• University of Derby Online Learning Featured Masters Courses
  • Coventry University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • St Mary’s University, Twickenham Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
  • University of Glasgow Featured Masters Courses
  • New College of the Humanities Featured Masters Courses
De Montfort University Featured Masters Courses
University of Worcester Featured Masters Courses
University of Hertfordshire Featured Masters Courses
FindA University Ltd Featured Masters Courses
Northumbria University Featured Masters Courses
"raman"×
0 miles

Masters Degrees (Raman)

  • "raman" ×
  • clear all
Showing 1 to 15 of 25
Order by 
This course is designed to enable graduate students and forensic practitioners to develop the theoretical knowledge underpinning forensic document examination and provide intensive training and practical experience. Read more
This course is designed to enable graduate students and forensic practitioners to develop the theoretical knowledge underpinning forensic document examination and provide intensive training and practical experience. It covers the analysis of handwriting, signatures, questioned and fraudulent documents and provides training in the use of a range of highly specialised techniques, such as VSC, comparison microscopy, ESDA and Raman Spectroscopy.

LEARNING ENVIRONMENT AND ASSESSMENT

The dedicated laboratory for this course houses an ESDA and a VSC-5000 and this is where MSc students will take a wide range of practical classes, carry out simulated casework and conduct laboratory-based dissertation research projects. Students will also have access to a wide range of state-of-the-art analytical instrumentation within the Analytical Unit. The Unit houses gas chromatographs with pyrolysis injection capability and FID, MS and EC detectors, ion chromatographs and high performance liquid chromatographs with diode array fluorescence, MS and Differential refractometer detectors. The Unit also houses facilities for Atomic absorption, UV-Visible and Infrared spectroscopy, Raman spectroscopy, NMR spectrometry, Inductive coupled plasma mass spectrometry and Scanning Electron Microscopy With Energy Dispersive X-Ray Spectroscopy (SEM/EDAX).

Modules will be assessed through theory and practical examinations, and coursework (essays, moot courts, presentations and a dissertation). Students will be required to examine documents and equipment, produce case notes and reports.

Please note that Distance Learning students will be required to attend a two-week residential workshop at UCLan’s Preston campus during Semester 2. More information will be provided about this in Semester 1.

FURTHER INFORMATION

Modules are assessed through theoretical and practical examinations as well as coursework. Assessments include the examination of suspect documents and pieces of equipment from simulated cases and the production of formal case notes and expert reports, as well as essays, mock courtroom trials, group and individual presentations and a dissertation. Upon graduating from this course you will be well placed to gain employment in forensic science laboratories, police investigation teams, fraud departments in major government or private organisations, or to go on to further research in academia.

MSc Document Analysis is designed to enable graduate students and forensic practitioners to understand and develop the theoretical knowledge underpinning all aspects of forensic document examination and to develop skills in a variety of areas, which concern the processing, analysis, identification and interpretation of questioned documents. The course provides intensive training in all areas of forensic document analysis and provides extensive practical training in the areas of the analysis and identification of handwriting, signatures, printing apparatus and fraudulent documents. The course also provides you with training to act as an expert witness and presentation and communication skills.

You will study the principles underpinning the scientific analysis of handwriting and signatures together with the considerations involved when carrying out forensic casework. This course will also provide practical experience in the examination of printing equipment, typewriters, photocopiers and the identification of forged or counterfeit documents. You will be trained in a number of analytical techniques using highly specialised apparatus, such as the use of the video spectral comparator, a comparison microscope, ESDA (Electrostatic Detection Apparatus) and a Raman Spectrometer. In addition, the course will provide you with the opportunity to develop a large number of transferable skills.

Upon graduating from this course you will be well placed to gain employment in forensic science laboratories, police investigation teams and fraud departments in major government or private organisations, or to go on to further research in academia at doctoral level.

Read less
The MA in Migration and Diaspora Studies is a broad-based degree for students who want to receive specialized research training in Migration and Diaspora Studies, including a relevant language, which will prepare them to proceed to advanced postgraduate research in Migration and Diaspora Studies at SOAS or elsewhere. Read more
The MA in Migration and Diaspora Studies is a broad-based degree for students who want to receive specialized research training in Migration and Diaspora Studies, including a relevant language, which will prepare them to proceed to advanced postgraduate research in Migration and Diaspora Studies at SOAS or elsewhere.

This MA is designed to appeal to students from a variety of backgrounds who:

- Wish to know more of the transnational nature of the modern world;
- Wish to continue their anthropological study at a postgraduate level and engage in critical contemporary theory;
- Wish to understand cultural transformation from a global perspective;
- Come from other disciplines, such as Law or Politics, and now wish to incorporate an anthropological perspective on issues of migration and diaspora.

The degree offers students a chance to pursue specialist interests by a considered selection of courses to suit their individual needs. It provides:

1. A broad-based MA for students who wish to enhance their knowledge in light of continuing contemporary research;
2. A special interest MA, enabling students to study diaspora and migration issues in depth in relation to a particular discipline or region.

The programme attracts students from around the world. It encourages a transdisciplinary approach to issues of migration and diaspora, providing historical depth as well as perspectives from anthropology, sociology, and postcolonial studies. The programme also works closely with a number of departments across the school, such as Development Studies, the Centre for Gender Studies as well as Law and Politics, which also run migration and diaspora related courses. Most of these courses are available as options on the programme, making it a unique MA in terms of both its breadth and depth.

In the recent past, our students have been highly successful in going on to further study and a number have received scholarships for research degrees at SOAS and elsewhere. Many have also gone on to work with NGOs and in the public sector as well as arts organizations. We have a good staff-student ratio, which ensure the best support for personal academic development and training which enhances future career prospects.

The MA in Migration and Diaspora Studies is considerably enriched by the SOAS Centre for Migration and Diaspora Studies, which runs seminars, films and public lectures and also hosts a number of international scholars. The Centre is also a part of a migration research network of London colleges including LSE and UCL. Students on the programme therefore have unparalleled access to a critical body of scholars and scholarship on migration and diaspora related issue.

Prospective students are encouraged to contact the Programme Convenor, Dr Parvathi Raman at an early stage of their application to seek advice on the most appropriate options for study. The programme consists of four elements, three examined courses and a 10,000-word dissertation on an approved topic.

Visit the website http://www.soas.ac.uk/anthropology/programmes/mamigdiaspstudies/

DURATION:One calendar year (Full-Time) Two or three years (Part-Time, daytime only) The expectation in the UK is of continuous study across the year, with break periods used to read and to prepare coursework. We recommend that part-time students have between two and a half and three days free in the week to pursue their course of study.

Programme Overview

The course is designed to offer students a chance to pursue specialist interests by a considered selection of courses to suit their individual needs. It provides:

1. a broad-based MA programme for students with some background in issues of migration and diaspora who wish to enhance their knowledge in the light of continuing contemporary research.

2. a special interest MA, which will enable students to study diaspora and migration issues in depth in relation to a particular discipline or region.

Prospective students will be encouraged to contact the Programme Convenor, Dr Parvathi Raman, at an early stage of their application in order to seek advice on the most appropriate options for study. The programme consists of four units, comprised of three examined courses and a dissertation.

Programme Specification 2012/2013 (pdf; 276kb) - http://www.soas.ac.uk/anthropology/programmes/mamigdiaspstudies/file39769.pdf

Teaching & Learning

During the academic year, teaching is centred mainly around lectures and seminars. For the core course in the first term, there is a one hour thematic lecture, followed by a two hour seminar, where students are encouraged to develop their ability for critical analysis and reflexivity. Students will occasionally be required to give a group presentation, encouraging collaborative work and the creative exchange of ideas, and in selected classes there will also be an in depth reading of a particular text by the whole class. Each week, students will share the responsibility for reading other selected texts, ensuring that a range of arguments and perspectives are discussed.

In the second term, teaching is framed around a two-hour student led seminar session, where a small group of students are responsible for leading each class. They will be guided by pre distributed lecture notes from the class tutors and selected readings from the reading list, and the objective will be to initiate an informed and lively discussion on the week’s topic. The class tutor will mediate the discussion

The teaching format is designed to help students progress intellectually over the year, advance their writing skills, and instil confidence in forming opinions and developing the ability to express their views articulately.

Assessment is by class participation and written assignments.

SOAS also has a large range of options on migration and diaspora related issues across the school. Teaching methods and assessment vary across these options, and their availability will depend on appropriate staff being available in the relevant academic year.

In addition, students are required to attend the weekly seminars held by the Centre for Migration and Diaspora Studies, where they will hear international scholars give papers on a variety of migration and diaspora related topics. The seminars provide an invaluable backdrop for the transdiciplinary approach of the programme overall.

The student learning experience is also be enhanced by the public lectures, films and workshops the Centre organises.

SOAS library also houses an array of texts which complement the course to help fuel independent thinking and learning.

Employment

Studying an MA in Migration and Diaspora Studies at SOAS develops students’ understanding of the world, other peoples’ ways of life and how society is organised. This programme with give students specialized research training in Migration and Diaspora Studies, including a relevant language. Over the years the SOAS department has trained numerous leading anthropologists who have gone on to occupy lectureships and professorships throughout the world. Equally, students gain skills during their degree that transfer well to areas such as information and technology, government service, the media and tourism.

Postgraduate students leave SOAS with a portfolio of widely transferable skills which employers seek, including analytical and critical skills; ability to gather, assess and interpret data; high level of cultural awareness; and problem-solving. A postgraduate degree is a valuable experience that provides students with a body of work and a diverse range of skills that they can use to market themselves with when they graduate.

For more information about Graduate Destinations from this department, please visit the Careers Service website (http://www.soas.ac.uk/careers/graduate-destinations/).

Find out how to apply here - http://www.soas.ac.uk/admissions/pg/howtoapply/

Read less
Expand your knowledge in all areas of forensic science, from gathering evidence at the crime scene itself, right through to the courtroom. Read more
Expand your knowledge in all areas of forensic science, from gathering evidence at the crime scene itself, right through to the courtroom. Develop your skills and knowledge on our accredited course, as you collect and analyse evidence, equipping you to become a confident and effective practitioner.

See the website http://www.anglia.ac.uk/study/postgraduate/forensic-science

In-keeping with its industry-focus our Chartered Society of Forensic Sciences accredited course is taught by experienced forensics practitioners. We’ll immerse you in a practical environment that closely emulates a real forensics laboratory. The analytical skills and expertise you gain apply equally well in the broader scientific and technological fields as they do in forensics.

Our course combines practical skills with high-level theoretical knowledge of the wide range of forensic techniques you need to apply at all stages of an investigation. Going further still, you’ll be trained to design and execute your own research project in a relevant area, which particularly interests you. This will include guidance on research methods, good practice, presentation and the application of your research.

Full-time - January start, 15 months. September start, 12 months.
Part-time - January start, 33 months. September start, 28 months.

See the website http://www.anglia.ac.uk/study/postgraduate/forensic-science

This course will provide you with:
• the opportunity to acquire Masters level capabilities, knowledge and skills in diverse areas of forensic science from the crime scene to the court
• training in the design and execution of science based research in an appropriate area of forensic science
• the opportunity to undertake a formal research programme in an appropriate area of forensic science

The intention is to immerse you in an environment that is as realistically close to that of a practising forensic science laboratory as is possible in an academic institution. The experience and background of Anglia Ruskin's staff, their intimate knowledge and working relationships with the industry and the availability or new or relatively new purpose-built laboratory facilities places this course in a strong position to deliver such an experience.

This course is suitable for candidates who wish to specialise in Forensic Science as a progression from their first degree in forensic science and for candidates coming into Forensic Science with a strong background in traditional analytical science. This course is accredited by The Forensic Science Society

On successful completion of this course you will be able to:
• demonstrate deep and systematic knowledge of several major areas of forensic science, including either chemical or biological criminalistics.
• apply theoretical and experimentally based empirical knowledge to the solution of problems in forensic science
demonstrate that you are cognisant with the best ethical practices, validation and accreditation procedures relevant to forensic science.
• demonstrate a comprehensive understanding of the theory and practice of advanced analytical techniques, as used and applied in forensic science.
• devise, design, implement and, if necessary, modify a programme of basic research directly related to the solution of practical problems in the broad field of forensic science.
• assimilate the known knowledge and information concerning a particular problem/issue and erect testable and viable alternative hypotheses, from theoretical and empirical/experimental view points.
• demonstrate a level of conceptual understanding that will enable information from a wide range of sources and methodologies to be comprehensively and critically appraised.
• operate competently, safely and legally in a variety of complex, possibly unpredictable contexts and be able to apply appropriate standards of established good practice in such circumstances.
• demonstrate that you are able to exercise initiative in your work tasks, but yet be able to exercise your responsibility so as not to move beyond the scope of your expertise.
• search for and obtain information from a wide range of traditional, non-traditional and digital/electronic sources and be able to synthesis it into a coherent argument.
• present the results of your work in a number of forms (reports, papers, posters and all forms of oral presentation) at a level intelligible to the target audience (highly trained/specialised professional to informed lay-person).
• organise your own time and patterns of work to maximum effect and be able to work competently either autonomously or as part of groups and teams as required.

Careers

Our course is enhanced by our excellent working relationships with most of the major employers in the forensic science industry, including the police and fire services.

This focus on theory and good laboratory practice, analytical measurement and research and management skills, together with our industry contacts will make you an attractive candidate for employment. It’ll open up career opportunities in specialist forensic science laboratories in the chemical, biological, environmental, pharmaceutical and law enforcement industries.

You’re also in the perfect position to continue your academic career and move up to our Forensic Science PhD.

Core modules

Evidence Collection and Management
Mastering Forensic Evidence
Mastering Forensic Analysis
Specialist Topics
Research Methods
Research Project

Assessment

Your progress will be assessed using a variety of methods including laboratory reports, court reports (including witness statements), presentations, exams, essays and reports.

Facilities

Wide range of advanced microscopy instruments. SEM with EDS. Full range of organic analysis (GC, GC-MS, HPLC and ion chromatography). FT-IR and Raman spectrometers. Gene sequencing and other DNA analytical equipment. Comprehensive collection of specialist forensic equipment including GRIM, VSC and MSP. Dedicated crime scene facility with video equipment.

Your faculty

The Faculty of Science & Technology is one of the largest of five faculties at Anglia Ruskin University. Whether you choose to study with us full- or part-time, on campus or at a distance, there’s an option whatever your level – from a foundation degree, to a BSc, MSc, PhD or professional doctorate.

Whichever course you pick, you’ll gain the theory and practical skills needed to progress with confidence. Join us and you could find yourself learning in the very latest laboratories or on field trips or work placements with well-known and respected companies. You may even have the opportunity to study abroad.

Everything we do in the faculty has a singular purpose: to provide a world-class environment to create, share and advance knowledge in science and technology fields. This is key to all of our futures.

Specialist facilities

Our facilities include a wide range of advanced microscopy instruments – SEM with EDS, a full range of organic analysis (GC, HPLC and ion chromatography). FT-IR and Raman Spectrometers, gene sequencing and other DNA analytical equipment. A comprehensive collection of specialist forensic equipment includes GRIM, VSC and MSP and we also have a dedicated crime scene facility with video equipment.

Read less
Research students in Forensic Science have the opportunity to work alongside a multidisciplinary team in the School of Life Sciences, and can benefit from strong links with industry practitioners. Read more
Research students in Forensic Science have the opportunity to work alongside a multidisciplinary team in the School of Life Sciences, and can benefit from strong links with industry practitioners.

You have the opportunity to engage in the work of the Forensic Analysis Research Group, to develop innovative methods and techniques to assist in solving crime and casework-related issues. The team are currently engaged in high-profile studies including collaborative projects with the Centre for Applied Science and Technology at the UK Home Office.

You have access to a range of training programmes to support you in your independent investigations and an experienced supervisory team are on hand to offer advice and direction. Ongoing research projects in the School include Chemical Analysis of Legal Highs and GHB, DNA Analysis in Forensic and Archaeological Contexts, and Microcrystalline Testing for Drugs.

Research Areas, Projects & Topics

Main research areas:
-Drug analysis
-Ignitable liquid and fuel analysis
-Explosives analysis
-DNA fingerprinting
-Fingerprinting science
-Dye and pigment analysis
-Forensic anthropology
-Spectroscopic techniques (including Raman) and separation science
-Surface analysis
-Mechanical properties of biological materials.

Recent research projects include:
-Chemical analysis of fingerprints
-Analysis of legal highs and GHB
-Analysis of fuel markers and detection of fuel adulteration
-Development of sensors for forensic applications
-Microcrystalline testing for drugs
-Analysis of smoke for fire investigation
-Enhancement of DNA at crime scenes
-Development of colloids and Surface Enhanced Raman Spectroscopy (SERS)
-DNA analysis in forensic and archaeological contexts
-Molecular typing of skin micro-organisms in forensic identification
-Forensic analysis of the mechanical properties of biological materials.

How You Study

Due to the nature of postgraduate research programmes, the vast majority of your time will be spent in independent study and research. You will have meetings with your academic supervisors to assess progress and guide research methodologies, however the regularity of these will vary depending on your own individual requirements, subject area, staff availability and the stage of your programme.

How You Are Assessed

A PhD is usually awarded based on the quality of your thesis and your ability in an oral examination (viva voce) to present and successfully defend your chosen research topic to a group of academics. You are also expected to demonstrate how your research findings have contributed to knowledge or developed existing theory or understanding.

Career and Personal Development

These postgraduate research programmes allow you the opportunity to expand your knowledge and expertise in the specialist field of forensic science. They provide the chance to develop an in-depth foundation for further research or progression to careers in forensic science-related industries.

Read less
Overview. The MRes courses are designed to provide students with intensive laboratory-based training in research methods, supported by in-depth understanding. Read more
Overview
The MRes courses are designed to provide students with intensive laboratory-based training in research methods, supported by in-depth understanding. The aim is to prepare graduates to make contributions, as individuals and members of a team, to research-oriented activities in the biomedical industries and related service sectors, or academia. The courses are also well-suited to students wishing to upgrade a first degree, change field, or gain valuable laboratory experience before employment or a PhD. The Strathclyde Institute of Pharmacy and Biomedical Sciences represents the largest Pharmacy research group in the UK, with 55% of its staff rated as either world-leading or internationally excellent in terms of originality, significance and rigour (data: Research Assessment Exercise 2008). The University of Strathclyde has invested £30M in a world-class, pioneering centre for biomedical and pharmaceutical sciences teaching and research, opened Aug 2010. Students will find themselves in stimulating, unique environment on account of the strongly multidisciplinary nature of the Institute. Combining fundamental and applied research across the areas of bioscience and pharmacy, SIPBS builds on its record of success in drug and vaccine discovery and development. The Institute engages with industry and the health services, ensuring that its excellent fundamental research is translated into products that are of benefit to health and society. For more information on SIPBS go to http://www.strath.ac.uk/sipbs

Course outline

An MRes degree is focussed on research and students will spend 8 months undertaking a laboratory-based project.
To support their chosen research project, students choose advanced-level taught courses in a named specialisation, from the following areas:

Taught classes delivered through lectures, workshops and practical classes in four areas:
1. Transferable skills training in data mining, interpretation and presentation; experimental planning, personal effectiveness, ethics in research
2. Commercialisation and entrepreneurship
3. MRes-specific classes relevant to subject area

Biomedical Sciences

Example research projects:
1. Antileishmanial activity of extracts and compounds from Monodora myristica
2. Imaging and modelling of cancer development
3. Endothelial progenitor cell expression and differentiation
4. Targeted radiotherapy for cancer
5. The involvement of pulmonary veins in atrial fibrillation: electrical properties
6. Reducing bacterial resistance to antibiotics
7. Development of neural stem cells with increased levels of the autophagy cell survival pathway
8. Investigating the role of Sigma 54 in Pseudomonas aeruginosa virulence
9. Transcriptional network analysis of the Escherichia coli core stress response.
10. Identification of novel anti-microbial compounds targeted at biofilm formation

Drug Delivery systems

Example research projects
1. Nanoparticulate formulations of insulin and their analysis
2. Mesoporous silicas for oral delivery of cyclosporine
3. Bioprocessing of biopharmaceuticals
4. Modified and time-delayed oral solid-dose release formulations
5. Nasal formulations of poorly soluble compounds
6. Reducing bacterial resistance to antibiotics: establishing, optimising and implementing a high throughput assay to discover natural product derived inhibitors of metallo beta-lactamase.
7. Imaging of dermal formulations using Raman microscopy techniques
8. Antileishmanial activity of extracts and compounds from Monodora myristica
9. Anti-trypanosomal active triterpenoids from some African Propolis
10. Investigation into the potential therapeutic properties of marine organisms
11. Photo-triggered adhesion of mammalian cells

Drug Discovery

Projects in the areas of :
1. Drug Delivery
2. Molecular Biology
3. Pharmacology
4. Pharmaceutical Materials and Formulation
5. Toxicology

Neuroscience

Projects in the areas of:
1. Electrophysiology
2. Stem cell biology for regenerative purposes
3. Cell biology
4. Inflammation
5. In vitro culture systems
6. Functional genetics

How to Apply
Applicants should apply through the University of Strathclyde on-line application form: http://pgr.strath.ac.uk indicating "Masters by Research", and named specialisation as appropriate. Applicants are not required to submit a detailed research proposal at this stage.

Read less
Take advantage of one of our 100 Master’s Scholarships to study Laser Physics at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Read more
Take advantage of one of our 100 Master’s Scholarships to study Laser Physics at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Postgraduate loans are also available to English and Welsh domiciled students. For more information on fees and funding please visit our website.

The MSc by Research Laser Physics enables students to pursue a one year individual programme of research. The Laser Physics programme would normally terminate after a year. However, under appropriate circumstances, this first year of research can also be used in a progression to Year 2 of a PhD degree.

You will be fully integrated into one of our established research groups and participate in research activities such as seminars, workshops, laboratories, and field work.

Key Features

Swansea is a research led University to which the Physics department makes a significant contribution, meaning that as a postgraduate Physics student you will benefit from the knowledge and skills of internationally renowned academics.

The Department received top ratings of 4* and 3* in the 2008 RAE, which classified our research as World-leading or Internationally excellent in terms of its originality, significance and rigour.

The two main research groups within the Department of Physics currently focus on the following areas of research:

Atomic, Molecular and Quantum Physics Group

Fundamental Atomic Physics
Condensed Matter and Material Physics
Analytical Laser Spectroscopy
Particle Physics Theory Group

String theory, quantum gravity and the AdS/CFT correspondence
Lattice gauge theories, QCD
Supersymmetric field theory, perturbative gauge theory
Field Theory in curved spacetime
Physics beyond the standard model

Links with Industry

Our two research groups, Particle Physics Theory (PPT) and Atomic, Molecular and Quantum Physics (AMQP), deliver impact with commercial benefits both nationally and internationally, complemented by a public engagement programme with a global reach.

Economic impacts are realised by the Department’s Analytical Laser Spectroscopy Unit (ALSU) which, since 1993, has worked with companies developing products eventually sold to customers in the nuclear power industry and military, both in the UK and overseas, and in the global aerospace industry. Computational particle physics work performed by the PPT group has spun-off a computer benchmarking tool, BSMBench, used by several leading software outfits, and has led to the establishment of a start-up company.

The AMQP group’s work on trapping and investigating antihydrogen has generated great media interest and building on this we have developed a significant and on-going programme of public engagement. Activities include the development of a bespoke software simulator (Hands on Antihydrogen) of the antimatter experiment for school students.

Facilities

As a student of the Laser Physics programme in the Department of Physics you will have access to the following Specialist Facilities:

Low-energy positron beam with a high field superconducting magnet for the study of
positronium
CW and pulsed laser systems
Scanning tunnelling electron and nearfield optical microscopes
Raman microscope
CPU parallel cluster
Access to the IBM-built ‘Blue C’ Super computer at Swansea University and is part of the shared use of the teraflop QCDOC facility based in Edinburgh

Research

The Physics Department carries out world-leading research in experimental and theoretical physics.

The results of the Research Excellence Framework (REF) 2014 show that over 80% of the research outputs from both the experimental and theoretical groups were judged to be world-leading or internationally excellent.

Research groups include:

AMQP Group

The Atomic, Molecular and Quantum Physics Group comprises academic staff, postdoctoral officers and postgraduate research students. Its work is supported by grants from EPSRC, the EU, The Royal Society, the Higher Education Funding Council for Wales and various industrial and government sources. There are two main fields of research: Atomic, Molecular and Laser Physics and Nanoscale Physics.

PPT Group

The Particle Physics Theory Group has fourteen members of staff, in addition to postdoctoral officers and research students. It is the fourth largest particle physics theory group in the UK, and is supported mainly by STFC, but also has grants from EPSRC, the EU, Royal Society and Leverhulme Trust. The group recently expanded by hiring two theoretical cosmologists (Ivonne Zavala and Gianmassimo Tasinato). There are five main fields of research: Quantum Field Theory, Strings, Lattice Field Theory, Beyond the Standard Model Physics and Theoretical Cosmology.

Read less
Take advantage of one of our 100 Master’s Scholarships to study Cold Atoms and Quantum Optics at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Read more
Take advantage of one of our 100 Master’s Scholarships to study Cold Atoms and Quantum Optics at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Postgraduate loans are also available to English and Welsh domiciled students. For more information on fees and funding please visit our website.

The MSc by Research Cold Atoms and Quantum Optics enables students to pursue a one year individual programme of research. The Cold Atoms and Quantum Optics programme would normally terminate after a year. However, under appropriate circumstances, this first year of research can also be used in a progression to Year 2 of a PhD degree.

As a student of the Cold Atoms and Quantum Optics programme you will be fully integrated into one of our established research groups and participate in research activities such as seminars, workshops, laboratories, and field work.

Swansea is a research led University to which the Physics department makes a significant contribution, meaning that as a postgraduate Physics student you will benefit from the knowledge and skills of internationally renowned academics.

The Department received top ratings of 4* and 3* in the 2008 RAE, which classified our research as World-leading or Internationally excellent in terms of its originality, significance and rigour.

Links with Industry

Our two research groups, Particle Physics Theory (PPT) and Atomic, Molecular and Quantum Physics (AMQP), deliver impact with commercial benefits both nationally and internationally, complemented by a public engagement programme with a global reach.

Economic impacts are realised by the Department’s Analytical Laser Spectroscopy Unit (ALSU) which, since 1993, has worked with companies developing products eventually sold to customers in the nuclear power industry and military, both in the UK and overseas, and in the global aerospace industry. Computational particle physics work performed by the PPT group has spun-off a computer benchmarking tool, BSMBench, used by several leading software outfits, and has led to the establishment of a start-up company.

The AMQP group’s work on trapping and investigating antihydrogen has generated great media interest and building on this we have developed a significant and on-going programme of public engagement. Activities include the development of a bespoke software simulator (Hands on Antihydrogen) of the antimatter experiment for school students.

Facilities

As a postgraduate Cold Atoms and Quantum Optics student in the Department of Physics you will have access to the following Specialist Facilities:

Low-energy positron beam with a high field superconducting magnet for the study of
positronium
CW and pulsed laser systems
Scanning tunnelling electron and nearfield optical microscopes
Raman microscope
CPU parallel cluster
Access to the IBM-built ‘Blue C’ Super computer at Swansea University and is part of the shared use of the teraflop QCDOC facility based in Edinburgh

Research

The Physics Department carries out world-leading research in experimental and theoretical physics.

The results of the Research Excellence Framework (REF) 2014 show that over 80% of the research outputs from both the experimental and theoretical groups were judged to be world-leading or internationally excellent.

Research groups include:

AMQP Group

The Atomic, Molecular and Quantum Physics Group comprises academic staff, postdoctoral officers and postgraduate research students. Its work is supported by grants from EPSRC, the EU, The Royal Society, the Higher Education Funding Council for Wales and various industrial and government sources. There are two main fields of research: Atomic, Molecular and Laser Physics and Nanoscale Physics.

PPT Group

The Particle Physics Theory Group has fourteen members of staff, in addition to postdoctoral officers and research students. It is the fourth largest particle physics theory group in the UK, and is supported mainly by STFC, but also has grants from EPSRC, the EU, Royal Society and Leverhulme Trust. The group recently expanded by hiring two theoretical cosmologists (Ivonne Zavala and Gianmassimo Tasinato). There are five main fields of research: Quantum Field Theory, Strings, Lattice Field Theory, Beyond the Standard Model Physics and Theoretical Cosmology.

Read less
Take advantage of one of our 100 Master’s Scholarships to study Nanotechnology (Physics) at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Read more
Take advantage of one of our 100 Master’s Scholarships to study Nanotechnology (Physics) at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Postgraduate loans are also available to English and Welsh domiciled students. For more information on fees and funding please visit our website.

The MSc by Research Nanotechnology (Physics) enables students to pursue a one year individual programme of research. The Nanotechnology (Physics) programme would normally terminate after a year. However, under appropriate circumstances, this first year of research can also be used in a progression to Year 2 of a PhD degree.

For MSc by Research in Nanotechnology (Physics) programme you will be guided by internationally leading researchers through an extended one-year individual research project. There is no taught element. The Nanotechnology (Physics) programme has a recommended initial research training module (Science Skills & Research Methods), but otherwise has no taught element and is most suitable for you if you have an existing background in geography or cognate discipline and are looking to pursue a wholly research-based programme of study.

As a student of the MSc by Research in Nanotechnology (Physics) you will be fully integrated into one of our established research groups and participate in research activities such as seminars, workshops, laboratories, and field work.

Key Features

Swansea is a research led University to which the Physics department makes a significant contribution, meaning that as a postgraduate Physics student you will benefit from the knowledge and skills of internationally renowned academics.

The Department received top ratings of 4* and 3* in the 2008 RAE, which classified our research as World-leading or Internationally excellent in terms of its originality, significance and rigour.

Links with Industry

Our two research groups, Particle Physics Theory (PPT) and Atomic, Molecular and Quantum Physics (AMQP), deliver impact with commercial benefits both nationally and internationally, complemented by a public engagement programme with a global reach.

Economic impacts are realised by the Department’s Analytical Laser Spectroscopy Unit (ALSU) which, since 1993, has worked with companies developing products eventually sold to customers in the nuclear power industry and military, both in the UK and overseas, and in the global aerospace industry. Computational particle physics work performed by the PPT group has spun-off a computer benchmarking tool, BSMBench, used by several leading software outfits, and has led to the establishment of a start-up company.

The AMQP group’s work on trapping and investigating antihydrogen has generated great media interest and building on this we have developed a significant and on-going programme of public engagement. Activities include the development of a bespoke software simulator (Hands on Antihydrogen) of the antimatter experiment for school students.

Facilities

As a student of the MSc by Research in Nanotechnology (Physics) in the Department of Physics you will have access to the following Specialist Facilities:

Low-energy positron beam with a high field superconducting magnet for the study of
positronium
CW and pulsed laser systems
Scanning tunnelling electron and nearfield optical microscopes
Raman microscope
CPU parallel cluster
Access to the IBM-built ‘Blue C’ Super computer at Swansea University and is part of the shared use of the teraflop QCDOC facility based in Edinburgh

Research

The Physics Department carries out world-leading research in experimental and theoretical physics.

The results of the Research Excellence Framework (REF) 2014 show that over 80% of the research outputs from both the experimental and theoretical groups were judged to be world-leading or internationally excellent.

This MSc by Research in Nanotechnology comes under the Nano-physics and the life sciences research area at Swansea. The fundamental understanding of the electronic, structural, chemical and optical properties of materials on the nano-scale is essential for advances in nanotechnology, in particular the development of new devices via the incorporation of novel materials. Advances in experimental physics underpin these developments via characterisation and quantification of quantum phenomena which dominate at these length scales.

The Nanotechnology research concentrates on two main areas: determining properties of materials (e.g., graphene) on the nano-scale using scanning probe based techniques; the development of imaging and laser based spectroscopic techniques to study biological samples (e.g., imaging of cellular components and bacteria).

Read less
Take advantage of one of our 100 Master’s Scholarships to study Lattice Gauge Theory at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Read more
Take advantage of one of our 100 Master’s Scholarships to study Lattice Gauge Theory at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Postgraduate loans are also available to English and Welsh domiciled students. For more information on fees and funding please visit our website.

The MSc by Research Lattice Gauge Theory enables students to pursue a one year individual programme of research. The Lattice Gauge Theory programme would normally terminate after a year. However, under appropriate circumstances, this first year of research can also be used in a progression to Year 2 of a PhD degree.

You will be fully integrated into one of our established research groups and participate in research activities such as seminars, workshops, laboratories, and field work.

Key Features

Swansea is a research led University to which the Physics department makes a significant contribution, meaning that as a postgraduate Physics student you will benefit from the knowledge and skills of internationally renowned academics.

The Department received top ratings of 4* and 3* in the 2008 RAE, which classified our research as World-leading or Internationally excellent in terms of its originality, significance and rigour.

Links with Industry

Our two research groups, Particle Physics Theory (PPT) and Atomic, Molecular and Quantum Physics (AMQP), deliver impact with commercial benefits both nationally and internationally, complemented by a public engagement programme with a global reach.

Economic impacts are realised by the Department’s Analytical Laser Spectroscopy Unit (ALSU) which, since 1993, has worked with companies developing products eventually sold to customers in the nuclear power industry and military, both in the UK and overseas, and in the global aerospace industry. Computational particle physics work performed by the PPT group has spun-off a computer benchmarking tool, BSMBench, used by several leading software outfits, and has led to the establishment of a start-up company.

The AMQP group’s work on trapping and investigating antihydrogen has generated great media interest and building on this we have developed a significant and on-going programme of public engagement. Activities include the development of a bespoke software simulator (Hands on Antihydrogen) of the antimatter experiment for school students.

Facilities

As a student of Lattice Gauge Theory programme in the Department of Physics you will have access to the following Specialist Facilities:

Low-energy positron beam with a high field superconducting magnet for the study of
positronium
CW and pulsed laser systems
Scanning tunnelling electron and nearfield optical microscopes
Raman microscope
CPU parallel cluster
Access to the IBM-built ‘Blue C’ Super computer at Swansea University and is part of the shared use of the teraflop QCDOC facility based in Edinburgh

Research

The Physics Department carries out world-leading research in experimental and theoretical physics.

The results of the Research Excellence Framework (REF) 2014 show that over 80% of the research outputs from both the experimental and theoretical groups were judged to be world-leading or internationally excellent.

Research groups include:

AMQP Group

The Atomic, Molecular and Quantum Physics Group comprises academic staff, postdoctoral officers and postgraduate research students. Its work is supported by grants from EPSRC, the EU, The Royal Society, the Higher Education Funding Council for Wales and various industrial and government sources. There are two main fields of research: Atomic, Molecular and Laser Physics and Nanoscale Physics.

PPT Group

The Particle Physics Theory Group has fourteen members of staff, in addition to postdoctoral officers and research students. It is the fourth largest particle physics theory group in the UK, and is supported mainly by STFC, but also has grants from EPSRC, the EU, Royal Society and Leverhulme Trust. The group recently expanded by hiring two theoretical cosmologists (Ivonne Zavala and Gianmassimo Tasinato). There are five main fields of research: Quantum Field Theory, Strings, Lattice Field Theory, Beyond the Standard Model Physics and Theoretical Cosmology.

Read less
Take advantage of one of our 100 Master’s Scholarships to study Quantum Fields and String at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Read more
Take advantage of one of our 100 Master’s Scholarships to study Quantum Fields and String at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Postgraduate loans are also available to English and Welsh domiciled students. For more information on fees and funding please visit our website.

The MSc by Research Quantum Fields and String enables students to pursue a one year individual programme of research. The Quantum Fields & String programme would normally terminate after a year. However, under appropriate circumstances, this first year of research can also be used in a progression to Year 2 of a PhD degree.

As a student of the MSc by Research in Quantum Fields and String you will be fully integrated into one of our established research groups and participate in research activities such as seminars, workshops, laboratories, and field work.

Key Features

Swansea is a research led University to which the Physics department makes a significant contribution, meaning that as a postgraduate Physics student you will benefit from the knowledge and skills of internationally renowned academics.

The Department received top ratings of 4* and 3* in the 2008 RAE, which classified our research as world-leading or internationally excellent in terms of its originality, significance and rigour.

Links with Industry

Our two research groups, Particle Physics Theory (PPT) and Atomic, Molecular and Quantum Physics (AMQP), deliver impact with commercial benefits both nationally and internationally, complemented by a public engagement programme with a global reach.

Economic impacts are realised by the Department’s Analytical Laser Spectroscopy Unit (ALSU) which, since 1993, has worked with companies developing products eventually sold to customers in the nuclear power industry and military, both in the UK and overseas, and in the global aerospace industry. Computational particle physics work performed by the PPT group has spun-off a computer benchmarking tool, BSMBench, used by several leading software outfits, and has led to the establishment of a start-up company.

The AMQP group’s work on trapping and investigating antihydrogen has generated great media interest and building on this we have developed a significant and on-going programme of public engagement. Activities include the development of a bespoke software simulator (Hands on Antihydrogen) of the antimatter experiment for school students.

Facilities

As a student of the Quantum Fields and String programme in the Department of Physics you will have access to the following Specialist Facilities:

Low-energy positron beam with a high field superconducting magnet for the study of
positronium
CW and pulsed laser systems
Scanning tunnelling electron and nearfield optical microscopes
Raman microscope
CPU parallel cluster
Access to the IBM-built ‘Blue C’ Super computer at Swansea University and is part of the shared use of the teraflop QCDOC facility based in Edinburgh

Research

The Physics Department carries out world-leading research in experimental and theoretical physics.

The results of the Research Excellence Framework (REF) 2014 show that over 80% of the research outputs from both the experimental and theoretical groups were judged to be world-leading or internationally excellent.

Research groups include:

AMQP Group

The Atomic, Molecular and Quantum Physics Group comprises academic staff, postdoctoral officers and postgraduate research students. Its work is supported by grants from EPSRC, the EU, The Royal Society, the Higher Education Funding Council for Wales and various industrial and government sources. There are two main fields of research: Atomic, Molecular and Laser Physics and Nanoscale Physics.

PPT Group

The Particle Physics Theory Group has fourteen members of staff, in addition to postdoctoral officers and research students. It is the fourth largest particle physics theory group in the UK, and is supported mainly by STFC, but also has grants from EPSRC, the EU, Royal Society and Leverhulme Trust. The group recently expanded by hiring two theoretical cosmologists (Ivonne Zavala and Gianmassimo Tasinato). There are five main fields of research: Quantum Field Theory, Strings, Lattice Field Theory, Beyond the Standard Model Physics and Theoretical Cosmology.

Read less
Take advantage of one of our 100 Master’s Scholarships to study Theoretical Particle Physics at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Read more
Take advantage of one of our 100 Master’s Scholarships to study Theoretical Particle Physics at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Postgraduate loans are also available to English and Welsh domiciled students. For more information on fees and funding please visit our website.

The MSc by Research Theoretical Particle Physics enables students to pursue a one year individual programme of research. The Theoretical Particle Physics programme would normally terminate after a year. However, under appropriate circumstances, this first year of research can also be used in a progression to Year 2 of a PhD degree.

As a student of Theoretical Particle Physics programme you will be fully integrated into one of our established research groups and participate in research activities such as seminars, workshops, laboratories, and field work.

Key Features

Swansea is a research led University to which the Physics department makes a significant contribution, meaning that as a postgraduate Physics student you will benefit from the knowledge and skills of internationally renowned academics.

The Department received top ratings of 4* and 3* in the 2008 RAE, which classified our research as world-leading or internationally excellent in terms of its originality, significance and rigour.

Links with Industry

Our two research groups, Particle Physics Theory (PPT) and Atomic, Molecular and Quantum Physics (AMQP), deliver impact with commercial benefits both nationally and internationally, complemented by a public engagement programme with a global reach.

Economic impacts are realised by the Department’s Analytical Laser Spectroscopy Unit (ALSU) which, since 1993, has worked with companies developing products eventually sold to customers in the nuclear power industry and military, both in the UK and overseas, and in the global aerospace industry. Computational particle physics work performed by the PPT group has spun-off a computer benchmarking tool, BSMBench, used by several leading software outfits, and has led to the establishment of a start-up company.

The AMQP group’s work on trapping and investigating antihydrogen has generated great media interest and building on this we have developed a significant and on-going programme of public engagement. Activities include the development of a bespoke software simulator (Hands on Antihydrogen) of the antimatter experiment for school students.

Facilities

As a postgraduate student in the Department of Physics you will have access to the following Specialist Facilities:

Low-energy positron beam with a high field superconducting magnet for the study of
positronium
CW and pulsed laser systems
Scanning tunnelling electron and nearfield optical microscopes
Raman microscope
CPU parallel cluster
Access to the IBM-built ‘Blue C’ Super computer at Swansea University and is part of the shared use of the teraflop QCDOC facility based in Edinburgh

Research

The Physics Department carries out world-leading research in experimental and theoretical physics.

The results of the Research Excellence Framework (REF) 2014 show that over 80% of the research outputs from both the experimental and theoretical groups were judged to be world-leading or internationally excellent.

Research groups include:

AMQP Group

The Atomic, Molecular and Quantum Physics Group comprises academic staff, postdoctoral officers and postgraduate research students. Its work is supported by grants from EPSRC, the EU, The Royal Society, the Higher Education Funding Council for Wales and various industrial and government sources. There are two main fields of research: Atomic, Molecular and Laser Physics and Nanoscale Physics.

PPT Group

The Particle Physics Theory Group has fourteen members of staff, in addition to postdoctoral officers and research students. It is the fourth largest particle physics theory group in the UK, and is supported mainly by STFC, but also has grants from EPSRC, the EU, Royal Society and Leverhulme Trust. The group recently expanded by hiring two theoretical cosmologists (Ivonne Zavala and Gianmassimo Tasinato). There are five main fields of research: Quantum Field Theory, Strings, Lattice Field Theory, Beyond the Standard Model Physics and Theoretical Cosmology.

Read less
As a student on this programme, you will have access to our main Chemistry Research Laboratory which has undergone a £2m refurbishment, in addition to our suite of state-of-the-art instruments including ICP-MS, NMR spectrometers, Raman microscopes, powder XRD, LC-MS and GC-MS instruments. Read more
As a student on this programme, you will have access to our main Chemistry Research Laboratory which has undergone a £2m refurbishment, in addition to our suite of state-of-the-art instruments including ICP-MS, NMR spectrometers, Raman microscopes, powder XRD, LC-MS and GC-MS instruments.

PROGRAMME OVERVIEW

With an increase in the number of undergraduate degrees offering the MChem qualification, our Chemistry MRes allows BSc graduates to become equally competitive by studying for an enhanced qualification that will set them apart throughout their career.

Our MRes qualification is also a convenient entry point into the UK academic system for overseas students, and many of our MRes graduates go on to successfully complete a PhD.

Our academics are at the forefront of their field, having recently discovered a method for the rapid detection of drugs from a fingerprint; and a naturally sourced, environmentally safe chemical for the treatment of an important agricultural pathogen.

PROGRAMME STRUCTURE

This programme is studied full-time over one academic year. It consists of three taught modules and a research project, which contributes 75 per cent of the final credits to the degree and includes the laboratory based research, library work, COSHH, record keeping and writing the dissertation.

We would normally expect the laboratory based part of the project to be, on average, two to three full days per week during the teaching semesters and five days per week during non-teaching times (for example, over the Christmas, Easter and summer breaks).

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.
-Management, Communication and IT Skills
-Advanced Spectroscopy
-Biomolecules and Medicinal Chemistry
-Advanced Topics in Organic Chemistry
-Advanced Topics in Inorganic Chemistry
-Advanced Topics in Physical Chemistry
-Advanced Polymer Materials and Nanotechnology
-Advanced Medicinal Chemistry
-Advanced Methods in Forensics
-MRes Research Project

EDUCATIONAL AIMS OF THE PROGRAMME

-The aim of the MRes is training in the more laboratory-based aspects of chemical research
-The objectives and learning outcomes/skills are that the student will be able to: assess, plan, carry out, analyse, interpret and disseminate (all with appropriate training and supervision) a significant piece of chemistry research to an extent that results in a satisfactory assessment of a dissertation and viva
-In addition, competence in related (non-laboratory based) aspects of research training will be assessed via examination (formal exam and/or coursework) of lecture/workshop-based modules
-A knowledge of discipline-related aspects of professional training including data analysis, literature searching and reporting and presentation techniques

PROGRAMME LEARNING OUTCOMES

The programme provides opportunities for students to develop and demonstrate knowledge and understanding, skills, qualities and other attributes in the following areas:

Knowledge and understanding
-Knowledge and understanding of the scientific method
-Knowledge and understanding of research ethos and strategy
-Knowledge and understanding of advanced communication skills
-Knowledge and understanding of reporting of technical concepts
-Knowledge and understanding of critical analysis
-Knowledge and understanding of advanced aspects of chemistry including subjects at the frontiers of the discipline
-Knowledge and understanding of advanced principles in a research led area of chemistry
-Knowledge and understanding of Health and Safety legislation
-Knowledge and understanding of statistics for data analysis
-Knowledge and understanding of the principles of experimental design

Intellectual / cognitive skills
-The ability to plan and carry out an advance research project
-The ability to analyse and solve problems of technical nature under consideration of various constraints
-The ability to make effective and efficient decisions in an environment of conflicting interests
-The ability to think strategically
-The ability to synthesise and critically evaluate the work of others
-The ability to apply fundamental knowledge to investigate new and emerging technologies
-The ability to self-reflect to improve behaviour

Professional practical skills
-Assessment of the research literature
-Risk assess experiments / procedures
-Design and set up experiments using the most appropriate methods
-Carry out laboratory work safely
-Deal safely with unexpected events / results
-Apply prior knowledge to new situations

Key / transferable skills
-Planning
-Organisation
-Independent working
-Apply prior knowledge to unfamiliar problem
-Using initiative
-Time-management
-Personal development planning
-Use of word processor, spreadsheet, presentation, graphical software packages
-Management of data
-Effective literature / patent searching

RESEARCH

The Chemistry programme is run within the Faculty of Engineering and Physical Sciences and the cross-faculty Surrey Materials Institute (SMI). Staff in the Department of Chemistry have expertise which includes all aspects of chemistry:
-Inorganic
-Medicinal
-Physical
-Physical organic
-Materials
-Polymers
-Nanotechnology
-Analytical

You will receive a thorough education in advanced aspects of chemistry, but also undertake independent research via a project, guided by a dedicated and experienced supervisor.

Projects are available across a range of topics in chemistry, and may extend into areas of biology, forensics or materials science. Past MRes students have continued to further (PhD) education and to posts in research in industry.

GLOBAL OPPORTUNITIES

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.

Read less
Take advantage of one of our 100 Master’s Scholarships or College of Science Postgraduate Scholarships to study High Performance and Scientific Computing at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Read more
Take advantage of one of our 100 Master’s Scholarships or College of Science Postgraduate Scholarships to study High Performance and Scientific Computing at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Postgraduate loans are also available to English and Welsh domiciled students. For more information on fees and funding please visit our website.

The MSc in High Performance and Scientific Computing is for you if you are a graduate in a scientific or engineering discipline and want to specialise in applications of High Performance computing in your chosen scientific area. During your studies in High Performance and Scientific Computing you will develop your computational and scientific knowledge and skills in tandem helping emphasise their inter-dependence.

On the course in High Performance and Scientific Computing you will develop a solid knowledge base of high performance computing tools and concepts with a flexibility in terms of techniques and applications. As s student of the MSc High Performance and Scientific Computing you will take core computational modules in addition to specialising in high performance computing applications in a scientific discipline that defines the route you have chosen (Biosciences, Computer Science, Geography or Physics). You will also be encouraged to take at least one module in a related discipline.

Modules of High Performance and Scientific Computing MSc

The modules you study on the High Performance and Scientific Computing MSc depend on the route you choose and routes are as follows:

Biosciences route (High Performance and Scientific Computing MSc):

Graphics Processor Programming
High Performance Computing in C/C++
Operating Systems and Architectures
Software Testing
Programming in C/C++
Conservation of Aquatic Resources or Environmental Impact Assessment
Ecosystems
Research Project in Environmental Biology
+ 10 credits from optional modules

Computer Science route (High Performance and Scientific Computing MSc):

Graphics Processor Programming
High Performance Computing in C/C++
Operating Systems and Architectures
Software Testing
Programming in C/C++
Partial Differential Equations
Numerics of ODEs and PDEs
Software Engineering
Data Visualization
MSc Project
+ 30 credits from optional modules

Geography route (High Performance and Scientific Computing MSc):

Graphics Processor Programming
High Performance Computing in C/C++
Operating Systems and Architectures
Software Testing
Programming in C/C++
Partial Differential Equations
Numerics of ODEs and PDEs
Modelling Earth Systems or Satellite Remote Sensing or Climate Change – Past, Present and Future or Geographical Information Systems
Research Project
+ 10 credits from optional modules

Physics route (High Performance and Scientific Computing MSc):

Graphics Processor Programming
High Performance Computing in C/C++
Operating Systems and Architectures
Software Testing
Programming in C/C++
Partial Differential Equations
Numerics of ODEs and PDEs
Monte Carlo Methods
Quantum Information Processing
Phase Transitions and Critical Phenomena
Physics Project
+ 20 credits from optional modules

Optional Modules (High Performance and Scientific Computing MSc):

Software Engineering
Data Visualization
Monte Carlo Methods
Quantum Information Processing
Phase Transitions and Critical Phenomena
Modelling Earth Systems
Satellite Remote Sensing
Climate Change – Past, Present and Future
Geographical Information Systems
Conservation of Aquatic Resources
Environmental Impact Assessment
Ecosystems

Facilities

Students of the High Performance and Scientific Computing programme will benefit from the Department that is well-resourced to support research. Swansea physics graduates are more fortunate than most, gaining unique insights into exciting cutting-edge areas of physics due to the specialized research interests of all the teaching staff. This combined with a great staff-student ratio enables individual supervision in advanced final year research projects. Projects range from superconductivity and nano-technology to superstring theory and anti-matter. The success of this programme is apparent in the large proportion of our M.Phys. students who seek to continue with postgraduate programmes in research.

Specialist equipment includes:

a low-energy positron beam with a highfield superconducting magnet for the study of positronium
a number of CW and pulsed laser systems
scanning tunnelling electron and nearfield optical microscopes
a Raman microscope
a 72 CPU parallel cluster
access to the IBM-built ‘Blue C’ Supercomputer at Swansea University and is part of the shared use of the teraflop QCDOC facility based in Edinburgh

The Physics laboratories and teaching rooms were refurbished during 2012 and were officially opened by Professor Lyn Evans, Project Leader of the Large Hadron Collider at CERN. This major refurbishment was made possible through the University’s capital programme, the College of Science, and a generous bequest made to the Physics Department by Dr Gething Morgan Lewis FRSE, an eminent physicist who grew up in Ystalyfera in the Swansea Valley and was educated at Brecon College.

Read less
Research degrees may be undertaken in the three main areas of research interest in the Laboratory. The growing number of academic staff are supported in their research by the technical staff and post-doctoral research fellows. Read more
Research degrees may be undertaken in the three main areas of research interest in the Laboratory. The growing number of academic staff are supported in their research by the technical staff and post-doctoral research fellows.

We make every attempt to allocate you to a supervisor directly in your field of interest, consistent with available funding and staff loading. When you apply, please give specific indications of your research interest – including, where appropriate, the member(s) of staff you wish to work with – and whether you are applying for a studentship or propose to be self-funded.

Visit the website https://www.kent.ac.uk/courses/postgraduate/212/physics

About The School of Physical Sciences

The School offers postgraduate students the opportunity to participate in groundbreaking science in the realms of physics, chemistry, forensics and astronomy. With strong international reputations, our staff provide plausible ideas, well-designed projects, research training and enthusiasm within a stimulating environment. Recent investment in modern laboratory equipment and computational facilities accelerates the research.

The School maintains a focus on progress to ensure each student is able to compete with their peers in their chosen field. We carefully nurture the skills, abilities and motivation of our students which are vital elements in our research activity. We offer higher degree programmes in chemistry and physics (including specialisations in forensics, astronomy and space science) by research. We also offer taught programmes in Forensic Science, studied over one year full-time, and a two-year European-style Master’s in Physics.

Our principal research covers a wide variety of topics within physics, astronomy and chemistry, ranging from specifically theoretical work on surfaces and interfaces, through mainstream experimental condensed matter physics, astrobiology, space science and astrophysics, to applied areas such as biomedical imaging, forensic imaging and space vehicle protection. We scored highly in the most recent Research Assessment Exercise, with 25% of our research ranked as “world-leading” and our Functional Materials Research Group ranked 2nd nationally in the Metallurgy and Materials discipline.

Study support

- Postgraduate resources

The University has good facilities for modern research in physical sciences. Among the major instrumentation and techniques available on the campus are NMR spectrometers (including solutions at 600 MHz), several infrared and uvvisible spectrometers, a Raman spectrometer, two powder X-ray diffractometers, X-ray fluorescence, atomic absorption in flame and graphite furnace mode, gel-permeation chromatography, gaschromatography, analytical and preparative highperformance liquid chromatography (including GC-MS and HPLC-MS), mass spectrometry (electrospray and MALDI), scanning electron microscopy and EDX, various microscopes (including hot-stage), differential scanning calorimetry and thermal gravimetric analysis, dionex analysis of anions and automated CHN analysis. For planetary science impact studies, there is a two-stage light gas gun.

- Interdisciplinary approach

Much of the School’s work is interdisciplinary and we have successful collaborative projects with members of the Schools of Biosciences, Computing and Engineering and Digital Arts at Kent, as well as an extensive network of international collaborations.

- National and international links

The School is a leading partner in the South East Physics Network (SEPnet), a consortium of seven universities in the south-east, acting together to promote physics in the region through national and international channels. The School benefits through the £12.5 million of funding from the Higher Education Funding Council for England (HEFCE), creating new facilities and resources to enable us to expand our research portfolio.

The School’s research is well supported by contracts and grants and we have numerous collaborations with groups in universities around the world. We have particularly strong links with universities in Germany, France, Italy and the USA. UK links include King’s College, London and St Bartholomew’s Hospital, London. Our industrial partners include British Aerospace, New York Eye and Ear Infirmary, and Ophthalmic Technology Inc, Canada. The universe is explored through collaborations with NASA, ESO and ESA scientists.

- Dynamic publishing culture

Staff publish regularly and widely in journals, conference proceedings and books. Among others, they have recently contributed to: Nature; Science; Astrophysical Journal; Journal of Polymer Science; Journal of Materials Chemistry; and Applied Optics.

- Researcher Development Programme

Kent's Graduate School co-ordinates the Researcher Development Programme (http://www.kent.ac.uk/graduateschool/skills/programmes/tstindex.html) for research students, which includes workshops focused on research, specialist and transferable skills. The programme is mapped to the national Researcher Development Framework and covers a diverse range of topics, including subjectspecific research skills, research management, personal effectiveness, communication skills, networking and teamworking, and career management skills.

Careers

All programmes in the School of Physical Sciences equip you with the tools you need to conduct research, solve problems, communicate effectively and transfer skills to the workplace, which means our graduates are always in high demand. Our links with industry not only provide you with the opportunity to gain work experience during your degree, but also equip you with the general and specialist skills and knowledge needed to succeed in the workplace.

Typical employment destinations for graduates from the physics programmes include power companies, aerospace, defence, optoelectronics and medical industries. Typical employment destinations for graduates from our forensic science and chemistry programmes include government agencies, consultancies, emergency services, laboratories, research or academia.

Find out how to apply here - https://www.kent.ac.uk/courses/postgraduate/apply/

Read less
The MSc in Sustainable Chemical Engineering is designed for ambitious graduates who aspire to play leading roles in managing, innovating and delivering resource efficient products, processes and systems in a sustainable way. Read more
The MSc in Sustainable Chemical Engineering is designed for ambitious graduates who aspire to play leading roles in managing, innovating and delivering resource efficient products, processes and systems in a sustainable way. The process industry has a high dependence on material and energy resources. Because of this, there is a strong interest in improving resource efficiency to increase competitiveness and decrease environmental impact.

Resource efficiency is about 'doing more and/or better with less' and delivering this sustainably presents a major opportunity and challenge for engineers and scientists. Industry needs skilled graduates with the expertise to take up this challenge now.

This course benefits from the support of our multidisciplinary EPSRC Centres for Doctoral Training:

- Sustainable Chemical Technologies (University of Bath)
- Water Informatics: Science and Engineering (Universities of Bath, Exeter, Bristol, Cardiff)
- Catalysis (Universities of Bath, Cardiff, Bristol).

The three Centres for Doctoral Training offer excellent opportunities for cross-disciplinary projects in engineering and science as well as access to a lively programme of talks and other events throughout the year. At the start of the MSc programme you will be assigned a doctoral student who will act as your mentor in addition to an academic tutor and supervisor.

Make an Impact: Sustainability for Professionals

If you are interested in sustainability, you can sign up for our free MOOC (massive open online course) Make an Impact: Sustainability for Professionals (https://www.futurelearn.com/courses/sustainability-for-professionals). The course starts in April.

Visit the website http://www.bath.ac.uk/engineering/graduate-school/taught-programmes/sustainable-chemical-engineering/index.html

Learning Outcomes

This course teaches and builds on advanced concepts and technologies core to sustainable chemical engineering. It will train you how to integrate systems thinking and economic, environmental and social objectives in problem solving and decision making. You will graduate with the practical and interpersonal skills required by professionals to work in the emerging and expanding employment market in the green sector.

You will:

- gain a holistic understanding of the environmental, social, ethical, regulatory and economic dimensions of sustainable chemical engineering and how they interact

- apply methodologies and tools to design and evaluate alternative products, processes and systems based on sustainability criteria

- apply your knowledge of resource conservation to deal with complex scenarios, real-life problems and decision making in the face of incomplete or uncertain information

- develop 'big picture' thinking to evaluate alternative products, processes and systems using whole systems approaches, which consider the multiple criteria and stakeholders along the process industry value chain

- develop the skills to formulate and implement research and design projects independently and in professional multidisciplinary teams.

Structure

The programme creates many opportunities for interdisciplinary and active learning through authentic, industrially relevant case studies, games and project work. There are guest speakers from industry and other organisations, as well as opportunities for industrial visits. Transferable skills development, such as problem solving, teamwork, effective communication, networking and time and resource management, is embedded throughout the programme.

- Semester 1 (September to January):
The first semester consists of five taught compulsory units that provide you with a foundation in sustainability and systems analysis to apply throughout the programme.

The units advance your understanding of the concepts, technologies and issues in resource recovery, including the valorisation and the re-use of waste streams (waste2resource). You will examine in detail how resources can be conserved by transforming wastes and other feedstocks into high value products in the bioeconomy.

Each unit consists of lectures, tutorials and case studies, and is supplemented by private study and preparation for in-class activities.

Assessment is by a combination of coursework and examination.

- Semester 2 (February to May):
In the second semester you will take two further technical specialist units on resource conservation. These cover a range of advanced technologies and concepts, including process intensification and waste, water and energy integration.

You will also develop your understanding of Sustainable Chemical Engineering in a design, research and management context through three project-based units, focused on resource efficiency and conservation.

In the group activity, you will apply engineering and project management techniques to solve a design problem, just as an industry-based design team would.

Project unit 1 introduces you to research methods and project planning. You will then apply this to detailed background research in your discipline area to prepare for your individual summer dissertation project in Project unit 2.

Assessment is by a combination of coursework and examination.

- Semester 3 (June to September):
The final semester consists of an individual project leading to an MSc dissertation. Depending on your chosen area of interest, the project may involve theoretical, computational and/or experimental activities. You will conduct your individual project at Bath under the supervision of a member of academic staff, with opportunities for industrial co-supervision. You will have access to the state-of the-art facilities in the Department of Chemical Engineering.

Assessment is through a written dissertation and an oral presentation.


Facilities and equipment
The Department has a full range of research facilities with pilot plants for all major areas of research. Our analytical facilities include gas chromatography, mass spectrometry, high performance liquid chromatography (HPLC), UV-VIS, FTIR and Raman, photon correlation spectroscopy (PCS), microcalorimetry, adsorption measurement systems, surface and pore structure analysis systems and particle sizing equipment. Within the University, there is access to atomic force, scanning and transmission electron microscopes.

Research Excellence Framework 2014
We are proud of our research record: 89% of our research was graded as either world-leading or internationally excellent in the Research Excellence Framework 2014, placing us 10th in the UK for our submission to the Aeronautical, Mechanical, Chemical and Manufacturing Engineering.

Careers information
We are committed to ensuring that postgraduate students acquire a range of subject-specific and generic skills during their research training including personal effectiveness, communication skills, networking and career management. Most of our graduates take up research, consultancy or process and product development and managerial appointments in the commercial sector, or in universities or research institutes.

Find out how to apply here - https://secure.bath.ac.uk/prospectus/cgi-bin/applications.pl?department=chem-eng

We have Elite MSc Scholarships for £2,000 towards your tuition fees available for this course - http://www.bath.ac.uk/engineering/graduate-school/taught-programmes/funding/

Read less

Show 10 15 30 per page



Cookie Policy    X