• Coventry University Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • University of Glasgow Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • St Mary’s University, Twickenham Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
  • New College of the Humanities Featured Masters Courses
  • Cardiff University Featured Masters Courses
Middlesex University Featured Masters Courses
Cass Business School Featured Masters Courses
University of Worcester Featured Masters Courses
Leeds Beckett University Featured Masters Courses
Bath Spa University Featured Masters Courses
"radiation" AND "environm…×
0 miles

Masters Degrees (Radiation And Environmental Protection)

  • "radiation" AND "environmental" AND "protection" ×
  • clear all
Showing 1 to 9 of 9
Order by 
Established in 1972, Surrey's MSc in Radiation and Environmental Protection is one of the UK’s longest running programmes in the field of nuclear science and its applications. Read more
Established in 1972, Surrey's MSc in Radiation and Environmental Protection is one of the UK’s longest running programmes in the field of nuclear science and its applications.

The programme is taught by a combination of world-leading nuclear physics academics and leading experts from the UK’s radiological protection and nuclear industries.

PROGRAMME OVERVIEW

Our programme will give you a thorough grounding in the radiation and environmental protection aspects of nuclear physics.

This includes in-depth knowledge of radiation protection and showing you how the technical and organisational procedures of the discipline may be applied to the broader concept of environmental protection.

The substantial practical element of this programme enables you to relate taught material to real-world applications. Formal lectures are complemented with work in specialist radiation laboratories that were recently refurbished as part of a £1m upgrade to our facilities.

Here you will work with a wide range of radioactive sources and radiation detectors. There is also an extended project in the spring and an eleven-week MSc dissertation project in the summer.

PROGRAMME STRUCTURE

This programme is studied full-time over one academic year and part-time students must study at least two taught technical modules per academic year. It consists of eight taught modules and a dissertation.

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.
-Radiation Physics
-Radiation Measurement
-Nuclear Power & Non-ionising Radiation
-Introduction to Biology and Radiation Biology
-Radiation Protection
-Environmental Physics and Environmental Protection
-Extended Group Project
-Radiation Laboratory Skills
-Research Project and Dissertation

RESEARCH-LED TEACHING

The programme material is taught by a combination of academics from the Department of Physics at Surrey and specialists provided by industrial partners. The Surrey academics are part of the Centre for Nuclear and Radiation Physics which houses the largest academic nuclear physics research group in the UK.

In addition to the formal lectures for taught modules, the programme provides a wide range of experimental hands-on training. This includes a nine-week radiation physics laboratory which takes place in the specialist radiation laboratories within the Department of Physics at the University of Surrey.

These were recently refurbished as part of a £1 million upgrade to the departmental teaching infrastructure. Within the Department, we also have a common room and a departmental library, which contains copies of earlier MSc dissertations.

As well as the laboratory training, you will also undertake a research project at the beginning of the Spring semester as a precursor to the eleven-week research dissertation project which makes up the final part of the MSc.

There are many opportunities for both the spring research project and summer dissertation project to be taken in an external industrial environment.

CAREERS

The programme has produced over 500 UK and overseas graduates, many of whom have gone on to well-paid positions in companies in the nuclear and radiation sectors. In the UK we need to decommission old reactors and build new ones to provide a low-carbon source of energy.

This, together with, for example, the importance of radioisotopes in fields such as medicine, means that the career prospects of our graduates are excellent.

EDUCATIONAL AIMS OF THE PROGRAMME

The programme integrates the acquisition of core scientific knowledge with the development of key practical skills with a focus on professional career development within medical physics and radiation detection, and related industries.

The principle educational aims and outcomes of learning are to provide participants with advanced knowledge, practical skills and understanding applied to medical physics, radiation detection instrumentation, radiation and environmental practice in an industrial or medical context.

This is achieved by the development of the participants’ understanding of the underlying science and technology and by the participants gaining an understanding of the legal basis, practical implementation and organisational basis of medical physics and radiation measurement.

PROGRAMME LEARNING OUTCOMES

Knowledge and understanding
-A systematic understanding of Radiation and Environmental Protection in an academic and professional context together with a critical awareness of current problems and / or new insights
-A comprehensive understanding of techniques applicable to their own research project in Radiation and / or Environmental Protection
-Originality in the application of knowledge, together with a practical understanding of radiation-based, experimental research projects
-An ability to evaluate and objectively interpret experimental data pertaining to radiation detection
-Familiarity with generic issues in management and safety and their application to Radiation and Environmental Protection in a professional context

Intellectual / cognitive skills
-The ability to plan and execute under supervision, an experiment or investigation and to analyse critically the results and draw valid conclusions from them. Students should be able to evaluate the level of uncertainty in their results, understand the significance of uncertainty analysis and be able to compare these results with expected outcomes, theoretical predictions and/or with published data. -Graduates should be able to evaluate the significance of their results in this context
-The ability to evaluate critically current research and advanced scholarship in the discipline of radiation protection
-The ability to deal with complex issues both systematically and creatively, make sound judgements in the absence of complete data, and communicate their conclusions clearly to specialist and non- specialist audiences

Professional practical skills
-The ability to communicate complex scientific ideas, the conclusions of an experiment, investigation or project concisely, accurately and informatively
-The ability to manage their own learning and to make use of appropriate texts, research articles and other primary sources
-Responsibility for personal and professional development. Ability to use external mentors for personal / professional purposes

Key / transferable skills
-Identify and resolve problems arising from lectures and experimental work
-Make effective use of resources and interaction with others to enhance and motivate self-study
-Make use of sources of material for development of learning and research such as journals, books and the internet
-Take responsibility for personal and professional development

GLOBAL OPPORTUNITIES

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.

Read less
At the University of Surrey, our MSc in Nuclear Science and Applications is a new and innovative programme, taught by a combination of world-leading nuclear physics academics and leading experts from the UK’s nuclear industries. Read more
At the University of Surrey, our MSc in Nuclear Science and Applications is a new and innovative programme, taught by a combination of world-leading nuclear physics academics and leading experts from the UK’s nuclear industries.

PROGRAMME OVERVIEW

Drawing upon our existing expertise and supported by our MSc in Radiation and Environmental Protection, one of UK’s longest running programmes in its field, our programme will give you a thorough grounding in nuclear science and its applications. This new programmes differs from our existing MSc in Radiation and Environmental Protection as both the group project and the summer dissertation project will be on nuclear science and application topics.

The substantial practical element of this programme enables you to relate taught material to real-world applications. Formal lectures are complemented with work in specialist radiation laboratories that were recently refurbished as part of a £1m upgrade to our facilities.

Here you will work with a wide range of radioactive sources and radiation detectors. There is also an extended project in the spring and an eleven-week MSc dissertation project in the summer and students will have the opportunity to complete their dissertation on a topic specialising in nuclear research.

PROGRAMME STRUCTURE

This programme is studied full-time over one academic year. Part-time students study over two academic years, within which the workload is evenly distributed. The course consists of eight taught modules and a dissertation. The following modules are indicative, reflecting the information available at the time of publication. Please note that modules may be subject to teaching availability and/or student demand.
-Radiation Physics
-Radiation Measurement
-Introduction to Biology and Radiation Biology
-Radiation Laboratory Skills
-Extended Group Project
-Radiation Protection and Nuclear Safety
-Nuclear Metrology
-Environment and Legislation
-Research Project and Dissertation

CAREERS

Completion of this programme will result in strong job opportunities in the nuclear industry, a growing international industry.

The programme will also naturally lead into further study, such as completion of a PhD.

EDUCATIONAL AIMS OF THE PROGRAMME

The programme integrates the acquisition of core scientific knowledge with the development of key practical skills with a focus on professional career development within medical physics and radiation detection, and related industries.

The principle educational aims and outcomes of learning are to provide participants with advanced knowledge, practical skills and understanding applied to medical physics, radiation detection instrumentation, radiation and environmental practice in an industrial or medical context.

This is achieved by the development of the participants’ understanding of the underlying science and technology and by the participants gaining an understanding of the legal basis, practical implementation and organisational basis of medical physics and radiation measurement.

PROGRAMME LEARNING OUTCOMES

Knowledge and understanding
-A systematic understanding of Nuclear Science and Applications in an academic and professional context together with a critical awareness of current problems and / or new insights
-A comprehensive understanding of techniques applicable to their own research project in Nuclear Science and / or its application
-Originality in the application of knowledge, together with a practical understanding of radiation-based, experimental research projects
-An ability to evaluate and objectively interpret experimental data pertaining to radiation detection
-Familiarity with generic issues in management and safety and their application to nuclear science and applications in a professional context

Intellectual / cognitive skills
-The ability to plan and execute under supervision, an experiment or investigation and to analyse critically the results and draw valid conclusions from them. Students should be able to evaluate the level of uncertainty in their results, understand the significance of uncertainty analysis and be able to compare these results with expected outcomes, theoretical predictions and/or with published data. -Graduates should be able to evaluate the significance of their results in this context
-The ability to evaluate critically current research and advanced scholarship in the discipline of nuclear science
-The ability to deal with complex issues both systematically and creatively, make sound judgements in the absence of complete data, and communicate their conclusions clearly to specialist and non- specialist audiences

Professional practical skills
-The ability to communicate complex scientific ideas, the conclusions of an experiment, investigation or project concisely, accurately and informatively
-The ability to manage their own learning and to make use of appropriate texts, research articles and other primary sources
-Responsibility for personal and professional development. Ability to use external mentors for personal / professional purposes

Key / transferable skills
-Identify and resolve problems arising from lectures and experimental work
-Make effective use of resources and interaction with others to enhance and motivate self-study
-Make use of sources of material for development of learning and research such as journals, books and the internet
-Take responsibility for personal and professional development

Read less
Our Medical Physics MSc programme is well-established and internationally renowned. We are accredited by IPEM (Institute of Physics and Engineering in Medicine) and we have trained some 1,000 medical physicists, so you can look forward to high-quality teaching during your time at Surrey. Read more
Our Medical Physics MSc programme is well-established and internationally renowned. We are accredited by IPEM (Institute of Physics and Engineering in Medicine) and we have trained some 1,000 medical physicists, so you can look forward to high-quality teaching during your time at Surrey.

PROGRAMME OVERVIEW

The syllabus for the MSc in Medical Physics is designed to provide the knowledge, skills and experience required for a modern graduate medical physicist, placing more emphasis than many other courses on topics beyond ionising radiation (X-rays and radiotherapy).

PROGRAMME STRUCTURE

This programme is studied full-time over two academic years. It consists of ten taught modules and a dissertation project. The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.
-Radiation Physics
-Radiation Measurement
-Experimental and Professional Skills for Medical Physics
-Introduction to Biology and Radiation Biology
-Therapy Physics
-Diagnostic Applications of Ionising Radiation Physics
-Non-ionising Radiation Imaging
-Extended Group Project
-Research Project

EDUCATIONAL AIMS OF THE PROGRAMME

The primary aim of the programme is to provide a high quality postgraduate level qualification in Physics that is fully compatible with the spirit and the letter of the Bologna Accord.

PROGRAMME LEARNING OUTCOMES

The programme provides opportunities for students to develop and demonstrate knowledge and understanding, skills, qualities and other attributes in the following areas:
-Concepts and theories: Students will be able to demonstrate a systematic understanding of the concepts, theories and ideas of a specialized field in physics in Radiation Physics through the taught elements of one of the component MSc programmes MSc in Medical Physics.
-Instrumentation and materials: Students will understand the operation, function and performance of the key radiation detection devices and technologies or principles of the physics relevant to applied radiation physics, in particular medical applications.
-Methods and best practices: Students will become fully acquainted with the scientific methods and best practices of physics and exposed to a specialized field described in the handbook documents of the validated MSc in Medical Physics.

During their 60-credit Research Project students will gain further practical, analytical or programming abilities through working on a more extended investigation. This may be an experiment- or modelling-based project, for which the student will be encouraged to propose and set in place original approaches.

The dissertation required at the end of the Research Project has the objective of encouraging students to write clearly and express their understanding of the work, thereby developing the required skills of scientific writing.

Knowledge and understanding
-Knowledge of physics, technology and processes in the subject of the course and the ability to apply these in the context of the course
-Ability to research problems involving innovative practical or theoretical work
-Ability to formulate ideas and response to problems, refine or expand knowledge in response to specific ideas or problems and communicate these ideas and responses
-Ability to evaluate/argue alternative solutions and strategies independently and assess/report on own/others work with justification

Intellectual / cognitive skills
-The ability to plan and execute, under supervision, an experiment or theoretical investigation, analyse critically the results and draw valid conclusions
-Students should be able to evaluate the level of uncertainty in their results, understand the significance of error analysis and be able to compare their theoretical (experimental) results with expected experimental (theoretical) outcomes, or with published data
-They should be able to evaluate the significance of their results in this context
-The ability to deal with complex issues both systematically and creatively, make sound judgements in the absence of complete data, and communicate their conclusions clearly to specialist and non-specialist audiences.

Professional practical skills
-Technical mastery of the scientific and technical information presented and the ability to interpret this in the professional context.
-Ability to plan projects and research methods in the subject of the course.
-Understand and be able to promote the scientific and legal basis of the field through peer and public communication.
-Aware of public concern and ethical issues in radiation and environmental protection.
-Able to formulate solutions in dialogue with peers, mentors and others.

Key / transferable skills
-Identify, assess and resolve problems arising from material in lectures and during experimental/research activities
-Make effective use of resources and interaction with others to enhance and motivate self –study
-Make use of sources of material for development of learning and research; such as journals, books and the internet
-Take responsibility for personal and professional development
-Be self-reliant
-Responsibility for personal and professional development

Subject knowledge and skills
-A systematic understanding of Medical Physics in an academic and professional context, and a critical awareness of current problems and/or new insights, much of which is at, or informed by, the state of the art
-A comprehensive understanding of techniques applicable to research projects in Medical Physics
-Familiarity with generic issues in management and safety and their application to Medical Physics in a professional context

Core academic skills
-The ability to plan and execute under supervision, an experiment or investigation, analyse critically the results and draw valid conclusions (students should be able to evaluate the level of uncertainty in their results, understand the significance of error analysis and be able to compare these results with expected outcomes, theoretical predictions or with published data; they should be able to evaluate the significance of their results in this context)
-The ability to evaluate critically current research and advanced scholarship in the discipline
-The ability to deal with complex issues both systematically and creatively, make sound judgements in the absence of complete data, and communicate their conclusions clearly to specialist and non-specialist audiences

Personal and key skills
-The ability to communicate complex scientific ideas, the conclusions of an experiment, investigation or project concisely, accurately and informatively
-The ability to manage their own learning and to make use of appropriate texts, research articles and other primary sources

GLOBAL OPPORTUNITIES

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.

Read less
The MSc Physics Euromasters offers you the flexibility to tailor your studies according to your interests, building on the research strengths of our friendly Department, and the supportive environment that we provide for our students. Read more
The MSc Physics Euromasters offers you the flexibility to tailor your studies according to your interests, building on the research strengths of our friendly Department, and the supportive environment that we provide for our students.

We collaborate with a variety of partners across the academic, public and industry communities, including the National Physical Laboratory.

PROGRAMME OVERVIEW

You will select modules from a wide range of fundamental and applied physics topics. The application-focused modules are co-taught by practitioners in public service and industry to ensure that students gain real-world insight.

A module in research skills will prepare you to apply your new knowledge and skills in an eleven-week research project undertaken during the summer.

Your chosen research projects can open the door to many careers, not just further research. They will give you tangible experience of working independently and communicating your work effectively and efficiently in written form: key requirements in many professions.

PROGRAMME STRUCTURE

This programme is studied full-time over one academic year and part-time students must study at least two taught technical modules per academic year. It consists of eight taught modules and a dissertation.

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.
-Introduction to Biology and Radiation Biology
-Radiation Physics
-Radiation Measurement
-Detection Instrumentation
-Radiation Laboratory Skills
-Experimental and Professional Skills for Medical Physics
-Research Skills
-Non-linear Physics
-Topics in Theoretical Physics
-Imaging and Remote Sensing
-Diagnostic Applications of Ionising Radiation Physics
-Radiation Protection
-Extended Group Project
-Therapy Physics
-Non-ionising Radiation Imaging
-Nuclear Power and Non-ionising Radiation
-Environmental Physics and Environmental Protection
-Astrophysical Dynamics
-Quantum Magnetism and Superconductivity
-Advances in Nanophotonics
-Research Project and Dissertation
-Special Relativity
-Modern Analytical Techniques
-Nuclear Astrophysics
-Light and Matter
-Advanced Quantum Physics
-Cosmology and Galaxy Formation
-Semiconductor Physics and Technology

EDUCATIONAL AIMS OF THE PROGRAMME

The primary aim of the programme is to provide a high quality postgraduate level qualification in physics.

PROGRAMME LEARNING OUTCOMES

Students will:
-Be able to demonstrate an advanced understanding of theories and ideas in a sub- discipline of Physics
-Have insight into current topics and problems of that sub-discipline in a professional and/or academic context
-Be able to apply their knowledge and practical understanding of scientific methodology in their chosen research topic (e.g. experimental techniques, simulation tools, developing theoretical models etc.)
-Analyse, evaluate and interpret data produced and/or summarised in the literature in their chosen area of speciality
-Be able to carry out a scientific investigation under the guidance and advice of their supervisor
-Acquire, analyse, interpret and draw conclusions from their findings with the appropriate numerical methods and due consideration to uncertainties; they will also be able to critically evaluate the significance of their conclusions, strengths and weaknesses of their study in the context of up-to- date literature relevant to their research topic and present their work in written form to the scientific audience of their speciality in a professional and concise manner

Throughout the programme, students will develop the ability to manage their own learning in terms of time management as well as identifying and accessing the resources required for their academic study. The different learning outcomes of the potential awards may be summarised as follows:

Subject knowledge and skills
-A systematic understanding of their chosen area of specialisation in an academic and professional context together with a critical awareness of current problems and / or new insights, much of which is at, or informed by the state of the art
-A comprehensive understanding of techniques applicable to their own research project
-Originality in the application of knowledge, together with a practical understanding of radiation-based, experimental research projects
-An ability to evaluate and objectively interpret experimental data in their chosen topic of specialisation
-Familiarity with generic issues in management and safety and their application in a professional context

Core academic skills
-The ability to plan and execute under supervision, an experiment or investigation and to analyse critically the results and draw valid conclusions from them
-The ability to evaluate the level of uncertainty in results, understand the significance of uncertainty analysis and be able to compare these results with expected outcomes, theoretical predictions and/or with published data, along with the ability to evaluate the significance of results in this context
-The ability to evaluate critically current research and advanced scholarship in their chosen discipline of specialisation
-The ability to deal with complex issues both systematically and creatively, make sound judgements in the absence of complete data, and communicate their conclusions clearly to specialist and non-specialist audiences

Personal and key skills
-The ability to communicate complex scientific ideas, the conclusions of an experiment, investigation or project concisely, accurately and informatively
-The ability to manage their own learning and to make use of appropriate texts, research articles and other primary sources
-Responsibility for personal and professional development
-The ability to use external mentors for personal / professional purposes

Knowledge and understanding
-Knowledge of physics, technology and processes in the subject of the course and the ability to apply these in the context of the course
-Ability to research problems involving innovative practical or theoretical work
-Ability to formulate ideas and response to problems, refine or expand knowledge in response to specific ideas or problems and communicate these ideas and responses
-Ability to evaluate/argue alternative solutions and strategies independently and assess/report on own/others work with justification

Intellectual / cognitive skills
-The ability to plan and execute, under supervision, an experiment or theoretical investigation, analyse critically the results and draw valid conclusions
-Students should be able to evaluate the level of uncertainty in their results, understand the significance of error analysis and be able to compare their theoretical (experimental) results with expected experimental (theoretical) outcomes, or with published data
-They should be able to evaluate the significance of their results in this context
-The ability to deal with complex issues both systematically and creatively, make sound judgements in the absence of complete data, and communicate their conclusions clearly to specialist and non-specialist audiences

Professional practical skills
-Technical mastery of the scientific and technical information presented and the ability to interpret this in the professional context
-Ability to plan projects and research methods in the subject of the course
-Understand and be able to promote the scientific and legal basis of the field through peer and public communication
-Aware of public concern and ethical issues in radiation and environmental protection
-Able to formulate solutions in dialogue with peers, mentors and others

Key / transferable skills
-Identify, assess and resolve problems arising from material in lectures and during experimental/research activities
-Make effective use of resources and interaction with others to enhance and motivate self –study
-Make use of sources of material for development of learning and research; such as journals, books and the internet
-Take responsibility for personal and professional development
-Be self-reliant
-Responsibility for personal and professional development

GLOBAL OPPORTUNITIES

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.

Read less
The MSc Physics offers you the flexibility to tailor your studies according to your interests, building on the research strengths of our friendly Department, and the supportive environment that we provide for our students. Read more
The MSc Physics offers you the flexibility to tailor your studies according to your interests, building on the research strengths of our friendly Department, and the supportive environment that we provide for our students.

We collaborate with a variety of partners across the academic, public and industry communities, including the National Physical Laboratory.

PROGRAMME OVERVIEW

You will select modules from a wide range of fundamental and applied physics topics. The application-focused modules are co-taught by practitioners in public service and industry to ensure that students gain real-world insight.

A module in research skills will prepare you to apply your new knowledge and skills in an eleven-week research project undertaken during the summer.

Your chosen research projects can open the door to many careers, not just further research. They will give you tangible experience of working independently and communicating your work effectively and efficiently in written form: key requirements in many professions.

Why not discover more about the subject in our video?

PROGRAMME STRUCTURE

This programme is studied full-time over one academic year and part-time students must study at least two taught technical modules per academic year. It consists of eight taught modules and a dissertation. The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.
-Introduction to Biology and Radiation Biology
-Radiation Physics
-Radiation Measurement
-Detection Instrumentation
-Radiation Laboratory Skills
-Experimental and Professional Skills for Medical Physics
-Research Skills
-Non-linear Physics
-Topics in Theoretical Physics
-Imaging and Remote Sensing
-Diagnostic Applications of Ionising Radiation Physics
-Radiation Protection
-Extended Group Project
-Therapy Physics
-Non-ionising Radiation Imaging
-Nuclear Power and Non-ionising Radiation
-Environmental Physics and Environmental Protection
-Astrophysical Dynamics
-Quantum Magnetism and Superconductivity
-Advances in Nanophotonics
-Research Project and Dissertation
-Special Relativity
-Modern Analytical Techniques
-Nuclear Astrophysics
-Light and Matter
-Advanced Quantum Physics
-Cosmology and Galaxy Formation
-Semiconductor Physics and Technology

EDUCATIONAL AIMS OF THE PROGRAMME

The primary aim of the programme is to provide a high quality postgraduate level qualification in physics.

PROGRAMME LEARNING OUTCOMES

Students will:
-Be able to demonstrate an advanced understanding of theories and ideas in a sub- discipline of Physics
-Have insight into current topics and problems of that sub-discipline in a professional and/or academic context
-Be able to apply their knowledge and practical understanding of scientific methodology in their chosen research topic (e.g. experimental techniques, simulation tools, developing theoretical models etc.)
-Analyse, evaluate and interpret data produced and/or summarised in the literature in their chosen area of speciality
-Be able to carry out a scientific investigation under the guidance and advice of their supervisor
-Acquire, analyse, interpret and draw conclusions from their findings with the appropriate numerical methods and due consideration to uncertainties; they will also be able to critically evaluate the significance of their conclusions, strengths and weaknesses of their study in the context of up-to- date literature relevant to their research topic and present their work in written form to the scientific audience of their speciality in a professional and concise manner
-Throughout the programme, students will develop the ability to manage their own learning in terms of time management as well as identifying and accessing the resources required for their academic study

Subject knowledge and skills
-A systematic understanding of their chosen area of specialisation in an academic and professional context together with a critical awareness of current problems and / or new insights, much of which is at, or informed by the state of the art
-A comprehensive understanding of techniques applicable to their own research project
Originality in the application of knowledge, together with a practical understanding of radiation-based, experimental research projects
-An ability to evaluate and objectively interpret experimental data in their chosen topic of specialisation
-Familiarity with generic issues in management and safety and their application in a professional context

Core academic skills
-The ability to plan and execute under supervision, an experiment or investigation and to analyse critically the results and draw valid conclusions from them
-The ability to evaluate the level of uncertainty in results, understand the significance of uncertainty analysis and be able to compare these results with expected outcomes, theoretical predictions and/or with published data, along with the ability to evaluate the significance of results in this context
-The ability to evaluate critically current research and advanced scholarship in their chosen discipline of specialisation
-The ability to deal with complex issues both systematically and creatively, make sound judgements in the absence of complete data, and communicate their conclusions clearly to specialist and non-specialist audiences

Personal and key skills
-The ability to communicate complex scientific ideas, the conclusions of an experiment, investigation or project concisely, accurately and informatively
-The ability to manage their own learning and to make use of appropriate texts, research articles and other primary sources
-Responsibility for personal and professional development
-The ability to use external mentors for personal / professional purposes
-Knowledge and understanding
-Knowledge of physics, technology and processes in the subject of the course and the ability to apply these in the context of the course
-Ability to research problems involving innovative practical or theoretical work
-Ability to formulate ideas and response to problems, refine or expand knowledge in response to specific ideas or problems and communicate these ideas and responses
-Ability to evaluate/argue alternative solutions and strategies independently and assess/report on own/others work with justification

Intellectual / cognitive skills
-The ability to plan and execute, under supervision, an experiment or theoretical investigation, analyse critically the results and draw valid conclusions
-Students should be able to evaluate the level of uncertainty in their results, understand the significance of error analysis and be able to compare their theoretical (experimental) results with expected experimental (theoretical) outcomes, or with published data
-They should be able to evaluate the significance of their results in this context
-The ability to deal with complex issues both systematically and creatively, make sound judgements in the absence of complete data, and communicate their conclusions clearly to specialist and non-specialist audiences

Professional practical skills
-Technical mastery of the scientific and technical information presented and the ability to interpret this in the professional context
-Ability to plan projects and research methods in the subject of the course
-Understand and be able to promote the scientific and legal basis of the field through peer and public communication
-Aware of public concern and ethical issues in radiation and environmental protection
-Able to formulate solutions in dialogue with peers, mentors and others

Key / transferable skills
-Identify, assess and resolve problems arising from material in lectures and during experimental/research activities
-Make effective use of resources and interaction with others to enhance and motivate self –study
-Make use of sources of material for development of learning and research; such as journals, books and the internet
-Take responsibility for personal and professional development
-Be self-reliant
-Responsibility for personal and professional development

GLOBAL OPPORTUNITIES

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.

Read less
Our Medical Physics MSc programme is well-established and internationally renowned. We are accredited by IPEM (Institute of Physics and Engineering in Medicine) and we have trained some 1,000 medical physicists, so you can look forward to high-quality teaching during your time at Surrey. Read more
Our Medical Physics MSc programme is well-established and internationally renowned. We are accredited by IPEM (Institute of Physics and Engineering in Medicine) and we have trained some 1,000 medical physicists, so you can look forward to high-quality teaching during your time at Surrey.

PROGRAMME OVERVIEW

The syllabus for the MSc in Medical Physics is designed to provide the knowledge, skills and experience required for a modern graduate medical physicist, placing more emphasis than many other courses on topics beyond ionising radiation (X-rays and radiotherapy).

Examples of other topics include magnetic resonance imaging and the use of lasers in medicine.

You will learn the theoretical foundations underpinning modern imaging and treatment modalities, and will gain a set of experimental skills essential in a modern medical physicist’s job.

These skills are gained through experimental sessions in the physics department and practical experiences at collaborating hospitals using state-of-the-art clinical facilities.

PROGRAMME STRUCTURE

This programme is studied full-time over two academic years. It consists of ten taught modules and a dissertation project. The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.
-Radiation Physics
-Radiation Measurement C
-Experimental and Professional Skills for Medical Physics
-Introduction to Biology and Radiation Biology
-Therapy Physics
-Diagnostic Applications of Ionising Radiation Physics
-Non-ionising Radiation Imaging
-Extended Group Project
-Research Skills (Euromasters)
-Outreach and Public Engagement
-Euromaster Dissertation Project

EDUCATIONAL AIMS OF THE PROGRAMME

The primary aim of the programme is to provide a high quality postgraduate level qualification in Physics that is fully compatible with the spirit and the letter of the Bologna Accord.

PROGRAMME LEARNING OUTCOMES

The programme provides opportunities for students to develop and demonstrate knowledge and understanding, skills, qualities and other attributes in the following areas:
-Concepts and theories: Students will be able to demonstrate a systematic understanding of the concepts, theories and ideas of a specialized field in physics in Radiation Physics through the taught elements of one of the component MSc programmes MSc in Medical Physics.
-Instrumentation and materials: Students will understand the operation, function and performance of the key radiation detection devices and technologies or principles of the physics relevant to applied radiation physics, in particular medical applications.
-Methods and best practices: Students will become fully acquainted with the scientific methods and best practices of physics and exposed to a specialized field described in the handbook documents of the validated MSc in Medical Physics.

In the second year of the programme the outcomes are linked closely to a unique 8-month research project (two months preparation and research skills development, 5 months research, and 1 month reporting), students will apply their acquired research skills to an individual research project in a Research Group.

During the first two months of year two of the programme students will further extend their self-confidence in their practical, analytical and programming abilities; their ability to communicate; realise that they can take on responsibility for a task in the Research Group and see it through.

An important element is the assignment of responsibility for a substantial research project which is aimed to be of a standard suitable for publication in an appropriate professional journal.

It is expected that the student will approach the project in the manner of a new Research Student, e.g. be prepared to work beyond the normal working day on the project, input ideas, demonstrate initiative and seek out relevant information.

Thereby the students will acquire proficiency in research skills, including (but not limited to) careful planning, time scheduling, communication with colleagues and at workshops, keeping a detailed notebook, designing and testing equipment, taking and testing data and analysis.

The dissertation required at the end of the Research Project has the objective of encouraging students to write clearly and express their understanding of the work, thereby developing the required skills of scientific writing.

During the Research Project as a whole it is expected that the students will further develop communication skills through participation in group meetings, preparation of in-house reports, giving oral presentations and show initiative in acquiring any necessary new skills.

The oral presentation at the end of the Research Project is a chance to show their oral presentation skills and ability to think independently.

Knowledge and understanding
-Knowledge of physics, technology and processes in the subject of the course and the ability to apply these in the context of the course
-Ability to research problems involving innovative practical or theoretical work
-Ability to formulate ideas and response to problems, refine or expand knowledge in response to specific ideas or problems and communicate these ideas and responses
-Ability to evaluate/argue alternative solutions and strategies independently and assess/report on own/others work with justification

Intellectual / cognitive skills
-The ability to plan and execute, under supervision, an experiment or theoretical investigation, analyse critically the results and draw valid conclusions
-Students should be able to evaluate the level of uncertainty in their results, understand the significance of error analysis and be able to compare their theoretical (experimental) results with expected experimental (theoretical) outcomes, or with published data
-They should be able to evaluate the significance of their results in this context
-The ability to deal with complex issues both systematically and creatively, make sound judgements in the absence of complete data, and communicate their conclusions clearly to specialist and non-specialist audiences.

Professional practical skills
-Technical mastery of the scientific and technical information presented and the ability to interpret this in the professional context.
-Ability to plan projects and research methods in the subject of the course.
-Understand and be able to promote the scientific and legal basis of the field through peer and public communication.
-Aware of public concern and ethical issues in radiation and environmental protection.
-Able to formulate solutions in dialogue with peers, mentors and others.

Key / transferable skills
-Identify, assess and resolve problems arising from material in lectures and during experimental/research activities
-Make effective use of resources and interaction with others to enhance and motivate self –study
-Make use of sources of material for development of learning and research; such as journals, books and the internet
-Take responsibility for personal and professional development
-Be self-reliant
-Responsibility for personal and professional development.

Subject knowledge and skills
-A systematic understanding of Medical Physics in an academic and professional context, and a critical awareness of current problems and/or new insights, much of which is at, or informed by, the state of the art
-A comprehensive understanding of techniques applicable to research projects in Medical Physics
-Familiarity with generic issues in management and safety and their application to Medical Physics in a professional context

Core academic skills
-The ability to plan and execute under supervision, an experiment or investigation, analyse critically the results and draw valid conclusions (students should be able to evaluate the level of uncertainty in their results, understand the significance of error analysis and be able to compare these results with expected outcomes, theoretical predictions or with published data; they should be able to evaluate the significance of their results in this context)
-The ability to evaluate critically current research and advanced scholarship in the discipline
-The ability to deal with complex issues both systematically and creatively, make sound judgements in the absence of complete data, and communicate their conclusions clearly to specialist and non-specialist audiences

Personal and key skills
-The ability to communicate complex scientific ideas, the conclusions of an experiment, investigation or project concisely, accurately and informatively
-The ability to manage their own learning and to make use of appropriate texts, research articles and other primary sources

GLOBAL OPPORTUNITIES

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.

Read less
This one-year full-time taught MSc programme (or up to six years part-time) will equip you for a career in any industry involving radiation and radiation detectors. Read more
This one-year full-time taught MSc programme (or up to six years part-time) will equip you for a career in any industry involving radiation and radiation detectors.

We cover basic radiation principles, the use of detection systems and associated instrumentation applications, and modelling. There’s a strong focus on practicals and laboratory-based techniques.

You’ll be able to carry out a project, often in industry, making you even more employable in sectors such as nuclear power, medicine, environmental protection, oil and mining, and health and safety.

The programme consists of a number of one-week modules which you can select to best meet your needs. These modules are organised into four groups:-

Foundation
Basic
Applied
Project and Dissertation.

For your MSc you must complete your chosen modules and one major project to a value of 180 credits. Diploma (120 credits) and Certificate (60 credits) may also be available if you don’t want to submit a dissertation.

Key Facts

REF 2014
We're 15th in UK for 4* and 3*research (world leading and internationally excellent), and we achieved 100% excellence in a research environment.

Why Department of Physics?

Excellent facilities

We're a major centre for research and recieve around £35m of funding per year from the research councils, the University and other sources.

Exciting, rigorous research environment

Study for a Physics PhD, MPhil, MRes or pursue one of our taught MSc programmes.

Read less

  • 1
Show 10 15 30 per page



Cookie Policy    X