• Jacobs University Bremen gGmbH Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • University of Bristol Featured Masters Courses
University of Nottingham in China Featured Masters Courses
University of Cambridge Featured Masters Courses
University of Sheffield Featured Masters Courses
Staffordshire University Featured Masters Courses
ETH Zürich Featured Masters Courses
"recycling"×
0 miles

Masters Degrees (Recycling)

We have 58 Masters Degrees (Recycling)

  • "recycling" ×
  • clear all
Showing 1 to 15 of 58
Order by 
The AMIR Master program focuses on the raw material value chain, with particular emphasis on recycling. The two main objectives are. Read more

The AMIR Master program focuses on the raw material value chain, with particular emphasis on recycling. The two main objectives are:

  • Educate students to become highly-skilled European professionals with expertise in various types of materials. This expertise will enable them to develop, at a large and ambitious scale, new methods for material recycling. In addition, the AMIR program includes classes on transferable skills such as innovation, ethics, intellectual property, life cycle assessment, sustainability and advanced research strategies.
  • Develop a deep entrepreneurship mind-set with the help and expertise of associated businesses, incubators and innovation services as well as a large panel of industries.

Program structure

Semesters 1 and 2

The first year of the Master program takes place at the University of Bordeaux in partnership with the research and technology organization, Tecnalia. Students learn about general and technical aspects of the raw material value chain (general chemistry, material science, lifecycle of materials) as well as about the main outcomes of the European Institute of Innovation and Technology (EIT): sustainability, intellectual transformation, value judgments (ethical, scientific and sustainability challenges), creativity, innovation, leadership and entrepreneurship. 

Semesters 3 and 4

The third semester (Master 2) is dedicated to a specialization in one of the partner universities. This part of the program offers the possibility to follow selected advanced materials classes for various applications (energy, e-mobility - magnets, transport, environments - catalysis, etc.).

The specializations are:

  • Darmstadt: material design for recycling
  • Liege: metallurgy and metals recycling
  • Madrid: mineral recycling for construction and other sectors 

The program is completed with a three to six months’ internship (Master thesis).

Strengths of this Master program

  • AMIR graduates are international entrepreneurs and innovators, able to work anywhere in Europe and beyond.
  • High-level education and research environment.
  • Practical insights with advanced research labs.
  • High-quality internships.
  • Mandatory international and intersectoral mobility.
  • Supported by the European Institute of Innovation & Technology (EIT) and the International Master program of the Bordeaux “Initiative of Excellence” (IdEx).

After this Master program?

The AMIR program benefits from a strong academic, research and industrial network.

After graduation, students are fully prepared to integrate the working environment as professionals in the recycling sector (process optimization, materials design, plant administration, project management, etc.) whether it be in the industrial field or governmental organizations. Possible sectors include: information and communication technologies, building construction, energy, machinery tools, mobility.

Graduates also obtain the necessary skills and knowledge to set up their own company or work in sales and marketing.

Finally, further doctoral studies are another possibility and students may apply for Ph.D. programs in Europe, including those offered in the framework of the European Multifunctional Materials Institute (EMMI : http://www.emmi-materials.eu).



Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Materials Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Materials Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

This MRes degree includes modules covering a range of areas within the Materials discipline, which are linked to the College of Engineering’s main research strengths of aerospace materials, environmental materials and steel technology.

Key Features of MRes in Materials Engineering

Through this course in Materials Engineering, you will be provided with training and experience in a broad range of topic areas, including metallurgy and materials selection, aerospace materials, recycling techniques, and modern business management issues and techniques.

The Materials Engineering course will provide you with the depth of knowledge and breadth of abilities to meet the demands of the international materials industry.

Combination of taught modules (60 credits) and a research thesis, which presents the outcome of a significant research project (120 credits) over 12 months full-time study. An MRes (Master of Research) provides relevant training to acquire the knowledge, techniques and skills required for a career in industry or for further research.

Modules

Modules on the Materials Engineering programme can vary each year but you could expect to study:

Strategic Project Planning

Communication Skills for Research Engineers

Aerospace Materials Engineering

Materials Recycling Techniques

Environmental Analysis and Legislation

Physical Metallurgy of Steel

MSc Research Thesis

Accreditation

This degree is accredited by the Institute of Materials, Minerals and Mining (IOM3).

This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

Accreditation is a mark of assurance that the degree meets the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC). An accredited degree will provide you with some or all of the underpinning knowledge, understanding and skills for eventual registration as an Incorporated (IEng) or Chartered Engineer (CEng). Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.

Facilities

Our new home at the innovative Bay Campus provides some of the best university facilities in the UK, in an outstanding location.

Engineering at Swansea University provides state-of-the-art facilities specific to Materials Engineering.

- Comprehensive computer systems for specialist and general purposes.

- World-leading equipment for characterisation of the mechanical properties of metallic, ceramic, polymeric and composite materials.

- Extensive range of laboratories housing scanning electron microscopes with full microanalysis and electron backscatter diffraction capabilities.

Careers

Through this Materials Engineering scheme, you will be provided with the detailed technical knowledge and experience required for a successful career at a technical or management level within the modern steel industry.

At the end of the course, you will have a higher level qualification along with crucial experience of industry allowing you to more quickly enter into the world of work and contribute fully to this important sector.

Links with Industry

The internationally leading materials research conducted at Swansea is funded by prestigious organisations including:

Rolls-Royce

Airbus

Tata Steel

Rolls-Royce

The Institute of Structural Materials at Swansea is a core member of the Rolls-Royce University Technology Centre in Materials.

This venture supports a wide ranging research portfolio with a rolling value of £6.5 million per annum addressing longer term materials issues.

Airbus

Over £1m funding has been received from Airbus and the Welsh Government in the last three years to support structural composites research and development in the aerospace industry and to support composites activity across Wales.

Tata Steel

Funding of over £6 million to continue our very successful postgraduate programmes with Tata Steel.

Other companies sponsoring research projects include Akzo Nobel, Axion Recycling, BAE Systems, Bayer, Cognet, Ford, HBM nCode, Jaguar Land Rover, Novelis, QinetiQ, RWE Innogy, Timet, TWI (Wales), as well as many smaller companies across the UK.

These industrial research links provide excellent opportunities for great research and employment opportunities.

Research

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.

World-leading research

The REF shows that 94% of research produced by our academic staff is of World-Leading (4*) or Internationally Excellent (3*) quality. This has increased from 73% in the 2008 RAE.

Research pioneered at the College of Engineering harnesses the expertise of academic staff within the department. This ground-breaking multidisciplinary research informs our world-class teaching with several of our staff leaders in their fields.

Highlights of the Engineering results according to the General Engineering Unit of Assessment:

Research Environment at Swansea ranked 2nd in the UK

Research Impact ranked 10th in the UK

Research Power (3*/4* Equivalent staff) ranked 10th in the UK



Read less
This MSc course addresses scientific, technological and legislative aspects of the diagnosis (analysis and assessment) and management (remediation and restoration) of important environmental issues concerned with contaminated land, water quality, air pollution and waste. Read more
This MSc course addresses scientific, technological and legislative aspects of the diagnosis (analysis and assessment) and management (remediation and restoration) of important environmental issues concerned with contaminated land, water quality, air pollution and waste.

It has been designed with industry advice to enable good science and engineering graduates begin and advance successful careers in the environmental sector, and pursue postgraduate scientific research. The MSc is delivered in first-class teaching and research facilities by a dedicated team of internationally renowned environmental scientists, and presents considerable interaction with environmental consultancies and engineers, industry, local and regulatory authorities, and research institutes.

During 2007-2011, the course was supported by 6 NERC studentships, the most awarded annually to an environmental MSc. Students on the course have won the most EMpower research projects funded by companies within the nuclear industry, and since 2008, a Prize for Best Performance Overall has been awarded annually by Arup, a global environmental engineering and consultancy company.

See the website https://www.royalholloway.ac.uk/earthsciences/coursefinder/mscenvironmentaldiagnosismanagement.aspx

Why choose this course?

- The quality of teaching and learning on the course is enhanced considerably by significant professional networking and interaction with leading experts from environmental consultants and engineers, industry, local and regulatory authorities, and universities and research institutes; who present seminars, host study visits, co-supervise research projects, and act as an advisory panel.

- Graduates of the course are skilled and knowledgeable scientists with excellent employment prospects within the environmental sector, particularly as environmental consultants and engineers, in local and regulatory authorities, industry, charitable trusts, and research institutes and universities.

- In the 2008 Research Assessment Exercise (RAE), the Department’s research was ranked equal 6th in the UK with 70% rated as world-leading or internationally excellent in terms of originality, significance and rigour.

Course content and structure

You will study seven taught modules, three case studies and complete an Independent Research Project:

- Communication & Co-operation Skills
Provides practical training in written and verbal communication media; project, team and time management; role playing in environmental impact assessment; careers advice and a mock job interview.

- Environmental Inorganic Analysis
A practical laboratory and field-work based introduction to quality assured sampling strategies, preparation processes and analytical methods for heavy metals in soils, surface waters, and vegetation.

- Diagnostic & Management Tools
Provides practical computer-based training in statistical analysis of environmental data, geographical information systems, and environmental risk assessment.

- Environmental Organic Chemistry Pathways Toxicology
Comprises physical and chemical properties, transport, fate and distribution, and toxicology of organic compounds in the environment.

- Contaminated Land Case Study
A practical laboratory and field-work based human health risk assessment of pollutant linkages at a former gravel extraction and landfill site. It comprises desk-top study, site investigation and sampling, laboratory analysis, data interpretation, quantitative risk assessment, and remediation options.

- Water Quality: Diagnosis & Management
A practical laboratory and field-work based introduction to aquatic science, hydrogeology, treatment of water and wastewater, and chemical, biological and physical monitoring of water quality. Includes a study visit to a global manufacturer of pesticides and herbicides.

- River Thames Basin Case Study
A combination of fieldwork, laboratory work and desk-top study to diagnose water quality in chemical and ecological terms, to identify industrial and agricultural pollutant linkages, and to determine environmental, ecological and health impacts.

- Air Pollution: Monitoring, Impacts & Management
Covers: sources, sinks, dispersion, conversion, monitoring, impacts and management of air pollutants with study visits to a local authority and a government research institute.

- Royal Holloway Campus Air Quality Case Study
Involves a consultancy company-style investigation of ambient and indoor air quality within the confines of RHUL campus; and combines desk-top research with practical fieldwork and laboratory analysis.

- Waste Management & Utilisation
Considers municipal, industrial and radioactive waste management options, with study visits to a landfill site, a waste incinerator, composting facility, recycling centre and nuclear power station.

- Independent Research Project
Consists of a four-month, independent scientific investigation, usually in collaboration with environmental consultants and engineers, local and regulatory authorities, industry, research institutes, and universities. Projects may comprise a desk-top study or practical laboratory and field investigation, they may be funded, and often lead to employment or to PhD research. Final results are presented at the Research Project Symposium to an audience from within the environmental sector

On completion of the course graduates will have acquired the experience, knowledge, and critical understanding to enable them to:

- Conduct themselves as professional environmental research scientists, consultants, and managers, convey in a professional manner, scientific, technical and managerial information, and manage projects and resources efficiently

- Apply quality assured sampling strategies, preparation procedures and analytical systems to quantify health risks posed by inorganic and organic pollutant linkages in soils, waters and air

- Apply statistical analysis, geographical information systems, and environmental impact and risk assessment to the interpretation of environmental data

- Appreciate the importance and impacts of hydro-geological, and bio- and physico-chemical processes on the treatment of water and wastewater, and on the quality of groundwater and aquatic ecosystems

- Appreciate the emissions, dispersion, conversion, and monitoring of natural and man-made gaseous and particulate air pollutants, their impacts on climate change, human health and vegetation, and management on local, regional and global scales

- Appreciate the prevention, re-use, recycling, recovery, disposal and utilisation of municipal and industrial waste and the management of nuclear waste within the constraints of national and international legislation

- Manage an independent environmental science research project, often with professional collaboration, and of significant value to their career development.

Assessment

- Written examinations test understanding of the principles and concepts taught in the modules and case studies, and the ability to integrate and apply them to environmental diagnosis and management.

- Assessment of module work and practical computing, laboratory and fieldwork evaluates critical understanding of the environmental science taught, and mastery of producing quality assured data, and its analysis, interpretation, presentation and reporting.

- Assessment also reflects the ability to work independently and in teams, and to learn during study visits.

- Assessment of research projects is based on the ability to manage and report on an original piece of independent scientific work.

- All assessed work has significant confidential written and verbal feedback.

Employability & career opportunities

94% of the graduates of the MSc from 2008 to 2013 either successfully secured first-destination employment as international environmental consultants and engineers, in industry, local and regulatory authorities and charitable trusts, or are conducting postgraduate research within international research institutes and universities.

How to apply

Applications for entry to all our full-time postgraduate degrees can be made online https://www.royalholloway.ac.uk/studyhere/postgraduate/applying/howtoapply.aspx .

Read less
The complete Masters (MSc) course in Technical Textiles enables you to develop a high level of understanding of modern technical textiles, preparing you for a career in the textile or related industries as a manager or researcher, or for an academic career. Read more

The complete Masters (MSc) course in Technical Textiles enables you to develop a high level of understanding of modern technical textiles, preparing you for a career in the textile or related industries as a manager or researcher, or for an academic career.

Graduates of this programme are expected to understand the whole process of converting fibrous materials into the end product and to be able to identify and analyse the appropriate material and production route for a specific end product. You will also have developed the expertise and skill to conduct quality evaluation of textile products.

The complete MSc programme is made up of taught course units and a research dissertation. The taught course units are delivered through a combination of lectures and practical laboratory work.

Special features

The Masters programme in Technical Textiles enables you to develop a high level of understanding of the advanced Technical Textiles sector, preparing you for a career in the textile or related industries as a manager or researcher, or for an academic career.

After successfully completing the programme, you will have gained a thorough grounding and understanding of the whole process of converting fibrous polymeric materials to the end product. This successful delivery to the Technical Textiles sector involves materials performance, Computer Aided Design (CAD), 2D/3D product design and specification, sustainability, effective supply chains and an understanding of diverse product sectors such as textile composites, protective wear, filtration, sportswear, medical textiles and the integration of electronics into textile structures.

Coursework and assessment

You will be assessed by a combination of exams and coursework. The coursework supports the development of your transferable skills such as literature review and report writing. You will complete your MSc programme with a dissertation project. Your dissertation is an opportunity to apply your learning on a five-month technical textiles project. It also enables you to further develop your knowledge and skill in your chosen field. Your choice of topic, in consultation with your personal tutor, will range in purpose from investigatory and problem-solving work, through studies of state-of-the-art technology and current practice, to experimental and analytical research.

Course unit details

 The taught units are:

  • Textile Materials and Performance Evaluation
  • Yarn Technology
  • Applied Manufacturing Processes
  • Advanced Manufacturing Techniques
  • Technical Textiles
  • Advanced Coloration and Performance Evaluation

Textile Materials and Performance Evaluation

This programme unit provides a wide range of topics in textile materials science, performance enhancement and testing that are fundamental for effective functioning in a technical capacity within any textiles or materials related organisation. 

  • Nature of man-made and natural fibres.
  • Characteristics of fabrics and fabric mechanical properties. Yarn and Nonwovens Technology
  • Principles and applications of KES-FB and FAST fabric evaluation systems. Comfort in garment microclimates.
  • Dimensional stability, surface modification techniques, oil/water repellency, waterproofing, coating, lamination, flame retardants and smart materials.
  • Microscopy and surface analysis.

Yarn and Nonwovens Technology

This programme unit introduces the technologies of producing yarns and nonwovens from staple fibres and continuous filaments and provides knowledge in the quality and quality control aspects of yarn production. 

  • Fibre preparation, ring and other modern spinning technologies, texturing, yarn quality control, fancy yarns, composite yarns and yarn preparation.
  • Nonwovens web forming technology including dry laying, air laying, wet laying, spun-bonding, melt-blowing. Nonwovens consolidation/bonding technologies; mechanical and chemical bonding; thermal bonding; applications of nonwoven products.

Applied Manufacturing Processes

This programme unit provides a working knowledge of the weaving, knitting and joining processes, types of machinery used, types of fabric structures and associated properties of the product fabrics.

  • Fundamentals of weaving. Shuttle and shuttleless looms; multi-phase weaving machines and other modern developments in weaving technology; warp preparation; technical weaving and braiding.
  • Classification and analysis of knitting techniques and knitting cycles; patterning and shaping; flat bed, circular, Tricot and Raschel knitting machines; modern knitting techniques; cycle of high-speed circular knitting machines; machine performance; yarn performance and properties in knitting; quality and the dimensions stability of the fabric.
  • Fabric joining techniques.

Fundamental Technology and Concepts for Industrial Manufacture

This programme unit provides a working knowledge of concepts of `production for profit', `economy of scale', the importance of the Supply Chain in Textile manufacturing, the importance of pre-competitive research, Design of Experiments(DoE), prototyping and technology transfer and the basics concepts of textile engineering & machine mechanics.

  • The fundamentals of engineering & machine mechanics in order to deal with the Technical Textiles end users in Aerospace, Automotive and other industries, sustainability and recycling issues in manufacturing and design.
  • The nature of the global traditional and technical textiles industry and concepts relating to successful manufacturing and supply chain. Nature of engineering & chemical industry as opposed to the textile industry. Certification requirements (e.g. Aerospace, Automotive, Healthcare, Sportswear), product development in real industrial context, Design of Experiments, quality & inspection, product lifecycles, Sustainable Design. The nature of the research and production environment, individual and team R&D activities.

Technical Textiles - Industrial Applications

This programme unit introduces industrial applications for technical textiles and covers the production and application of textile composites, architectural textiles, geotextiles, automotive textiles, and industrial filtration.

  • Composites: Basic concepts, classification, manufacturing techniques-from fibre to composite, textile composites, composite applications, reuse & recycling; geotextiles: basic classification, main functions of a geotextiles, applications; Architectural textiles, concepts of tensegrity structures.
  • Automotive Textiles: requirements on automotive textiles including tyre cords, air bags, seat belts and seat fabrics, carpets, trims.
  • Principles of filtration, industrial filtration in textile, chemical, food and metallurgical applications.

Technical Textiles - Personal Environment

This programme unit introduces the production and use of technical textiles in human related areas including medical, smart, protective, sportswear, space applications.

  • Medical textile materials and structures; application of compression bandage technology for medical care; integrating electronic sensors into medical textiles; knitted electro-textiles.
  • Protective Textiles: Bullet proof, stab proof vests. Impact protection: impact mechanism and cellular textile composites. Ballistics and body armour.
  • Technical clothing, sportswear, spacewear, sailing equipment.
  • Medical and Smart Textiles

Accrediting organisations

Accredited by the Institute of Minerals, Materials and Mining (IOM 3 ) as meeting the Further Learning requirements for registration as a Chartered Engineer.



Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Materials Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Materials Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

With our main research strengths of aerospace materials, environmental materials and steel technology, Swansea University provides an excellent base for your research as a MSc by Research student in Materials Engineering.

Key Features of MSc by Research in Materials Engineering

Swansea is one of the UK’s leading centres for Materials Engineering in teaching and research. The internationally leading materials research conducted at Swansea is funded by prestigious organisations. These industrial research links provide excellent research opportunities.

Key research areas within Materials Engineering include:

Design against failure by creep, fatigue and environmental damage

Structural metals and ceramics for gas turbine applications

Grain boundary engineering

Recycling of polymers and composites

Corrosion mechanisms in new generation magnesium alloys

Development of novel strip steel grades (IF, HSLA, Dual Phase, TRIP)

Functional coatings for energy generation, storage and release

MSc by research in Materials Engineering typically lasts one year full-time, two to three years part-time. This is an individual research project written up in a thesis of 30,000 words.

Facilities

Our new home at the innovative Bay Campus provides some of the best university facilities in the UK, in an outstanding location.

Within Engineering at Swansea University there are state-of-the-art facilities specific to Materials Engineering.

- Comprehensive computer systems for specialist and general purposes.

- World-leading equipment for characterisation of the mechanical properties of metallic, ceramic, polymeric and composite materials.

- Extensive range of laboratories housing scanning electron microscopes with full microanalysis and electron backscatter diffraction capabilities.

Links with industry

The internationally leading materials research conducted at Swansea is funded by prestigious organisations including:

Rolls-Royce

Airbus

Tata Steel

Rolls-Royce

The Institute of Structural Materials at Swansea is a core member of the Rolls-Royce University Technology Centre in Materials.

This venture supports a wide ranging research portfolio with a rolling value of £6.5 million per annum addressing longer term materials issues.

Airbus

Over £1m funding has been received from Airbus and the Welsh Government in the last three years to support structural composites research and development in the aerospace industry and to support composites activity across Wales.

Tata Steel

Funding of over £6 million to continue our very successful postgraduate programmes with Tata Steel.

Other companies sponsoring research projects include Akzo Nobel, Axion Recycling, BAE Systems, Bayer, Cognet, Ford, HBM nCode, Jaguar Land Rover, Novelis, QinetiQ, RWE Innogy, Timet, TWI (Wales), as well as many smaller companies across the UK.

These industrial research links provide excellent opportunities for great research and employment opportunities.

Research

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.

World-leading research

The REF shows that 94% of research produced by our academic staff is of World-Leading (4*) or Internationally Excellent (3*) quality. This has increased from 73% in the 2008 RAE.

Research pioneered at the College of Engineering harnesses the expertise of academic staff within the department. This ground-breaking multidisciplinary research informs our world-class teaching with several of our staff leaders in their fields.

Highlights of the Engineering results according to the General Engineering Unit of Assessment:

Research Environment at Swansea ranked 2nd in the UK

Research Impact ranked 10th in the UK

Research Power (3*/4* Equivalent staff) ranked 10th in the UK



Read less
The Masters in Civil Engineering & Management introduces you to contemporary business and management issues while increasing your depth of knowledge in your chosen civil engineering speciality. Read more
The Masters in Civil Engineering & Management introduces you to contemporary business and management issues while increasing your depth of knowledge in your chosen civil engineering speciality.

Why this programme

◾Civil engineering at the University of Glasgow is ranked 4th in the UK and 1st in Scotland (Guardian University Guide 2017).
◾With a 93% overall student satisfaction in the National Student Survey 2016, Civil Engineering at Glasgow continues to meet student expectations combining both teaching excellence and a supportive learning environment.
◾The University has a long history of research in Civil Engineering. The UK's first Chair of Civil Engineering was established at the University in 1840 and early occupants such as William J. M. Rankine set a research ethos that has endured.
◾You will be taught jointly by staff from the School of Engineering and the Adam Smith Business School. You will benefit from their combined resources and expertise and from an industry-focused curriculum.
◾If you are a graduate engineer looking to broaden your knowledge of management while also furthering your knowledge of civil engineering, this innovative programme is designed for you.
◾You will gain first-hand experience of managing an engineering project through the integrated systems design project, allowing development of skills in project management, quality management and costing.
◾You will be able to apply management to engineering projects, allowing you to gain an advantage in today’s competitive job market and advance to the most senior positions within an engineering organisation.
◾This programme has a September and January intake.

Programme structure

There are two semesters of taught material and a summer session during which you will work on an individual supervised project and write a dissertation on its outcomes. Students entering the programme in January are restricted to civil engineering (i.e. excluding management) topics only.

Semester 1

You will be based in the Adam Smith Business School, developing knowledge and skills in management principles and techniques. We offer an applied approach, with an emphasis on an informed critical evaluation of information, and the subsequent application of concepts and tools to the core areas of business and management.
◾Contemporary issues in human resource management
◾Managing creativity and innovation
◾Managing innovative change
◾Marketing management
◾Operations management
◾Project management.

Semester 2

You will study engineering courses, which aim to enhance your group working and project management capability at the same time as improving your depth of knowledge in chosen civil engineering subjects.
◾Integrated systems design project.

Optional courses

Select a total of 4 courses from Lists A and B, at least 1 must be from List A:

List A

◾Advanced soil mechanics 5
◾Advanced structural analysis and dynamics 5
◾Computational modelling of non-linear problems 5
◾Introduction to wind engineering
◾Principles of GIS.

List B

◾Geotechnical engineering 3
◾Ground engineering 4
◾Recycling urban land
◾Structural analysis 4
◾Transportation systems engineering 4.

Project or dissertation

You will undertake an individual project or dissertation work in the summer period (May–August). This will give you an opportunity to apply and consolidate the course material and enhance your ability to do independent work, as well as present results in the most appropriate format. Project and dissertation options are closely linked to staff research interests. September entry students have a choice of management dissertation topics in addition to civil engineering projects, and January entry students have a choice of civil engineering projects.

Projects

There are two semesters of taught material and a summer session during which you will work on an individual supervised project and write a dissertation on its outcomes. Students entering the programme in January are restricted to civil engineering (i.e. excluding management) topics only.

Semester 1

You will be based in the Adam Smith Business School, developing knowledge and skills in management principles and techniques. We offer an applied approach, with an emphasis on an informed critical evaluation of information, and the subsequent application of concepts and tools to the core areas of business and management.
◾Contemporary issues in human resource management
◾Managing creativity and innovation
◾Managing innovative change
◾Marketing management
◾Operations management
◾Project management.

Semester 2

You will study engineering courses, which aim to enhance your group working and project management capability at the same time as improving your depth of knowledge in chosen civil engineering subjects.
◾Integrated systems design project.

Optional courses

Select a total of 4 courses from Lists A and B, at least 1 must be from List A:

List A
◾Advanced soil mechanics 5
◾Advanced structural analysis and dynamics 5
◾Computational modelling of non-linear problems 5
◾Introduction to wind engineering
◾Principles of GIS.

List B
◾Geotechnical engineering 3
◾Ground engineering 4
◾Recycling urban land
◾Structural analysis 4
◾Transportation systems engineering 4.

Project or dissertation

You will undertake an individual project or dissertation work in the summer period (May–August). This will give you an opportunity to apply and consolidate the course material and enhance your ability to do independent work, as well as present results in the most appropriate format. Project and dissertation options are closely linked to staff research interests. September entry students have a choice of management dissertation topics in addition to civil engineering projects, and January entry students have a choice of civil engineering projects.

Industry links and employability

◾The programme makes use of the combined resources and complementary expertise of the civil engineering and business school staff to deliver a curriculum which is relevant to the needs of industry.
◾You, as a graduate of this programme, will be capable of applying the extremely important aspect of management to engineering projects allowing you to gain an advantage in today’s competitive job market and advance to the most senior positions within an engineering organisation.
◾The School of Engineering has extensive contacts with industrial partners who contribute to several of their taught courses, through active teaching, curriculum development, and panel discussion. Recent contributions in Civil Engineering include: Arup and Mott MacDonald.
◾During the programme students have an opportunity to develop and practice relevant professional and transferable skills, and to meet and learn from employers about working in the civil engineering industry.

Read less
What's the Master of Materials Engineering about? .  The structure of the program consists of a core of 60 credits, four options of 12 credits, three fixed elective packages of 12 credits, engineering and general interest electives of 12 credits and the Master's thesis of 24 credits. Read more

What's the Master of Materials Engineering about? 

 The structure of the program consists of a core of 60 credits, four options of 12 credits, three fixed elective packages of 12 credits, engineering and general interest electives of 12 credits and the Master's thesis of 24 credits. The four options focus on materials families or on application domains: Metals and Ceramics, Polymers and Composites, Materials for Nanotechnology, and Materials for Biomedical Applications. The three fixed elective packages have been designed to help the students in imagining themselves in their future professional environment and thus in developing a career profile: research, production and management. The two latter packages include industrial internships.

The programme is crowned with the 24 credits Master's thesis where the student will apply his/her knowledge to a research topic of choice. These topics are usually embedded in a cutting-edge research project in cooperation with other institutions and/or industrial companies.

Spotlight 

  • The hosting Department of Materials Engineering (MTM) is a world player in production, characterization, modelling and development of new materials to solve material challenges in sectors such as transport, energy or health. MTM has close ties with industrial partners through a broad variety of national and international projects which is reflected in the program through plant visits, practical exercises, internships and the master thesis topics.
  • Thanks to the diversity of the research profile of the host department MTM, the programme is able to cover a broad gamut of materials families and applications. Concerning structural materials, MTM is one of the few materials departments where both metals and composites are strongly represented in both research and teaching. Concerning functional materials, the close links with imec and KU Leuven's biomedical group position the programme in addressing upcoming application domains.
  • Scarcity, closed materials loops ('cradle to cradle') and recycling processes are core research topics and are taught in several engineering courses as well as in a dedicated core course on Sustainable Materials Management. The efforts in this domain have recently been rewarded with the grant of an EIT-KIC 'Raw Materials'.
  • At MTM, students in classes, exercises and practical sessions meet fellow-students, assistants (68% non-Belgian) , lecturers (26% non-Belgian) from all over the world. In terms of outgoing mobility, participation in the Erasmus+ programme is encouraged for the Belgian students. The concentration of core courses in the first Master year has considerably simplified Erasmus exchanges.
  • In terms of gender, Materials Engineering is doing pretty well among the engineering disciplines: in the Dutch-language programme, 21% of the students are female, in the English-language programme 41% and among the incoming Erasmus students 37%.

This programme is an initial Master's programme and can be followed on a full-time of part-time basis.

Career perspectives

Graduates have access to a wide range of engineering sectors. Prominent technical industries such as the automotive, aerospace, energy, microelectronics, and chemical industries and emerging sectors such as nanotechnology, biomaterials and recycling are keen to hire qualified and talented materials engineers. Materials engineers are also well suited for functions as process engineers, materials or product developers, design specialists, quality control engineers or consultants. Graduates with an interest in research can apply for an R&D position or start a PhD. Several alumni have also gone on to start their own companies.



Read less
Content. The increasing demand for raw materials, their price volatility, the production concentration and the market distortions imposed by some countries, confront Europe and other world regions with a number of challenges along the entire value chain. Read more
Content

The increasing demand for raw materials, their price volatility, the production concentration and the market distortions imposed by some countries, confront Europe and other world regions with a number of challenges along the entire value chain. To tackle this supply risk challenge and to deal with environmental problems arising from too large emissions of waste (such as CO2), technological innovation is required with respect to exploration of new resources and sustainable primary mining, sustainable use of resources in specific products and production processes (e.g. substitution of critical metals in materials), prevention of waste generation, valorisation of secondary (alternative) resources and recovery/recycling of resources from end-of-life products.

The International Master of Science in Sustainable and Innovative Natural Resource Management (SINReM) aims at educating a new range of professionals with a holistic overview on resource management and up-to-date processing technologies, who are familiar with sustainability concepts and possess an innovative mind-set to boost the economic importance of this sector.

Students will be acquainted with the different (technological) options for optimizing flows of natural resources in the different parts of the chain, ranging from resource exploration over sustainable materials use and use of resources in production processes to recovery/recycling of resources from end-of-life products. The focus is on developing ground-breaking technologies, engineering and re-inventing the value chain to make it more sustainable. Students will get a broad view on the entire value chain in its different aspects.

Networking and exchange of knowledge and experience between different nationalities, between academic and non-academic partners and between scholars and students will be promoted.

SINReM is offered by a consortium consisting of 3 Institutes of Higher Education:

Universiteit Gent / Ghent University (UGent, Gent, Belgium);
Uppsala University (UU, Uppsala, Sweden);
TU Bergakademie Freiberg (TUFreiberg, Freiberg, Germany).

The SINReM programme is (co)financed by the European Institute of Innovation and Technology within the EIT Raw Materials programme and aims at achieving an EIT label. EIT-labelled educational programmes foster students to become more creative, innovative and entrepreneurs.

Career Perspectives

Graduates are qualified for a professional career in the private (supporting companies in making processes, products and services more sustainable), research (applied research at universities, research institutes or companies) or public sector (consulting in local, regional and (inter)national administrations, defining and implementing sustainable development policies).
Graduates have an entrepreneurial mindset, a multidisciplinary view and creative innovative problem-based technology development skills

Structure

This 2-year programme contains 120 ECTS credit units and leads to the joint diploma of International Master of Science in Sustainable and Innovative Natural Resource Management.

In order to expose all students to different institutional settings, student mobility within Europe is an integral part of the programme.

General Entrance Module - Semester I 30 ECTS - Ghent University
Advanced Module - Semester II 30 ECTS - Uppsala University
Field trip - Summer School - University of Freiburg
Advanced Module II - Semester III 60 ECTS - choose a one of the following majors containing (elective) courses in combination with master dissertation research:
geo-resource exploration (Uppsala)
sustainable processes (Freiberg)
sustainable materials and resource recovery (Ghent)

All students will be moving as a cohort to Gent, Freiberg and Uppsala in the first year, which approach has significant networking and social cohesion advantages.

During this first year, students are introduced to the value chain, management of natural resources, the circular economy, its economic, policy and legal aspects, inventory techniques, the clean technology concept and life cycle assessment tools to assess sustainability of products, services and processes. Moreover, students are exposed to a basic training in the different technological tools that can be used to intervene in different parts of the value chain (geo-resource exploration, sustainable (chemical) extraction processes, sustainable materials and resource recovery technology).

In the second year students have the option to further specialize by selecting a major and conducting thesis research. They interact with the professional sector through cooperation in thesis research, internships, lectures and seminars.

Admission Requirements

To be admitted, candidates must have at least a bachelor degree (minimum 180 ECTS credits) in engineering or science (physics, chemistry, biology, mathematics, earth science, materials science) including 15 ECTS in mathematics and/or physics and 10 ECTS pure or applied chemistry or an equivalent level from a recognised university or Engineering College.

In terms of language requirements the following is currently applied in or acceptable by the partner institutes. Changes to these requirements are however admissible (upon approval by the MB).

Nationals of Australia, Botswana, Canada, Eritrea, Gambia, Ghana, Guyana, India, Ireland, Kenya, Liberia, Malawi, Namibia, New Zealand, Nigeria, Philippines, Sierra Leone, South Africa, Sri Lanka, Trinidad and Tobago, Uganda, UK, USA, Zambia, and Zimbabwe, need to send proof of at least one year - 60 ECTS (finished successfully) - of comprehensive English-based instruction at a HEI do not need to present a language certificate but a mode of instruction.

Candidates from any other nationality need to present test results of one of the following tests (validity of 5 years; TOEFL/IELTS predictive tests and TOEIC will not be accepted):

TOEFL IBT 86
TOEFL PBT 570
ACADEMIC IELTS 6,5 overall score with a min. of 6 for writing

Candidates apply online through a standard online application form. All candidates fulfilling the above-mentioned minimum admission requirements receive and an official letter of admission signed by the legal representative of Ghent University (the Rector), in name of the consortium. Any applicant will need to be granted academic admission by Ghent University, advised by the SINReM Management Board, before starting the program. To this aim, candidates have to prove through their application file that they meet the admission requirements.

Read less
Your programme of study. Read more

Your programme of study

Have you ever wanted to invent something mechanical, prevent environmental damage to a building from floods, fire, explosions, landslides and other natural disasters, understand risks and reliability across buildings, renewables, and other areas? Do you want to improve quality of life across environmental remediation, farming, smart grid, green technology, food production, housing, transportation, safety, security, healthcare and water? Do you find it fascinating to try to make things work from what you have available? There will be plenty of major challenges to get involved with in the coming years crossing over into Nano technologies, advanced materials, electronic printing, grapheme technologies, wearable's, 3d printing, renewables and recycling and biotechnologies. Technology now means that you can design and engineer from anywhere in the world, including your home. Advanced Mechanical Engineering looks at computational mechanics, response to materials and reliability engineering. The Victorians set up some of the most advanced mechanical engineering of our times and in many ways they were the biggest mechanical engineering innovators ever.

This programme specialises in mechanical engineering so you are becoming proficient in designing anything that has background moving parts to allow it to work such as engines, motor driven devices and the effects of nature on mechanical objects and their ability to perform. You also look at how material composition can alter performance issues and provide new innovative methods to solve challenges in every day life and natural and other risks to machinery in all situations.  Your employment options are very varied, you may want to work within consumer goods to design and improve everyday objects like white goods, or you may like to be involved in very large scale hydro electric and power driving machinery in energy , manufacturing or large scale developments, or you may decide to get involved in innovation and enterprise yourself.

Courses listed for the programme

SEMESTER 1

  • Compulsory Courses
  • Computational Fluid Dynamics
  • Numerical Simulation of Waves
  • Advanced Composite Materials

Optional Courses

  • Fire and Explosion Engineering
  • Structural Dynamics

SEMESTER 2

  • Compulsory Courses
  • Finite Element Methods
  • Mathematical Optimisation
  • Engineering Risk and Reliability Analysis

Optional Courses

  • Project Management
  • Risers Systems Hydrodynamics
  • Renewable Energy 3 (Wind, Marine and Hydro

SEMESTER 3

  • Project

Find out more detail by visiting the programme web page

Why study at Aberdeen?

  • Your skills and knowledge can have huge application potential within newly disruptive industries affecting life and work
  • You can improve employability in Aerospace, Marine, Defences, Transport Systems and Vehicles
  • Some of the knowledge you build directly relates to industries in Aberdeen such as the energy industry.
  • Mechanical Engineering cuts into high growth Industry 4.0 and IOT related areas across many areas disrupted by climate, population growth, and quality of life
  • We ensure close links with industries to attend industry events, visits and teaching by professionals from the industry
  • Graduates are very successful and many work in senior industry roles

Where you study

  • University of Aberdeen
  • 12 Months Full Time
  • September start

International Student Fees 2017/2018

Find out about international fees:

  • International
  • EU and Scotland
  • Other UK

Find out more about fees on the programme page

*Please be advised that some programmes also have additional costs.

Scholarships

View all funding options on our funding database via the programme page and the latest postgraduate opportunities

Living in Aberdeen

Find out more about:

Your Accommodation

Campus Facilities

Find out more about living in Aberdeen and living costs

Other engineering disciplines you may be interested in:



Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Engineering Leadership and Management at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Engineering Leadership and Management at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

It is a well-known fact that engineers and technical graduates have the potential to reach the very pinnacle of management and leadership within business and industry.

The MSc in Engineering Leadership and Management programme, through consultation with business and industry (both large and small), is set to establish the key graduate skills and attributes required to succeed in a management and/or leadership role in the engineering sector.

Key Features of MSc Engineering Leadership and Management

The content of this multidisciplinary engineering management course will be very much informed by industry. Key modules on the Engineering Leadership and Management programme will deliver a broad introduction to management, alongside detailed engineering specific modules on:

- Project Management

- Compliance

- Health & Safety

- Operations Management

- Asset Management

- Strategy

- Sustainability

- Innovation

The Engineering Leadership and Management programme will incorporate traditional classroom teaching, online learning, interactive workshops and seminars. Multidisciplinary group work will be a key component of the course, along with industry-focused projects. All of the modules on the Engineering Leadership and Management course will be delivered on an “intense” basis, i.e. in isolation over 2-week periods.

Accreditation for the MSc in Engineering Leadership and Management will be sought with key Engineering and other relevant professional bodies.

As a student on the Master’s course in Engineering and Leadership Management, you will gain and build upon the key skills and knowledge required for a management and/or leadership role in the engineering sector.

Facilities

The new home of the Engineering Leadership and Management programme is at the innovative Bay Campus provides some of the best university facilities in the UK, in an outstanding location.

Links with Industry

The internationally leading materials research conducted at Swansea is funded by prestigious organisations including:

Rolls-Royce

Airbus

Tata Steel

Rolls-Royce

The Institute of Structural Materials at Swansea is a core member of the Rolls-Royce University Technology Centre in Materials.

This venture supports a wide ranging research portfolio with a rolling value of £6.5 million per annum addressing longer term materials issues.

Airbus

Over £1m funding has been received from Airbus and the Welsh Government in the last three years to support structural composites research and development in the aerospace industry and to support composites activity across Wales.

Tata Steel

Funding of over £6 million to continue our very successful postgraduate programmes with Tata Steel.

Other companies sponsoring research projects include Akzo Nobel, Axion Recycling, BAE Systems, Bayer, Cognet, Ford, HBM nCode, Jaguar Land Rover, Novelis, QinetiQ, RWE Innogy, Timet, TWI (Wales), as well as many smaller companies across the UK.

These industrial research links provide excellent opportunities for great research and employment opportunities.

Research

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.

The REF assesses the quality of research in the UK Higher Education sector, assuring us of the standards we strive for.

World-Leading Research

The REF shows that 94% of research produced by our academic staff is of World-Leading (4*) or Internationally Excellent (3*) quality. This has increased from 73% in the 2008 RAE.

Research pioneered at the College of Engineering harnesses the expertise of academic staff within the department. This ground-breaking multidisciplinary research informs our world-class teaching with several of our staff leaders in their fields.



Read less
The short course “New Sustainable Fashion” aims at sharing with the participants the most updated information and interesting examples on innovative business models in fashion & luxury. Read more
The short course “New Sustainable Fashion” aims at sharing with the participants the most updated information and interesting examples on innovative business models in fashion & luxury. The course focuses on the driver of sustainability for the creation of shared value. Creating shared value in fashion means being able to answer the needs of many stakeholders: the environment, society, institutions, art, culture, territory and the consumers. A responsible fashion company has already started the long and complex journey of integrating ethics and aesthetics into the value chain, in constant balance with all the stakeholders.
Here are some of the keywords that will lead the way in fashion responsible innovation and that will be explored during the lectures, class discussions and company visits: circular economy, recycling, upcycling, prosumer-creation, open-source, crowdfunding, wearable-technologies, online-offline integration, transmedia-storytelling, B-corporations and open-innovation among others.

The teaching model is composed as follows:
- In classroom lectures
- Case studies
- Company visits
- Project works
- Sessions of Career orientation and/or reviews on business ideas

Traditional in classroom lectures are alternated with case discussions, meetings with managers and other representatives of the business community, company visits, in class activities and project works.
Career orientation will be provided to the students that aim at working in the industry; feedbacks to the business ideas will be shared with participants that are willing to become entrepreneurs.

At the end of the course a MFI certificate is delivered to each student.

Read less
The College of Liberal Arts and Sciences is a thriving center of intellectual excellence that encompasses 14 academic departments and 80 degree programs. Read more
The College of Liberal Arts and Sciences is a thriving center of intellectual excellence that encompasses 14 academic departments and 80 degree programs. Its more than 2,500 students are engaged in a wide variety of challenging courses and hands-on learning experiences that extend across all areas of the humanities and sciences – from the great philosophers and classic literature to the world economy and environmental sustainability.

At the core of each department are faculty members who have garnered national acclaim for their best-selling books, ground-breaking research and creative endeavors. Together, students and their professors explore globally significant subjects and work towards the goal of improving every aspect of the way in which human beings live. To learn more about a specific area of study, click on the left-hand navigation bar for a full listing of academic departments.

M.S. in Earth Science

The Master of Science in Earth Science prepares teachers, geologists, environmental leaders, planners, industry consultants, and others in the public and private sectors to management community and natural resource concerns, from groundwater and recycling to pollution and global warming. Advanced coursework ranges from astronomy, meteorology, conservation of natural resources, and geographic information systems to oceanography, groundwater geology, environmental geochemistry, and global climate change.

The program is designed for working professionals who wish to obtain an advanced degree in the field and also for teachers who hold initial certification but need a master’s degree to secure permanent teacher certification in the State of New York. The program may also benefit fully certified teachers who wish to expand their fields of expertise. Students may use the degree as a stepping stone to a Ph.D. program.

The 32-credit program allows for flexibility in meeting certification requirements, geotechnical and government agency employers’ needs, and individual career interests. The graduate courses are offered during the evening to accommodate working students. Our department’s past graduate students are working across Long Island and beyond as teachers and as environmental scientists and consultants.

Read less
Labelled by the European Institute of Innovation and Technology (EIT), AMIS is a Master program in Advanced Materials for Innovation and Sustainability which explores the theme of “Substitution of critical or toxic materials in products for optimized performance”. Read more

Labelled by the European Institute of Innovation and Technology (EIT), AMIS is a Master program in Advanced Materials for Innovation and Sustainability which explores the theme of “Substitution of critical or toxic materials in products for optimized performance”. It also covers the topics of “Material chain optimization for end-of-life products” and “Product and services design for the circular economy” - all of which are central themes of the AMIS. The primary focus of the AMIS program is metal and mineral raw materials. Bio-based and polymer materials are studied in view of their substitution potential. Other materials are also analyzed in the context of multimaterial product recycling. In addition, the AMIS program includes a solid package of courses and project work in innovation and entrepreneurship.

Program structure

Mobility is integrated within the two-year program, during which students study at two of the consortium partner universities. Upon completion of the program, graduates are awarded 120 ECTS and a double degree delivered by two of the five partner institutions where they studied. Students begin the Master program at Grenoble INP, Aalto University or T.U. Darmstadt. In their second year, students specialize in another partner university:

  • To attend the specialization year offered at the University of Bordeaux, prospective students must attend the first year at either Aalto University or the Technical University of Darmstadt.

Year 2 specializations are the following:

  • University of Bordeaux: Advanced Hybrid Materials: Composites and Ceramics by Design
  • T.U. Darmstadt: Functional Ceramics: Processing, Characterization and Properties
  • Aalto University: Nanomaterials and interfaces: Advanced Characterization and Modeling
  • University of Liège: Nanomaterials and Modeling
  • Grenoble INP: Materials Interfaces: Surfaces, Films & Coatings

SEMESTER 1 TO 4 CONTENT

Master 1: Basic level competencies.

Mandatory courses in:

  • Fundamentals of materials science
  • Applied materials
  • Modelling tools and materials
  • Innovation, business and entrepreneurship.

Joint collaboration courses with AMIS partners:

  • Inno project I: business model development and the commercialization process of new technologies.
  • Summer camp: a week intensive course working in teams on industry case studies to create and produce new ideas, innovative technologies, improved products or services.
  • Internship: work experience in a company or research organization to develop a solution-focused approach by translating innovations into feasible business solutions and commercializing new technologies.

Master 2: Specialization year.

Mandatory courses in:

  • Advanced functional materials with a specialization in material interfaces, nanomaterials, ceramics or hybrids.

Joint collaboration course with AMIS partners:

  • Practical work on various industrial projects integrated with innovation and entrepreneurship contents.
  • Inno project II: a specialized approach on business model development and commercialization process of new technologies.

Master thesis:

  • A research and development experience in material science jointly supervized by the home university professors and the host partners. The results of the Master thesis will be defended during a presentation. Certain subjets may lead to setting up a business or a spin-off.

Strengths of this Master program

  • Develop expertise in the field of innovative and sustainable advanced materials.
  • Meet, study and work with relevant academic and non-academic contacts in the innovation and entrepreneurship ecosystem.
  • Gain a holistic view on value and process chains.
  • Acquire transferable skills through modern teaching methods. These transferable skills include: entrepreneurship, negotiation techniques, intellectual property, problem solving, working cooperatively and creatively, co-designing, and life cycle approaches.

After this Master program?

As a resource engineer, students may continue in the following fields:

Freelance and entrepreneurship:

  • Create a business or become a consultant

Resource industry:

  • SMEs in chemistry, exploration, green energy, machinery and plant construction, metal working industry, ceramics, environmental economy (R&D, product development, management, production, marketing and sales)

Research:

  • Universities, research institutions, lecturer or managerial position
  • Circular economy
  • Production, analytics, management, marketing and sales

And also:

  • Science journalism, consulting, project development and management, advisor to policy makers, administration, specialist agencies and media.


Read less
Water is vital. Drought, floods and water footprint are crucial topics across the globe. Read more

Water is vital. Drought, floods and water footprint are crucial topics across the globe.

The Water Management Option was one of the original options of our MSc Environmental Technology course first offered in 1977, and remains at the cutting edge today, with research into the balance between water treatment, energy use, climate change and legislation being the focus of intense interest.

Aims

The aim of the option is to produce graduates who understand the challenges posed by water supply and water resources management, and who meet the demands of organisations concerned with the water environment and water technology. These include water companies, regulators, consultancies and research organisations. Changing priorities in these organisations mean there is an increasing emphasis on management in addition to the traditional broad foundation in the basic concepts of water technology and the water environment. As a result, the Water Management Option spotlights and develops management techniques, with two extended consultancy-style projects, one run in conjunction with Hounslow London Borough Council and the other with Anglian Water plc. In addition to lectures and tutorials the students develop their research and presentation skills in a dynamic, cooperative and competitive environment.

At the end of the course, the student will understand the basic concepts of water technology and the water environment both locally and globally, and be able to:

  • apply this understanding to water management issues
  • select and use a range of appropriate management techniques
  •  communicate effectively with others concerned with water management issues, (for example environmental engineers)
  •  apply this knowledge and skill to water management issues in both the developed and developing world
  • work professionally within an organisation, cooperating with others and communicating ideas in oral and written form.

Content

The Option comprises a number of modules designed to introduce the student to the broad range of scientific, environmental and management issues relevant to man’s effects on the Earth’s most precious resource. In addition to lectures, delivered by a of leading practitioners from regulators, water companies, consultancies, research and other environmental organisations, there are seminars and practical coursework assessments that provide experience of contaminated land remediation and strategic investment planning for water supply and wastewater treatment.

Module Aims and Learning Outcomes

Environment and Health

  • To give the student a foundation in science and policy basics to understand aspects of environmental management and technology and its impact on health.
  • Be able to explain the main chemical and biological processes important in the physical environment, the parameters that define environmental quality and its effect on health.

Water Technology and Management

  • To introduce the student to the various unit processes used in water treatment, including underlying theory and technology.
  • Be able to describe the basic concepts of water treatment technology and the selection of unit treatment processes.

Environmental Policy and Resource Management

  • To provide students with an introduction to the legal, technical and practical issues involved in contaminated land and resources management.
  • Be able to appreciate the challenges for the management of contaminated land and be able to describe the basic concepts in relation to resources and waste management.

Environmental Decision Making and Tools

  • To introduce students to some of the most important policy tools and techniques to assist them in decision-making.
  • Be able to select and use various management techniques and policy tools to support decision- making in environmental and water management and policy.

Integrated Land and Water Management

  • To provide students with an overview of problems, potential remedies and possible outcomes involved in holistic management of the environment.
  • Be able to assess environmental problems and environmental relationships in order to propose holistic solutions that maximise overall benefits and minimise adverse impacts.

Environmental Pollution and Assessment

  • To enhance students' understanding of the pollution pathways in the environment from source to receptor.
  • Be able to describe water recycling technologies and assess the physical and chemical processes involved in the progress of pollutants from source to receptor.

Finally, a four-day study tour incorporating a programme of visits gives operational insight into many aspects taught on the option. Visits to sites concerned with water and environmental resource management and related environmental conservation projects are complemented by visits designed to give an understanding of the technology used for water and wastewater treatment.

Careers

Graduates from our course have a very high success rate in achieving well paid employment. This is commonly in environmental consultancies and to a lesser extent in water utility companies, the Environment Agency, Defra and other regulators, and water charities in the UK, in the European Union and overseas.

Graduates from recent years have taken up positions and careers in the following companies:

  • Anglian Water
  • Arcadis Geraghty Miller
  • CH2M Hill
  • Dames and Moore
  • Department of the Environment, Transport and the Regions
  • Environment Agency
  • ERM
  • Mott MacDonald
  •  Parsons Engineering Science
  •  Posford Duvivier
  • Thames Water

Fieldwork

Students undertake two assessed pieces of coursework over the option term. One piece of coursework is in collaboration with a water company, Anglian Water and in addition to team research with other option members it involves a visit to the Anglian Water premises in East Anglia. The other piece of coursework is conducted in collaboration with the Hounslow London Borough Council. It builds on the theme of integrated land and water management and incorporates a day of water and soil sampling on Hounslow Heath in London (working alongside another of the MSc Options – Environmental Analysis & Assessment).

Anglian Water Placement

The opportunity exists for one student to carry out the MSc Environmental Technology Course Water Management Option over two years, which includes a 16 month industrial placement with Anglian Water. The programme provides the chosen candidate with an Anglian Water-financed bursary and payment of tuition fees (at UK/EU rate).  Please visit the website to find out more.



Read less
The aim of the Option is to provide graduates with the skills to enter a wide range of environmental careers, with particular emphasis on environmental consultancy and regulatory job markets. Read more

The aim of the Option is to provide graduates with the skills to enter a wide range of environmental careers, with particular emphasis on environmental consultancy and regulatory job markets. The Option is designed to train students in analysis and assessment methods applicable to environmental contamination problems.

The Environmental Analysis and Assessment (EAA) Option comprises lectures plus two practical case studies, each with a different technical emphasis.

 A large number of the lectures are from consultants, the regulators and industry professionals, many from alumni of the Option, providing the student with first-hand contact with live issues as well as the chance to discuss job opportunities with potential employers. 

The Option lectures are supported by a number of site visits plus a five-day study tour to provide practical underpinning of the Option material.

Aims

The EAA Option is designed to train students from diverse scientific and technical backgrounds in assessment methods applicable to environmental contamination and pollution problems.

The emphasis throughout the course is on the use of quantitative environmental assessment methodologies, including:

  • field sampling and laboratory analysis for direct determination of contaminant concentrations and distributions within environmental systems and;
  • predictive computer modelling techniques to assess the risks and impacts associated with either real or hypothetical contamination scenarios.

A thorough grounding in physical, chemical and biological processes of contaminant behaviour in the environment is provided as the basis for understanding the impacts of chemical contamination. This is strengthened by the introduction to, and use of, predictive modelling techniques for assessing risks and impacts associated with either real or hypothetical contamination scenarios.

To complement and enhance teaching of quantitative aspects of environmental assessment techniques, classical EIA and auditing methodologies are also an important course component.

After completion of the course the students should be able to:

  • understand the fundamental pathways and processes controlling the behaviour and fate of contaminants in environmental systems;
  • design suitable field sampling strategies for the assessment of contaminant distributions in the near-surface atmosphere, surface and ground waters and soils;
  • suggest appropriate sampling and analytical methods for inorganic and organic contaminants in different environmental media and to liaise effectively with analysts and laboratories specialising in the analysis of individual contaminating substances;
  • organise data sets obtained from field sampling and laboratory analytical studies and be able to configure these in a suitable format for higher level data analysis using a computer tool such as a Geographical Information System;
  • apply suitable computer models to evaluate critical pathways and processes of contaminant transport in the environment or to perform simulations of future impacts of contaminant releases from a variety of sources;
  • understand the legal and policy framework within which quantitative environmental assessment activities are carried out and to apply EIA and auditing methodologies where appropriate.

Module Aims and Learning Outcomes

Environment and Health

  • To give the student a foundation in science and policy basics to understand aspects of environmental management and technology and its impact on health.
  • Be able to explain the main chemical and biological processes important in the physical environment, the parameters that define environmental quality and its effect on health.

 Air Pollution and Climate Change

  • To familiarise students with how our incomplete but expanding scientific understanding of pollution is translated into policy and practice for Air Pollution & Climate Change management.
  • Be able to integrate understanding of atmospheric chemistry and physics together with biological implications and pollution control technology, with the application of Air Pollution modelling and monitoring for review and assessment of air quality & climate.

Waste and Resource Management

  • To provide students with an introduction to the legal, technical and practical issues involved in waste and resources management.
  • Be able to appreciate the principal features of legislation and policy relating to waste management and appreciate from a technical point of view the primary waste and resource management problems in the UK and European Union today.

Environmental Decision Making and Tools

  • To introduce students to some of the most important policy tools and techniques to assist them in decision-making.
  • Be able to select and use certain management techniques and policy tools to support decision- making in environmental management and policy.

Integrated Land Management

  • To provide students with an overview of problems, potential remedies and possible outcomes involved in holistic management of the environment.
  • Be able to assess environmental problems and environmental relationships in order to propose holistic solutions that maximise overall benefits and minimise adverse impacts.

Environmental Pollution and Assessment

  • To enhance students' understanding of the pollution pathways in the environment from source to receptor.
  • Be able to describe water recycling technologies and assess the physical and chemical processes involved in the progress of pollutants from source to receptor.

Careers

The majority of the graduates enter environmental consultancy both in the UK and abroad usually within the risk assessment and contaminated land areas, but this is not an exhaustive list. A second path of graduates is to regulatory agencies/government bodies such as the Environment Agency of England & Wales and the Department of Environment, Food & Rural Affairs. Other paths have included further study, the retail sector and banking. To date, the Option has had an excellent track record of employment with over 90% of graduates employed within 12 months of completing the MSc.

Fieldwork

One piece of fieldwork is undertaken in collaboration with the WM and Health and HGWEoptions of the MSc, and provides a "real-world" case study of contaminated land and water on Hounslow Heath, near Heathrow Airport, in close collaboration with Hounslow London Borough Council. The second piece of fieldwork is a waste management project in collaboration with Veolia Waste Management Services Ltd., providing an opportunity for students to work on a typical waste management problem.

At the end of the Option term the EAA students will spend a week on location at a city somewhere in the UK visiting a variety of industrial facilities, plants and operations.



Read less

Show 10 15 30 per page



Cookie Policy    X