• St Mary’s University, Twickenham Featured Masters Courses
  • New College of the Humanities Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Coventry University Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • University of Glasgow Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
De Montfort University Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
Institute for Advanced Architecture of Catalonia Featured Masters Courses
Leeds Beckett University Featured Masters Courses
FindA University Ltd Featured Masters Courses
"radiation" AND "biology"…×
0 miles

Masters Degrees (Radiation Biology)

  • "radiation" AND "biology" ×
  • clear all
Showing 1 to 15 of 22
Order by 
This one-year, full-time, taught MSc in Radiation Biology leads to an MSc awarded by the University of Oxford. It consists of. a 5 month core theoretical course covering the emerging areas of fundamental biology for oncology and its treatment by radiotherapy. Read more
This one-year, full-time, taught MSc in Radiation Biology leads to an MSc awarded by the University of Oxford. It consists of:

• a 5 month core theoretical course covering the emerging areas of fundamental biology for oncology and its treatment by radiotherapy

• a 6 month high-quality basic and clinically-applied research project

MSc Course Handbook - http://www.oncology.ox.ac.uk/sites/default/files/MSc%20in%20Radiation%20Biology%20Course%20Booklet%202016-17.pdf

The MSc in Radiation Biology forms the first year of training for students enrolled on the DPhil in Radiation Oncology (1+3). It will also provide a MSc degree for individuals who wish to continue in academic research in radiation biology at other Universities, or to start a career in other professions that require knowledge of radiation biology e.g. academic personnel associated with radiation protection issues.
Educational Training Bursaries to study for the MSc in Radiation Biology are avaliable from the CRUK Oxford Centre (http://www.cancercentre.ox.ac.uk/). These are for Clinicians and allied health professionals.

MSc Course Structure

Modular Structure -

Fundamental radiation biological science and laboratory methods/practical skills are taught in the first term (Michaelmas) and the first half of Hilary term, over a series of 12 modules. Each module is delivered over a period of one or two weeks and together the 12 modules comprise the ‘core content’ of the course.

Lectures will be given by local, national and international experts, with additional tutorials and practical sessions given by local staff. Sessions using distance learning material will complement these, and give students a wide knowledge and understanding of radiation biology.

Demonstration and practical sessions will enable students to learn particular techniques that are used in this speciality subject area.

The remaining 6 months is allowed for a high quality laboratory research project.

Assessments -

Six short essays and a series of laboratory reports will be assessed to provide formative assessment of student progress. Students also sit a qualifying examination in week 9 based upon Modules 1 – 6. This will normally be in an MCQ format. A second examination comprising short questions and essays is sat in week 9 of Hilary term. Students will submit an assignment and the research dissertation of approximately 10,000 words based upon their project and will be examined by research dissertation, by oral presentation and by a short viva voce.

Read less
Life on Earth depends on solar energy captured by plants - they are the base of most food webs and underpin the functioning of all major ecosystems. Read more
Life on Earth depends on solar energy captured by plants - they are the base of most food webs and underpin the functioning of all major ecosystems. Plants release the oxygen we breath. They convert solar energy into chemical energy, providing us with food, fibres, renewable energy sources, and raw materials for many industries. Plants do not carry out these processes in isolation. They interact with other organisms and the physical and chemical environment, communicate and actively adjust to their circumstances. How do they do these things and how can we profit from understanding them? When you have graduated from the Master’s Program in Plant Biology you will have the answers to these big questions, and more, such as:
-How one plant cell develops into a complicated organism and how plant cells, tissues and organs communicate with each other
-How plants avoid, tolerate or defend themselves from external stress factors such as diseases, drought and excessive solar radiation
-How plants sense their environment and communicate with each other and with other organisms
-How plants, interacting with microbes, fungi and animals, maintain ecosystems and thus life
-How the genotypic, functional and morphological differences between plants allow them to thrive in vastly different habitats

You will also be able to:
-Understand how research in plant biology and biotechnology can contribute to plant breeding and production.
-Plan, coordinate and execute high-quality basic and applied scientific research.
-Have a good command of the scientific method and critically evaluate research across scientific disciplines.
-Use the basic skills needed to expand your knowledge into other related fields and communicate with experts in those fields.
-Act in working life as an expert and innovator in your field, supported by your language, communication and other transferable skills.
-Be eligible for scientific post-graduate (doctoral) studies.

After earning your degree, you can continue towards a PhD or move directly into a career. If you have a Bachelor’s degree in a field of biology from another Finnish university or from a foreign university anywhere in the world, you are welcome to apply for the Master’s programme in Plant Biology. Based on your previous studies we will evaluate the possible need for supplementary studies, which will be included in your degree.

The University of Helsinki will introduce annual tuition fees to foreign-language Master’s programmes starting on August 1, 2017 or later. The fee ranges from 13 000-18 000 euros. Citizens of non-EU/EEA countries, who do not have a permanent residence status in the area, are liable to these fees. You can check this FAQ at the Studyinfo website whether or not you are required to pay tuition fees.

Programme Contents

The Master’s Programme in Plant Biology is a joint programme of the Faculty of Biological and Environmental Sciences and the Faculty of Agriculture and Forestry, which ensures an exceptionally comprehensive curriculum. You will be able to study the diversity of wild and cultivated plants from the Arctic to the Tropics, as well as plant functions from the molecular to the ecosystem level.

The teaching is diverse, consisting of modern laboratory and computer courses, field courses, seminars and excursions. The curriculum is intertwined with research. You will be introduced to the research groups from the beginning of your studies, so you will become familiar with research methods as your studies progress. Much of the study material is in various learning platforms (such as Moodle), which allow distance learning. You will have a personal tutor who will help you tailor an individual study plan according to your requirements.

Within the programme you can choose among several optional study modules and focus on, for example:
-Plant biotechnology and breeding
-Molecular biology and genetics
-Regulation of growth, reproduction and differentiation of tissues
-Biological basis of crop yield
-Plant ecology and evolutionary biology
-Evolutionary history and systematics of plants and fungi
-Species identification

All modules are worth at least 15 credits. They are interlinked to ensure a coherent and balanced degree that allows you to obtain a broad perspective. Alternatively, you can focus on your primary research interest while acquiring the skills needed to follow your career goals on completion of your degree.

A translational perspective is emphasised in courses in which it is relevant. That will allow you to apply the acquired basic knowledge in problem-based research, bridging the gap between basic and applied research.

Selection of the Major

By choosing study modules you find interesting you will be able to deepen your expertise in particular areas of plant biology. Your degree can thus be tailored depending on your aspirations, whether you want to be a university researcher, entrepreneur, or environmental/agricultural consultant. You will also be free to pick individual courses from any module, without having to take all courses in it. However, each module is a coherent entity so we recommend that you take all of the courses in it.

Programme Structure

The extent of the programme is 120 credits (ECTS), to be completed in two years of full-time studies. The degree consists of:
-60 credits of advanced studies (in plant biology), including Master’s thesis (30 credits).
-60 credits of other studies from this programme or other programmes.

The curriculum contains a personal study plan and it can contain career planning or transferable skill studies.

Career Prospects

With a Master’s degree in Plant Biology, you will have many potential career opportunities. You can work especially:
-As a researcher and/or part-time teacher at universities or other institutions of higher education.
-As a researcher in national and international institutions in the public and private sectors.
-As an expert, civil servant, authority or PR officer in public administration.
-In various positions in international organisations or enterprises engaged in bioeconomy.
-As an entrepreneur in the biological or environmental sectors of business.

Internationalization

International scope is a key benefit of the Plant Biology programme. You will be encouraged and helped to seek exchange possibilities in international student exchange programmes with cooperating universities. In this way you will get new ideas, perspectives and personal contacts that may prove useful later in your working life or doctoral studies.

All of our research groups include numerous members from Europe and farther afield. Thus you will be doing research in an international community and will be able to improve your skills in foreign languages, especially English, which is of primary importance in working life today.

You can also tutor international students or act in the student’s subject association or Student’s Union and get valuable experience of international and multicultural communities.

Read less
Established in 1972, Surrey's MSc in Radiation and Environmental Protection is one of the UK’s longest running programmes in the field of nuclear science and its applications. Read more
Established in 1972, Surrey's MSc in Radiation and Environmental Protection is one of the UK’s longest running programmes in the field of nuclear science and its applications.

The programme is taught by a combination of world-leading nuclear physics academics and leading experts from the UK’s radiological protection and nuclear industries.

PROGRAMME OVERVIEW

Our programme will give you a thorough grounding in the radiation and environmental protection aspects of nuclear physics.

This includes in-depth knowledge of radiation protection and showing you how the technical and organisational procedures of the discipline may be applied to the broader concept of environmental protection.

The substantial practical element of this programme enables you to relate taught material to real-world applications. Formal lectures are complemented with work in specialist radiation laboratories that were recently refurbished as part of a £1m upgrade to our facilities.

Here you will work with a wide range of radioactive sources and radiation detectors. There is also an extended project in the spring and an eleven-week MSc dissertation project in the summer.

PROGRAMME STRUCTURE

This programme is studied full-time over one academic year and part-time students must study at least two taught technical modules per academic year. It consists of eight taught modules and a dissertation.

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.
-Radiation Physics
-Radiation Measurement
-Nuclear Power & Non-ionising Radiation
-Introduction to Biology and Radiation Biology
-Radiation Protection
-Environmental Physics and Environmental Protection
-Extended Group Project
-Radiation Laboratory Skills
-Research Project and Dissertation

RESEARCH-LED TEACHING

The programme material is taught by a combination of academics from the Department of Physics at Surrey and specialists provided by industrial partners. The Surrey academics are part of the Centre for Nuclear and Radiation Physics which houses the largest academic nuclear physics research group in the UK.

In addition to the formal lectures for taught modules, the programme provides a wide range of experimental hands-on training. This includes a nine-week radiation physics laboratory which takes place in the specialist radiation laboratories within the Department of Physics at the University of Surrey.

These were recently refurbished as part of a £1 million upgrade to the departmental teaching infrastructure. Within the Department, we also have a common room and a departmental library, which contains copies of earlier MSc dissertations.

As well as the laboratory training, you will also undertake a research project at the beginning of the Spring semester as a precursor to the eleven-week research dissertation project which makes up the final part of the MSc.

There are many opportunities for both the spring research project and summer dissertation project to be taken in an external industrial environment.

CAREERS

The programme has produced over 500 UK and overseas graduates, many of whom have gone on to well-paid positions in companies in the nuclear and radiation sectors. In the UK we need to decommission old reactors and build new ones to provide a low-carbon source of energy.

This, together with, for example, the importance of radioisotopes in fields such as medicine, means that the career prospects of our graduates are excellent.

EDUCATIONAL AIMS OF THE PROGRAMME

The programme integrates the acquisition of core scientific knowledge with the development of key practical skills with a focus on professional career development within medical physics and radiation detection, and related industries.

The principle educational aims and outcomes of learning are to provide participants with advanced knowledge, practical skills and understanding applied to medical physics, radiation detection instrumentation, radiation and environmental practice in an industrial or medical context.

This is achieved by the development of the participants’ understanding of the underlying science and technology and by the participants gaining an understanding of the legal basis, practical implementation and organisational basis of medical physics and radiation measurement.

PROGRAMME LEARNING OUTCOMES

Knowledge and understanding
-A systematic understanding of Radiation and Environmental Protection in an academic and professional context together with a critical awareness of current problems and / or new insights
-A comprehensive understanding of techniques applicable to their own research project in Radiation and / or Environmental Protection
-Originality in the application of knowledge, together with a practical understanding of radiation-based, experimental research projects
-An ability to evaluate and objectively interpret experimental data pertaining to radiation detection
-Familiarity with generic issues in management and safety and their application to Radiation and Environmental Protection in a professional context

Intellectual / cognitive skills
-The ability to plan and execute under supervision, an experiment or investigation and to analyse critically the results and draw valid conclusions from them. Students should be able to evaluate the level of uncertainty in their results, understand the significance of uncertainty analysis and be able to compare these results with expected outcomes, theoretical predictions and/or with published data. -Graduates should be able to evaluate the significance of their results in this context
-The ability to evaluate critically current research and advanced scholarship in the discipline of radiation protection
-The ability to deal with complex issues both systematically and creatively, make sound judgements in the absence of complete data, and communicate their conclusions clearly to specialist and non- specialist audiences

Professional practical skills
-The ability to communicate complex scientific ideas, the conclusions of an experiment, investigation or project concisely, accurately and informatively
-The ability to manage their own learning and to make use of appropriate texts, research articles and other primary sources
-Responsibility for personal and professional development. Ability to use external mentors for personal / professional purposes

Key / transferable skills
-Identify and resolve problems arising from lectures and experimental work
-Make effective use of resources and interaction with others to enhance and motivate self-study
-Make use of sources of material for development of learning and research such as journals, books and the internet
-Take responsibility for personal and professional development

GLOBAL OPPORTUNITIES

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.

Read less
Through a mix of lectures, laboratories, clinical demonstrations and hospital visits, our MSc in Medical Imaging will develop you as a professional, enhancing your ability to take on new challenges with confidence. Read more
Through a mix of lectures, laboratories, clinical demonstrations and hospital visits, our MSc in Medical Imaging will develop you as a professional, enhancing your ability to take on new challenges with confidence. This programme is run together with the Department of Physics.

PROGRAMME OVERVIEW

Medical imaging is a rapidly-growing discipline within the healthcare sector, involving clinicians, physicists, computer scientists and those in IT industries.

This programme delivers the expertise you'll need to forge a career in medical imaging, including radiation physics, image processing, biology, computer vision, pattern recognition, artificial intelligence and machine learning.

PROGRAMME STRUCTURE

This programme is studied full-time over 12 months and part-time over 48 months. It consists of eight taught modules and an extended project. The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.
-Image Processing and Vision
-Professional Skills for Clinical Science and Engineering
-Radiation Biology
-Radiation Physics
-AI and AI Programming
-Computer Vision and Pattern Recognition
-Diagnostic Apps of Ionising Radiation
-Non-Ionising Radiation Imaging
-Engineering Professional Studies 1
-Engineering Professional Studies 2
-Extended Project

FACILITIES, EQUIPMENT AND SUPPORT

To support your learning, we hold regular MSc group meetings where any aspect of the programme, technical or non-technical, can be discussed in an informal atmosphere. This allows you to raise any problems that you would like to have addressed and encourages peer-based learning and general group discussion.

We provide computing support with any specialised software required during the programme, for example, Matlab.

The Department’s student common room is also covered by the university’s open-access wireless network, which makes it a very popular location for individual and group work using laptops and mobile devices. There is also a Faculty quiet room for individual study.

We pride ourselves on the many opportunities that we provide to visit collaborating hospitals. These enable you to see first-hand demonstrations of medical imaging facilities and to benefit from lectures by professional practitioners.

To support material presented during the programme, you will also undertake a selection of ultrasound and radiation detection experiments, hosted by our sister MSc programme in Medical Physics.

EDUCATIONAL AIMS OF THE PROGRAMME

The taught postgraduate Degree Programmes of the Department are intended both to assist with professional career development within the relevant industry and, for a small number of students, to serve as a precursor to academic research.

Our philosophy is to integrate the acquisition of core engineering and scientific knowledge with the development of key practical skills (where relevant).

To fulfil these objectives, the programme aims to:
-Attract well-qualified entrants, with a background in Electronic Engineering, Physical Sciences, Mathematics, Computing & Communications, from the UK, Europe and overseas
-Provide participants with advanced knowledge, practical skills and understanding applicable to the MSc degree
-Develop participants' understanding of the underlying science, engineering, and technology, and enhance their ability to relate this to industrial practice
-Develop participants' critical and analytical powers so that they can effectively plan and execute individual research/design/development projects
-Provide a high level of flexibility in programme pattern and exit point
-Provide students with an extensive choice of taught modules, in subjects for which the Department has an international and UK research reputation

PROGRAMME LEARNING OUTCOMES

The programme provides opportunities for students to develop and demonstrate knowledge and understanding, skills, qualities and other attributes in the following areas:

General transferable skills
-Be able to use computers and basic IT tools effectively
-Information retrieval. Be able to retrieve information from written and electronic sources
-Be able to apply critical but constructive thinking to received information
-Be able to study and learn effectively
-Be able to communicate effectively in writing and by oral presentations
-Be able to present quantitative data effectively, using appropriate methods
-Be able to manage own time and resources
-Be able to develop, monitor and update a plan, in the light of changing circumstances
-Be able to reflect on own learning and performance, and plan its development/improvement, as a foundation for life-long learning

Underpinning learning
-Know and understand scientific principles necessary to underpin their education in electronic and electrical engineering, to enable appreciation of its scientific and engineering content, and to support their understanding of historical, current and future developments
-Know and understand the mathematical principles necessary to underpin their education in electronic and electrical engineering and to enable them to apply mathematical methods, tools and notations proficiently in the analysis and solution of engineering problems
-Be able to apply and integrate knowledge and understanding of other engineering disciplines to support study of electronic and electrical engineering

Engineering problem-solving
-Understand electronic and electrical engineering principles and be able to apply them to analyse key engineering processes
-Be able to identify, classify and describe the performance of systems and components through the use of analytical methods and modelling techniques
-Be able to apply mathematical and computer-based models to solve problems in electronic and electrical engineering, and be able to assess the limitations of particular cases
-Be able to apply quantitative methods relevant to electronic and electrical engineering, in order to solve engineering problems
-Understand and be able to apply a systems approach to electronic and electrical engineering problems

Engineering tools
-Have relevant workshop and laboratory skills
-Be able to write simple computer programs, be aware of the nature of microprocessor programming, and be aware of the nature of software design
-Be able to apply computer software packages relevant to electronic and electrical engineering, in order to solve engineering problems

Technical expertise
-Know and understand the facts, concepts, conventions, principles, mathematics and applications of the range of electronic and electrical engineering topics he/she has chosen to study
-Know the characteristics of particular materials, equipment, processes or products
-Have thorough understanding of current practice and limitations, and some appreciation of likely future developments
-Be aware of developing technologies related to electronic and electrical engineering
-Have comprehensive understanding of the scientific principles of electronic engineering and related disciplines
-Have comprehensive knowledge and understanding of mathematical and computer models relevant to electronic and electrical engineering, and an appreciation of their limitations
-Know and understand, at Master's level, the facts, concepts, conventions, principles, mathematics and applications of a range of engineering topics that he/she has chosen to study
-Have extensive knowledge of a wide range of engineering materials and components
-Understand concepts from a range of areas including some from outside engineering, and be able to apply them effectively in engineering projects

Societal and environmental content
-Understand the requirement for engineering activities to promote sustainable development
-Be aware of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety and risk (including environmental risk issues
-Understand the need for a high level of professional and ethical conduct in engineering

Employment context
-Know and understand the commercial and economic context of electronic and electrical engineering processes
-Understand the contexts in which engineering knowledge can be applied (e.g. operations and management, technology development, etc.)
-Understand appropriate codes of practice and industry standards
-Be aware of quality issues
-Be able to apply engineering techniques taking account of a range of commercial and industrial constraints
-Understand the basics of financial accounting procedures relevant to engineering project work
-Be able to make general evaluations of commercial risks through some understanding of the basis of such risks
-Be aware of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety and risk (including environmental risk) issues

Research and development
-Understand the use of technical literature and other information sources
-Be aware of the need, in appropriate cases, for experimentation during scientific investigations and during engineering development
-Be able to use fundamental knowledge to investigate new and emerging technologies
-Be able to extract data pertinent to an unfamiliar problem, and employ this data in solving the problem, using computer-based engineering tools when appropriate
-Be able to work with technical uncertainty

Design
-Understand the nature of the engineering design process
-Investigate and define a problem and identify constraints, including environmental and sustainability limitations, and health and safety and risk assessment issues
-Understand customer and user needs and the importance of considerations such as aesthetics
-Identify and manage cost drivers
-Use creativity to establish innovative solutions
-Ensure fitness for purpose and all aspects of the problem including production, operation, maintenance and disposal
-Manage the design process and evaluate outcomes
-Have wide knowledge and comprehensive understanding of design processes and methodologies and be able to apply and adapt them in unfamiliar situations
-Be able to generate an innovative design for products, systems, components or processes, to fulfil new needs

Project management
-Be able to work as a member of a team
-Be able to exercise leadership in a team
-Be able to work in a multidisciplinary environment
-Know about management techniques that may be used to achieve engineering objectives within the commercial and economic context of engineering processes
-Have extensive knowledge and understanding of management and business practices, and their limitations, and how these may be applied appropriately

GLOBAL OPPORTUNITIES

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.

Read less
Our Medical Physics MSc programme is well-established and internationally renowned. We are accredited by IPEM (Institute of Physics and Engineering in Medicine) and we have trained some 1,000 medical physicists, so you can look forward to high-quality teaching during your time at Surrey. Read more
Our Medical Physics MSc programme is well-established and internationally renowned. We are accredited by IPEM (Institute of Physics and Engineering in Medicine) and we have trained some 1,000 medical physicists, so you can look forward to high-quality teaching during your time at Surrey.

PROGRAMME OVERVIEW

The syllabus for the MSc in Medical Physics is designed to provide the knowledge, skills and experience required for a modern graduate medical physicist, placing more emphasis than many other courses on topics beyond ionising radiation (X-rays and radiotherapy).

PROGRAMME STRUCTURE

This programme is studied full-time over two academic years. It consists of ten taught modules and a dissertation project. The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.
-Radiation Physics
-Radiation Measurement
-Experimental and Professional Skills for Medical Physics
-Introduction to Biology and Radiation Biology
-Therapy Physics
-Diagnostic Applications of Ionising Radiation Physics
-Non-ionising Radiation Imaging
-Extended Group Project
-Research Project

EDUCATIONAL AIMS OF THE PROGRAMME

The primary aim of the programme is to provide a high quality postgraduate level qualification in Physics that is fully compatible with the spirit and the letter of the Bologna Accord.

PROGRAMME LEARNING OUTCOMES

The programme provides opportunities for students to develop and demonstrate knowledge and understanding, skills, qualities and other attributes in the following areas:
-Concepts and theories: Students will be able to demonstrate a systematic understanding of the concepts, theories and ideas of a specialized field in physics in Radiation Physics through the taught elements of one of the component MSc programmes MSc in Medical Physics.
-Instrumentation and materials: Students will understand the operation, function and performance of the key radiation detection devices and technologies or principles of the physics relevant to applied radiation physics, in particular medical applications.
-Methods and best practices: Students will become fully acquainted with the scientific methods and best practices of physics and exposed to a specialized field described in the handbook documents of the validated MSc in Medical Physics.

During their 60-credit Research Project students will gain further practical, analytical or programming abilities through working on a more extended investigation. This may be an experiment- or modelling-based project, for which the student will be encouraged to propose and set in place original approaches.

The dissertation required at the end of the Research Project has the objective of encouraging students to write clearly and express their understanding of the work, thereby developing the required skills of scientific writing.

Knowledge and understanding
-Knowledge of physics, technology and processes in the subject of the course and the ability to apply these in the context of the course
-Ability to research problems involving innovative practical or theoretical work
-Ability to formulate ideas and response to problems, refine or expand knowledge in response to specific ideas or problems and communicate these ideas and responses
-Ability to evaluate/argue alternative solutions and strategies independently and assess/report on own/others work with justification

Intellectual / cognitive skills
-The ability to plan and execute, under supervision, an experiment or theoretical investigation, analyse critically the results and draw valid conclusions
-Students should be able to evaluate the level of uncertainty in their results, understand the significance of error analysis and be able to compare their theoretical (experimental) results with expected experimental (theoretical) outcomes, or with published data
-They should be able to evaluate the significance of their results in this context
-The ability to deal with complex issues both systematically and creatively, make sound judgements in the absence of complete data, and communicate their conclusions clearly to specialist and non-specialist audiences.

Professional practical skills
-Technical mastery of the scientific and technical information presented and the ability to interpret this in the professional context.
-Ability to plan projects and research methods in the subject of the course.
-Understand and be able to promote the scientific and legal basis of the field through peer and public communication.
-Aware of public concern and ethical issues in radiation and environmental protection.
-Able to formulate solutions in dialogue with peers, mentors and others.

Key / transferable skills
-Identify, assess and resolve problems arising from material in lectures and during experimental/research activities
-Make effective use of resources and interaction with others to enhance and motivate self –study
-Make use of sources of material for development of learning and research; such as journals, books and the internet
-Take responsibility for personal and professional development
-Be self-reliant
-Responsibility for personal and professional development

Subject knowledge and skills
-A systematic understanding of Medical Physics in an academic and professional context, and a critical awareness of current problems and/or new insights, much of which is at, or informed by, the state of the art
-A comprehensive understanding of techniques applicable to research projects in Medical Physics
-Familiarity with generic issues in management and safety and their application to Medical Physics in a professional context

Core academic skills
-The ability to plan and execute under supervision, an experiment or investigation, analyse critically the results and draw valid conclusions (students should be able to evaluate the level of uncertainty in their results, understand the significance of error analysis and be able to compare these results with expected outcomes, theoretical predictions or with published data; they should be able to evaluate the significance of their results in this context)
-The ability to evaluate critically current research and advanced scholarship in the discipline
-The ability to deal with complex issues both systematically and creatively, make sound judgements in the absence of complete data, and communicate their conclusions clearly to specialist and non-specialist audiences

Personal and key skills
-The ability to communicate complex scientific ideas, the conclusions of an experiment, investigation or project concisely, accurately and informatively
-The ability to manage their own learning and to make use of appropriate texts, research articles and other primary sources

GLOBAL OPPORTUNITIES

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.

Read less
The MSc Physics Euromasters offers you the flexibility to tailor your studies according to your interests, building on the research strengths of our friendly Department, and the supportive environment that we provide for our students. Read more
The MSc Physics Euromasters offers you the flexibility to tailor your studies according to your interests, building on the research strengths of our friendly Department, and the supportive environment that we provide for our students.

We collaborate with a variety of partners across the academic, public and industry communities, including the National Physical Laboratory.

PROGRAMME OVERVIEW

You will select modules from a wide range of fundamental and applied physics topics. The application-focused modules are co-taught by practitioners in public service and industry to ensure that students gain real-world insight.

A module in research skills will prepare you to apply your new knowledge and skills in an eleven-week research project undertaken during the summer.

Your chosen research projects can open the door to many careers, not just further research. They will give you tangible experience of working independently and communicating your work effectively and efficiently in written form: key requirements in many professions.

PROGRAMME STRUCTURE

This programme is studied full-time over one academic year and part-time students must study at least two taught technical modules per academic year. It consists of eight taught modules and a dissertation.

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.
-Introduction to Biology and Radiation Biology
-Radiation Physics
-Radiation Measurement
-Detection Instrumentation
-Radiation Laboratory Skills
-Experimental and Professional Skills for Medical Physics
-Research Skills
-Non-linear Physics
-Topics in Theoretical Physics
-Imaging and Remote Sensing
-Diagnostic Applications of Ionising Radiation Physics
-Radiation Protection
-Extended Group Project
-Therapy Physics
-Non-ionising Radiation Imaging
-Nuclear Power and Non-ionising Radiation
-Environmental Physics and Environmental Protection
-Astrophysical Dynamics
-Quantum Magnetism and Superconductivity
-Advances in Nanophotonics
-Research Project and Dissertation
-Special Relativity
-Modern Analytical Techniques
-Nuclear Astrophysics
-Light and Matter
-Advanced Quantum Physics
-Cosmology and Galaxy Formation
-Semiconductor Physics and Technology

EDUCATIONAL AIMS OF THE PROGRAMME

The primary aim of the programme is to provide a high quality postgraduate level qualification in physics.

PROGRAMME LEARNING OUTCOMES

Students will:
-Be able to demonstrate an advanced understanding of theories and ideas in a sub- discipline of Physics
-Have insight into current topics and problems of that sub-discipline in a professional and/or academic context
-Be able to apply their knowledge and practical understanding of scientific methodology in their chosen research topic (e.g. experimental techniques, simulation tools, developing theoretical models etc.)
-Analyse, evaluate and interpret data produced and/or summarised in the literature in their chosen area of speciality
-Be able to carry out a scientific investigation under the guidance and advice of their supervisor
-Acquire, analyse, interpret and draw conclusions from their findings with the appropriate numerical methods and due consideration to uncertainties; they will also be able to critically evaluate the significance of their conclusions, strengths and weaknesses of their study in the context of up-to- date literature relevant to their research topic and present their work in written form to the scientific audience of their speciality in a professional and concise manner

Throughout the programme, students will develop the ability to manage their own learning in terms of time management as well as identifying and accessing the resources required for their academic study. The different learning outcomes of the potential awards may be summarised as follows:

Subject knowledge and skills
-A systematic understanding of their chosen area of specialisation in an academic and professional context together with a critical awareness of current problems and / or new insights, much of which is at, or informed by the state of the art
-A comprehensive understanding of techniques applicable to their own research project
-Originality in the application of knowledge, together with a practical understanding of radiation-based, experimental research projects
-An ability to evaluate and objectively interpret experimental data in their chosen topic of specialisation
-Familiarity with generic issues in management and safety and their application in a professional context

Core academic skills
-The ability to plan and execute under supervision, an experiment or investigation and to analyse critically the results and draw valid conclusions from them
-The ability to evaluate the level of uncertainty in results, understand the significance of uncertainty analysis and be able to compare these results with expected outcomes, theoretical predictions and/or with published data, along with the ability to evaluate the significance of results in this context
-The ability to evaluate critically current research and advanced scholarship in their chosen discipline of specialisation
-The ability to deal with complex issues both systematically and creatively, make sound judgements in the absence of complete data, and communicate their conclusions clearly to specialist and non-specialist audiences

Personal and key skills
-The ability to communicate complex scientific ideas, the conclusions of an experiment, investigation or project concisely, accurately and informatively
-The ability to manage their own learning and to make use of appropriate texts, research articles and other primary sources
-Responsibility for personal and professional development
-The ability to use external mentors for personal / professional purposes

Knowledge and understanding
-Knowledge of physics, technology and processes in the subject of the course and the ability to apply these in the context of the course
-Ability to research problems involving innovative practical or theoretical work
-Ability to formulate ideas and response to problems, refine or expand knowledge in response to specific ideas or problems and communicate these ideas and responses
-Ability to evaluate/argue alternative solutions and strategies independently and assess/report on own/others work with justification

Intellectual / cognitive skills
-The ability to plan and execute, under supervision, an experiment or theoretical investigation, analyse critically the results and draw valid conclusions
-Students should be able to evaluate the level of uncertainty in their results, understand the significance of error analysis and be able to compare their theoretical (experimental) results with expected experimental (theoretical) outcomes, or with published data
-They should be able to evaluate the significance of their results in this context
-The ability to deal with complex issues both systematically and creatively, make sound judgements in the absence of complete data, and communicate their conclusions clearly to specialist and non-specialist audiences

Professional practical skills
-Technical mastery of the scientific and technical information presented and the ability to interpret this in the professional context
-Ability to plan projects and research methods in the subject of the course
-Understand and be able to promote the scientific and legal basis of the field through peer and public communication
-Aware of public concern and ethical issues in radiation and environmental protection
-Able to formulate solutions in dialogue with peers, mentors and others

Key / transferable skills
-Identify, assess and resolve problems arising from material in lectures and during experimental/research activities
-Make effective use of resources and interaction with others to enhance and motivate self –study
-Make use of sources of material for development of learning and research; such as journals, books and the internet
-Take responsibility for personal and professional development
-Be self-reliant
-Responsibility for personal and professional development

GLOBAL OPPORTUNITIES

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.

Read less
The course will provide a robust and wide-reaching education in fundamental and applied cancer biology, and focused training in laboratory research and associated methodology. Read more
The course will provide a robust and wide-reaching education in fundamental and applied cancer biology, and focused training in laboratory research and associated methodology.

Why study Cancer Biology at Dundee?

The MRes Cancer Biology is a research-centred taught Masters programme providing a focused training in molecular cancer research. It covers both the fundamental and translational science of carcinogenesis, cancer biology, diagnosis and therapy.

The programme delivers outstanding research-focused teaching from internationally-renowned scientists and clinicians.

Dundee University is internationally renowned for the quality of its cancer research and has over 50 cancer research groups: current funding for cancer research is about £40 million from research councils and charities. In 2009 the university became the first Scottish university to be awarded Cancer Centre status by the CRUK.

What's so good about studying Cancer Biology at Dundee?

The MRes Cancer Biology has been developed from the innovative collaboration between the College of Medicine, Dentistry and Nursing and the School of Life Sciences, and it complements the establishment of the Cancer Research UK (CRUK) Centre here in Dundee.

The Dundee Cancer Centre aims to enhance cancer research and apply discoveries to improve patient care. Key to this is training the next generation of cancer researchers.

Areas of particular strength at the University of Dundee are in surgical oncology for breast and colon cancer, radiation biology and clinical oncology, skin cancer and pharmacogenomics. Areas of strength in basic cancer biology are DNA replication, chromosome biology and the cell cycle, cell signalling and targets for drug discovery.

Teaching and Assessment

This course is taught by staff based in the College of Medicine, Dentistry and Nursing and the School of Life Sciences.

The MRes will be taught full-time over one year (September to August).

How you will be taught

The course will be taught through a combination of face-to-face lectures, tutorials, discussion group work and journal clubs, self-directed study and supervised laboratory research.

What you will study

The MRes degree course is taught full-time over three semesters.

The first semester provides in-depth teaching and directed study on the molecular biology of cancer, and covers:

Basic cell and molecular biology, and introduction to cancer biology
Cell proliferation, cell signalling and cancer
Cancer cell biology
Carcinogenesis, cancer treatment and prevention
Specific training in research methodology and critical analysis

Students will also be required to take part in a journal club to further develop their critical review skills.

In semesters two and three students will be individually guided to focus on a specific cancer research topic which will be the subject of a literature review and associated laboratory research project. The research project is based in laboratories with state-of-the-art facilities, and under the leadership of world-class researchers.

How you will be assessed

Exams on the taught element of the programme will be held at the end of semester one. Essays and assignments will also contribute to the final mark, and the dissertation will be assessed through the production of a thesis and a viva exam.

Places on the course are limited, so early applications are strongly encouraged.
Apply early to avoid disappointment.
Follow us on Twitter to keep up with news from the MRes Cancer Biology @Mrescancerbiol

Read less
Overview. The Master of Medical Physics is the entry level qualification that medical physicists have as clinical physical scientists. Read more
Overview
The Master of Medical Physics is the entry level qualification that medical physicists have as clinical physical scientists. It provides you with the tools to apply your knowledge and training to many different areas of medicine including the treatment of cancer, diagnostic imaging, physiological monitoring and medical electronics.

Our postgraduate medical physics program is designed to meet the growing global demand for graduate physical scientists with the specialised knowledge, skills and expertise to work within a clinical setting in the highly scientific and technical environment of medical physics. The University of Sydney Medical Physics Program offers you a wide variety of coursework units of study in radiation physics, nuclear physics, radiation dosimetry, anatomy and biology, nuclear medicine, radiotherapy physics, medical imaging physics, image processing, radiation biology, health physics and research methodology.

Sydney advantage
This program is offered through the School of Physics, which has access to world-class teaching and research facilities and provides highly experienced teaching and research staff in this discipline area through the Institute of Medical Physics and affiliated teaching hospitals and research institutes.

Program expectations
You will learn the latest knowledge and techniques enabling you to find employment in the areas of medical physics applied to the treatment of cancer, medical imaging, physiological monitoring and medical electronics.

To ask a question about this course, visit http://sydney.edu.au/internationaloffice/

Read less
The MSc Physics offers you the flexibility to tailor your studies according to your interests, building on the research strengths of our friendly Department, and the supportive environment that we provide for our students. Read more
The MSc Physics offers you the flexibility to tailor your studies according to your interests, building on the research strengths of our friendly Department, and the supportive environment that we provide for our students.

We collaborate with a variety of partners across the academic, public and industry communities, including the National Physical Laboratory.

PROGRAMME OVERVIEW

You will select modules from a wide range of fundamental and applied physics topics. The application-focused modules are co-taught by practitioners in public service and industry to ensure that students gain real-world insight.

A module in research skills will prepare you to apply your new knowledge and skills in an eleven-week research project undertaken during the summer.

Your chosen research projects can open the door to many careers, not just further research. They will give you tangible experience of working independently and communicating your work effectively and efficiently in written form: key requirements in many professions.

Why not discover more about the subject in our video?

PROGRAMME STRUCTURE

This programme is studied full-time over one academic year and part-time students must study at least two taught technical modules per academic year. It consists of eight taught modules and a dissertation. The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.
-Introduction to Biology and Radiation Biology
-Radiation Physics
-Radiation Measurement
-Detection Instrumentation
-Radiation Laboratory Skills
-Experimental and Professional Skills for Medical Physics
-Research Skills
-Non-linear Physics
-Topics in Theoretical Physics
-Imaging and Remote Sensing
-Diagnostic Applications of Ionising Radiation Physics
-Radiation Protection
-Extended Group Project
-Therapy Physics
-Non-ionising Radiation Imaging
-Nuclear Power and Non-ionising Radiation
-Environmental Physics and Environmental Protection
-Astrophysical Dynamics
-Quantum Magnetism and Superconductivity
-Advances in Nanophotonics
-Research Project and Dissertation
-Special Relativity
-Modern Analytical Techniques
-Nuclear Astrophysics
-Light and Matter
-Advanced Quantum Physics
-Cosmology and Galaxy Formation
-Semiconductor Physics and Technology

EDUCATIONAL AIMS OF THE PROGRAMME

The primary aim of the programme is to provide a high quality postgraduate level qualification in physics.

PROGRAMME LEARNING OUTCOMES

Students will:
-Be able to demonstrate an advanced understanding of theories and ideas in a sub- discipline of Physics
-Have insight into current topics and problems of that sub-discipline in a professional and/or academic context
-Be able to apply their knowledge and practical understanding of scientific methodology in their chosen research topic (e.g. experimental techniques, simulation tools, developing theoretical models etc.)
-Analyse, evaluate and interpret data produced and/or summarised in the literature in their chosen area of speciality
-Be able to carry out a scientific investigation under the guidance and advice of their supervisor
-Acquire, analyse, interpret and draw conclusions from their findings with the appropriate numerical methods and due consideration to uncertainties; they will also be able to critically evaluate the significance of their conclusions, strengths and weaknesses of their study in the context of up-to- date literature relevant to their research topic and present their work in written form to the scientific audience of their speciality in a professional and concise manner
-Throughout the programme, students will develop the ability to manage their own learning in terms of time management as well as identifying and accessing the resources required for their academic study

Subject knowledge and skills
-A systematic understanding of their chosen area of specialisation in an academic and professional context together with a critical awareness of current problems and / or new insights, much of which is at, or informed by the state of the art
-A comprehensive understanding of techniques applicable to their own research project
Originality in the application of knowledge, together with a practical understanding of radiation-based, experimental research projects
-An ability to evaluate and objectively interpret experimental data in their chosen topic of specialisation
-Familiarity with generic issues in management and safety and their application in a professional context

Core academic skills
-The ability to plan and execute under supervision, an experiment or investigation and to analyse critically the results and draw valid conclusions from them
-The ability to evaluate the level of uncertainty in results, understand the significance of uncertainty analysis and be able to compare these results with expected outcomes, theoretical predictions and/or with published data, along with the ability to evaluate the significance of results in this context
-The ability to evaluate critically current research and advanced scholarship in their chosen discipline of specialisation
-The ability to deal with complex issues both systematically and creatively, make sound judgements in the absence of complete data, and communicate their conclusions clearly to specialist and non-specialist audiences

Personal and key skills
-The ability to communicate complex scientific ideas, the conclusions of an experiment, investigation or project concisely, accurately and informatively
-The ability to manage their own learning and to make use of appropriate texts, research articles and other primary sources
-Responsibility for personal and professional development
-The ability to use external mentors for personal / professional purposes
-Knowledge and understanding
-Knowledge of physics, technology and processes in the subject of the course and the ability to apply these in the context of the course
-Ability to research problems involving innovative practical or theoretical work
-Ability to formulate ideas and response to problems, refine or expand knowledge in response to specific ideas or problems and communicate these ideas and responses
-Ability to evaluate/argue alternative solutions and strategies independently and assess/report on own/others work with justification

Intellectual / cognitive skills
-The ability to plan and execute, under supervision, an experiment or theoretical investigation, analyse critically the results and draw valid conclusions
-Students should be able to evaluate the level of uncertainty in their results, understand the significance of error analysis and be able to compare their theoretical (experimental) results with expected experimental (theoretical) outcomes, or with published data
-They should be able to evaluate the significance of their results in this context
-The ability to deal with complex issues both systematically and creatively, make sound judgements in the absence of complete data, and communicate their conclusions clearly to specialist and non-specialist audiences

Professional practical skills
-Technical mastery of the scientific and technical information presented and the ability to interpret this in the professional context
-Ability to plan projects and research methods in the subject of the course
-Understand and be able to promote the scientific and legal basis of the field through peer and public communication
-Aware of public concern and ethical issues in radiation and environmental protection
-Able to formulate solutions in dialogue with peers, mentors and others

Key / transferable skills
-Identify, assess and resolve problems arising from material in lectures and during experimental/research activities
-Make effective use of resources and interaction with others to enhance and motivate self –study
-Make use of sources of material for development of learning and research; such as journals, books and the internet
-Take responsibility for personal and professional development
-Be self-reliant
-Responsibility for personal and professional development

GLOBAL OPPORTUNITIES

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.

Read less
Our Medical Physics MSc programme is well-established and internationally renowned. We are accredited by IPEM (Institute of Physics and Engineering in Medicine) and we have trained some 1,000 medical physicists, so you can look forward to high-quality teaching during your time at Surrey. Read more
Our Medical Physics MSc programme is well-established and internationally renowned. We are accredited by IPEM (Institute of Physics and Engineering in Medicine) and we have trained some 1,000 medical physicists, so you can look forward to high-quality teaching during your time at Surrey.

PROGRAMME OVERVIEW

The syllabus for the MSc in Medical Physics is designed to provide the knowledge, skills and experience required for a modern graduate medical physicist, placing more emphasis than many other courses on topics beyond ionising radiation (X-rays and radiotherapy).

Examples of other topics include magnetic resonance imaging and the use of lasers in medicine.

You will learn the theoretical foundations underpinning modern imaging and treatment modalities, and will gain a set of experimental skills essential in a modern medical physicist’s job.

These skills are gained through experimental sessions in the physics department and practical experiences at collaborating hospitals using state-of-the-art clinical facilities.

PROGRAMME STRUCTURE

This programme is studied full-time over two academic years. It consists of ten taught modules and a dissertation project. The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.
-Radiation Physics
-Radiation Measurement C
-Experimental and Professional Skills for Medical Physics
-Introduction to Biology and Radiation Biology
-Therapy Physics
-Diagnostic Applications of Ionising Radiation Physics
-Non-ionising Radiation Imaging
-Extended Group Project
-Research Skills (Euromasters)
-Outreach and Public Engagement
-Euromaster Dissertation Project

EDUCATIONAL AIMS OF THE PROGRAMME

The primary aim of the programme is to provide a high quality postgraduate level qualification in Physics that is fully compatible with the spirit and the letter of the Bologna Accord.

PROGRAMME LEARNING OUTCOMES

The programme provides opportunities for students to develop and demonstrate knowledge and understanding, skills, qualities and other attributes in the following areas:
-Concepts and theories: Students will be able to demonstrate a systematic understanding of the concepts, theories and ideas of a specialized field in physics in Radiation Physics through the taught elements of one of the component MSc programmes MSc in Medical Physics.
-Instrumentation and materials: Students will understand the operation, function and performance of the key radiation detection devices and technologies or principles of the physics relevant to applied radiation physics, in particular medical applications.
-Methods and best practices: Students will become fully acquainted with the scientific methods and best practices of physics and exposed to a specialized field described in the handbook documents of the validated MSc in Medical Physics.

In the second year of the programme the outcomes are linked closely to a unique 8-month research project (two months preparation and research skills development, 5 months research, and 1 month reporting), students will apply their acquired research skills to an individual research project in a Research Group.

During the first two months of year two of the programme students will further extend their self-confidence in their practical, analytical and programming abilities; their ability to communicate; realise that they can take on responsibility for a task in the Research Group and see it through.

An important element is the assignment of responsibility for a substantial research project which is aimed to be of a standard suitable for publication in an appropriate professional journal.

It is expected that the student will approach the project in the manner of a new Research Student, e.g. be prepared to work beyond the normal working day on the project, input ideas, demonstrate initiative and seek out relevant information.

Thereby the students will acquire proficiency in research skills, including (but not limited to) careful planning, time scheduling, communication with colleagues and at workshops, keeping a detailed notebook, designing and testing equipment, taking and testing data and analysis.

The dissertation required at the end of the Research Project has the objective of encouraging students to write clearly and express their understanding of the work, thereby developing the required skills of scientific writing.

During the Research Project as a whole it is expected that the students will further develop communication skills through participation in group meetings, preparation of in-house reports, giving oral presentations and show initiative in acquiring any necessary new skills.

The oral presentation at the end of the Research Project is a chance to show their oral presentation skills and ability to think independently.

Knowledge and understanding
-Knowledge of physics, technology and processes in the subject of the course and the ability to apply these in the context of the course
-Ability to research problems involving innovative practical or theoretical work
-Ability to formulate ideas and response to problems, refine or expand knowledge in response to specific ideas or problems and communicate these ideas and responses
-Ability to evaluate/argue alternative solutions and strategies independently and assess/report on own/others work with justification

Intellectual / cognitive skills
-The ability to plan and execute, under supervision, an experiment or theoretical investigation, analyse critically the results and draw valid conclusions
-Students should be able to evaluate the level of uncertainty in their results, understand the significance of error analysis and be able to compare their theoretical (experimental) results with expected experimental (theoretical) outcomes, or with published data
-They should be able to evaluate the significance of their results in this context
-The ability to deal with complex issues both systematically and creatively, make sound judgements in the absence of complete data, and communicate their conclusions clearly to specialist and non-specialist audiences.

Professional practical skills
-Technical mastery of the scientific and technical information presented and the ability to interpret this in the professional context.
-Ability to plan projects and research methods in the subject of the course.
-Understand and be able to promote the scientific and legal basis of the field through peer and public communication.
-Aware of public concern and ethical issues in radiation and environmental protection.
-Able to formulate solutions in dialogue with peers, mentors and others.

Key / transferable skills
-Identify, assess and resolve problems arising from material in lectures and during experimental/research activities
-Make effective use of resources and interaction with others to enhance and motivate self –study
-Make use of sources of material for development of learning and research; such as journals, books and the internet
-Take responsibility for personal and professional development
-Be self-reliant
-Responsibility for personal and professional development.

Subject knowledge and skills
-A systematic understanding of Medical Physics in an academic and professional context, and a critical awareness of current problems and/or new insights, much of which is at, or informed by, the state of the art
-A comprehensive understanding of techniques applicable to research projects in Medical Physics
-Familiarity with generic issues in management and safety and their application to Medical Physics in a professional context

Core academic skills
-The ability to plan and execute under supervision, an experiment or investigation, analyse critically the results and draw valid conclusions (students should be able to evaluate the level of uncertainty in their results, understand the significance of error analysis and be able to compare these results with expected outcomes, theoretical predictions or with published data; they should be able to evaluate the significance of their results in this context)
-The ability to evaluate critically current research and advanced scholarship in the discipline
-The ability to deal with complex issues both systematically and creatively, make sound judgements in the absence of complete data, and communicate their conclusions clearly to specialist and non-specialist audiences

Personal and key skills
-The ability to communicate complex scientific ideas, the conclusions of an experiment, investigation or project concisely, accurately and informatively
-The ability to manage their own learning and to make use of appropriate texts, research articles and other primary sources

GLOBAL OPPORTUNITIES

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.

Read less
At the University of Surrey, our MSc in Nuclear Science and Applications is a new and innovative programme, taught by a combination of world-leading nuclear physics academics and leading experts from the UK’s nuclear industries. Read more
At the University of Surrey, our MSc in Nuclear Science and Applications is a new and innovative programme, taught by a combination of world-leading nuclear physics academics and leading experts from the UK’s nuclear industries.

PROGRAMME OVERVIEW

Drawing upon our existing expertise and supported by our MSc in Radiation and Environmental Protection, one of UK’s longest running programmes in its field, our programme will give you a thorough grounding in nuclear science and its applications. This new programmes differs from our existing MSc in Radiation and Environmental Protection as both the group project and the summer dissertation project will be on nuclear science and application topics.

The substantial practical element of this programme enables you to relate taught material to real-world applications. Formal lectures are complemented with work in specialist radiation laboratories that were recently refurbished as part of a £1m upgrade to our facilities.

Here you will work with a wide range of radioactive sources and radiation detectors. There is also an extended project in the spring and an eleven-week MSc dissertation project in the summer and students will have the opportunity to complete their dissertation on a topic specialising in nuclear research.

PROGRAMME STRUCTURE

This programme is studied full-time over one academic year. Part-time students study over two academic years, within which the workload is evenly distributed. The course consists of eight taught modules and a dissertation. The following modules are indicative, reflecting the information available at the time of publication. Please note that modules may be subject to teaching availability and/or student demand.
-Radiation Physics
-Radiation Measurement
-Introduction to Biology and Radiation Biology
-Radiation Laboratory Skills
-Extended Group Project
-Radiation Protection and Nuclear Safety
-Nuclear Metrology
-Environment and Legislation
-Research Project and Dissertation

CAREERS

Completion of this programme will result in strong job opportunities in the nuclear industry, a growing international industry.

The programme will also naturally lead into further study, such as completion of a PhD.

EDUCATIONAL AIMS OF THE PROGRAMME

The programme integrates the acquisition of core scientific knowledge with the development of key practical skills with a focus on professional career development within medical physics and radiation detection, and related industries.

The principle educational aims and outcomes of learning are to provide participants with advanced knowledge, practical skills and understanding applied to medical physics, radiation detection instrumentation, radiation and environmental practice in an industrial or medical context.

This is achieved by the development of the participants’ understanding of the underlying science and technology and by the participants gaining an understanding of the legal basis, practical implementation and organisational basis of medical physics and radiation measurement.

PROGRAMME LEARNING OUTCOMES

Knowledge and understanding
-A systematic understanding of Nuclear Science and Applications in an academic and professional context together with a critical awareness of current problems and / or new insights
-A comprehensive understanding of techniques applicable to their own research project in Nuclear Science and / or its application
-Originality in the application of knowledge, together with a practical understanding of radiation-based, experimental research projects
-An ability to evaluate and objectively interpret experimental data pertaining to radiation detection
-Familiarity with generic issues in management and safety and their application to nuclear science and applications in a professional context

Intellectual / cognitive skills
-The ability to plan and execute under supervision, an experiment or investigation and to analyse critically the results and draw valid conclusions from them. Students should be able to evaluate the level of uncertainty in their results, understand the significance of uncertainty analysis and be able to compare these results with expected outcomes, theoretical predictions and/or with published data. -Graduates should be able to evaluate the significance of their results in this context
-The ability to evaluate critically current research and advanced scholarship in the discipline of nuclear science
-The ability to deal with complex issues both systematically and creatively, make sound judgements in the absence of complete data, and communicate their conclusions clearly to specialist and non- specialist audiences

Professional practical skills
-The ability to communicate complex scientific ideas, the conclusions of an experiment, investigation or project concisely, accurately and informatively
-The ability to manage their own learning and to make use of appropriate texts, research articles and other primary sources
-Responsibility for personal and professional development. Ability to use external mentors for personal / professional purposes

Key / transferable skills
-Identify and resolve problems arising from lectures and experimental work
-Make effective use of resources and interaction with others to enhance and motivate self-study
-Make use of sources of material for development of learning and research such as journals, books and the internet
-Take responsibility for personal and professional development

Read less
The Department of Medical Biophysics, an interdisciplinary department with three fields—Cellular and Molecular Biology, Medical Physics, and Molecular and Structural Biology—is located primarily at the Princess Margaret Cancer Centre, the Toronto Medical Discovery Tower, and the Sunnybrook Research Institute. Read more
The Department of Medical Biophysics, an interdisciplinary department with three fields—Cellular and Molecular Biology, Medical Physics, and Molecular and Structural Biology—is located primarily at the Princess Margaret Cancer Centre, the Toronto Medical Discovery Tower, and the Sunnybrook Research Institute.

The department offers opportunities for research—leading to the Master of Science and Doctor of Philosophy degrees—in a variety of problems in medical science; projects which cut across the conventional boundaries of biology, physics, engineering, chemistry, and medicine are encouraged. The department emphasizes basic and applied research related to cancer. Projects include the following areas: tumour biology, radiobiology, membrane function, molecular interactions, gene expression, cell differentiation and growth control, viral and chemical carcinogenesis, cellular and molecular immunology, hemopoiesis, macromolecular structure via x-ray crystallography, NMR spectroscopy and electron microscopy, the physics and engineering of diagnostic imaging and radiation therapy, development of imaging and therapy systems using x-rays, ultrasound, nuclear magnetic resonance, light and electron optics.

Read less
The objective of this course is to introduce students to an inter-disciplinary approach to research, which utilises technologies and skills from a wide spectrum of scientific, engineering and clinical disciplines to address fundamental questions originating in biology and medicine. Read more

Course Objective

The objective of this course is to introduce students to an inter-disciplinary approach to research, which utilises technologies and skills from a wide spectrum of scientific, engineering and clinical disciplines to address fundamental questions originating in biology and medicine. During the course students will carry out a number of practicals. They will be introduced to selected advanced experimental techniques used in biomedical science and industry. The techniques include:
DNA-microarray and RT-PCR, Immunostaining and Confocal Microscopy, Scanning Electron Microscopy, Atomic Force Microscopy and Nano Hardness Tester, Mass Spectrometry, various chromatography methods and Infra-red spectroscopy.

Benefits of the Course

The programme offers the Biological Sciences graduate a means of achieving the mathematical, computational, and instrumentation skills necessary to work in biomedical science. Likewise the Physical Science/Engineering graduate will gain experience in aspects of cell biology, tissue engineering, and animal studies. The course work will draw mainly from courses already on offer to undergraduates in the Science faculty, but will also include new modules developed specifically for this course. Expertise from other research institutes and from industry will be used,where appropriate.

The course covers following areas:
Material Science and Biomaterials
Applied Biomedical Sciences
Cell & Molecular Biology: Advanced Technologies
Fundamental Concepts in Pharmacology
Human Body Structure
Protein Technology
Tissue Engineering
Bioinformatics
Radiation & Medical Physics
Molecular Medicine
Regulatory Compliance in Healthcare Manufacturing
Advanced Tissue Engineering
Introduction to Business
Scientific Writing

Career Opportunities

Graduates of the MSc in Biomedical Science with undergraduate degrees in engineering and science have gone on to work within the medical device and pharmaceutical industry, hospitals and academia.

Read less
This exciting, two year MSc programme is concerned with a wide range of biomedical imaging and sensing science and technology. Biomedical Imaging and Sensing is, in a broad sense, a set of competencies from engineering and sciences to support future quantitative biology and personalised medicine. Read more
This exciting, two year MSc programme is concerned with a wide range of biomedical imaging and sensing science and technology. Biomedical Imaging and Sensing is, in a broad sense, a set of competencies from engineering and sciences to support future quantitative biology and personalised medicine.

It will provide you with theoretical and practical knowledge to develop methods and systems for disease understanding, diagnosis, prognosis and therapeutics where imaging and sensing play a key role.

Core modules

Interdisciplinary Seminars in Biomedical Imaging and Sensing
Mathematics of Imaging Sciences
Scientific Software Development for Biomedical Imaging

Departmental optional modules

Advanced Signal Processing
Computer Vision, Biomedical Signals and Systems
Physiological Signals and Sensing; Physics of Light Microscopy of Cells and Tissues
Physics of Medical Imaging with Ionising Radiation
Physical Principles of Imaging: Radiation-Matter Interaction
Medical Image Computing
Biomaging with Light and Sound
Microscopy Image Analysis
Magnetic Resonance Imaging and Spectroscopy

Interdisciplinary optional modules

The programme allows you to explore some elective modules from interdisciplinary domains that relate to anatomy, physiology, cell biology, physics of the senses, and vision and neurosciences, among others.

Teaching and assessment

Research-led teaching from our department, and various interdisciplinary modules from other departments from the Faculty of Engineering and the Faculty of Medicine, Health and Dentistry.

Individual support for your research project and dissertation.

Assessment is by examination, a project, and coursework in the first year with future examinations and dissertation in your second year.

Read less
visit course pages for more information about the next Open Day at NHM on Wednesday 7 June 2017. Taxonomy and systematics provide the foundation for studying the great diversity of the living world. Read more

Open Day

visit course pages for more information about the next Open Day at NHM on Wednesday 7 June 2017.

Course Overview

Taxonomy and systematics provide the foundation for studying the great diversity of the living world. These fields are rapidly changing through new digital and molecular technologies. There is ever greater urgency for species identification and monitoring in virtually all the environmental sciences, and evolutionary ‘tree thinking’ is now applied widely in most areas of the life sciences.

This course provides in-depth training in the study of biodiversity based on the principles of phylogenetics, evolutionary biology, palaeobiology and taxonomy. The emphasis is on quantitative approaches and current methods in DNA-based phylogenetics, bioinformatics, and the use of digital collections.

Location

This course is a collaboration of Imperial College London (Silwood Park) with the Natural History Museum. This provides an exciting scientific environment of two institutions at the forefront of taxonomic and evolutionary research.

The MSc in Taxonomy and Biodiversity comprises two terms of taught modules, mostly based at the Natural History Museum, and covers core areas in biodiversity, palaeobiology, phylogenetics, molecular systematics, phylogenomics and taxonomic principles. This is followed by a 16-week laboratory or field-based research project at the NHM or Imperial College’s Silwood Park or South Kensington campuses.

Modules

• Taxonomy of major groups and the Tree-of-Life: An introduction of major branches of the Tree, including identification exercises, presented by NHM experts
• Statistics and Computing: A two-week intensive course at Silwood Park
• Field course: trapping and collecting techniques for terrestrial and aquatic ecosystems
• Phylogenetic Reconstruction: the principles of building phylogenetic trees
• Molecular Systematics: generating and analysing molecular data; model-based phylogenetics
• Phylogenomics: Genomic techniques for studying evolutionary processes and biodiversity
• Biodiversity (Concepts): speciation, radiation, macroevolution
•Biodiversity (Applied): Measuring biodiversity, geospatial analysis, collection management and biodiversity informatics
• Palaeobiology: Studying the fossil record and what we can learn for biodiversity

Post Study

Students on the course will become the new generation of taxonomists in the broadest sense. They will be familiar with these new tools, as well as the wider concepts of biodiversity science, evolutionary biology and genomics. Most importantly, students gain the abilities to work as an independent scientist and researcher, to be able to solve questions about the future of biodiversity and to communicate them to peers and the public.
Students have many options for future employment in evolutionary and ecological research labs in industry, government and non-governmental organisations, conservation, and scientific publishing and the media. The courses are an excellent starting point for PhD level careers, feeding into various Doctoral Training Programmes available at NHM and Imperial, or elsewhere.

Read less

Show 10 15 30 per page



Cookie Policy    X