• Birmingham City University Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Ulster University Featured Masters Courses
  • University of Surrey Featured Masters Courses
King’s College London Featured Masters Courses
Cass Business School Featured Masters Courses
Imperial College London Featured Masters Courses
Cranfield University Featured Masters Courses
University of Dundee Featured Masters Courses
"radiochemistry"×
0 miles

Masters Degrees (Radiochemistry)

We have 11 Masters Degrees (Radiochemistry)

  • "radiochemistry" ×
  • clear all
Showing 1 to 11 of 11
Order by 
The Radiopharmaceutics & PET Radiochemistry course will equip you with the skills to work as a radiopharmaceutical scientist in a PET radiochemistry centre (cyclotron unit) or in the field of conventional radiopharmacy, providing diagnostic and therapeutic radiopharmaceuticals to nuclear medicine centres and specialised commercial centres. Read more

The Radiopharmaceutics & PET Radiochemistry course will equip you with the skills to work as a radiopharmaceutical scientist in a PET radiochemistry centre (cyclotron unit) or in the field of conventional radiopharmacy, providing diagnostic and therapeutic radiopharmaceuticals to nuclear medicine centres and specialised commercial centres.

Key benefits

  • Highly specialist study pathway that is the first of its kind worldwide. 
  • All learning materials are accessible online via King’s E-learning and Teaching Service (KEATS).
  • Opportunities to experience a working placement in a hospital, PET centre or industrial cyclotron centre.
  • Multidisciplinary study programme that attracts graduates from a range of science disciplines including chemists, bio-scientists, physicists, pharmacists.
  • Recognised by European Association of Nuclear Medicine, Masters students will be able to take the European Radiopharmacy exam.
  • On successful completion of the MSc students with a chemistry or pharmacy background can apply for membership with the Royal Society of Chemistry.

Description

The Radiopharmaceutics & PET Radiochemistry course will provide you with opportunities to develop your knowledge, understanding and skills in the principles and practice of radiopharmaceutical science.

The course is made up of optional and required modules. The MSc pathway requires modules totalling 180 credits to complete the programme, 60 of which will come from a research project. You will complete the course in one year, from September to September.

Course format and assessment

Teaching

We use lectures, tutorials and laboratory practicals to deliver most of the modules on the programme. You will also be expected to undertake a significant amount of independent study.

 Each 30-credit module typically requires attendance at lectures/tutorials (80%) and labs (20%) for 24 full days. Each of these full days’ will include at least six hours of contact time.

Typically, one credit equates to 10 hours of work.

Assessment

The course is assessed by a variety of mechanisms including:

  • Unseen written examinations
  • Practical laboratory work and reports
  • Case studies and oral presentations
  • Workshops
  • Audio-visual presentations
  • Laboratory/ library-based research projects

The study time and assessment methods detailed above are typical and give you a good indication of what to expect. However, they may change if the course modules change. 

Accreditation

This course is accredited by the European Association of Nuclear Medicine – EANM (Radiopharmacy Education Board) and the Royal Society of Chemistry – RSC.

Career prospects

Expected destinations are the NHS and commercial nuclear medicine services, the pharmaceutical industry or PhD research.

Sign up for more information. Email now

Have a question about applying to King’s? Email now



Read less
The programme provides you with strong knowledge on one or more of the following topics. design and synthesis of new drugs, radiolabelling and enhanced targeting of drugs, or screening, isolation and modification of new drug candidates from bioactive plants. Read more

The programme provides you with strong knowledge on one or more of the following topics: design and synthesis of new drugs, radiolabelling and enhanced targeting of drugs, or screening, isolation and modification of new drug candidates from bioactive plants. In addition, you will learn to master the state-of-the-art methods needed for the full identification of drug molecules and for their quantitation from different types of tissues and metabolite mixtures.

Our programme offers you three options, all covering the chemistry of drug development from slightly different perspectives: bio-organic chemistry, radiopharmaceutical chemistry and natural compound chemistry. You can either choose to learn to synthesize drugs and drug components yourself, or let them be produced by plants first and then learn how to isolate and perhaps modify the plant-derived compounds to enhance their activity. Radiochemistry is then needed to developed techniques for labelling of drug candidates so that their distribution can be first monitored in vivo by positron emission tomography (PET) techniques and then the targeting optimized by further modifications. Our approach gives you strong hands-on knowledge on medicinal chemistry, since practical laboratory work forms the soul of our programme.

Academic excellence and experience

Our approach on medicinal and radiopharmaceutical chemistry is a unique combination of research areas that are closely related, but that require different type of expertise, if you really want to master one of the areas. All of the three options we offer you are represented by well-established, top of the line research groups: Bioorganic GroupRadiopharmaceutical Chemistry Group, and Natural Chemistry Research Group. You need to choose your orientation between these groups, but you may take courses from all of them. This way you are able to specialize, but at the same time acquire wide enough knowledge on the relevant topics related to the chemistry of drug development.

The main target in studies of Bio-organic Chemistry is to master the key concepts of organic reactions, stereochemistry and physical organic chemistry. This way the student can design and execute organic syntheses and understand chemical biology. The Bioorganic Group is specialized into the synthesis of biopolymers (oligonucleotides, oligosaccharides and peptides), their interaction mechanisms at the molecular level and to the application of this knowledge into solving medicinal problems.

Students of Radiopharmaceutical Chemistry can specialize into radiochemistry, i.e. the synthesis and use of short-lived, isotopically labelled positron emitting organic tracers. These tracers are used in positron emission tomography (PET) that enables imaging of biochemical processes in vivo in both health and disease. The synthesis of radiotracers involves both low molecular weight small molecules as well as macromolecules, typically peptides, proteins and their fragments. Teaching of radiopharmaceutical chemistry takes place in close collaboration with the Turku PET Centre, a National Institute jointly owned by the University of Turku, the Åbo Akademi University and the Hospital District of Southwestern Finland.

With Natural Compound Chemistry you learn to master numerous chromatographic and mass spectrometric techniques together with other methods used for characterization and activity measurement of plant-derived biomolecules. The Natural Chemistry Research Group is specialized into the screening of the plant kingdom for bioactive molecules, especially large polyphenols such as ellagitannins. The screening phase can be accompanied by purification of active substances and measuring their structure/activity relationships, or developing new activity methods.

The facilities of Medicinal and Radiopharmaceutical Chemistry are state-of-the-art. We have direct access to the Turku PET Centre preclinical and clinical groups. The PET Centre has four cyclotrons for radionuclide production and 25 hot cells for radiotracer synthesis. At the Department of Chemistry we have recently updated NMR facilities with modern 500 and 600 MHz magnets with cryo-probes that facilitate operation at low drug concentrations. We have direct access to UPLC-MS/MS instruments with both triple quadrupole and high-resolution mass spectrometry detectors. An efficient ECD spectrometer complements the equipment needed for the accurate identification of the produced and purified drug candidates. To know how to master these equipment and techniques is a true advantage to the chemist who graduates from our programme.

Master's thesis and topics

Studies in Medicinal and Radiopharmaceutical Chemistry combine theory and practise in an optimal manner so that you have ample chances of gaining hands-on knowledge on different aspects of chemistry of drug development. This is obtained by many courses having lab practicals and by the Oriented Laboratory Project that is a five-week period of laboratory work on some specific challenge related to one of the three thematic research areas.

After the Oriented Laboratory Project you have an excellent chance to use your gained knowledge and expertise in the Master’s Laboratory Project that will form the basis for your Master’s Thesis as well. This five months lasting laboratory project is a crucial and customized part of a true research project taking place in one of the thematic research groups. Alternatively, you have a chance to do the Master’s Laboratory Project in some other Finnish University or abroad, depending on the project details and collaborators available for the project.

After the Master’s Laboratory Project is finalized, you will prepare the Master’s Thesis on the very same or similar topic as the lab project. All this is naturally done under the guidance of a supervisor. Your thesis writing process will benefit from the simultaneous Thesis Seminars, where students discuss of challenges related to their projects, and will present their results both orally and via poster presentations.

Examples of thesis topics:

  • Fluorescent oligonucleotide probes for screening high-affinity nucleobase surrogates
  • Solid-supported NOTA and DOTA chelators useful for the synthesis of 3′-radiometalated oligonucleotides
  • Solution-phase synthesis of short oligo-2′-deoxyribonucleotides using clustered nucleosides as a soluble support
  • 18F-labelled nitrogen-fluorine-bond containing radiolabeling precursors
  • Production of 11C-methylated radiopharmaceuticals
  • New quantitation methods for and screening of anthocyanin-tannin adducts in 300 red wine varieties
  • Isolation, purification and structure/activity studies on rare ellagitannins of the Onagraceae plant family
  • Enhancement of anthelmintic activities of plant metabolites by chemical modifications


Read less
This programme is designed for graduates in chemistry or closely related discipline who wish to contribute to drug development in the pharmaceutical industry. Read more
This programme is designed for graduates in chemistry or closely related discipline who wish to contribute to drug development in the pharmaceutical industry.

The programme provides training in pharmacokinetics, drug metabolism, drug synthesis, methods to identify potential drug targets and drug candidates, and methods to assess the biological activities of drug compounds.

Additional modules cover the key techniques in analytical chemistry used to support the pharmaceutical sciences.

Core study areas include research methods, pharmacokinetics and drug metabolism, drug targets, drug design and drug synthesis, spectroscopy and structural analysis, professional skills and dissertation and a research training project.

Optional study areas include separation techniques, mass spectrometry and associated techniques, innovations in analytical science and medicinal chemistry.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/chemistry/pharmaceutical-science-medicinal-chemistry/

Programme modules

Compulsory Modules
Semester 1:
- Research Methods
- Pharmacokinetics and Drug Metabolism
- Drug Targets, Drug Design and Drug Synthesis

Semester 2:
- Spectroscopy and Structural Analysis
- Professional Skills and Dissertation
- Research Training Project

Selected Optional Modules
Semester 1:
- Separation Techniques
- Mass Spectrometry and Associated Techniques

Semester 2:
- Innovations in Analytical Science
- Innovations in Medicinal Chemistry

Assessment

Examination and coursework.

Careers and further study

Careers in a variety of industries, particularly the pharmaceutical and related industries, including drug metabolism, medicinal chemistry (organic synthesis), drug screening (action / toxicity), patents and product registration; also as preliminary study for a PhD.

Scholarships and sponsorship

A number of bursaries and scholarships are available to UK and EU students towards tuition fees (excluding Environmental Studies MSc).
Departmental bursaries, in the form of fee reduction, are available to self-funded international students.
The programmes also benefit from industrial sponsorship which provides support in the form of equipment, materials, presenters and project placements.

Why choose chemistry at Loughborough?

The Department of Chemistry has about 350 students studying taught programmes, including around 50 on MSc courses, 10 postdoctoral research fellows, 50 research students (MPhil / PhD), and 25 academic staff, many of whom have strong links with industry.

In recent years, the Chemistry building has undergone extensive refurbishment and provides modern facilities and laboratories for the teaching and research needs of analytical, organic, inorganic and physical chemistry, as well as specialist laboratories for radiochemistry, environmental chemistry, microbiology and molecular pharmacology.

- Facilities
The Department has a number of specialist instruments and facilities, including: 2 x 400 MHz, 500 MHz and solid-state NMR spectrometers, single crystal and powder X-ray diffractometers, a high resolution inductively coupled plasma mass spectrometer, sector field organic MS, GC-MS and linear ion trap LC-mass spectrometers, ion mobility spectrometers and gas and liquid chromatographs.

- Research
The Department typically has well over 50 research students and a dozen postdoctoral researchers. In addition there are usually around 50 MSc students in the department. Many students come to study from abroad, and there are research students and visitors from all over the world currently studying and carrying out research in the department.
The Department is very well equipped to carry out research spanning all the traditional branches of chemistry (analytical, environmental, inorganic, organic and physical) and which contributes to four active research themes (Energy, Environment, Security and Health).

- Career Prospects
90% of our graduates were in employment and/or further study six months after graduating. Graduates can expect to develop their careers in the pharmaceutical and food industry, analytical and environmental laboratories, public and regulatory utilities, industrial laboratories, or go on to study for a PhD.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/chemistry/pharmaceutical-science-medicinal-chemistry/

Read less
Developed in response to the Engineering and Physical Sciences Research Council (EPSRC), and after extensive consultation with industry, this programme is designed for graduates in chemistry or closely related disciplines who wish to contribute to drug development and analysis, a process that requires multidisciplinary skills. Read more
Developed in response to the Engineering and Physical Sciences Research Council (EPSRC), and after extensive consultation with industry, this programme is designed for graduates in chemistry or closely related disciplines who wish to contribute to drug development and analysis, a process that requires multidisciplinary skills.

The programme comprises a broad range of modules covering the major aspects of analytical and pharmaceutical chemistry, complemented by studies in transferable and professional skills.

Core study areas include research methods, separation techniques, pharmacokinetics and drug metabolism, spectroscopy and structural analysis, professional skills and dissertation and a research training project.

Optional study areas include mass spectrometry and associated techniques, drug targets, drug design and drug synthesis, sensors, innovations in analytical science and medicinal chemistry.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/chemistry/analytical-pharmaceutical-science/

Programme modules

Compulsory Modules
Semester 1:
- Research Methods
- Separation Techniques
- Pharmacokinetics and Drug Metabolism

Semester 2:
- Spectroscopy and Structural Analysis
- Professional Skills and Dissertation
- Research Training Project

Selected Optional Modules
Semester 1:
- Mass Spectrometry and Associated Techniques
- Drug Targets, Drug Design and Drug Synthesis
- Sensors

Semester 2:
- Innovations in Analytical Science
- Innovations in Medicinal Chemistry

Assessment

Examination and coursework.

Careers and further study

The programme is for those who wish to extend their knowledge in a particular area or broaden their field in order to increase their career prospects.

Scholarships and sponsorship

A number of bursaries and scholarships are available to UK and EU students towards tuition fees (excluding Environmental Studies MSc).
Departmental bursaries, in the form of fee reduction, are available to self-funded international students.
The programmes also benefit from industrial sponsorship which provides support in the form of equipment, materials, presenters and project placements.

Why choose chemistry at Loughborough?

The Department of Chemistry has about 350 students studying taught programmes, including around 50 on MSc courses, 10 postdoctoral research fellows, 50 research students (MPhil / PhD), and 25 academic staff, many of whom have strong links with industry.

In recent years, the Chemistry building has undergone extensive refurbishment and provides modern facilities and laboratories for the teaching and research needs of analytical, organic, inorganic and physical chemistry, as well as specialist laboratories for radiochemistry, environmental chemistry, microbiology and molecular pharmacology.

- Facilities
The Department has a number of specialist instruments and facilities, including: 2 x 400 MHz, 500 MHz and solid-state NMR spectrometers, single crystal and powder X-ray diffractometers, a high resolution inductively coupled plasma mass spectrometer, sector field organic MS, GC-MS and linear ion trap LC-mass spectrometers, ion mobility spectrometers and gas and liquid chromatographs.

- Research
The Department typically has well over 50 research students and a dozen postdoctoral researchers. In addition there are usually around 50 MSc students in the department. Many students come to study from abroad, and there are research students and visitors from all over the world currently studying and carrying out research in the department.
The Department is very well equipped to carry out research spanning all the traditional branches of chemistry (analytical, environmental, inorganic, organic and physical) and which contributes to four active research themes (Energy, Environment, Security and Health).

- Career Prospects
90% of our graduates were in employment and/or further study six months after graduating. Graduates can expect to develop their careers in the pharmaceutical and food industry, analytical and environmental laboratories, public and regulatory utilities, industrial laboratories, or go on to study for a PhD.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/chemistry/analytical-pharmaceutical-science/

Read less
This programme is designed to provide comprehensive training in analytical chemistry and its implementation in a variety of fields including biomedical, pharmaceutical, food and environmental analysis. Read more
This programme is designed to provide comprehensive training in analytical chemistry and its implementation in a variety of fields including biomedical, pharmaceutical, food and environmental analysis.

The programme comprises a broad range of modules covering all the major analytical techniques, complemented by studies in transferable and professional skills, with the option to study aspects of medicinal and pharmaceutical chemistry if desired.

Core study areas include research methods, separation techniques, mass spectrometry and associated techniques, spectroscopy and structural analysis, professional skills and dissertation and a research training project.

Optional study areas include sensors, pharmacokinetics and drug metabolism, drug targets, drug design and drug synthesis and innovations in analytical science.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/chemistry/analytical-chemistry/

Programme modules

Compulsory Modules
Semester 1:
- Research Methods
- Separation Techniques
- Pharmacokinetics and Drug Metabolism

Semester 2:
- Spectroscopy and Structural Analysis
- Professional Skills and Dissertation
- Research Training Project

Selected Optional Modules
Semester 1:
- Mass Spectrometry and Associated Techniques
- Drug Targets, Drug Design and Drug Synthesis
- Sensors

Semester 2:
- Innovations in Analytical Science
- Innovations in Medicinal Chemistry

Assessment

Examination and coursework.

Careers and further study

Careers in a variety of industries including pharmaceuticals, chemicals, food, environmental management, contract analysis laboratories, public laboratories, regulatory authorities and instrument manufacturers in either technical or marketing functions or preliminary study for a PhD.

Scholarships and sponsorship

A number of bursaries and scholarships are available to UK and EU students towards tuition fees (excluding Environmental Studies MSc).
Departmental bursaries, in the form of fee reduction, are available to self-funded international students.
The programmes also benefit from industrial sponsorship which provides support in the form of equipment, materials, presenters and project placements.

Why choose chemistry at Loughborough?

The Department of Chemistry has about 350 students studying taught programmes, including around 50 on MSc courses, 10 postdoctoral research fellows, 50 research students (MPhil / PhD), and 25 academic staff, many of whom have strong links with industry.

In recent years, the Chemistry building has undergone extensive refurbishment and provides modern facilities and laboratories for the teaching and research needs of analytical, organic, inorganic and physical chemistry, as well as specialist laboratories for radiochemistry, environmental chemistry, microbiology and molecular pharmacology.

- Facilities
The Department has a number of specialist instruments and facilities, including: 2 x 400 MHz, 500 MHz and solid-state NMR spectrometers, single crystal and powder X-ray diffractometers, a high resolution inductively coupled plasma mass spectrometer, sector field organic MS, GC-MS and linear ion trap LC-mass spectrometers, ion mobility spectrometers and gas and liquid chromatographs.

- Research
The Department typically has well over 50 research students and a dozen postdoctoral researchers. In addition there are usually around 50 MSc students in the department. Many students come to study from abroad, and there are research students and visitors from all over the world currently studying and carrying out research in the department.
The Department is very well equipped to carry out research spanning all the traditional branches of chemistry (analytical, environmental, inorganic, organic and physical) and which contributes to four active research themes (Energy, Environment, Security and Health).

- Career Prospects
90% of our graduates were in employment and/or further study six months after graduating. Graduates can expect to develop their careers in the pharmaceutical and food industry, analytical and environmental laboratories, public and regulatory utilities, industrial laboratories, or go on to study for a PhD.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/chemistry/analytical-chemistry/

Read less
This interuniversity 'master after master' program (60 ECTS) is jointly organized by the Belgian Nuclear Higher Education Network (BNEN), a consortium of six Belgian universities. Read more

Organizing institutions

This interuniversity 'master after master' program (60 ECTS) is jointly organized by the Belgian Nuclear Higher Education Network (BNEN), a consortium of six Belgian universities: Vrije Universiteit Brussel, Katholieke Universiteit Leuven, Universiteit Gent, Université de Liège , Université Catholique de Louvain et Université Libre de Bruxelles and the Belgian Nuclear Research Centre (SCK-CEN). Students can enroll for this master program at each of the six partner universities. The program is built up of 31 ECTS of common compulsory courses, 9 ECTS of elective courses and a compulsory Master Thesis of 20 ECTS.

The primary objective of the programme is to educate young engineers in nuclear engineering and ts applications and to develop and maintain high-level nuclear competences in Belgium and abroad. BNEN catalyses networking between academia, research
centres, industry and other nuclear stakeholders. Courses are organised in English and in a modular way: teaching in blocks of one to three weeks for each course, allowing for optimal time management for professional students and facilitating registration for individual modules.
All courses take place at SCK•CEN, in Mol, Belgium. The lectures take place in a dedicated, brand-new classroom in the conference centre of SCK•CEN (Club-House), located in a wooded area and nearby the SCK•CEN restaurant and library services. SCK•CEN offers a variety of accommodation options: houses, villas, studios and dormitories. For more information visit: http://www.sckcen.be

About the programme

The one-year progamme was created in close collaboration with representatives of the utility companies and power plants and teaches students in all aspects of nuclear technology and its applications, creating nuclear engineering
experts in the broad sense. Exercises and hands-on sessions in the specialised laboratories of SCK•CEN complement the theoretical classes and strengthen the development of nuclear skills and attitudes in a research environment. Various technical visits
are organised to research and industrial nuclear facilities.
The programme can be divided into three core blocks:
ƒ- A set of introductory courses allowing refreshing or first contact with the basic notions of nuclear physics, material sciences and the
principles of energy production through use of nuclear phenomena.
ƒ- A core block of nuclear engineering applied to power generation and reactor use; theory of reactors and neutronics, thermal hydraulic problems encountered in reactor exploitation, the nuclear fuel cycle and the specific material corrosion problems.
-ƒ An applications block where safe and reliable operation of nuclear power plants and the legal and practical aspects of radiation protection and nuclear measurements are discussed.

Scholarships

BNEN grants are available for full-time students.

Curriculum

http://www.vub.ac.be/en/study/nuclear-engineering/programme

Nuclear energy: introduction 3 ECTS credits
Introduction to nuclear physics 3 ECTS
Nuclear materials I 3 ECTS
Nuclear fuel cycle and applied radiochemistry 3 ECTS
Nuclear materials II 3 ECTS
Nuclear reactor theory 8 ECTS
Nuclear thermal hydraulics 6 ECTS
Radiation protection and nuclear measurements 6 ECTS
Operation and control 3 ECTS
Reliability and safety 3 ECTS
Advanced courses 4 ECTS
Master thesis 15 ECTS
Total 60 ECTS

Read less
As one of the world's leading Chemistry Departments, we create an exceptional research and learning environment for advancing and sharing knowledge that emphasizes excellence, equity and sustainability. Read more

As one of the world's leading Chemistry Departments, we create an exceptional research and learning environment for advancing and sharing knowledge that emphasizes excellence, equity and sustainability. Research areas include:

  • Analytical Chemistry
  • Biological & Medicinal Chemistry
  • Catalytic Processes
  • Chemical Education Initiatives
  • Chemical Physics
  • Chemical Synthesis
  • Environmental Chemistry
  • Inorganic Chemistry
  • Interfacial and Surface Chemistry
  • Materials & Polymer Chemistry
  • Molecular Spectroscopy
  • Nuclear and Radiochemistry
  • Organic Chemistry
  • Physical & Theoretical Chemistry

What makes the program unique?

Outstanding facilities and resources accommodate more than 500 graduate students, postdoctoral fellows and faculty that call the Department of Chemistry home. The Department has one of the most comfortable and up-to-date research spaces in North America, and offers MSc and PhD degrees - both degrees require graduate courses and research work reported in a thesis.

Courses offered in the Chemistry Department cover a wide range of subject matter, from synthetic organic chemistry to chemical physics and theory.

The department is one of the most well equipped research facilities along the west coast and is fortunate to be located in a breathtaking locale that includes ocean, mountains and mild climate.

Research focus

Applicants who are interested in nanomaterials synthesis, characterization and application, and nanoscience instrumentation may consider the NanoMat program that provides additional funding and professional development opportunities. Applicants who are interested in the production, preparation, and application of nuclear isotopes for science and medicine may consider the IsoSiM program. Applicants who are interested in quantum materials may consider the QuEST program.



Read less
The aim of the MSc programme in Nuclear Engineering is to prepare engineers with the skills necessary to design, build and operate power generation plants, radioactive waste treatment plants, systems using radiation for industrial and medical applications, etc. Read more

Mission and goals

The aim of the MSc programme in Nuclear Engineering is to prepare engineers with the skills necessary to design, build and operate power generation plants, radioactive waste treatment plants, systems using radiation for industrial and medical applications, etc. The educational programme, therefore, gives emphasis to topics referring to energy applications, i.e. fission and fusion plants, nuclear fuel, materials and safety. Topics applied also in non-energy applications are accounted for, as in medical and industrial applications of radiation, material physics, plasma physics and nanotechnologies with a strong link to the nuclear field.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/nuclear-engineering/

Career opportunities

The graduates in Nuclear Engineering, thanks to the MSc multidisciplinary training, can easily be employed in the nuclear sector (e.g. industries operating in nuclear power plants design, construction and operation, in nuclear decommissioning and nuclear waste processing and disposal, in design and construction of radiation sources, in centers for nuclear fusion and high-energy physics), as well as in other areas such as the energy industry, the medical sector, the health, safety and environment sector (e.g. engineering companies, hospitals, consultancy and risk analysis firms) and also research centers and universities.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Nuclear_Engineering.pdf
In this Course emphasis is given to energetic applications, e.g. those referring to fission and fusion plants, the nuclear fuel, materials and safety. Also nonenergetic applications are accounted for, i.e. medical and industrial applications of radiation; radiation detection and measurements; nuclear electronics for radiation detection; radiochemistry; radiation protection and material physics, plasma physics and nanotechnologies with a strong link to their impact in the nuclear field. Graduates in Nuclear Engineering can find employment not only in the nuclear sector (industries operating in electro-nuclear power generation, nuclear plant dismantling, nuclear waste processing and disposal, design and construction of radiation sources, institutes and centers for nuclear fusion and high-energy physics), but also in other areas operating in the field of hightechnology, engineering companies, companies for industrial, medical and engineering advice, hospitals, companies for risk analysis, etc.

Subjects

1st year subjects
Fission reactor physics, nuclear measurements and instrumentation, nuclear plants, nuclear and industrial electronics, reliability safety and risk analysis, solid state physics.

2nd year subjects (subjects differentiated by three specializations)
- Nuclear plants
Nuclear technology and design, Applied Radiation Chemistry, Reliability, Safety and Risk Analysis A+B, Nuclear Material Physics. Fission Reactor Physics II + Radioactive Contaminants Transport, Statistical Physics.

- Nuclear Technology
Medical applications of radiation, Applied Radiation Chemistry, Nuclear technology and design, Reliability, Safety and Risk Analysis A+B, Nuclear material physics, Fission Reactor Physics II + Radioactive Contaminants Transport.

- Physics for Nuclear Systems
Subjects: Nuclear technology and design, Nuclear Material Physics, Medical applications of radiation, Applied Radiation Chemistry, Nuclear material physics, Fission Reactor Physics II + Radioactive Contaminants Transport.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/nuclear-engineering/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/nuclear-engineering/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
Goal of the pro­gramme. A Master’s degree in chemistry qualifies you for expert positions in a wide range of fields, such as industry, research or education. Read more

Goal of the pro­gramme

A Master’s degree in chemistry qualifies you for expert positions in a wide range of fields, such as industry, research or education. The chemicals industry is a major employer and one of the largest export industries in Finland. Your work could also involve applications of environmental or biological sciences, the manufacture of pharmaceutical products, or the development of technological materials or new energy solutions. In the private sector, your duties might include research and development, quality management, training or commerce. Customs and forensic chemists, and chemists working in environmental control, analyse samples as part of their duties. Chemical research often requires interdisciplinary and international cooperation. As a chemist, you can be a part of developing new inventions and serve as an expert in your field and as a connoisseur of natural phenomena!

After completing the Master’s Programme in Chemistry and Molecular Sciences, you will:

  • Be profoundly familiar with experimental research methods in one or more fields of chemistry, such as analytical and synthetic chemistry, radiochemistry, molecular research, and spectroscopy.
  • Have an in-depth knowledge of the theoretical basis of your field and be able to apply this knowledge to broader topics.
  • Know how to search for and manage chemical research data and use them to plan and perform demanding duties in chemical laboratories.
  • Be able to act as a chemical expert in project planning and management, both independently and as a member of a team.
  • Be able to present your results accurately in accordance with the practices of the field, both orally and in writing, and prepare extensive papers and reports.

Further information about the studies on the Master's programme website.

Pro­gramme con­tents

In the Master’s programme, you will deepen the knowledge and skills acquired during your Bachelor’s degree studies. Depending on your choices, you will familiarise yourself with one or more branches of chemistry and learn modern research methodology. The studies include lecture courses, examinations and contact teaching, laboratory courses, presentation series and seminars. Compared to the Bachelor’s degree, these studies require more independent work. The Master’s degree culminates in an extensive Master’s thesis that includes practical research.

You can find further information about the studies on the Master's programme website.

Students are automatically granted admission to the Master’s programme through the Bachelor’s Programme in Chemistry at the University of Helsinki. You can also apply for the programme after completing an applicable Bachelor’s degree in a different programme or university.



Read less
This MSc is the only programme in the UK entirely focused on the imaging of cancer and has been purpose-built to meet a demand for expert researchers and clinicians. Read more

This MSc is the only programme in the UK entirely focused on the imaging of cancer and has been purpose-built to meet a demand for expert researchers and clinicians. Medical imaging is central to the management of cancer, and this course has been designed to cover all aspects of imaging, from basic physics to image analysis. It also aims to give a solid grounding in current concepts of cancer biology and therapy as they apply ‘bench to bedside’.

Designed in close collaboration with a leading team of radiologists, medical physicists, oncologists and research specialists, the programme takes a theoretical and a practical approach to ensure it provides you with the specialist knowledge and skills required.

A key part of the programme is the study of real patient data and there are opportunities for project work in state-of-the-art clinical facilities for oncology imaging at both Hull Royal Infirmary and Castle Hill Hospital. You can also undertake preclinical research in the University's PET (Positron Emission Tomography) Research Centre, a recently completed cutting edge facility that hosts the only research-dedicated cyclotron in the UK, along with extensive radiochemistry provision and preclinical PET-CT and SPECT-CT scanners.

Study information

You study the basic theory and practice of image analysis and interpretation as well as advanced research applications. Students obtain a deep appreciation of the importance of image analysis as a discipline in the generation of scientific data that underpins patient management.

You gain an understanding of imaging theory, technology and application as relates to clinical practice across modalities, and of the biology of cancer as manifested in the clinic, integrated with key physiological and pharmacological concepts.

The programme aims to give graduate students from a range of backgrounds an understanding of imaging theory, an overview of the current understanding of cancer and how this underlies the use of imaging in patient management and the assessment of cancer treatments.

The programme comprises a combination of lectures, state-of-the-art computer-based image analysis, practical work, and projects supported by 'problem classes', workshops and tutorials.

A 12-week cancer imaging research project, carried out in the laboratory of an internationally-recognised cancer imaging scientist or clinician, is a key part of the course.

Programme Content:

  • Introduction to Cancer Imaging
  • Research Skills
  • Imaging Modalities I
  • Imaging Modalities II
  • Image Analysis
  • Organ-Specific Cancers: Bench-to-Bedside
  • Research Project and Dissertation 

* All modules are subject to availability.

Future prospects

This MSc is designed for recent graduates who wish to pursue a career in medical imaging with a cancer focus.

The coverage of all aspects of medical imaging used in the management of cancer patients, from the basic physics through to clinical practice as seen in a modern UK NHS radiology department, also make it suitable for professionals working towards clinical qualification as well as those already qualified.

The programme is also the ideal pathway for biomedical science graduates or physicists who wish to develop their biological understanding of this disease prior to PhD study or employment in industry. Students will become independent life-long learners and scientific investigators with an ability to communicate across all disciplines involved with imaging.



Read less

  • 1
Show 10 15 30 per page



Cookie Policy    X