• Northumbria University Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of Leeds Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Aberystwyth University Featured Masters Courses

Postgrad LIVE! Study Fair

Birmingham | Bristol | Sheffield | Liverpool | Edinburgh

University College London Featured Masters Courses
University of the West of England, Bristol Featured Masters Courses
Cranfield University Featured Masters Courses
Southampton Solent University Featured Masters Courses
London School of Economics and Political Science Featured Masters Courses
"rail" AND "transport"×
0 miles

Masters Degrees (Rail Transport)

We have 27 Masters Degrees (Rail Transport)

  • "rail" AND "transport" ×
  • clear all
Showing 1 to 15 of 27
Order by 
Cranfield University are proud to offer the world’s first full MSc in Safety and Accident Investigation (Rail Transport) designed for rail accident investigators. Read more
Cranfield University are proud to offer the world’s first full MSc in Safety and Accident Investigation (Rail Transport) designed for rail accident investigators. The course is suitable for those with a technical or operational background in railway or safety engineering and management, accident investigators, and those employed by national investigation agencies, operators, regulators, and manufacturers.

Read less
If you are an ambitious engineering graduate – from a civil, mechanical, computing or electronic engineering background – this course is a smart route to a career in the expanding field of transport consultancy and public policy. Read more

If you are an ambitious engineering graduate – from a civil, mechanical, computing or electronic engineering background – this course is a smart route to a career in the expanding field of transport consultancy and public policy.

97% of our graduates find employment in a professional or managerial role, or continue with further studies.*

Learn to develop solutions to engineering problems that fit the broader aims of transport and planning policy, from academics with an international reputation whose research sets industry standards. This includes studying the principles of transport engineering and data collection and analysis. Other options include:

  • Traffic management
  • Road geometry and infrastructure
  • System dynamics
  • Road safety management
  • Public transport planning.

Develop an early understanding of four-stage modelling before gaining hands-on experience of SATURN and other Leeds-built models so that you become fluent in their use in live environments.

Deepen your knowledge of:

  • Engineering design principles
  • Integrated transport networks - road, rail, and aviation
  • Refining models to fit local contexts.

And experience what it is like to be part of a project team working across disciplinary boundaries within the transport sector. Through this, gain insights into how engineering, planning, economics, environmental science and modelling can work together to develop sustainable solutions to global challenges. This industry-inspired approach will enable you to apply your knowledge to real-world issues in the field.

Your colleagues will be among the best and brightest from Latin America to the Far East, from Africa to Europe and the UK. Together you will learn engineering techniques that will help you develop transport networks that are founded on fundamental principles, robust evidence, sustainable and equitable principles, state-of-the-art modelling, accurate data analysis, and an understanding of human psychology.

This course provides you with a clear pathway to the Transport Planning Professional (TPP) qualification and is accredited by the major professional bodies in the transport sector, including Chartered Institute of Logistics and Transport (CILT UK) and Chartered Institution of Highways and Transport (CIHT).

ITS – the global institute teaching the transport leaders of tomorrow.

*Higher Education Statistics Agency (HESA), Destinations of Leavers from Higher Education (DLHE) 2015, http://www.hesa.ac.uk

We have redesigned our suites of courses following close consultation with Industry and academia.

With a strong focus on industry needs, our degrees will prepare you for employment in your chosen field. They will also address the multi-disciplinary nature of transport – enabling you to make effective decisions for clients, employers and society.

And to experience what it’s really like to work in the transport sector, collaborate with a project team of students from our other degrees through our new Transport Integrated Project module.

Research environment

The Institute for Transport Studies (ITS) was established as the UK’s first multi-disciplinary transport department, and we continue to lead the field with our research.

Our reputation allows us to invest in world-class facilities, such as the University of Leeds Driving Simulator – one of the most sophisticated in any university in the world, allowing us to research driver behaviour in controlled lab conditions. We also have access to a variety of specialist software tools including those we’ve developed in-house such as SATURN, PLUTO, DRACULA, MARS and KonSULT.

Other Study Options

This programme is available part time, allowing you to combine study with other commitments. You can work to fund your studies, or gain a new qualification without giving up an existing job. We aim to be flexible in helping you to put together a part-time course structure that meets your academic goals while recognising the constraints on your study time.

You can also study this subject at Postgraduate Diploma level, part time or full time, or at Postgraduate Certificate level with our PGCert in Transport Studies.

Accreditation

This programme is recognised by the major professional bodies in the transport sector. It fulfils the educational requirements for membership of the Chartered Institute of Logistics and Transport (CILT UK) and the Chartered Institution of Highways and Transportation (CIHT) and provides a pathway towards the Transport Planning Professional (TPP) qualification.

It is also accredited as meeting the requirements for technical Further Learning for Chartered Engineer (CEng) status for candidates who have already acquired a CEng accredited BEng (Hons). Please see the Joint Board of Moderators website for further information.




Read less
The Master of Science Programme (LM) in Safety Engineering for Transport, Logistics, and Production wants to provide students with a high level of advanced training, to enable them to operate in the areas the most qualified with reference to the various activities related to safety in transport systems, logistics, and related manufacturing. Read more

Aims and Basic Characteristics:

The Master of Science Programme (LM) in Safety Engineering for Transport, Logistics, and Production wants to provide students with a high level of advanced training, to enable them to operate in the areas the most qualified with reference to the various activities related to safety in transport systems, logistics, and related manufacturing.

The degree course aims at training a professional engineer with a thorough knowledge and understanding of the principles of systems engineering of transportation, logistics and production, in which to realize the acquired ability to conceive, plan, design and manage complex, innovative systems and processes, with particular attention to the related safety aspects.
The degree in Safety Engineering for Transport, Logistics, and Production will support the state exam for a license to practice in all the three areas of Engineering: Civil and Environmental, Industrial, and Information.

The typical professional fields for graduates in Safety Engineering for Transport, Logistics, and Production are those of the design and management of safety systems, with particular reference to the transport systems, the development of advanced innovative services, the management of logistics and production, in private and public enterprises, and public administration.

For any information, feel free to write to Prof. Nicola Sacco: safety_at_dime.unige.it

Job opportunities:

• engineering companies and/or large professional firms operating in the field of design, implementation, security management with reference of the transport systems and territorial
• public and private institutions that handle large lines infrastructure (railways, highways, ...)
• government (municipalities, provinces, regions, port authorities, ...)
• freelance
• research structures (universities, research centers, ...)

What Will You Study and Future Prospects:

The main goal is to enable M.Sc. graduates to operate in the various activities related to safety in transport systems, logistics, and production, but also of the territory where they are located.

The course provides notions about:

• the risk assessment of local systems, and in particular the planning, design and management of both safety (protection against accidental events) and security (protection than intentional events);
• the evaluation in terms of cost/benefits of different design alternatives for risk mitigation in transport, logistics, and production systems;
• the planning and management of the mobility of people and goods, through the knowledge of the fundamental elements of transport and logistic systems, as well as the criteria to define the physical characteristics of isolated infrastructures a network of infrastructures, with particular reference to the relevant functions and interdependencies;
• the design and safe management of transport, logistic, and production systems, with reference to either the systems as a whole, and to the relevant single components, such as infrastructures, facilities, vehicles, equipment;
• the development and use of advanced methods to manage and optimize the performance and safety of road, rail, air and sea infrastructure and transport services, as well as their interactions in an intermodal framework, by means of the design and implementation of monitoring, regulation, and control systems via the most advanced technologies related to their specific disciplines;
• the analysis and evaluation of the externalities of transport and logistic systems, with explicit reference to the particular safety aspect and issues characterizing each phase of the mobility of people and goods, even within the production plants connected, and their interaction with surrounding environment.

The course is articulated into two alternative curricula:

1. TRANSPORT AND LOGISTICS: This curriculum concentrates on the problems related to design and manage the complex systems that realize a safe and effective mobility of passengers and freights.

2. INDUSTRIAL LOGISTICS AND PRODUCTION: This curriculum concentrates on the problems related to design and manage the complex systems that realize a safe and effective production plant internal logistics and management.

Entry Requirements:

Admission to the Master of Science in Safety Engineering for Transport, Logistics and Production is subject to the possession of specific curricular requirements and adequacy of personal preparation.

The access requirements are equivalent to those provided by the general educational objectives of all three-year university degree in classes of Civil and Environmental Engineering, Information Engineering, and Industrial Engineering. In fact, one of the following curricular requirements must be fulfilled:

• possession of a Bachelor, or a Master degree, or a five-year degree in classes of Civil and Environmental Engineering, Information Engineering, and Industrial Engineering, awarded by an Italian University, or equivalent qualifications;
• possession of a Bachelor, or a Master degree, or a five-year degree with at least 36 ECTS (“Base Courses”, e.g. Mathematics, Physics, Chemistry, Informatics) and at least 45 ECTS that pertain to the Engineering classes, awarded by an Italian University, or equivalent qualifications;

To access, a knowledge of English is required, at least equivalent at B1 European Level.

Read less
IN BRIEF. Member of the national Universities Transport Partnership. Emphasis on methodology and practice, guided by the needs of employers. Read more

IN BRIEF:

  • Member of the national Universities Transport Partnership
  • Emphasis on methodology and practice, guided by the needs of employers
  • Accredited by the Joint Board of Moderators (Institution of Structural Engineers, Institution of Civil Engineers, Institution of Highways & Transportation) as fully satisfying requirements for Further Learning for a Chartered Engineer (CEng)
  • Part-time study option
  • International students can apply

COURSE SUMMARY

This course has been running for more than forty years and is recognised as providing a good grounding for students interested in the management, engineering and planning of transport infrastructure. It takes students from a wide range of relevant backgrounds.

The emphasis of the course is on current methodology and practice to improve your employability with engineering and planning departments of local and central governments, passenger transport executives, and transport consultants.

This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

COURSE DETAILS

Transport engineering modules relate to traffic engineering and transport systems design. Transport planning modules consider policy (such as reducing car dependency), travel demand forecasting and appraisal. If you have a civil engineering background you can elect to take an optional module in transport infrastructure design as an alternative to the extended modelling and appraisal work.

The course is supported by field surveys, seminars and studio work, allowing students to experience a range of relevant computer packages and methodological approaches.

You are also required to produce a dissertation with the close supervision of an expert academic member of staff.

This course may be taken on a full-time or part-time basis. The part-time course enables candidates who would not normally be able to obtain a year’s release from employment to also study in depth and is used by some employers as part of their formal graduate training programme.

TEACHING

The course combines formal lectures and seminars with extensive coursework including transport planning studio work, traffic survey projects, appraisal assignments and statistics tutorials. The teaching panel includes visiting specialists with expert knowledge of specific topics.

You will be exposed to a range of relevant transport software.

Part-time students study the taught modules over two years on a day-release basis (currently Thursdays)

ASSESSMENT

Assessment is by a combination of formal examinations, tutorial and seminar work, course assignment portfolio and a dissertation.  The overall breakdown is:

  • Examination: 50%
  • Coursework: 50%

CAREER PROSPECTS

Graduates from this course work in local authorities, consultancies and transport utilities. Some graduates work on projects overseas. The postgraduate qualification is highly valued by employers.

The MSc award is approved as further learning for those working towards Chartered Engineer status. The  programme team has close contacts with local employers and the Professional Institutions.

FURTHER STUDY

Some of our students go on to study in our Civil Engineering Research Centre.  

Research in this Centre is focused into four main themes, aligned with the core elements of the civil engineering curriculum: Structural Engineering, Transport Engineering, Geotechnical Engineering and Hydraulics. Our aim is to provide leading edge sustainable research that is both fundamental and relevant in today’s changing society and environment that is underpinned by strong links with academics from throughout Europe and with industrial partners, such as Network Rail, GMPTE, Atkins, Veolia and UIC.

http://www.cse.salford.ac.uk/research/engineering-2050/civil-engineering/



Read less
Based upon our world renowned undergraduate courses in Transport Design, this Design and Transport MSc offers graduates the opportunity to study the industrial design of transportation at postgraduate level. Read more
Based upon our world renowned undergraduate courses in Transport Design, this Design and Transport MSc offers graduates the opportunity to study the industrial design of transportation at postgraduate level.

Issues of design concept generation and development, modelling of designs and systems, human factors, sustainability and collaborative group working will be addressed.

WHY CHOOSE THIS COURSE?

You will study the industrial design of transportation at postgraduate level. Areas of non-specialist automotive transport may be proposed for study. Graduates of the course will be prepared for managerial and practical work in the transport manufacturing.

WHAT WILL I LEARN?

On this postgraduate Design and Transport MSc degree course you will study:
-Design concept generation and development
-Modelling of designs and systems
-Human factors
-Sustainability

You will also take part in collaborative group working.

All areas of non-specialist automotive transport may be proposed for study including marine design, public transport design, rail design, motorbike design and bicycle design.

TEACHING CONTACT HOURS

We do not offer a part-time evening or weekend pattern of delivery, but if you wish to study part time during the day, please contact the course director to explore further.

HOW WILL THIS COURSE ENHANCE MY CAREER PROSPECTS?

Graduates of the course will be prepared for managerial and practical work in the transport manufacturing, transport service and consultancy industries. Alternatively work with publicly-funded transportation agencies or research may be subsequently undertaken.

GLOBAL LEADERS PROGRAMME

Centre for Global Engagement logoTo prepare students for the challenges of the global employment market and to strengthen and develop their broader personal and professional skills Coventry University has developed a unique Global Leaders Programme.

The objectives of the programme, in which postgraduate and eligible undergraduate students can participate, is to provide practical career workshops and enable participants to experience different business cultures.

Read less
Our MSc Transportation Planning and Engineering (Infrastructure) course focuses on the design, engineering and operation of land transport systems, with modules looking in detail at road and railway systems. . Read more

Our MSc Transportation Planning and Engineering (Infrastructure) course focuses on the design, engineering and operation of land transport systems, with modules looking in detail at road and railway systems. 

This MSc is appropriate for students interested in a career in the transport industry. The infrastructure pathway is differentiated through the compulsory study of highway and traffic engineering, and railway engineering and operations.

Whilst this pathway is very suitable for engineers; graduates from other disciplines - science, mathematics, planning and geography – would be welcome on this course.

Introducing your degree

Whether you are interested in starting a career in the transport industry, or an experienced transport professional keen to enhance your skills, our MSc in Transportation Planning and Engineering (Infrastructure) is the masters course for you. Covering everything from the fundamentals of modelling and economics through to the application of software and planning tools using real life examples from around the world, it is the perfect way to improve your capabilities and employability in the transport sector.

Overview

The one year full-time course starts in September each year and includes two semesters of taught modules and a summer period devoted to your individual project, from which you produce a Dissertation. Lectures take place on Tuesdays and Thursdays each week – allowing the course to be undertaken on a part-time basis over 2 years, with attendance on one day each week. The course includes a 2 day residential field trip which in the past has featured behind-the-scenes site visits, museum trips, and a 'transport challenge' competition.

Career Opportunities

  • Transport engineering (rail infrastructure companies, local highways departments),
  • Transport planning,
  • Transport management,
  • Transport consultancy.


Read less
The technology and applications of Non Destructive Testing (NDT) are wide-ranging and constantly evolving. Major fields of application include the aerospace industry, oil, gas and energy generation, chemical industries, space technology, rail transport, shipping and manufacturing. Read more
The technology and applications of Non Destructive Testing (NDT) are wide-ranging and constantly evolving. Major fields of application include the aerospace industry, oil, gas and energy generation, chemical industries, space technology, rail transport, shipping and manufacturing.

Other applications are constantly emerging and there are strong links with medical technology. New NDT techniques need to be developed to meet the changing needs of nano-technologies.

Course Overview

Careers in NDT often offer opportunities to travel and to work in new, high technology industries. The series of taught modules that form part one of the course will develop your in-depth knowledge and understanding of non-destructive testing technologies. The University has access to a range of state-of-the-art equipment and technologies including: Infrared Thermography; Ultrasonics; Scanning Laser Doppler Vibrometer; a ballistics testing cell and, DeltaVision computer software for the measurement of photoelasticity. Practical tasks undertaken with these facilities will enable you to develop your skills in applying a variety of testing and measurement techniques and critically examining the results.

Upon the successful completion of 120 credits in part one, you will be required to undertake an independent research project worth 60 credits. Your dissertation supervisor will be available to you to help guide you through the independent research phase.

Collaboration and Knowledge Transfer
Non Destructive Testing (NDT) and evaluation is a key area of research for UWTSD Swansea, where we are the lead academic partner in the NDT Validation Centre in Port Talbot (just outside Swansea), operated by TWI, a global leader in technology engineering and one of the UK's largest research organisations, with an international reputation. This partnership offers excellent opportunities to our students, providing industrial links relevant to the Part 2 project. Furthermore, funding from the Welsh Government and from the EPSRC has facilitated the acquisition of state-of-the-art equipment. Other links with industry include: Knauf Insulation; Silverwing UK Ltd; Oceaneering Inspection Services; Team Precision Pipeline Assembllies; Cyden; and, Rikoset.

UWTSD Swansea is the lead academic partner in the NDT Validation Centre, just outside Swansea, and through this partnership has strong links with TWI, one of the UK's largest research organisations, with an international reputation. The Institute has received significant funding for equipment and has an active research group in NDT,

Modules

The programme is structured in two parts. Part I (120 Credits) comprises the following taught modules:
-Research Methods
-NDT Systems, Standards and Applications
-Materials
-Ultrasonic Methods
-Radiographic Methods
-Electromagnetic Methods
-Thermal and Optical Methods

Part II (60 Credits)
-Major Project

Read less
The Mechanical and Systems Engineering MPhil allows you to deepen your theoretical understanding of your chosen topic but also improve your technical skills and analytical capabilities. Read more
The Mechanical and Systems Engineering MPhil allows you to deepen your theoretical understanding of your chosen topic but also improve your technical skills and analytical capabilities. Research degrees are offered through four research groups: Bioengineering, MEMS and Sensors, Fluid Dynamics and Thermal Systems, and Design, Manufacture and Materials.

The School of Mechanical Engineering is one of the top 10 Mechanical Engineering research schools in the UK (RAE 2008). As a postgraduate researcher you will be welcomed as a junior academic colleague rather than a student. In this role we ask you to play a full and professional role in contributing to the School’s objective of international academic excellence.

The School, the Faculty of Science, Agriculture and Engineering, and your supervisory team will support you to develop your research capabilities. We will help you progress with your higher degree and attain a unique skill set, through international conference attendance and research paper submissions.

Research in the School falls into four main fields. You can find more detailed information regarding each research group and suggested PhD projects on the School website:
-Bioengineering - group leader Professor Thomas Joyce
-MEMS and Sensors - group leader Professor Peter Cumpson
-Design, Manufacture and Materials – group leader Professor Kenneth Dalgarno
-Fluid Dynamics and Thermal Systems – group leader Professor Nilanjan Chakraborty

NewRail

NewRail is our centre for railway research at Newcastle and is part of the design, manufacture and materials research group. Through this centre you have the opportunity to research the organisation, management and economics of train movement. The subject looks at innovative concepts for sustainable rail transport with a particular focus on system services, production patterns and rail system designs.

Your scientific work will contribute to the modernisation of the rail sector as a whole, integrating knowledge from a variety of disciplines such as systems engineering, economics and marketing. You will have the opportunity to work with railway experts from local and international rail-focused organisations, such as Network Rail, Railfuture, Tyne and Wear Metro, Port of Tyne and the Tyne and Wear Freight Partnership. Our research areas include
-Demand patterns and models
-Supply patterns and models
-Grants and contracts
-Service execution
-Customer satisfaction
-Business generation

Delivery

Our research programmes are based in the Stephenson Building on the central Newcastle campus.

Attendance is flexible and depends on the requirements of the research project and is subject to our School Safety policy. You are expected to undertake 40 hours of work per week with annual holiday entitlement of 35 days (this includes statutory and bank holidays)

Read less
The Sustainable Transport Engineering MSc is a mainstream mechanical engineering course with a focus on vehicles and drive systems, and energy sources and management. Read more
The Sustainable Transport Engineering MSc is a mainstream mechanical engineering course with a focus on vehicles and drive systems, and energy sources and management. For anyone wishing to specialise in railways, the course also has a rail option.

This course is intended for honours graduates (or an international equivalent) in mechanical or mechanical-related engineering (eg automotive, aeronautical or design), maths, physics or a related discipline.

Course structure

All Sustainable Transport Engineering MSc students will undertake taught modules in the following core subjects:
-Mechanical power transmission
-Vehicle drives and dynamics
-Human-systems integration
-Energy sources and storage
-Sustainable energy management

You then have the option to take further general engineering modules or rail transport modules. See the module page for more information.

Alongside students undertaking other mechanical engineering MSc courses, you will also be introduced to engineering software and computational methods, ie Computer-Aided Design (CAD) and Finite Element Analysis (FEA).

Your research project is chosen from an extensive range of subjects. Project work can range from fundamental studies in areas of basic engineering science, to practical design-make-test investigations.

If you are specialising in the rail option, you will undertake a railway-themed research project. Newcastle University is actively involved in a wide range of railway research projects.

Some research may be undertaken in collaboration with industry.

There is an established programme of research seminars. These are delivered by guest speakers from academia and industry (both national and international), providing excellent insights into a wide variety of engineering research.

Delivery

The taught component of the course makes use of a combination of lectures, tutorials/labs and seminars. Assessment is by written examination and submitted in-course assignments.

The research project (worth 60 credits) is undertaken throughout the duration of the Master's level course. Project work is assessed by dissertation and oral/poster presentations. You will be allocated, and meet regularly with, project supervisors.

Effective communication is an important skill for the modern professional engineer, and this course includes sessions to help develop your ability, both through formal guidance sessions dedicated to good practice in report writing, and through oral/poster presentations of project work.

Accreditation

The courses have been accredited by the Institution of Mechanical Engineers (IMechE) under licence from the UK regulator, the Engineering Council.

Accreditation is a mark of assurance that the degree meets the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC).

An accredited degree will provide you with some or all of the underpinning knowledge, understanding and skills for eventual registration as a Chartered Engineer (CEng).

Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.

Facilities

The School of Mechanical and Systems Engineering is based in the Stephenson Building. It has both general and specialist laboratories and workshop facilities. These are used for training, course delivery and the manufacture of materials/components needed to support project work.

The Stephenson Building houses one of the largest networked computer clusters on campus (120+ PCs), which supports all of the specialist software introduced and used within the course (eg CAD, stress analysis, fluid dynamics, signal processing packages) in addition to the School’s own cluster (60+ PCs) used for instrumentation and data acquisition laboratories.

Read less
This course is designed in collaboration with transport industry partners to equip you to meet the needs of the rail and road industries. Read more
This course is designed in collaboration with transport industry partners to equip you to meet the needs of the rail and road industries. There is an increased demand for advancements in electrical, electronic, control and communication systems for transport, with a particular focus on themes like higher efficiency and sustainability, safety and driving assistance, position and traffic control for smart transport planning.

Modern electrical, electronic, control and communication systems for intelligent transport require today engineers with a combination of skills and solutions from cross-disciplinary abilities spanning electrical, electronic, control and communications. In this context, the overall aim of this Conversion Masters is to provide you with an enriching learning experience, and to enhance your knowledge and skill-base in the area of modern road vehicle and rail transport systems design.

This conversion course is intended both for engineers in current practice and for fresh honours graduates to facilitate their professional development, mobility and employability.

Course content

This course aims to enhance your knowledge and skills in the area of intelligent and efficient transport systems design. You will develop advanced practical skills that will help you determine system requirements, select and deploy suitable design processes and use the latest specialist tool chains to test and/or prototype a device or algorithm. The programme will help you acquire the cross-disciplinary skills and abilities that today are vital to be able to implement effective solutions for modern electrical, electronic and communication systems applied to intelligent transport. The broad range of disciplines covered by the course will enable you to enter a career that requires a cross-disciplinary approach with a practical skillset.

The subject areas covered within the course offer you an excellent launch pad which will enable you to enter into this ever expanding, fast growing and dominant area within the electrical engineering sector, and particularly in the area of intelligent and efficient transport systems. Furthermore, the course will provide the foundations required to re-focus existing knowledge and enter the world of multi-disciplined jobs.

Modules

The following modules are indicative of what you will study on this course.

Core modules
-Electric Motors and Control for Transport Systems
-Power Conversion and Drives for Transport Systems
-Project
-Sensor, Data Acquisition and Communication for Transport Systems

Associated careers

The course provides the foundations required to re-focus existing knowledge and enter the world of multi-disciplined jobs. Graduates can expect to find employment, for example, as Electrical systems design engineers; Control systems engineers, Transport systems engineers; Plant control engineers; Electronic systems design engineer; Communication systems design engineers; Sensor systems engineers; Computer systems engineer. Examples of typical industries of employment can be: Transport; Automobile; Aviation; Electrical systems; Electronic systems; Assembly line manufacturers; Robotics and home help; Toy; Communication systems; Logistics and distribution; Consumer industry; Life-style industry; Security and surveillance; Petro-chemical.

Professional recognition

This course will be seeking accreditation from the IET.

Read less
Electrical Engineering is not an independent Master of Science programme, but it is an English track available in the Master of Science programme in Electrical Engineering. Read more

Important note

Electrical Engineering is not an independent Master of Science programme, but it is an English track available in the Master of Science programme in Electrical Engineering

Mission & Goals

Electrical Engineering is the branch of engineering that deals with the study and application of electricity, electronics and engineering electromagnetics, with particular focus on electric power systems, electrical machines and their control, electronic power converters, electrical transportation systems, electrical and electronic measurements, circuit theory and electromagnetic compatibility.
An electrical engineer has a wide background of knowledge that is necessary to address ever increasing challenges of the professional and research activities. These activities span not only in the traditional field of electricity generation, transmission and distribution, but also in the multi-faceted reality of industrial and home electrical appliances and systems, the electric systems in the transportation and health-care sectors, the electromagnetic compatibility, and the measurement and diagnosis techniques, just to mention some of the most relevant possible fields of activity.
A wide and in-depth knowledge of mathematics and physics is the essential background of graduates’ qualification in electrical engineering. Fundamental is also the background in computer science, automation and electronics applied to the different areas of electrical engineering.

The programme is entirely taught in English

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/electrical-engineering/electrical-engineering-track/

Career Opportunities

There is a steady high demand for electrical engineers: in 2010, the Master of Science graduated of that year were 60, whilst the Politecnico di Milano’s Career Service received 546 requests for employment of electrical engineers. According to the Technical Report of the Evaluation Committee of Politecnico di Milano, 88% of the Master of Science graduated in Electrical Engineer in 2007, interviewed in December 2008, declared that they would have applied again to the same Electrical Engineering Programme and the 90% of the interviewed graduated declared to have a stable, full-time employment.

- Contacts
For further information about didactic aspects of the course and curricula, visit http://www.electre.polimi.it http://www.ingpin.polimi.it or contact didattica.etec(at)polimi.it.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Electrical_eng_energy_ren.pdf
This track of the Master of Science in Electrical Engineering aims to form graduates with a comprehensive scientific and technological background on electrical power systems. It builds on basic disciplines (covering digital signal processing, electromagnetic compatibility and engineering electromagnetics, measurements and diagnosis techniques, power electronics and electrical drives, design of electrical machines and apparatus, etc.) and provides solid skills in the areas of electrical energy and renewable sources, electrical systems in transportation, design and automation of electrical systems. Graduates will be highly employable in the sectors of generation, transmission, distribution and utilization of electrical energy; manufacturing of electrical machines and power electronics equipment; industrial automation; design, production and operation of electrical systems for transportation (rail, automotive, aerospace and marine); companies operating on the electricity market.
The programme is taught in English.

Subjects

Measurement Oriented Digital Signal Processing, Electric Power Systems, Science And Technology of Electrical Materials, Power Electronics, Applied Statistics, Electromagnetic Compatibility, Electrical Switching Apparatus (or other offered courses), Construction and Design of Electrical Machines, Electric Systems for Transportation, Reliability Engineering and Quality Control, Electrical Drives

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/electrical-engineering/electrical-engineering-track/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/electrical-engineering/electrical-engineering-track/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
Modern business practices rely on accurate logistics and reliable, dependable supply chains. The smooth operation of these crucial aspects of company operations affects the profitability and reputation of any organisation that supplies business-to-business or business-to-consumer. Read more

Modern business practices rely on accurate logistics and reliable, dependable supply chains. The smooth operation of these crucial aspects of company operations affects the profitability and reputation of any organisation that supplies business-to-business or business-to-consumer.

Accredited by The Chartered Institute of Logistics and Transport (CILT) and The Chartered Institute of Purchasing and Supply (CIPS), this course is designed to equip you with the skills and knowledge needed by this fast-paced industry. Alongside topics such as strategic sourcing, contract and stakeholder management, and risk management, you also study information technology and information systems. This reflects the revolutionary impact the internet and e-commerce have had on logistics and supply chain management and how they continue to drive innovation.

You also engage in contemporary issues that influence industry practices such as ethical sourcing, reducing CO2 emissions and government policies that affect transport and infrastructure investments (road, rail, aviation and maritime).

During your studies, you may have the opportunity to participate in:

-Industry visits to real companies

-Short term internships with local employers

-Live business projects for real clients

-A live consultancy project for your final dissertation

Open to graduates holding degrees in any subject, this course assumes no prior knowledge of business or management and is suitable for both UK, EU and international students wishing to progress their academic knowledge of logistics and supply chain management.

Features and benefits of the course

-You will be taught in the internationally recognised multii-award-winning Business School on All Saints Campus.

-This programme is accredited by the Chartered Institute for Logistics and Transport and the Chartered Institute of Purchasing and Supply.

-You will benefit from practitioner-led teaching by a team with substantial industy experience.

-SAP is the leading enterprise system in the world and this programme provides the advantage of 12 hours worth of hands on workshops on the SAP package.

Postgraduate internship programme

Employers look favourably on candidates who can demonstrate relevant and practical work experience. All Masters students at the Business School are encouraged to undertake an optional, short-term internship with a real business in order to develop relevant experience relating to their studies.

The Postgraduate Internship Programme is an optional unit which allows you to gain up to fourteen weeks of work experience in a business environment; putting your studies into practical application, at the same time as gaining practice credits, which are recorded on your degree qualification transcript.

A dedicated Placement and Project Coordinator will guide you through this process, by sourcing and advertising suitable roles throughout the year, offering 1-2-1 application advice, and supporting you to make speculative applications to source your own Internships.

Internships can be part-time or full-time but must fit around your scheduled classes.

About the Course

Our postgraduate programmes aim to combine academic knowledge from leading research in the area with the professional skills that employers are seeking.



Read less
Railway risk and safety management, are both vitally important worldwide, for not only the ongoing operation of existing railways but also for the design and the development of new systems. Read more
Railway risk and safety management, are both vitally important worldwide, for not only the ongoing operation of existing railways but also for the design and the development of new systems. Much work is being done by companies involved in both mainline and urban transportation systems to improve safety, for the public, their passengers and their workforce. In the last two years alone there have been around 60 railway crashes and incidents reported worldwide. The prevention of the associated loss of life and livelihood are high priorities for all organisations involved.

This programme in Railway Risk and Safety Management (RRSM) is the first of its kind in the UK and is jointly delivered by the Universities of Birmingham and York. You will benefit from the expertise of two leading UK universities and spend around half of your time with the Birmingham Centre for Rail Research and Education (BCRRE) and half at the High Integrity Systems Engineering Group (HISE) in York.

The programme will give you a deep and robust understanding of the approaches to managing safety and risk in transport systems and related projects. The York modules are highly structured around the general topics of risk and safety management, while the Birmingham portion of the programme focuses on railway systems and the application of risk management principles in this sector. Although different transport sectors and modes have their own specific features, this course will give you a thorough education of knowledge which can take you into many areas of engineering and business management.

About the School of Civil Engineering

Civil Engineering is the key to many of the issues affecting our lives today. Civil Engineers solve problems, design, build and maintain our living and working spaces. You might design a new stadium, work on a local by-pass or railway line, assess a damaged structure, provide immediate and safe drinking water to a refugee camp, or manage a multi-million pound construction project.
We tackle the problems faced by society today: we aim to develop the knowledge and tools to build the communities of the future. Many of our projects have already had a significant impact on society; the impact of others will be felt by generations to come.
The performance of Civil Engineering in the Research Excellence Framework (REF), the system for assessing the quality of research in UK higher education institutions, has shown that the majority of its research was rated as internationally excellent.
We work closely with industry, charities and research councils to encourage innovative thinking which has an impact on our lives. As a result we are proud of our heritage of internationally-recognised, multidisciplinary research in a stimulating research environment.

Funding and Scholarships

There are many ways to finance your postgraduate study at the University of Birmingham. To see what funding and scholarships are available, please visit: http://www.birmingham.ac.uk/postgraduate/funding

Open Days

Explore postgraduate study at Birmingham at our on-campus open days.
Register to attend at: http://www.birmingham.ac.uk/postgraduate/visit

Virtual Open Days

If you can’t make it to one of our on-campus open days, our virtual open days run regularly throughout the year. For more information, please visit: http://www.pg.bham.ac.uk

Read less
This course covers the planning, design, analysis and management frameworks of infrastructure systems. In particular, you will develop expertise in the. Read more

This course covers the planning, design, analysis and management frameworks of infrastructure systems. In particular, you will develop expertise in the:

  • Technical aspects of infrastructure engineering within a social, economic, environmental and political context
  • Factors that affect and drive infrastructure planning and funding
  • Interdependent nature of infrastructure across different sectors

You will qualify with a sound understanding of the whole life-cycle of infrastructure assets, the environmental impact of infrastructure projects, and formal asset-management techniques enabling you to maximise the benefits of infrastructure assets in the future.

The lectures given by our academic staff are complemented by visiting speakers from different infrastructure companies such as Network Rail, Thames Water, Environment Agency, Transport for London, ARUP, KPMG, etc., covering different aspect of infrastructure engineering and management. During the academic year, infrastructure specialists carry out Keynote Lectures focusing on important infrastructure projects and approaches. Past Keynote Speakers include Sir John Armitt, Sir Terry Morgan, Sir Michael Pitt, Sir David Higgins, Keith Clarke, James Stewart, Andrew Wolstenholme, Michele Dix, Humphrey Cadoux-Hudson. A number of field visits are also organised to provide an overview of real-life infrastructure operation and management. Past field visits have taken place to both the National Grid and Network Rail Control Centers.

Graduates from the programme are highly employable but have the potential to progress to relevant specialist PhD or EngD research programmes in the field.

Programme structure

This programme is studied full-time over one academic year and part-time or distance learning for between two to five academic years. It consists of eight taught modules and a dissertation.

Example module listing

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Infrastructure Engineering and Management Group Modules

Structural Engineering Group Modules

Bridge Engineering Group Modules

Geotechnical Engineering Group Modules

Construction Management Group Modules

Water and Environmental Engineering Group Modules

Wind Energy Group Modules

Dissertation

Modes of study 

Apart from the usual full-time mode, there are also part-time options. The majority of Bridge, Geotechnical and Structural Engineering modules can be studied by distance learning through the use of an interactive web-based e-learning platform (SurreyLearn).

Distance learning

This programme can be studied via distance learning, which allows a high level of flexibility and enables you to study alongside other commitments you may have. Get full information about our distance learning programme (PDF).

Academic support, facilities and equipment

Modules related to the different groups are taught by a total of 20 full or part-time members of academic staff, as well as a number of visiting lecturers from the industry and government.

In addition to the University Library and Learning Centre’s extensive resources, our excellent testing facilities can support experimentally based MSc dissertation projects. 

Educational aims of the programme

The programme aims to provide graduates with:

  • The state-of-the-art of infrastructure engineering and management that is required for the realisation of the complex delivery of new and management and of existing infrastructure.
  • A holistic overview of infrastructure as a system of systems, viewed within the social, economic and environmental context, and the drivers for sustainable infrastructure development and change.
  • A knowledge of the fundamental multi-disciplinary frameworks that can be adopted for the planning, design, management and operation of interconnected infrastructure systems.
  • A specialisation in an infrastructure area of their choice (i.e. bridge, building, geotechnical, water, wind) providing them with detailed background for the analysis and solution of specific problems associated with individual infrastructure components.

Global opportunities

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.



Read less
In today's fast-moving, global marketplace, traditional project management techniques based around strategic planning and control are not enough. Read more

In today's fast-moving, global marketplace, traditional project management techniques based around strategic planning and control are not enough. Many modern projects are not only complicated (tough technical problems needing co-ordination across many suppliers) but also complex (with unclear requirements). The new Management of Complex Projects MSc has been designed to produce project managers equipped to lead the most challenging of projects.

About this degree

Students gain a systems view of project management, so they can develop effective technical solutions within a constrained commercial context. We teach students a number of guiding principles to enable them to manage complex projects and help them to develop key skills such as risk management, requirements management, conflict resolution, effective communication and leadership.

Students undertake modules to the value of 180 credits.

The programme consists of four core taught modules (60 credits), two research modules (75 credits), two optional taught modules (30 credits) and one compulsory group project (15 credits). Modules are generally taught as intensive five-day 'block weeks' to minimise time spent away from the office for the flexible/modular students.

A Postgraduate Diploma (120 credits, full-time one academic year, or flexible study two to five years) is offered.

A Postgraduate Certificate (60 credits, 12 weeks or flexible study up to three years) is offered.

Core modules

The first four modules are core and must be taken, then two further taught modules should be selected.

  • Systems, Thinking and Engineering Management
  • The Business Environment
  • Risk, Reliability, Resilience
  • Delivering Complex Projects

Research Modules

  • All MSc students undertake a structured research programme comprising the following mandatory modules:
  • Project Management Project Concept
  • Project Management Research Project
  • All students undertake an independent research project which culminates in a dissertation of 12,000 words and a presentation of 20-30 minutes.

Optional modules

Two modules should be selected from the Optional Module List

  • Project Management (leading to Association for Project Management exam)
  • Lifecycle Management
  • Systems Design
  • Technology Strategy
  • Defence and Security Systems
  • Rail Systems
  • Space Systems

Group project

Students undertake a compulsory group project simulation in which they are confronted with a series of realistic project scenarios and must work together to determine and present their recommended course of action. The scenarios will build on challenges typical of complex projects such as requirements definition, risk management, scope creep and contract and conflict management.

Teaching and learning

The programme is delivered through a combination of lectures, case-studies, discussion sessions, workshop activity, and project work. Assessment is through a combination of course work, in class tests and written examinations. The research modules are assessed through a written report and a short presentation.

Further information on modules and degree structure is available on the department website: Management of Complex Projects MSc

Careers

Complex systems are commonplace in many sectors including rail, aerospace, defence, construction and energy. The ability to manage effectively the projects that deliver such systems is crucial in these industries, and individuals who can demonstrate these skills are in high demand

Employability

We have an industrial advisory board including representatives from Airbus, Atkins, BAE Systems, Boeing, DSTL, Leonardo, MAATS Tech, PA Consulting, Rolls-Royce, Transport for London and Ultra Electronics. These organisations provide project support and even one-to-one careers guidance in some cases.

Drawing on our experience of providing short training courses for industry, such as the Project Manager Training Course for the European Space Agency, we integrate skills development into our teaching. This includes the skills of communication, negotiation, leadership and motivation, decision-making and managing multi-faceted, time-constrained tasks which will be invaluable in future careers.

Why study this degree at UCL?

Standard project management courses are no longer a differentiator. Completing this programme at one of the world's leading universities will give students a competitive edge, putting them on the fast track for a career in project or programme management.

Participants gain the skills and knowledge needed to get ahead - from academic theories of conflict and motivation to practical tools for managing risk and tracking project progress.

Students will meet like-minded individuals from other industries, and through extensive group work and classroom interaction will share experiences, learn new approaches, and build contacts that will contribute to future career development.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: Space & Climate Physics

90% rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less

Show 10 15 30 per page



Cookie Policy    X