistry at Interfaces and Enhanced Oil Recovery

Analytical and Instrumentation Methods

Semester 2

Flow Assurance and Oil Field Chemicals

Chemistry of Refinery and Natural Gas

Applied Analytical and Instrumental Methods

Industrial Engagement and Applications

Semester 3

Extended Research Project

Find out more detail by visiting the programme web page

https://www.abdn.ac.uk/study/postgraduate-taught/degree-programmes/206/oil-and-gas-chemistry/

Why study at Aberdeen?

  • The programme is accredited by the Royal Society of Chemistry and high commended as an exceptional programme
  • You are taught by a research intensive university with close interaction with the oil and gas industry
  • The department was ranked 1st IN Scotland for Chemistry research impact (REF 2014)
  • Your skills will enable you to perform a wide variety of industrial processes

Where you study

  • University of Aberdeen
  • 12 Months
  • Full time
  • September to January start

International Student Fees 2017/2018

Find out about fees:

https://www.abdn.ac.uk/study/international/tuition-fees-and-living-costs-287.php

*Please be advised that some programmes have different tuition fees from those listed above and that some programmes also have additional costs.

Scholarships

View all funding options on our funding database via the programme page

https://www.abdn.ac.uk/study/postgraduate-taught/finance-funding-1599.php

https://www.abdn.ac.uk/funding/

Living in Aberdeen

Find out more about:

  • Your Accommodation
  • Campus Facilities
  • Aberdeen City
  • Student Support
  • Clubs and Societies

Find out more about living in Aberdeen:

https://abdn.ac.uk/study/student-life

Living costs

https://www.abdn.ac.uk/study/international/finance.php



Read less
Created in the context of the rapid advancement of the renewable-energy industry, this Masters programme investigates both renewable energy and systems technologies. Read more

Created in the context of the rapid advancement of the renewable-energy industry, this Masters programme investigates both renewable energy and systems technologies.

It is designed to build your competence and confidence in the R&D and engineering tasks that are demanded of scientific engineers in the renewable and sustainable-development sector.

Programme structure

This programme is studied full-time over one academic year and part-time students must study at least two taught technical modules per academic year. It consists of eight taught modules and a dissertation.

Example module listing

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Facilities, equipment and academic support

Modules related to the different groups are taught by a total of six full-time members of staff and a number of visiting lecturers.

As part of their learning experience, students have at their disposal a wide range of relevant software needed to support the programme material dissertation projects. In recent years, this work included the design of various knowledge-based and business systems on the internet, the application of optimisation algorithms, and semantic web applications.

Numerous laboratory facilities across the Faculty and the University are also available for those opting for technology-based projects, such as the process engineering facility, a control and robotics facility and signal processing labs.

The work related to the MSc dissertation can often be carried out in parallel with, and in support of, ongoing research. In the past, several graduates have carried on their MSc research to a PhD programme.

Career prospects

Engineers and scientists are increasingly expected to have skills in information systems engineering and decision-support systems alongside their main technical and/or scientific expertise.

Graduates of this programme will be well prepared to help technology-intensive organisations make important decisions in view of vast amounts of information by adopting, combining, implementing and executing the right technologies.

Educational aims of the programme

This programme investigates both renewable energy and systems technologies in order to produce scientific researchers and engineers who are competent in the R&D and engineering tasks applicable to the renewable energy and sustainable development sectors.

Its primary aims lie in developing a global understanding of the major types of renewable energy technologies, in-depth knowledge of the technology for biomass-based renewable energy, and knowledge and skills in systems modelling and optimisation.

A balanced curriculum will be provided with a core of renewable energy and systems engineering modules supplemented by a flexible element by way of elective modules that permit students to pursue an element of specialisation relevant to their backgrounds, interests and/or career aspirations.

An integrated approach is taken so as to provide a coherent view that explores the interrelationships between the various components of the programme.

Programme learning outcomes

Knowledge and understanding

The programme aims to develop the knowledge and understanding in both renewable energy and systems engineering. The key learning outcomes include:

  • State-of- the-art knowledge in renewable energy technologies, in terms of: the sources, technologies, systems, performance, and applications of all the major types of renewable energy; approaches to the assessment of renewable energy technologies; the processes, equipment, products, and integration opportunities of biomass-based manufacturing
  • State-of- the-art knowledge in process systems engineering methods, in the areas of: modelling and simulation of process systems; mathematical optimization and decision making; process systems design
  • Advanced level of understanding in technical topics of preference, in one or more of the following aspects: process and energy integration, economics of the energy sector, sustainable development, supply chain management

Intellectual / cognitive skills

The programme aims to strengthen cognitive skills of the students, particularly in the aspects of problem definition, knowledge and information acquiring, synthesis, and creativity, as collectively demonstrable through the successful completion of the research dissertation. The key learning outcomes include the abilities to:

  • Select, define and focus upon an issue at an appropriate level
  • Collect and digest knowledge and information selectively and independently to support a particular scientific or engineering enquiry
  • Develop and apply relevant and sound methodologies for analysing the issue, developing solutions, recommendations and logical conclusions, and for evaluating the results of own or other’s work

Professional practical skills

The programme primarily aims to develop skills for applying appropriate methods to analyze, develop, and assess renewable technologies and systems. The key learning outcomes include the abilities to:

  • Assess the available renewable energy systems
  • Design and select appropriate collection and storage, and optimise and evaluate system design
  • Apply generic systems engineering methods such as modelling, simulation, and optimization to facilitate the assessment and development of renewable energy technologies and systems

Key / transferable skills

The programme aims to strengthen a range of transferable skills which are relevant to the needs of existing and future professionals in knowledge intensive industries irrespective of their sector of operation. The key learning outcomes include the further development of the skills in the following areas:

  • Preparation and delivery of communication and presentation
  • Report and essay writing
  • Use of general and professional computing tools
  • Collaborative working with team members
  • Organizing and planning of work
  • Research into new areas, particularly in the aspect of literature review and skills acquisition

Global opportunities

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.



Read less

  • 1
Show 10 15 30 per page



Cookie Policy    X