• University of Surrey Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
London Metropolitan University Featured Masters Courses
University of Kent Featured Masters Courses
Staffordshire University Featured Masters Courses
Xi’an Jiaotong-Liverpool University Featured Masters Courses
University of Sheffield Featured Masters Courses
"radiobiology"×
0 miles

Masters Degrees (Radiobiology)

We have 6 Masters Degrees (Radiobiology)

  • "radiobiology" ×
  • clear all
Showing 1 to 6 of 6
Order by 
Why this course?. This course will enhance your knowledge and understanding of cancer therapies and provide you with the skills to assess, analyse, critically appraise and evaluate current and emerging anti-cancer therapies and the drug discovery cascade, from target evaluation and engagement to clinical trials. Read more

Why this course?

This course will enhance your knowledge and understanding of cancer therapies and provide you with the skills to assess, analyse, critically appraise and evaluate current and emerging anti-cancer therapies and the drug discovery cascade, from target evaluation and engagement to clinical trials.

The programme was developed in response to the increasing demand for a course which focuses on current and emerging cancer therapies. It is the only programme in the UK which combines a focus on cancer biology with the practical, ethical and economic implications of personalised cancer therapy, along with its biology and the discovery and development of drugs.

It has been constructed to produce world-class graduates with the skills to contribute to the global drive in advancing cancer treatment through research, teaching, industry and public sector employment.

What you'll study

You'll focus on anti-cancer treatment therapies, with a particular emphasis on personalised medicine, covering the therapeutic target and the biological mechanisms of current and emerging anti-cancer therapies. You'll also explore radiotherapy as a diagnostic and as a single or combinational treatment with drugs in anti-cancer therapy.

You'll be introduced to the discovery and development of new drugs and the challenges associated with this process. You'll be able to evaluate the drug discovery pipeline including medicinal chemistry, screening, secondary assays and other drug discovery and development technologies. Through a virtual drug discovery programme, you'll have the opportunity to develop anti-cancer agents and progress these through the drug discovery cascade, from target engagement to clinical trials.

The programme will equip you with a range of skills including scientific writing, critical analysis, problem-solving, teamworking, as well as advanced data set analysis and interpretation. You'll experience a wide range of scientific topics from molecular biology, to cell biology and genetics, medicinal chemistry to formulation and radiobiology to nuclear medicine. You'll have the opportunity to conduct independent research and working as part of a multidisciplinary team you'll gain an appreciation of the contributions other disciplines make to cancer drug discovery.

Facilities

The Strathclyde Institute of Pharmacy & Biomedical Sciences is recognised as one of the foremost departments of its kind in the UK. It's a leading research centre in the search for new and improved medicines. You'll benefit from the advanced facilities of a new £36 million building. The Institute is ranked no 2 in the UK in the Complete University Guide 2018 and the University of Strathclyde has recently been one of the few UK institutes to be awarded the status of 'Emerging Centre of excellence for radiobiology research' in the UK.

Learning & teaching

The course is delivered through lectures, workshops, tutorials and hands-on practical sessions.

If you successfully complete the required taught classes you may undertake a laboratory project on the subject of cancer therapies for the MSc.

Assessment

Written examinations, course work with formative and summative approaches are taken in different aspects of the course. Written reports, oral presentations, scenario-based learning and moderated peer assessment are all included in the course.

Careers

Graduates will have a number of potential employment opportunities: large and small pharma companies, SMEs, within health services and providers, their home institutions and as academics in UK, EU or international Universities.

The course will enable careers in research, academia industry and the health sector and offers you a unique exposure to the entire drug discovery and development cascade while keeping patients' needs at the forefront of the learning process.



Read less
This course offers the academic training required for a career in scientific support of medical procedures and technology. The course is coordinated through the Medical Physics Departments in St. Read more
This course offers the academic training required for a career in scientific support of medical procedures and technology. The course is coordinated through the Medical Physics Departments in St. James's Hospital and St. Luke's Hospital, Dublin.

Students enter via the M.Sc. register. This course covers areas frequently known as Medical Physics and Clinical Engineering. It is designed for students who have a good honours degree in one of the Physical Sciences (physics, electronic or mechanical engineering, computer science, mathematics) and builds on this knowledge to present the academic foundation for the application of the Physical Sciences in Medicine.

The course will be delivered as lectures, demonstrations, seminars, practicals and workshops. All students must take a Core Module. Upon completion of this, the student will then take one of three specialisation tracks in Diagnostic Radiology, Radiation Therapy or Clinical Engineering. The running of each of these tracks is subject to a minimum number of students taking each track and therefore all three tracks may not run each year.

Core Modules

Introduction to Radiation Protection andamp; Radiation Physics (5 ECTS)
Imaging Physics andamp; Technology (5 ECTS)
Introduction to Radiotherapy and Non-Ionising Imaging (5 ECTS)
Basic Medical Sciences (5 ECTS)
Introduction to Research Methodology and Safety (5 ECTS)
Medical Technology and Information Systems (5 ECTS)
Seminars (5 ECTS)
Specialisation Track Modules (Diagnostic Radiology)

Radiation Physics and Dosimetry (5 ECTS)
Medical Informatics and Image Processing (5 ECTS)
Ionising and Non-Ionising Radiation Protection (5 ECTS)
Imaging Physics and Technology 2 (10 ECTS)
Specialisation Track Modules (Radiation Therapy)

Radiation Physics and Dosimetry (5 ECTS)
Principles and Applications of Clinical Radiobiology (5 ECTS)
External Beam Radiotherapy (10 ECTS)
Brachytherapy and Unsealed Source Radiotherapy (5 ECTS)
Specialisation Track Modules (Clinical Engineering)

The Human Medical Device Interface (5 ECTS)
Principle and Practice of Medical Technology Design, Prototyping andamp; Testing (5 ECTS)
Medical Technology 1: Critical Care (5 ECTS)
Medical Technology 2: Interventions, Therapeutics andamp; Diagnostics (5 ECTS)
Medical Informatics and Equipment Management (5 ECTS)
Project Work and Dissertation (30 ECTS)

In parallel with the taught components, the students will engage in original research and report their findings in a dissertation. A pass mark in the assessment components of all three required sections (Core Module, Specialisation Track and Dissertation) will result in the awarding of MSc in Physical Sciences in Medicine. If the student does not pass the dissertation component, but successfully passes the taught components, an exit Postgraduate Diploma in Physical Sciences in Medicine will be awarded. Subject areas include

Radiation Protection and Radiation Physics
Imaging Physics and Technology
Basic Medical Sciences
Medical Technology Design, Prototyping and Testing
Medical Informatics
Image Processing
External Bean Radiotherapy
Brachytherapy and Unsealed Source Radiotherapy
The Human-Medical Device Interface
The course presents the core of knowledge for the application of the Physical Sciences in Medicine; it demonstrates practical implementations of physics and engineering in clinical practice, and develops practical skills in selected areas. It also engages students in original research in the field of Medical Physics / Engineering. The course is designed to be a 1 year full-time course but is timetabled to facilitate students who want to engage over a 2 year part-time process.

Read less
Our MSc in Cancer Biology and Radiotherapy Physics is ideal if you wish to pursue a career in cancer research and/or cancer therapy involving ionising radiation. Read more

Our MSc in Cancer Biology and Radiotherapy Physics is ideal if you wish to pursue a career in cancer research and/or cancer therapy involving ionising radiation.

With around 40% of all cancer cure cases involving radiotherapy and the UK soon to have a proton therapy service, the need for multidisciplinary scientists in this field has never been greater.

We aim to develop multidisciplinary scientists to create the necessary skill base that will drive radiotherapy forward in the UK.

This course will enable you to train as a multidisciplinary scientist in this area by covering a variety of subjects in content that is delivered by staff with a range of expertise, including physicists, biologists, engineers, clinicians and oncologists.

Our collaboration with The Christie will allow you to undertake unique research projects in its radiotherapy facilities that cannot be carried out anywhere else in the UK or most of Europe.

Aims

This course aims to help you develop:

  • a sound scientific knowledge of cancer biology and radiotherapy physics;
  • the confidence to apply the scientific principles of radiotherapy to practical situations;
  • the multidisciplinary skills required for world-leading cancer research and treatment delivery;
  • a knowledge of cancer biology that can form a basis for research into existing and future treatment modalities.

Teaching and learning

You will be taught by academics from the University and clinical scientists at The Christie, meaning both fundamental science and its clinical application will be covered equally.

Units are delivered in one-week blocks with a mix of face-to-face content delivery and hands-on practical sessions.

There will be a number of assessed and non-assessed activities to develop your key skills and expand your knowledge base.

There is an also online pre-course element, which will be the beginning of your multidisciplinary scientific journey.

After the taught units, there is an supervised research project that will put into practice the key skills and knowledge acquired in the taught component.

Coursework and assessment

The taught units will be assessed through multiple choice exams and practical assessments.

The research project will be assessed through the submission of a short report and oral presentation.

Course unit details

The taught component, which includes the five core and three optional units, will amount to 120 credits of the 180 credits required for an MSc qualification.

The remaining 60 credits will be obtained through a supervised research project.

Core units

  • The Physics of Radiotherapy
  • The Biology of Cancer
  • Clinical Radiotherapy
  • Radiobiology

Optional units

  • Advanced Radiotherapy
  • Imaging for Radiotherapy
  • Radiotherapy Dosimetry
  • Treatment Planning
  • Biomarkers
  • Computational Methods
  • Accelerators for Medicine

Course collaborators

Much of the course content is delivered through a collaboration with  The Christie .

Facilities

Our collaboration with  The Christie  means you will have access to an MRI image guided radiotherapy linear accelerator and a proton therapy centre incorporating a dedicated research room for your research project.

You will also be able to access a range of library and IT  facilities  throughout the University.

Disability support

Practical support and advice for current students and applicants is available from the  Disability Advisory and Support Service .

CPD opportunities

Individual taught units from this MSc can be offered to industry and healthcare professionals as part of a career and professional development programme. Please contact us for further information.

Career opportunities

This course will help you gain the knowledge and skills to become a leading healthcare scientist in the public or private sector.

It may also be of interest if you are a healthcare worker in the field of radiotherapy who wishes to advance your career.

The master's qualification gained could act as a stepping stone to further academic qualifications or careers involving medical science research.



Read less

  • 1
Show 10 15 30 per page



Cookie Policy    X