• Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of Cambridge Featured Masters Courses
  • Anglia Ruskin University Featured Masters Courses
  • Durham University Featured Masters Courses
  • Ross University School of Veterinary Medicine Featured Masters Courses
De Montfort University Featured Masters Courses
Cass Business School Featured Masters Courses
Nottingham Trent University Featured Masters Courses
University of Hertfordshire Featured Masters Courses
Aberdeen University Featured Masters Courses
"radiation" AND "therapy"…×
0 miles

Masters Degrees (Radiation Therapy)

We have 20 Masters Degrees (Radiation Therapy)

  • "radiation" AND "therapy" ×
  • clear all
Showing 1 to 15 of 20
Order by 
The aim of this course is to enable students to build on their current skills set, through teaching and their own research, in order to work at an advanced level within the radiotherapy department and/or the radiotherapy treatment planning area. Read more
The aim of this course is to enable students to build on their current skills set, through teaching and their own research, in order to work at an advanced level within the radiotherapy department and/or the radiotherapy treatment planning area. The course will develop students' knowledge and skills in the advanced radiation therapy management of cancer patients and to enable students to critically evaluate and participate in research in this area.

The M.Sc. uses a range of authentic assessments which give students the opportunity to produce assessed work which is highly relevant to the clinical environment and which develops independent life-long learning skills.

This M.Sc. course has two separate strands:

1. Advanced Radiotherapy Practice

2. Radiation Therapy Treatment Planning

Strand 1: Advanced Radiotherapy Practice

This course aims to develop students' knowledge and skills in the advanced radiotherapy management of cancer patients and to enable students to critically evaluate and participate in research in this area. The course will provide knowledge of advanced clinical practice for radiation therapists, develop the role of the radiation therapist and provide skills required to further research into cancer management in the radiotherapy department.

On completion of this strand, students will be able to demonstrate:
The ability to use evidence-based medicine to underpin their radiation therapy practice
Proficiency in undertaking research in the field of radiation therapy
An understanding of management processes and their application in oncology
An understanding of the biological consequences of ionising radiation exposure and its potential in cancer treatment
Familiarity with radiological anatomy and the acquisition of optimal imaging for radiotherapy.
Understand the principles of contouring and become proficient in contouring for prostate radiotherapy.

Strand 2: Radiation Therapy Treatment Planning

This course develops students' skills in the area of radiotherapy treatment planning. All components of treatment planning are taught from 3D Conformal Radiotherapy to IMRT treatment planning and treatment planning for specialist techniques such as stereotactic radiotherapy and brachytherapy.

On completion of this strand, students will be able to:
Prepare 3D and IMRT treatment plans
Analyse and discuss treatment plans for specialist techniques
Undertaking research in the field of radiation therapy treatment planning
Identify radiological anatomy and discuss optimal imaging for radiotherapy, from diagnosis to on-treatment verification.
Understand the principles of contouring and become proficient in contouring for prostate radiotherapy.

For both strands, Year 1 consists of six taught modules (60 ECTS). Students who progress to Year 2 will undertake a research dissertation (30 ECTS). Students who pass the taught component and have completed 60 ECTS may exit with a postgraduate diploma if they do not wish to proceed to the dissertation in Year 2.

Read less
This course offers the academic training required for a career in scientific support of medical procedures and technology. The course is coordinated through the Medical Physics Departments in St. Read more
This course offers the academic training required for a career in scientific support of medical procedures and technology. The course is coordinated through the Medical Physics Departments in St. James's Hospital and St. Luke's Hospital, Dublin.

Students enter via the M.Sc. register. This course covers areas frequently known as Medical Physics and Clinical Engineering. It is designed for students who have a good honours degree in one of the Physical Sciences (physics, electronic or mechanical engineering, computer science, mathematics) and builds on this knowledge to present the academic foundation for the application of the Physical Sciences in Medicine.

The course will be delivered as lectures, demonstrations, seminars, practicals and workshops. All students must take a Core Module. Upon completion of this, the student will then take one of three specialisation tracks in Diagnostic Radiology, Radiation Therapy or Clinical Engineering. The running of each of these tracks is subject to a minimum number of students taking each track and therefore all three tracks may not run each year.

Core Modules

Introduction to Radiation Protection andamp; Radiation Physics (5 ECTS)
Imaging Physics andamp; Technology (5 ECTS)
Introduction to Radiotherapy and Non-Ionising Imaging (5 ECTS)
Basic Medical Sciences (5 ECTS)
Introduction to Research Methodology and Safety (5 ECTS)
Medical Technology and Information Systems (5 ECTS)
Seminars (5 ECTS)
Specialisation Track Modules (Diagnostic Radiology)

Radiation Physics and Dosimetry (5 ECTS)
Medical Informatics and Image Processing (5 ECTS)
Ionising and Non-Ionising Radiation Protection (5 ECTS)
Imaging Physics and Technology 2 (10 ECTS)
Specialisation Track Modules (Radiation Therapy)

Radiation Physics and Dosimetry (5 ECTS)
Principles and Applications of Clinical Radiobiology (5 ECTS)
External Beam Radiotherapy (10 ECTS)
Brachytherapy and Unsealed Source Radiotherapy (5 ECTS)
Specialisation Track Modules (Clinical Engineering)

The Human Medical Device Interface (5 ECTS)
Principle and Practice of Medical Technology Design, Prototyping andamp; Testing (5 ECTS)
Medical Technology 1: Critical Care (5 ECTS)
Medical Technology 2: Interventions, Therapeutics andamp; Diagnostics (5 ECTS)
Medical Informatics and Equipment Management (5 ECTS)
Project Work and Dissertation (30 ECTS)

In parallel with the taught components, the students will engage in original research and report their findings in a dissertation. A pass mark in the assessment components of all three required sections (Core Module, Specialisation Track and Dissertation) will result in the awarding of MSc in Physical Sciences in Medicine. If the student does not pass the dissertation component, but successfully passes the taught components, an exit Postgraduate Diploma in Physical Sciences in Medicine will be awarded. Subject areas include

Radiation Protection and Radiation Physics
Imaging Physics and Technology
Basic Medical Sciences
Medical Technology Design, Prototyping and Testing
Medical Informatics
Image Processing
External Bean Radiotherapy
Brachytherapy and Unsealed Source Radiotherapy
The Human-Medical Device Interface
The course presents the core of knowledge for the application of the Physical Sciences in Medicine; it demonstrates practical implementations of physics and engineering in clinical practice, and develops practical skills in selected areas. It also engages students in original research in the field of Medical Physics / Engineering. The course is designed to be a 1 year full-time course but is timetabled to facilitate students who want to engage over a 2 year part-time process.

Read less
Why Surrey?. Our Medical Physics MSc programme is well-established and internationally renowned. We are accredited by IPEM (Institute of Physics and Engineering in Medicine) and we have trained some 1,000 medical physicists, so you can look forward to high-quality teaching during your time at Surrey. Read more

Why Surrey?

Our Medical Physics MSc programme is well-established and internationally renowned. We are accredited by IPEM (Institute of Physics and Engineering in Medicine) and we have trained some 1,000 medical physicists, so you can look forward to high-quality teaching during your time at Surrey.

Programme overview

The syllabus for the MSc in Medical Physics is designed to provide the knowledge, skills and experience required for a modern graduate medical physicist, placing more emphasis than many other courses on topics beyond ionising radiation (X-rays and radiotherapy).

Examples of other topics include magnetic resonance imaging and the use of lasers in medicine.

You will learn the theoretical foundations underpinning modern imaging and treatment modalities, and will gain a set of experimental skills essential in a modern medical physicist’s job.

These skills are gained through experimental sessions in the physics department and practical experiences at collaborating hospitals using state-of-the-art clinical facilities.

Why not discover more about our programme in our video?

Programme structure

This programme is studied full-time over one academic year. It consists of eight taught modules and a dissertation project. Part-time studemts study the same content over 2 academic years.

Example module listing

The following modules are indicative, reflecting the information available at the time of publication. Please note that all modules are compulsory, there are no optional modules, and may be subject to change.

Facilities, equipment and academic support

Common room

A student common room is available for the use of all Physics students.

Computers

The University has an extensive range of PC and UNIX machines, full internet access and email. The University has invested in resources to allow students to develop their IT skills. It also has an online learning environment, SurreyLearn. Computers are located in dedicated computer rooms. Access to these rooms is available 24 hours per day.

Prizes

Hounsfield Prize

A prize of £200 is awarded annually for the best dissertation on the Medical Physics programme. Sir Hounsfield was jointly awarded the Nobel Prize for Medicine in 1979 for his work on Computed Tomography.

Mayneord Prize

A prize of £200 in memory of Professor Valentine Mayneord will be awarded to the student with the best overall performance on the Medical Physics course. Professor Mayneord was one of the pioneers of medical physics, who had a long association with the Department and encouraged the growth of teaching and research in the field.

Knoll Prize

A prize of £300 in memory of Professor Glenn Knoll is awarded annually to the student with outstanding performance in Radiation Physics and Radiation Measurement on any of the department's MSc programmes. Professor Knoll was a world-leading authority in radiation detection, with a long association with the department

IPEM Student Prize (MSc Medical Physics)

A prize of £250 is awarded annually to a student with outstanding performance in their dissertation.

Educational aims of the programme

The programme integrates the acquisition of core scientific knowledge with the development of key practical skills with a focus on professional career development within medical physics and related industries. The principle educational aims and outcomes of learning are to provide participants with advanced knowledge, practical skills and understanding applied to medical physics, radiation detection instrumentation, radiation and environmental practice in an industrial or medical context. This is achieved by the development of the participants’ understanding of the underlying science and technology and by the participants gaining an understanding of the legal basis, practical implementation and organisational basis of medical physics and radiation measurement.

Global opportunities

We give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities and through our international research collaboration. Hence, it may be possible to carry out the dissertation project abroad.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.



Read less
This programme pathway is designed for students with a developing interest in radiation physics, both ionising and non-ionising, that underpins many of the imaging and treatment technologies applied in modern medicine. Read more
This programme pathway is designed for students with a developing interest in radiation physics, both ionising and non-ionising, that underpins many of the imaging and treatment technologies applied in modern medicine. Students gain an understanding of scientific principles and practices that are used in hospitals, industries and research laboratories through lectures, problem-solving sessions, a research project and collaborative work.

Degree information

Students study the physics theory and practice that underpins modern medicine, and learn to apply their knowledge to established and emerging technologies in medical science. The programme covers the applications of both ionising and non-ionising radiation to the diagnosis and treatment of human disease and disorder, and includes research project, workplace skills development and computational skills needed to apply this theory into practice.

Students undertake modules to the value of 180 credits.

The programme consists of seven core modules (105 credits), one optional module (15 credits), and a research project (60 credits). A Postgraduate Diploma of eight modules (120 credits) is offered.

Core modules
-Clinical Practice
-Medical Imaging (Ionising)
-Ultrasound in Medicine
-Magnetic Resonance Imaging and Biomedical Optics
-Research Project
-Professional Skills module
-Treatment with Ionising Radiation
-Ionising Radiation Physics: Interactions & Dosimetry

Optional modules
-Biomedical Engineering
-Computing in Medicine
-Programme Foundations for Medical Image Analysis

Dissertation/report
All MSc students undertake an independent research project within the broad area of Physics and Engineering in Medicine which culminates in a report up to 10,000 words, a poster and an oral examination.

Teaching and learning
The programme is delivered through a combination of lectures, demonstrations, tutorials, assignments and a research project. Lecturers are drawn from UCL and from London teaching hospitals including UCLH, St. Bartholomew's, and the Royal Free Hospital. Assessment is through supervised examination, coursework and assignments, a research dissertation and an oral examination.

Careers

A large percentage of graduates from the MSc continue on to PhD study, often in one of the nine research groups within the department, as a reult of the skills and knowledge they acquire on the programme. Other graduates commence or resume training or employment within the heaalthcare sector in hospitals or industry, both within the UK and abroad.

Employability
Postgraduate study within the department offers the chance to develop important skills and acquire new knowledge through involvement with a team of scientists or engineers working in a world-leading research group. Graduates complete their study having gained new scientific or engineering skills applied to solving problems at the forefront of human endeavour. Skills associated with project management, effective communication and teamwork are also refined in this high-quality working environment.

Why study this degree at UCL?

The spectrum of medical physics activities undertaken in UCL Medical Physics & Biomedical Engineering is probably the broadest of any in the United Kingdom. The department is widely acknowledged as an internationally leading centre of excellence and students on this programme receive comprehensive training in the latest methodologies and technologies from leaders in the field.

The department operates alongside the NHS department which provides the medical physics and clinical engineering services for the University College London Hospitals NHS Foundation Trust, as well as undertaking industrial contract research and technology transfer. The department is also a collaborator in the nearby London Proton Therapy Centre, currently under construction.

Students have access to a wide range of workshop, laboratory, teaching and clinical facilities in the department and associated hospitals. A large range of scientific equipment is available for research involving nuclear magnetic resonance, optics, acoustics, X-rays, radiation dosimetry, and implant development.

Read less
The M.Sc. in Medical Physics is a full time course which aims to equip you for a career as a scientist in medicine. You will be given the basic knowledge of the subject area and some limited training. Read more
The M.Sc. in Medical Physics is a full time course which aims to equip you for a career as a scientist in medicine. You will be given the basic knowledge of the subject area and some limited training. The course consists of an intense program of lectures and workshops, followed by a short project and dissertation. Extensive use is made of the electronic learning environment "Blackboard" as used by NUI Galway. The course has been accredited by the Institute of Physics and Engineering in Medicine (UK).

Syllabus Outline. (with ECTS weighting)
Human Gross Anatomy (5 ECTS)
The cell, basic tissues, nervous system, nerves and muscle, bone and cartilage, blood, cardiovascular system, respiratory system, gastrointestinal tract, nutrition, genital system, urinary system, eye and vision, ear, hearing and balance, upper limb – hand, lower limb – foot, back and vertebral column, embryology, teratology, anthropometrics; static and dynamic anthropometrics data, anthropometric dimensions, clearance and reach and range of movement, method of limits, mathematics modelling.

Human Body Function (5 ECTS)
Biological Molecules and their functions. Body composition. Cell physiology. Cell membranes and membrane transport. Cell electrical potentials. Nerve function – nerve conduction, nerve synapses. Skeletal muscle function – neuromuscular junction, muscle excitation, muscle contraction, energy considerations. Blood and blood cells – blood groups, blood clotting. Immune system. Autonomous nervous system. Cardiovascular system – electrical and mechanical activity of the heart. – the peripheral circulation. Respiratory system- how the lungs work. Renal system – how the kidneys work. Digestive system. Endocrine system – how hormones work. Central nervous system and brain function.

Occupational Hygiene (5 ECTS)
Historical development of Occupational Hygiene, Safety and Health at Work Act. Hazards to Health, Surveys, Noise and Vibrations, Ionizing radiations, Non-Ionizing Radiations, Thermal Environments, Chemical hazards, Airborne Monitoring, Control of Contaminants, Ventilation, Management of Occupational Hygiene.

Medical Informatics (5 ECTS)
Bio statistics, Distributions, Hypothesis testing. Chi-square, Mann-Whitney, T-tests, ANOVA, regression. Critical Appraisal of Literature, screening and audit. Patient and Medical records, Coding, Hospital Information Systems, Decision support systems. Ethical consideration in Research.
Practicals: SPSS. Appraisal exercises.

Clinical Instrumentation (6 ECTS)
Biofluid Mechanics: Theory: Pressures in the Body, Fluid Dynamics, Viscous Flow, Elastic Walls, Instrumentation Examples: Respiratory Function Testing, Pressure Measurements, Blood Flow measurements. Physics of the Senses: Theory: Cutaneous and Chemical sensors, Audition, Vision, Psychophysics; Instrumentation Examples: Evoked responses, Audiology, Ophthalmology instrumentation, Physiological Signals: Theory Electrodes, Bioelectric Amplifiers, Transducers, Electrophysiology Instrumentation.

Medical Imaging (10 ECTS)
Theory of Image Formation including Fourier Transforms and Reconstruction from Projections (radon transform). Modulation transfer Function, Detective Quantum Efficiency.
X-ray imaging: Interaction of x-rays with matter, X-ray generation, Projection images, Scatter, Digital Radiography, CT – Imaging. Fundamentals of Image Processing.
Ultrasound: Physics of Ultrasound, Image formation, Doppler scanning, hazards of Ultrasound.
Nuclear Medicine : Overview of isotopes, generation of Isotopes, Anger Cameras, SPECT Imaging, Positron Emitters and generation, PET Imaging, Clinical aspects of Planar, SPECT and PET Imaging with isotopes.
Magnetic Resonance Imaging : Magnetization, Resonance, Relaxation, Contrast in MR Imaging, Image formation, Image sequences, their appearances and clinical uses, Safety in MR.

Radiation Fundamentals (5 ECTS)
Review of Atomic and Nuclear Physics. Radiation from charged particles. X-ray production and quality. Attenuation of Photon Beams in Matter. Interaction of Photons with Matter. Interaction of Charged Particles with matter. Introduction to Monte Carlo techniques. Concept to Dosimetry. Cavity Theory. Radiation Detectors. Practical aspects of Ionization chambers

The Physics of Radiation Therapy (10 ECTS)
The interaction of single beams of X and gamma rays with a scattering medium. Treatment planning with single photon beams. Treatment planning for combinations of photon beams. Radiotherapy with particle beams: electrons, pions, neutrons, heavy charged particles. Special Techniques in Radiotherapy. Equipment for external Radiotherapy. Relative dosimetry techniques. Dosimetry using sealed sources. Brachytherapy. Dosimetry of radio-isotopes.

Workshops / Practicals
Hospital & Radiation Safety [11 ECTS]
Workshop in Risk and Safety.
Concepts of Risk and Safety. Legal Aspects. Fundamental concepts in Risk Assessment and Human Factor Engineering. Risk and Safety management of complex systems with examples from ICU and Radiotherapy. Accidents in Radiotherapy and how to avoid them. Principles of Electrical Safety, Electrical Safety Testing, Non-ionizing Radiation Safety, including UV and laser safety.
- NUIG Radiation Safety Course.
Course for Radiation Safety Officer.
- Advanced Radiation Safety
Concepts of Radiation Protection in Medical Practice, Regulations. Patient Dosimetry. Shielding design in Diagnostic Radiology, Nuclear Medicine and Radiotherapy.
- Medical Imaging Workshop
Operation of imaging systems. Calibration and Quality Assurance of General
radiography, fluoroscopy systems, ultrasound scanners, CT-scanners and MR scanners. Radiopharmacy and Gamma Cameras Quality Control.

Research Project [28 ECTS]
A limited research project will be undertaken in a medical physics area. Duration of this will be 4 months full time

Read less
This new Master of Advanced Health Care Practice provides health professionals with the opportunity to take the next step in expanding their careers. Read more
This new Master of Advanced Health Care Practice provides health professionals with the opportunity to take the next step in expanding their careers.

This innovative new program will give medical practitioners, midwives, occupational therapists, physiotherapists, radiographers and radiation therapists, and policy makers the opportunity to gain a Masters level qualification that enhances their professional practice and provides the widest range of options for the future.

This program is delivered online (except for Clinical Midwifery, which is on campus), offering the quality and recognition of a Monash postgraduate degree with the flexibility provided by the latest online delivery technologies.

The Master of Advanced Health Care Practice is interprofessional by nature. You complete a common unit, 'Essentials of advanced health care practice and research', which reflects the collaboration required in practice to deliver health care of the highest quality.

On completion of this unit, you then select one of the following specialisations:

- Clinical Midwifery
- Critical Care
- CT Radiography
- Occupational Therapy
- Paediatric Physiotherapy
- Primary Health Care
- Radiation Therapy
- Radiography

Students on an international visa may apply to study the Midwifery specialisation either in Australia on campus, or from your home country via online mode.

Other specialisations are not available to international students in Australia on a student visa (however, these other specialisations may be studied via online mode from your home country).

Visit the website http://www.study.monash/courses/find-a-course/2016/advanced-health-care-practice-m6001?domestic=true

Advanced clinical midwifery practice

Your qualification will be a Master of Advanced Clinical Midwifery Practice

The clinical midwifery specialisation is designed to prepare you as the experienced midwife, registered in your country of origin, for senior management, education, professional and specialist leadership roles in a range of midwifery settings. You will examine philosophies around women-centred care and collaborative practice within a multidisciplinary team that will enhance your ability to provide leadership in the healthcare setting. This specialisation is offered to international student visa holders to study on campus in Australia.

Students on an international visa may apply to study the Midwifery specialisation either in Australia on campus, or from your home country via online mode.

Other specialisations are not available to international students in Australia on a student visa (however, these other specialisations may be studied via online mode from your home country).

Course Structure

The course is structured in three parts, Part A. Expanding core discipline skills, Part B. Foundations for advanced health care practice, Part C. Advanced specialist study. All students complete Part B and Part C. Depending upon prior qualifications, you may receive credit for Part A.

[Note that if you are eligible for credit for prior studies, but prefer to do the longer form of the course (Parts A-C), you may elect not to receive the credit.]

PART A. Expanding core discipline skills
In this part you will have the opportunity to complete scholarly practical studies that develop and expand your expertise within your area of specialist practice. Students admitted to the course, who have a recognised degree in a cognate discipline of four years duration and two years relevant professional experience are eligible to receive credit for this Part.

PART B. Foundations for advanced health care practice
This study will provide you with the foundations to lead the management, design and delivery of high quality evidence based patient/consumer centred care and/or develop health care programs in a clinical context that impact on patient outcomes. It is inter-professional, reflecting and modelling the collaboration required in practice to deliver health care of the highest quality and ensures a heightened awareness of legal, ethical, inter-professional, cultural, managerial and safety issues in health care practice.

PART C. Advanced specialist study
These units will provide you with specialist professional knowledge and advanced skills in research or advanced professional practice in your chosen specialisation. All specialisations offer the choose of either a research focus or a coursework focus within Part C. The research focus can provide a pathway to a graduate degree in research.

For more information visit the faculty website - http://www.study.monash/media/links/faculty-websites/medicine

Find out how to apply here - http://www.study.monash/courses/find-a-course/2016/advanced-health-care-practice-m6001?domestic=true#making-the-application

Read less
The Department of Medical Biophysics, an interdisciplinary department with three fields—Cellular and Molecular Biology, Medical Physics, and Molecular and Structural Biology—is located primarily at the Princess Margaret Cancer Centre, the Toronto Medical Discovery Tower, and the Sunnybrook Research Institute. Read more
The Department of Medical Biophysics, an interdisciplinary department with three fields—Cellular and Molecular Biology, Medical Physics, and Molecular and Structural Biology—is located primarily at the Princess Margaret Cancer Centre, the Toronto Medical Discovery Tower, and the Sunnybrook Research Institute.

The department offers opportunities for research—leading to the Master of Science and Doctor of Philosophy degrees—in a variety of problems in medical science; projects which cut across the conventional boundaries of biology, physics, engineering, chemistry, and medicine are encouraged. The department emphasizes basic and applied research related to cancer. Projects include the following areas: tumour biology, radiobiology, membrane function, molecular interactions, gene expression, cell differentiation and growth control, viral and chemical carcinogenesis, cellular and molecular immunology, hemopoiesis, macromolecular structure via x-ray crystallography, NMR spectroscopy and electron microscopy, the physics and engineering of diagnostic imaging and radiation therapy, development of imaging and therapy systems using x-rays, ultrasound, nuclear magnetic resonance, light and electron optics.

Read less
The Master of Health Science in Medical Radiation Sc​iences is designed for expert radiation therapy clinicians who wish to expand their academic competence and contributions and advance their clinical, professional, and research skills. Read more
The Master of Health Science in Medical Radiation Sc​iences is designed for expert radiation therapy clinicians who wish to expand their academic competence and contributions and advance their clinical, professional, and research skills. The program is delivered in either a two-year full-time or three-year extended full-time (EFT) curriculum. The program offers three pathways for specialization: a clinical pathway, a leadership pathway, and a research pathwa​y, each comprising coursework (required and elective), experience-based immersive practica, and a master's research project. These elements are designed to provide foundational radiation medicine content, expand clinical and reasoning skills, and further develop the skills of inquiry, innovation, knowledge translation, and evidence-based practice. Courses will run primarily online and adjacent to regular working hours—mornings and early evenings—with the exception of the practica in the final year that may require more dedicated time within the regular work week, depending on the learner's chosen pathway.​

Read less
Why Surrey?. The MSc Physics offers you the flexibility to tailor your studies according to your interests, building on the research strengths of our friendly Department, and the supportive environment that we provide for our students. Read more

Why Surrey?

The MSc Physics offers you the flexibility to tailor your studies according to your interests, building on the research strengths of our friendly Department, and the supportive environment that we provide for our students.

We collaborate with a variety of partners across the academic, public and industry communities, including the National Physical Laboratory.

Programme overview

You will select modules from a wide range of fundamental and applied physics topics. The application-focused modules are co-taught by practitioners in public service and industry to ensure that students gain real-world insight.

A module in research skills will prepare you to apply your new knowledge and skills in an eleven-week research project undertaken during the summer.

Your chosen research projects can open the door to many careers, not just further research. They will give you tangible experience of working independently and communicating your work effectively and efficiently in written form: key requirements in many professions.

Why not discover more about the subject in our video?

Programme structure

This programme is studied full-time over one academic year. It consists of eight taught modules and a dissertation. Part-time students take the same content over 2 academic years.

Example module listing

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Educational aims of the programme

The primary aim of the programme is to provide a flexible high quality postgraduate level qualification in physics. It integrates the acquisition of core scientific knowledge with the development of key practical skills in the student’s chosen area of specialisation.

Global opportunities

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.



Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Clinical Science (Medical Physics) at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Clinical Science (Medical Physics) at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

Medical physicists fill a special niche in the health industry. The role includes opportunities for laboratory work, basic and applied research, management and teaching, which offers a uniquely diverse career path. In addition there is satisfaction in contributing directly to patient treatment and care.

This three-year programme in Clinical Science (Medical Physics), hosted by the College of Medicine, builds on an existing collaboration with the NHS in providing the primary route for attaining the professional title of Clinical Scientist in the field of Medical Physics.

Key Features of MSc in Clinical Science (Medical Physics)

The Clinical Science (Medical Physics) programme is accredited by the NHS and provides the academic component of the Scientist Training Programme for medical physics trainees, within the Modernising Scientific Careers framework defined by the UK Department of Health, and offers students the chance to specialise in either radiotherapy physics or radiation safety. This Master’s degree in Clinical Science (Medical Physics) is only suitable for trainees sponsored by an NHS or an equivalent health care provider.

The MSc in Clinical Science (Medical Physics) is modular in structure, supporting integration of the trainee within the workplace. Students must obtain a total of 180 credits to qualify for the degree. This is made up of 120 credits of taught-course elements and a project that is worth 60 credits and culminates in a written dissertation.

The Clinical Science (Medical Physics) MSc is accredited by the Department of Health.

Modules

Modules on the Clinical Science (Medical Physics) MSc typically include:

• Introduction to Clinical Science

• Medical Imaging

• Nuclear Medicine and Diagnostic Imaging

• Radiation Protection

• Radiotherapy Physics

• Research Methods

• Advanced Radiotherapy

• Specialist Radiotherapy

• Advanced Radiation Safety

• Specialist Radiation Safety

Careers

The MSc in Clinical Science (Medical Physics) provides the main route for the professional qualification of Clinical Scientist in Medical Physics.

Additionally, the need for specific expertise in the use of medical radiation is enshrined in law. The Ionising Radiation (Medical Exposure) Regulations (IRMER) 2000 defines the role of Medical Physics Expert, required within any clinical context where radiation is being administered, either a diagnostic or therapeutic.

Links with industry

The close working relationship between Swansea University and the NHS in Wales, through the All-Wales Training Consortium for Medical Physics and Clinical Engineering, provides the ideal circumstances for collaborative teaching and research. The Consortium is recognised by the Welsh Government. A significant proportion of the teaching is delivered by NHS Clinical Scientists and other medical staff.

Facilities

The close proximity of Swansea University to Singleton Hospital, belonging to one of the largest health providers in Wales, Abertawe Bro Morgannwg University (ABMU) health board, as well as the Velindre NHS Trust, a strongly academic cancer treatment centre, provide access to modern equipment, and the highest quality teaching and research.

The Institute of Life Science (ILS) Clinical Imaging Suite has recently been completed and overlaps the University and Singleton Hospital campuses. It features adjoined 3T MRI and high-resolution CT imaging. ILS has clinical research of social importance as a focus, through links with NHS and industrial partners.

Research

Swansea University offers a vibrant environment in medically-oriented research. The Colleges of Medicine has strong research links with the NHS, spearheaded by several recent multimillion pound developments, including the Institute of Life Science (ILS) and the Centre for NanoHealth (CNH).

The University provides high-quality support for MSc student research projects. Students in turn make valuable progress in their project area, which has led to publications in the international literature or has instigated further research, including the continuation of research at the doctoral level.

The College of Medicine provides an important focus in clinical research and we have the experience of interacting with medical academics and industry in placing students in a wide variety of research projects.

Medical academics have instigated projects examining and developing bioeffect planning tools for intensity modulated radiotherapy and proton therapy and devices for improving safety in radiotherapy. Industry partners have utilised students in the evaluation of the safety of ventricular-assist devices, intense-pulsed-light epilators and in the development of novel MRI spectroscopic methods. The student join teams that are solving research problems at the cutting-edge of medical science.



Read less
This programme pathway is identical to the campus-delivered radiation physics stream but is designed for students who are unable to travel to London because of their work duties or international location. Read more
This programme pathway is identical to the campus-delivered radiation physics stream but is designed for students who are unable to travel to London because of their work duties or international location. Teaching is delivered for each module via video lectures, top-up online tutorials and additional e-learning resources, with coursework and supervised examinations which are arranged across the world by the British Council.

Degree information

Students study in detail the physics theory and practice that underpins modern medicine, and learn to apply their knowledge to established and emerging technologies in medical science. The programme covers the applications of both ionising and non-ionising radiation to the diagnosis and treatment of human disease and disorder, and includes a research project and the development of computational skills needed to apply this theory into practice.

Students undertake modules to the value of 180 credits.

The programme consists of eight core modules (120 credits) and the research dissertation (60 credits).

A Postgraduate Diploma, eight core modules (120 credits), is offered. There are no optional modules for this programme.

Core modules
-Clinical Practice
-Computing in Medicine
-Ionising Radiation Physics: Interactions & Dosimetry
-Magnetic Resonance Imaging and Biomedical Optics
-Medical Imaging (Ionising)
-Research Project
-Treatment with Ionising Radiation
-Ultrasound in Medicine
-Professional Skills Module

Dissertation/report
All students undertake an independent research project which culminates in a research report of up to 10,000 words, a poster and an oral presentation.

Teaching and learning
The programme is delivered through a combination of lectures, demonstrations, tutorials, assignments and a research project. Lecturers are drawn from UCL and from London teaching hospitals including UCLH, St. Bartholomew's, and the Royal Free Hospital. Assessment is through supervised examination, coursework and assignments, a research dissertation and an oral examination.

Careers

A large percentage of graduates from the online Master's programme commence or continue training or employment within the healthcare sector, mostly in UK and overseas hospitals. Online learning offers the ability to up-skill or re-skill in physics disciplines applied to medicine while also training or practising in the field.

Employability
Postgraduate study within the department offers the chance to develop important skills and acquire new knowledge through involvement with a team of scientists or engineers working in a world-leading research group. Graduates complete their study having gained new scientific or engineering skills applied to solving problems at the leading-edge of human endeavour. Skills associated with project management, effective communication and teamwork are also refined in this high-quality working environment. The department has a recognised track record for producing excellent graduates that go on to hold leading roles in universities, companies and hospitals around the world.

Why study this degree at UCL?

The spectrum of medical physics activities undertaken in UCL Medical Physics & Biomedical Engineering is probably the broadest of any in the United Kingdom. The department is widely acknowledged as an internationally leading centre of excellence and students receive comprehensive training in the latest methodologies and technologies from leaders in the field.

The department operates alongside the NHS department which provides the medical physics and clinical engineering services for the University College London Hospitals NHS Foundation Trust, as well as undertaking industrial contract research and technology transfer. The department is also a collaborator in the nearby London Proton Therapy Centre currently under construction.

Students have access to an exceptionally wide range of expertise, laboratory, teaching and clinical facilities in the department and associated hospitals. A large range of scientific equipment is available for research involving nuclear magnetic resonance, optics, acoustics, X-rays physics, radiation dosimetry, and implant and interventional device development.

Read less
Apply your physics background. A career in medical physics offers you the opportunity to use your physics background to provide people with life-changing options every day. Read more
Apply your physics background
A career in medical physics offers you the opportunity to use your physics background to provide people with life-changing options every day. Medical physicists play a critical role at the cutting-edge of patient healthcare, overseeing effective radiation treatment, ensuring that instruments are working safely, and researching, developing and implementing new therapeutic techniques.

The Medical Physics Programs at the University of Pennsylvania prepare students to bridge physics and clinical medicine, overseeing clinical applications of radiation and creating the cutting-edge medical technologies of tomorrow. The master’s degree and post-graduate certificate programs combine the resources of one of the world’s top research universities and most prestigious medical schools, offering you unmatched opportunities to shape your own path.

Unsurpassed resources and a rich array of options
Access to Penn’s outstanding facilities creates a unique opportunity for you to sample four subspecialties of medical physics, including radiation oncology, diagnostic imaging, nuclear medicine and health physics. Whether you enter a residency, seek employment directly after the program, go on to a PhD, earn an MBA or change career directions with your PhD, you’ll have the resources at your fingertips to build the career most compelling to you.

Our research facilities—all of which are located on campus, within a 10-minute walk—include the state-of-the art Perelman Center for Advanced Medicine; the Roberts Proton Therapy Center, the largest and most advanced facility in the world for this form of cancer radiation; and the Smilow Center for Translational Research, which brings Penn scientists and physicians together to collaborate on research projects.

Preparation for professional success
Our programs, accredited by the Commission on Accreditation of Medical Physics Educational Programs (CAMPEP), are grounded in providing the highest standard of patient care. Our students have numerous opportunities to gain hands-on experience at some of the most advanced medical imaging and therapy facilities in the world, through part-time clinical work, residencies, practicum training and much more. It is for this reason that our degree and certificate programs enjoy a high placement rate for our students, year after year. Faculty from Penn’s CAMPEP-accredited residency program participate in professional development to make our students competitive for medical physics residency programs.

We welcome you to contact a member of our program team to learn more about the possibilities that await you in the Medical Physics Programs at Penn.

Read less
The area of cancer immunotherapy considers how to use conventional therapies including surgery, radiation and chemotherapy. Read more
The area of cancer immunotherapy considers how to use conventional therapies including surgery, radiation and chemotherapy. Whilst these treatment have served well and new drugs will continue to be designed, clinical trials over the last five years have shown that boosting the body’s immune system, whose main task is to deal with invading pathogens, can help our immune system to destroy tumour cells. Many of the new immunotherapies may be tested in combination with more conventional treatments or tested alone, but investigators and oncologists now believe immunotherapy, initially combined with pharmacological treatments, will soon provide curative therapies and certainly give many patients a new lease of life.

More about this course

Worldwide the incidence of cancer is increasing, and is expected to reach 22 million new cases per year by 2030. In addition to treatments such as radiotherapy and surgery, chemotherapy has a vital role to play in prolonging the lives of patients.

The aims of the Cancer Immunotherapy MSc are to:
-Provide an in-depth understanding of the molecular targets at which the different classes of anticancer drugs are aimed, and of how drug therapies are evolving
-Review the biology of cancer with respect to genetics, pathological considerations, and the molecular changes within cells which are associated with the progression of the disease
-Enhance intellectual and practical skills necessary for the collection, analysis, interpretation and understanding of scientific data
-Deliver a programme of advanced study to equip students for a future career in anti-cancer drug and immunotherapy development
-Cover new areas in immunotherapy (some of which may enhance existing pharmacological therapies including: History of immunotherapy and review of immune system; Monoclonal antibodies in cancer therapy and prevention; DNA vaccines against cancer; Adoptive T cell therapy; Dendritic cell vaccines; Antibodies that stimulate immunity; Adjuvant development for vaccines; Epigenetics and cancer: improving immunotherapy; Immuno-chemotherapy: integration of therapies; Exosomes and Microvesicles (EMVs) in cancer therapy and diagnosis; Dendritic cell vaccine development and Pox virus cancer vaccine vectors; Microbial causes of cancer and vaccination

Students will have access to highly qualified researchers and teachers in pharmacology and immunology, including those at the Cellular and Molecular Immunology Research Centre. Skills gained from research projects are therefore likely to be highly marketable in industry, academia and in the NHS. Students will be encouraged to join the British Society of Immunology and the International Society of Extracellular Vesicles.

Assessment is a combination of coursework, which includes tests and essays, the research project and its oral defence and examination.

Modular structure

The modules listed below are for the academic year 2016/17 and represent the course modules at this time. Modules and module details (including, but not limited to, location and time) are subject to change over time.

Year 1 modules include:
-Advanced Immunology (core, 20 credits)
-Cancer Immunotherapy (core, 20 credits)
-Cancer Pharmacology (core, 20 credits)
-Cancer: Diagnosis and Therapy (core, 20 credits)
-Molecular Oncology (core, 20 credits)
-Research Project (core, 60 credits)
-Scientific Frameworks for Research (core, 20 credits)

After the course

Students will have many opportunities to work in industry. There are established industries working hard to develop cancer immunotherapies including Bristol-Myers Squibbs, MERCK, AstraZeneca and Roche. There are also an innumerate number of start-up companies appearing including Omnis Pharma, UNUM Therapeutics and Alpine Immune Sciences.

Students will also have ample opportunity for future postgraduate study either within the School of Human Sciences and the Cellular and Molecular Immunology Centre at the MPhil/PhD level or beyond, even with some of our research partners within the UK, Europe and beyond.

Read less
The Medical Physics and Bioengineering MRes provides structured training in this diverse and multi-disciplinary field and students may subsequently progress to an MPhil/PhD as part of a Doctoral Training Programme. Read more
The Medical Physics and Bioengineering MRes provides structured training in this diverse and multi-disciplinary field and students may subsequently progress to an MPhil/PhD as part of a Doctoral Training Programme.

See the website http://www.ucl.ac.uk/prospective-students/graduate/taught/degrees/medical-physics-bioengineering-mres

Key Information

- Application dates
All applicants:
Open: 5 October 2015
Close: 29 July 2016

English Language Requirements

If your education has not been conducted in the English language, you will be expected to demonstrate evidence of an adequate level of English proficiency.
The English language level for this programme is: Standard
Further information can be found on http://www.ucl.ac.uk/prospective-students/graduate/life/international/english-requirements .

International students

Country-specific information, including details of when UCL representatives are visiting your part of the world, can be obtained from http://www.ucl.ac.uk/prospective-students/international .

Degree Information

The programme covers all forms of ionising and non-ionising radiation commonly used in medicine and applies it to the areas of imaging and treatment. The programme involves Master's level modules chosen from a wide range offered by the department and a research project. Good performance in the MRes will lead to entry into the 2nd year of the Doctoral Training Programme where the research project is continued.

Students undertake modules to the value of 180 credits.

The programme consists of four optional modules and a research project.

- Core Modules
There are no core modules for this programme.

- Options
Students choose four optional modules from the following:
Ionising Radiation Physics: Interactions and Dosimetry
Medical Imaging
Clinical Practice
Treatment with Ionising Radiation
Medical Electronics and Control
Bioengineering
Optics in Medicine
Computing in Medicine
Medical Devices and Applications
Foundations and Anatomy and Scientific Computing
Image Processing
Computational Modelling in Biomedical Imaging
Programming Foundations for Medical Image Analysis
Information Processing in Medical Imaging
Image-Directed Analysis and Therapy

- Dissertation/report
All students undertake a research project.

Further information on modules and degree structure available on the department web site Medical Physics and Bioengineering MRes http://www.ucl.ac.uk/medphys/prospective-students/phd/dtp

Funding

Scholarships relevant to this department are displayed (where available) below. For a comprehensive list of the funding opportunities available at UCL, including funding relevant to your nationality, please visit the Scholarships and Funding website http://www.ucl.ac.uk/prospective-students/scholarships .

Careers

Our graduates typically find work in academia, the NHS, and in industry

Why study this degree at UCL?

The department is one of the largest medical physics and bioengineering departments in Europe, with links to a large number of active teaching hospitals. We have arguably the widest range of research of any similar department, and work closely with other world-leading institutions.

Students on the programme will form part of an interactive network of researchers across many disciplines and will benefit from the strengths of UCL in the healthcare field.

Student / staff ratios › 144 staff including 110 postdocs › 107 taught students › 135 research students

Application and next steps

- Applications
Students are advised to apply as early as possible due to competition for places. Those applying for scholarship funding (particularly overseas applicants) should take note of application deadlines.

- Who can apply?
The programme is suitable either for students wishing to study for a stand-alone MRes in Medical Physics & Bioengineering or for students planning progression to a Doctoral Training Programme.

What are we looking for?
When we assess your application we would like to learn:
- why you want to study Medical Physics and Bioengineering at graduate level
- why you want to study Medical Physics and Bioengineering at UCL
- what particularly attracts you to this programme
- how your personal, academic and professional background meets the demands of a challenging programme
- where you would like to go professionally with your degree

Together with essential academic requirements, the personal statement is your opportunity to illustrate whether your reasons for applying to this programme match what the programme will deliver.

For more information see the Applications page http://www.ucl.ac.uk/prospective-students/graduate/apply .

Read less
The MSc Advanced Practice is a generic programme with seven specific pathways and can lead to the award of the specifically named degree. Read more

Course Overview

The MSc Advanced Practice is a generic programme with seven specific pathways and can lead to the award of the specifically named degree:
- MSc Advanced Practice (Audiology)
- MSc Advanced Practice (Dietetics)
- MSc Advanced Practice (Housing)
- MSc Advanced Practice (Musculoskeletal Studies)
- MSc Advanced Practice (Public Health Emergencies)
- MSc Advanced Practice (Speech and Language Therapy)
- MSc Advanced Practice (Sport and Exercise Nutrition​)

It is intended that the programme provides for flexible, variable progression that is responsive to student and employer continuous professional learning needs and the constantly changing practice environment.

Any modules at Level 7 (Masters level) studied elsewhere, that meet the learning needs of the student, can be incorporated into the module mix via the Recognising Prior Learning (RPL) procedure. In addition, it is recognised that many professions engage with CPD activities which are not credit rated. The Reflection on Prior Learning module is a 20 credit level 7 generic option module where students can use relevant CPD activities to critically reflect on those experiences and produce a reflective statement and portfolio.

The programme has been designed to meet the four pillars of Advanced Practice. Further information can be found at: http://www.weds.wales.nhs.uk/advanced-practice.

The modules will be delivered in a blended learning pattern (blocks of teaching with on-line resources) as far as possible.

See the website https://www.cardiffmet.ac.uk/health/courses/Pages/MSc-Advanced-Practice-.aspx

Entry Requirements for specific pathways:​

Dietetics - candidates should be registered Dietitians with the Health and Care Professions Council.

Speech and Language Therapy - candidates should be registered Speech and Language Therapists with the Health and Care Professions Council.

Sports and Exercise Nutrition – candidates should have a first degree in Dietetics, Nutrition or Sports and Exercise Science.

Selection Procedure:
Candidates will be considered by the course director and at least one other member of the course team and may be invited to interview. At this stage there will be discussion about the potential areas that the candidate wishes to study as well as consideration of developmental needs.

​Course Content​

The course will have three defined exit points:
- ​Postgraduate Certificate (PgC) – provides students with the foundation of knowledge and skills required to begin to develop practice as an Advanced Practitioner.

- Postgraduate Diploma (PgD) – provides students with the appropriate knowledge and skills to function as an Advanced Practitioner.

- Master of Science (MSc) – this aimed at those students who wish to continue their academic study and undertake an extended applied research project which must be relevant to practice.

The structure of the programme is designed, where appropriate, to be flexible and meet the needs of the individual learner. Students can opt to study individual modules for their continuous professional development (CPD); there is a separate fees basis for this type of study.

- Audiology:
The audiology modules focus on diagnosis and assessment in several specific areas of clinical audiology by providing advanced theoretical knowledge and training. The modules are intended to provide post-registration education and will be included in the accredited CPD training list of the professional body (British Academy of Audiology, BAA).

- Dietetics:
The Dietetics pathway is intended to support and promote continuing professional development of dietitians and their practice. As such, it will help meet the needs of those wishing to progress and evidence their ability to work at Advanced Practitioner level in the NHS.

- Housing:
The Housing pathway focuses on the core learning outcomes which set the foundations for all members to achieve CIH CM (Chartered Membership). The Chartered Institute of Housing (CIH) have set a benchmark for Chartered membership which demonstrates that a Chartered member not only has relevant and up to date knowledge but can use this by applying a range of appropriate skills and behaviours in a professional manner. This includes working to the CIH code of professional ethics.

- Musculoskeletal Studies:
The Musculoskeletal Studies pathway is aimed at HCPC registered practitioners – or equivalent – who are involved in the management of lower limb musculoskeletal conditions across a range of patient groups. This has typically included Podiatrists and Physiotherapists,. A key feature is the emphasis on developing an evidence-based approach to practice, and students are challenged to critically analyse a range of issues related to multiple facets of musculoskeletal practice.

- Public Health Emergencies:
The School has worked with the WHO-Collaborating Centre (Centre for Radiation, Chemicals and Environmental Hazards, Public Health England) to develop teaching and training materials on The Public Health Management of Major Incidents, Disasters and Events. The pathway is aimed at policy makers, public and environmental-health professionals, together with clinicians and physicians, this course will provide a contemporary, bespoke and unique approaches to major incident management, drawing upon a number of presentations, case studies, scenarios and international guidance.

- Speech and Language Therapy:
The Speech and Language pathway is intended to support and promote continuing professional development of Speech and Language Therapists and their practice. As such, it will help meet the needs of those wishing to progress and evidence their ability to work at Advanced Practitioner level in the NHS.

- Sport and Exercise Nutrition:
There is a demand for this pathway from Dietitians, Nutritionists and those with a Sport and Exercise Science background. The modules on offer have been aligned to the SENr requirements and accreditation will be sought in the future.

Learning & Teaching

The teaching and learning opportunities on the programme are appropriate for students accessing the modules and have been designed to facilitate the development of the advanced practitioner.

Traditionally Masters level programmes are delivered on a day-a-week basis but increasing work pressures make this form of delivery unsustainable. To accommodate these changes to working practices, most modules will be delivered in a blended format; i.e. with blocks of teaching and online resources.

Module delivery will vary according to specific learning needs but will include lectures, tutorial and seminars, as well as extensive use of Moodle, the Virtual Learning Environment used at the University.

The work based learning modules are ideally suited to flexible learning as they delivered in the work place. Students undertaking these modules are allocated a supervisor from the teaching team and meetings are arranged to suit the student as well as email/telephone contact.

The dissertation also allows this flexibility as students are expected to undertake the research in their place of work. All students will be allocated a personal tutor who will offer academic and pastoral support and guidance on pathway specific and option modules to select to meet their individual learning needs.

Assessment

Each module is assessed by coursework; the type varies according to the modules and can include the completion of a portfolio, presentations, reflections, reports and case studies. All the modules are externally moderated. Wherever possible students will be offered formative assessments and feedback.

Employability & Careers​

The Professional working at Masters Level will be able to lead and contribute to developments in their profession through a more pro-active, critical and reflective approach. Additionally they will be an agent of change, a leader and act as an advocate of their profession. Employability will be enhanced by professions who undertake modules on a CPD basis and NHS professionals will be able to use the awards towards gaining recognition as an Advanced Practitioner.

Find information on Scholarships here https://www.cardiffmet.ac.uk/scholarships

Find out how to apply here https://www.cardiffmet.ac.uk/howtoapply

Read less

Show 10 15 30 per page



Cookie Policy    X