• University of Surrey Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
King’s College London Featured Masters Courses
University of the West of England, Bristol Featured Masters Courses
Queen Mary University of London Featured Masters Courses
University of Bedfordshire Featured Masters Courses
University of the West of England, Bristol Featured Masters Courses
"radar"×
0 miles

Masters Degrees (Radar)

We have 35 Masters Degrees (Radar)

  • "radar" ×
  • clear all
Showing 1 to 15 of 35
Order by 
This MSc covers the key technologies required for the physical layer of broadband communications systems. Read more

This MSc covers the key technologies required for the physical layer of broadband communications systems. The programme unites concepts across both radio and optical communication to give students a better understanding of the technical challenges they will face in engineering the rapid development of the broadband communications infrastructure. There is exceptionally strong industry demand for engineers with this skill base.

About this degree

This MSc provides training in the key technologies required for the physical layer of photonic, wireless and wired communications systems and other applications of this technology, ranging from THz imaging to radar systems. The programme encompasses the complete system design from device fabrication and properties through to architectural and functional aspects of the subsystems that are required to design and build complete communication systems.

Students undertake modules to the value of 180 credits.

The programme consists of five core modules (75 credits), three optional modules (45 credits) and a research dissertation (60 credits).

Core modules

  • Introduction to Telecommunications Networks
  • Wireless Communications Principles
  • Broadband Communications Laboratory
  • Communications Systems Modelling
  • Broadband Technologies and Components
  • Professional Development Module: Transferable Skills (not credit bearing)

Optional modules

Students choose three of the following:

  • Advanced Photonic Devices
  • Antennas and Propagation
  • Photonic Sub-systems
  • Optical Transmission and Networks
  • Radar Systems
  • RF Circuits and Sub-systems
  • Internet of Things
  • Mobile Communications Systems

Dissertation/report

All students undertake an independent research project which culminates in a dissertation of approximately 12,000 words.

Teaching and learning

The programme is delivered through a combination of formal lectures, laboratory and workshop sessions, seminars, tutorials and project work. All of the programme lecturers carry out leading research in the subjects they are teaching. Student performance is assessed through unseen written examination, coursework, design exercises and the dissertation.

Careers

Rapid growth of the internet and multimedia communications has led to an unprecedented demand for broadband communication systems. There is exceptionally strong industry demand for engineers with this skills base and a clear shortage of supply. Recent graduates have moved into roles as electrical and technical engineers at companies including Société Générale and Ericsson.

Recent career destinations for this degree

  • Business Intelligence Analyst, Criteo
  • PhD in Microtechnology and Nanoscience, Chalmers University of Technology, Gothenburg
  • Graduate Engineer, Avanti Communications Group
  • Senior Engineer, Mouchel
  • Software Engineer, Nokia Solutions and Networks (NSN)

Employability

The programme provides a broad package of knowledge in the areas of wireless and optical communications networks, from devices to signal processing theory and techniques, network architecture, and planning and optimisation. Students are expertly equipped to pursue careers as engineers, consultants and system architects in wireless and optical communications. A considerable number of graduates also stay in the education sector undertaking research and teaching.

Why study this degree at UCL?

UCL Electronic & Electrical Engineering is one of the most highly rated electronic engineering research departments in the UK. It is the oldest in England, founded in 1885 with Professor Sir Ambrose Fleming (the inventor of the thermionic valve and the left-hand and right-hand rules) as the first head of department.

Our research and teaching ethos is based on understanding the fundamentals and working at the forefront of technology development. We cover a wide range of areas from materials and devices to photonics, radar, optical and wireless systems, electronics and medical electronics, and communications networks.

Accreditation: Accredited by the Institution of Engineering and Technology (IET) on behalf of the Engineering Council as meeting the requirements for Further Learning for registration as a Chartered Engineer. Candidates must hold a CEng accredited BEng/BSc (Hons) undergraduate first degree to comply with full CEng registration requirements.



Read less
Aerospace systems are the future of the aerospace industry and constitute the major component of all modern aircraft. They are the essential onboard systems that ensure the safe and accurate operation of all aerospace vehicles, from civil passenger planes to sophisticated unmanned aerial vehicles. Read more
Aerospace systems are the future of the aerospace industry and constitute the major component of all modern aircraft. They are the essential onboard systems that ensure the safe and accurate operation of all aerospace vehicles, from civil passenger planes to sophisticated unmanned aerial vehicles.

Why this programme

◾The University of Glasgow has been the home of Aerospace Research for over 60 years. This long-standing activity has culminated in the Division of Aerospace Sciences having internationally recognised expertise in all areas of Aeronautics and Aerospace Systems.
◾The University of Glasgow is one of the few institutions in the UK, and the only University in Scotland, to offer an Aerospace Systems MSc.
◾Aeronautical engineering at the University of Glasgow is consistently highly ranked recently achieving 10th in the UK and 1st in Scotland (Complete University Guide 2017).
◾If you are an aeronautical engineering or avionics graduate wanting to improve your skills and knowledge; a graduate of another engineering discipline, mathematics or physics and you want to change field; looking for a well-rounded postgraduate qualification in electronics & electrical engineering to enhance your career prospects; this programme is designed for you.
◾Students in this programme can benefit from access to our outstanding facilities: including several wind tunnels, a flight simulation lab, an autonomous unmanned vehicle (UAV) laboratory, helicopter test rig laboratories and computer labs for modelling and simulation.

Programme structure

Modes of delivery of the MSc in Aerospace Systems include lectures, seminars and tutorials and allow students the opportunity to take part in lab, project and team work.

The summer period is dedicated to project work, with either academic or industrial placements providing the context for your project.

Semester 1 core courses
◾Aircraft flight dynamics
◾Control M
◾Navigation systems
◾Simulation of aerospace systems
◾Space flight dynamics 1.

Semester 2 core courses
◾Autonomous vehicle guidance systems
◾Fault detection, isolation and reconfiguration
◾Radar and electro-optic systems
◾Robust control 5.
◾Aerospace systems team design project.

Projects

◾To complete the MSc degree you must undertake a project worth 60 credits.
◾The project will integrate subject knowledge and skills that you acquire during the MSc programme
◾The project is an important part of your MSc where you can apply your newly learned skills and show to future employers that you have been working on cutting edge projects relevant to the industry.
◾You can choose a topic from a list of MSc projects in Aerospace Systems. Alternatively, should you have your own idea for a project, department members are always open to discussion of topics

Example projects

Examples of projects can be found online

*Posters shown are for illustrative purposes

Accreditation

MSc Aerospace Systems is accredited by the Royal Aeronautical Society (RAeS)

Industry links and employability

◾You will be introduced to this exciting multi-disciplinary area of technology, gaining expertise in autonomous guidance and navigation, advanced aerospace control, simulation and simulators, fault detection and isolation, electro-optic and radar systems, and space systems.
◾The School of Engineering has extensive contacts with industrial partners who contribute to several of their taught courses, through active teaching, advising on projects, curriculum development, and panel discussion.
◾During the programme students have an opportunity to develop and practice relevant professional and transferrable skills, and to meet and learn from employers about working in the aerospace industry.

Career prospects

Career opportunities include aerospace, defence, laser targeting systems, radar development, electro-optics, autonomous systems and systems modelling.

Graduates of this programme have gone on to positions such as:
Software Engineer at Hewlett-Packard
Avionic and Mission System Engineer at Qinetiq
Engineering Corporal & Driver at Hellenic Army.

Read less
This course provides education and training in selected military electronic systems. It is particularly suitable for those who will be involved with the specification, analysis, development, technical management or operation of military radar, electro-optics, communications, sonar or information systems, where the emphasis will be on an Electronic Warfare environment. Read more

This course provides education and training in selected military electronic systems. It is particularly suitable for those who will be involved with the specification, analysis, development, technical management or operation of military radar, electro-optics, communications, sonar or information systems, where the emphasis will be on an Electronic Warfare environment.

Who is it for?

The course is intended for officers of the armed forces and for scientists and technical officers in government defence establishments and the defence industry. It is particularly suitable for those who, in their subsequent careers, will be involved with the specification, analysis, development, technical management or operation of military radar, electro-optics, communications, sonar or information systems, where the emphasis will be on an Electronic Warfare environment.

Students taking the Postgraduate Certificate (PgCert) course variant are able to choose to study, and will be awarded, either the PgCert in Communications Electronic Warfare or PgCert in Sensors Electronic Warfare.

Why this course?

A Military Electronic Systems Engineering graduate achieves a high level of understanding and detailed knowledge of military communications and sensor systems with particular regard to electronic warfare. In addition, the MSc course enables the student to carry out an in-depth investigation into an area of electronic warfare to further enhance their analytical capability. Successful graduates of this course should be fully equipped for roles in defence intelligence, systems development and acquisition, involving the specification and analysis of such systems, working individually or as part of a team.

Course details

The MSc/PGDip taught phase comprises 10 compulsory modules and a choice of either Information Networks and Advanced Radar, or, Aeronautical Engineering Parts 1 and 2.

MSc students must complete a taught phase consisting of twelve modules, followed by an individual dissertation in a relevant topic. PgDip students must complete a taught phase consisting of twelve modules. PgCert students must complete a taught phase consisting of six specified modules.

Individual project

The project aim is for the student to undertake an extensive analytical research project using appropriate research methodology, involving simulation and modelling, measurements, experimentation, data collection and analysis. This will enable students to develop and demonstrate their technical expertise, independent learning abilities and critical research skills in a specialist subject area relevant to the field of study of the course.

Assessment

by examination, assignments and thesis.

Your career

This course is typically a requirement for progression for certain engineering and technical posts within UK MOD.

Successful graduates of this course should be fully equipped for roles in defence intelligence, systems development and acquisition, involving the specification and analysis of such systems, working individually or as part of a team either in the military or in the defence industry. 



Read less
The Telecommunications MRes is a one-year research degree dealing with areas of technology and systems related to telecommunications, communications technology and the next generation of IP support networks. Read more

The Telecommunications MRes is a one-year research degree dealing with areas of technology and systems related to telecommunications, communications technology and the next generation of IP support networks. This prestigious programme offers significant research content alongside taught modules strongly linked to industrial requirements.

About this degree

Students develop an advanced understanding of the architecture and components that are used to construct a broadband network. The programme offers an overview of the network structures used to build telecommunications networks, enables students to specialise in a specific area of telecommunications, and includes a substantial research project.

Students undertake modules to the value of 180 credits.

The programme consists of two core modules (30 credits), three optional modules (45 credits) and a research project (105 credits).

Core modules

  • Introduction to Telecommunications Networks
  • Professional Development Module: Transferable Skills

Optional modules

Students choose three of the following:

  • Broadband Technologies and Components
  • Communications Systems Modelling
  • Introduction to IP Networks
  • Mobile Communications Systems
  • Wireless Communications Principles
  • Network and Services Management
  • Optical Transmission and Networks
  • Software for Network Services and Design
  • Telecommunications Business Environment
  • Antennas and Propagation
  • RF Circuits and Devices
  • Photonic Sub-systems
  • Radar Systems
  • Internet Multimedia Systems
  • Advanced Photonic Devices
  • Internet of Things

Dissertation/research project

All students undertake a substantial research project working in association with one of the research groups at UCL or a collaborating industrial research laboratory, culminating in a dissertation.

Teaching and learning

The programme is delivered through a combination of lectures, seminars, tutorials and workshops. Student performance is assessed through unseen written examination, coursework (written and design assignments) and the substantial research project, which is assessed by dissertation and presentations.

Further information on modules and degree structure is available on the department website: Telecommunications MRes

Careers

Recent graduates have gone on to become university researchers, and senior software engineers and research scientists at companies including Nokia UK Ltd and QinetiQ.

Recent career destinations for this degree

  • PhD in Engineering, UCL

Employability

The Telecommunications MRes programme provides a broad and comprehensive coverage of the technological and scientific foundations of telecommunications networks and services, from the physical layer to the application layer. A strong emphasis is given to mobile and wireless communications and the latest standards in these areas (LTE, WiMAX, IEEE 802 family of standards). Students study both the theoretical foundations of all related technologies but also carry out extensive practical assignments in several related areas.

Why study this degree at UCL?

UCL Electronic & Electrical Engineering is one of the most highly rated electronic engineering research departments in the UK. It is the oldest in England, founded in 1885. The department has more than a century of tradition of internationally leading research, from Professor Sir Ambrose Fleming, the inventor of the thermionic valve and the left-hand and right-hand rules, to Professor Charles Kao, PhD alumnus and 2009 Nobel Prize in Physics recipient for his research in communication with optical fibres that began whilst studying at UCL.

Our research and teaching ethos is based on understanding the fundamentals and working at the forefront of technology development.

We cover a wide range of areas from materials and devices to photonics, radar, optical and wireless systems, electronics and medical electronics, and communications networks.

Accreditation:

Accredited by the Institution of Engineering and Technology (IET) on behalf of the Engineering Council as meeting the requirements for Further Learning for registration as a Chartered Engineer. Candidates must hold a CEng accredited BEng/BSc (Hons) undergraduate first degree to comply with full CEng registration requirements.



Read less
Are you interested in raising children? In the way their environment shapes their development? Would you like to learn how to support parents and educators, creating a context where children and youth can reach their full potential? Then this Master's programme may be just right for you! . Read more

Are you interested in raising children? In the way their environment shapes their development? Would you like to learn how to support parents and educators, creating a context where children and youth can reach their full potential? Then this Master's programme may be just right for you! 

The Master’s programme Clinical Child, Family and Education Studies (Dutch:Orthopedagogiekchallenges you to make connections between scientific research and practical issues. It addresses what is needed when problems arise in child and adolescent development, or in parenting or education of children at risk.

Objective of the programme

This Master’s programme will enable you to develop yourself as an academic and clinical professional. Armed with scientific insights and clinical skills, you will be able to give advice, support, treatment and guidance concerning clinical issues in raising children and adolescents. You can make an important contribution to research of practical care issues related to children and youth. You will help children, youth, their parents and the systems surrounding them to function to their optimum potential. This programme prepares you to work as a scientist practitioner in youth care in clinical or transnational settings.

Working in a multi-disciplinary way

While studying complex situations you will combine insights from education and child and adolescent studies, psychology, neuropsychology, child and youth psychiatry, forensic psychiatry, juvenile justice, pediatrics and sociology.

An international programme in English

This programme’s working language is English. This means that English will be used during lectures, for scientific exchange between students and staff. You may opt to use Dutch or English for your thesis and individual assignments. Certain parts of the programme, such as a clinical internship in an institution with Dutch speaking clients or patientsare only available to students who speak Dutch.

Clinical issues in raising children and youth: a sound basis

You will take three mandatory courses concerning:

  • Working as a clinical professional in different contexts;
  • Critical Analysis of Youth Development: an Ecological Systems Approach
  • Functioning as an academic professional.

On top of these courses you will follow an elective course, a specialisation (‘track’)and write a Master’s thesis.

Research feeds education

Your lecturers participate in highly qualified research in the field of parenting, adolescence, education, development and learning in the research programmes Child and Adolescent Studies and Education and Learning. This means you will benefit from their most recent scientific insights. Moreover, as a Master’s student your thesis can contribute to the current research within the programme concerning projects such as:

  • STudy of Attention capacities of moderately Preterm born infants (STAP)
  • The YOUth cohort study: social competence and behavioral control
  • Extra support for toddlers: “ToddlerExtra”
  • Evaluation of the Rock and Water support programme
  • Evaluating therapy for depressed adolescents
  • Projects from the Consortium on Individual Development (CID)
  • Research on Adolescent Development And Relationships (RADAR)

Preparing for the labour market

The Master’s programme in Clinical Child, Family and Education Studies prepares you for work from a transnational perspective, or for a career in a clinical setting. You will be able to give advice, support, treatment and guidance when problems in child and adolescent development arise. You will be a trained expert in clinical issues in raising future generations. You could work as a policy adviser or care giver in several fields such as youth care, special needs care in schools, care for people with a disability, paediatric rehabilitation, forensic care and (inter)national knowledge institutions. You can also pursue a career in research, for instance at a university or knowledge institution.



Read less
Why this course?. This full time course will cover the practical, theoretical and technological aspects of 5G Communications Systems as they evolve over the coming years. Read more

Why this course?

This full time course will cover the practical, theoretical and technological aspects of 5G Communications Systems as they evolve over the coming years.

You’ll gain expert knowledge of the latest technologies that will drive the next mobile, wireless and communications revolution, and evolve our current 4G environment to 5G communications enabled systems. Applications will cover robotics & autonomous systems, UAVs, immersive systems and augmented realities, health monitoring, cyber-integrated systems, and smart grids. Data handling of the expected 50 billion IoT (internet of things) devices coming on-line to monitor traffic, weather, environment, smart agriculture, and even when your fridge runs out of milk, will also be explored.

5G will provide greater capacity, improved reliability, support at higher rates of mobility, and wider geographical coverage, at even higher data speeds and throughput and many new services and facilities. 

On the course you will engage with experts and specialists whose integrated knowledge will enable you to gain the skills, knowledge and expertise to be part of the definition of the next generation of mobile and wireless communications. These will include:

  • Mobile & Wireless Standards (such as LTE, 802.11x,)
  • Software Defined Radio (SDR)
  • Software Defined Networking (SDN) Systems
  • Internet of Things (IoT) Wireless Communications
  • Big Data & Information Management
  • Security & Cybersecurity systems
  • Spectrum Access, & Dynamic Spectrum
  • 5G Hardware Systems Design – FPGA & Microcontrollers
  • Advanced DSP/Comms Systems; eg Massive MIMO
  • Augmented Reality & Advanced Multimedia Systems

What you’ll study

There are two semesters of compulsory and optional taught classes, followed by a three month summer research project working in a core area of 5G Communications system design, either in the Department or with an industry partner via an internship.

Facilities for research projects are extensive and these will allow you to choose to work on projects in a wide variety of areas such as physical and MAC layers (e.g. Advanced LTE) from IoT, cybersecurity, dynamic spectrum, massive-MIMO, low latency communications, or in applications such as smart agriculture, environment monitoring, computer vision, communicating radar, satellite systems, automotive, driver-less cars and of course some application domains yet to be established with the advent of 5G!

Facilities

We have an extensive set of teaching spaces and learning environments alongside a dedicated Masters Project and Study Environment for self-study and group working.

We work closely with a number of industry partners, and our state-of-the-art facilities include wireless and mobile radio hardware and software, FPGA and SDR systems, supported by companies including EE, Vodafone, Xilinx, Cisco, MathWorks, British Telecom, Intel, Lime Microsystems , Analog Devices and many smaller companies and organisations. Our research laboratories include our Signal Processing Design Lab; Image and Vision Processing Lab; White Space Radio Testbed, IoT Test Facility, RF anechoic room, and so on.

Learning & teaching

We use a blend of teaching and learning methods including interactive lectures, on-line video lectures, problem-solving tutorials and practical project-based laboratories. Our extensive teaching and project facilities include state-of-the-art Software Defined Radio laboratories, IoT and networking capabilities, Computer Vision laboratories, alongside satellite and sensor equipment.

Each module comprises approximately five hours engagement per week. Some classes are presented in traditional lecture-tutorial-lab style, and we also offer a number of “flipped learning” classes whereby lectures are delivered through complete on-line video sets, with complementary in-class discussion and review seminars held each week to discuss relevant topics and subject matter.

To enhance your understanding, you are expected to undertake a further five to six hours of self-study, using our web-based virtual learning environment (MyPlace), research journals and library facilities.

The teaching and learning methods ensure you'll develop not only technical engineering expertise but also communications, project management and leadership skills.

Industry engagement

Interaction with industry is provided through our internships, teaching seminars and networking events.

British Telecom, Vodafone, Everything-Everywhere, Xilinx, Cisco, Texas Instruments, MathWorks, NXP/Qualcomm and Selex ES are just a few examples of the industry partners working with Strathclyde at this time, and you have the opportunity to engage with them during your studies.

Assessment

A variety of assessment techniques are used throughout the course. You'll complete 120 credits of taught modules. Each module has a combination of written assignments, individual and group reports, oral presentations, practical lab work and, where appropriate, an end-of-term exam.

Assessment of the summer research project consists of four elements, with individual criteria:

  • Interim report (10%, 1,500 to 3,000 words) – The purpose of this report is to provide a mechanism for supervisors to provide valuable feedback on the project’s objectives and direction
  • Poster Presentation (15%) – A vital skill of an engineer is the ability to describe their work to others and respond to requests for information. The poster presentation is designed to give you an opportunity to practise that
  • Final report (55%) – This assesses the communication of project objectives and context, accuracy and relevant of background material, description of practical work and results, depth and soundness of discussion and conclusions, level of engineering achievement and the quality of the report’s presentation
  • Conduct (20%) - Independent study, project and time management are key features of university learning. The level of your initiative & independent thinking and technical understanding are assessed through project meetings with your supervisor and your written logbooks

Careers

As communications now impacts on virtually all areas of society, commerce and business, job opportunities are excellent, and you will be equipped for employment across a range of sectors including mobile/wireless, IT, defence, and big data.

Professional and technical occupations with international companies such as Samsung, Xilinx, British Telecom, MathsWorks, Nokia and Texas Instruments, as well as local companies such as Cirrus Logic, Leonardo, and Stream, are available.

Globalisation of the communications sector and the evolution of many countries to 5G means if graduates wish to work abroad, this course provides an ideal passport to anywhere in the world.

Job titles include:

  • wireless communications engineer
  • wireless mobility engineer
  • graduate controls engineer


Read less
Geographical Information Systems (GIS) has grown rapidly to become a major component of information technology, creating distinctive methods of data analysis, algorithms and software tools. Read more

Why take this course?

Geographical Information Systems (GIS) has grown rapidly to become a major component of information technology, creating distinctive methods of data analysis, algorithms and software tools.

This course emphasises the acquisition of practical GIS skills. We use a wide range of industry-standard software tools and a structured approach to the analysis of spatial data through project work.

What will I experience?

On this course you can:

Get hands-on experience of using instruments such as GPS, Total Stations and 3D laser scanners
Be taught by experts, who have extensive industrial and consultancy experience and strong research portfolios
Practise your GIS data collection skills in a range of environments

What opportunities might it lead to?

The wide range of career opportunities across public and private sectors and in university-based research, coupled with the rapid rate of technological change, mean that major organisations and industrial firms are finding it essential to update their skills through advanced study. We therefore aim to meet this demand by tailoring our course to the needs of both regional and national markets.

Here are some routes our graduates have pursued:

Environmental consultancies
Geographical information science specialists
Working for the Environmental Agency
Working for the Ordnance Survey

Module Details

The academic year is divided into two parts. The first part comprises the lecture, workshop, practical and field work elements of the course, followed by a dissertation which will take approximately five months to complete.

Here are the units you will study:

Principles of Geographic Information Science: Beginning with an overview of the development of GIS, the first part of this unit examines data sources and data capture, as well as hardware and software tools. The second part deals with vector-based data structures and data management, followed by vector GIS operations, such as overlay and buffering. You will undertake a project to create a GIS of your own, which may be presented as a seminar session. Practical exercises are undertaken using MapInfo. You will then go on to develop an understanding of raster-based approaches to GIS, cartographic modelling and related areas of image processing which are often applied in remote sensing. Topics include raster data models and data compression techniques, raster GIS and cartographic modelling, imaging systems and image processing, geometric correction techniques and GIS/remote sensing integration in the raster domain. Practical work uses MapInfo, ArcGIS - ArcMap and ERDAS Imagine.

GIS and Database Management Systems: Your major focus on this unit will be the use of industry-standard methods and tools to develop competence in the successive stages of database design, development and implementation. You will have an introduction to data analysis techniques, followed by an examination of alternative types of database system and the rules of relational database design. There is extensive treatment of the SQL query language in standard databases and for attribute query within a GIS. You will be introduced to advanced topics including database programming and computer-aided database design. You will also consider the Object-Relational databases and spatial data types, explore the use of spatial queries using the ORACLE relational database management system and examine procedural database programming and web database connectivity. Practical work for this unit uses the ORACLE relational database management system, running in full client-server mode.

Applied Geographic Information Systems: On this unit you will develop a general, inferential, model-based approach to the analysis of quantitative data within a geographical framework. You will examine a range of underlying concepts including model specification, bias, linearity, robustness and spatial autocorrelation. You will subsequently develop these in the context of a unified framework for analysis. Practical work is based on ArcGIS - ArcMap.

Research Methods and Design: This unit will introduce you to the basic principles of research design and methodology, enabling you to develop a critical approach to the selection and evaluation of appropriate methods for different types of research problem.

Modelling and Analysis and the Web: This unit gives you the chance to consider the use of GIS technology for creating terrain models and explore the basics of photogrammetry, as well as analytical and digital techniques for photogrammetric data capture. You will also look at Orthophotography, LiDAR and RADAR systems. ArcGIS is used for spatial analysis, such as buffering and overlay techniques. You will also explore and exemplify data transfer between GIS software systems and technologies for internet-based GIS.

Dissertation: This provides an opportunity for you to pursue a particular topic to a greater depth than is possible within the taught syllabus. It can take a variety of forms, for example GIS-based analysis of original data sources and digital datasets, case studies of GIS adoption in public or private sector organisations, the development of new software tools/applications or the design of GIS algorithms. The final submission takes the form of an extended written report or dissertation of a maximum of 15,000 words.

Programme Assessment

The course provides a balanced structure of lectures, seminars, tutorials and workshops. You will learn through hands-on practical sessions designed to give you the skills in laboratory, computer and field techniques. The course also includes extensive field work designed to provide field mapping and data collection skills.

The majority of assessment takes the form of practical exercises and project-based activity. This enables you to become familiar with industry-standard software systems and develop your skills by applying your newfound expertise in areas that particularly interest you.

Student Destinations

GIS technology is now very widely deployed in many organisations ranging from utility companies, telecommunications networks, civil engineering, retailing, local and national government, international charities and NGOs, the National Health Service, environmental organisations, banking and finance, and insurance. GIS has become an essential part of the world's information infrastructure.

You can expect to go on to find work in organisations such as local authorities, health authorities, conservation organisations, banks and insurance companies, amongst others. Many of our previous graduates are now employed all over the world, working on a whole variety of GIS-related projects in a very wide range of different organisations and industries.

Read less
This programme provides graduates and working professionals with a broad training in signal processing and communications. Read more

This programme provides graduates and working professionals with a broad training in signal processing and communications. It is suitable for recent graduates who wish to develop the specialist knowledge and skills relevant to this industry and is also suitable as advanced study in preparation for research work in an academic or industrial environment or in a specialist consultancy organisation.

Engineers or other professionals wishing to participate in the MSc programme may do so on a part-time basis.

Our students gain a thorough understanding of theoretical foundations as well as advanced topics at the cutting edge of research in signal processing and communications, including compressive sensing, deep neural networks, wireless communication theory, and numerical Bayesian methods.

The MSc project provides a good opportunity for students to work on state-of-the-art research problems in signal processing and communications.

Programme structure

This programme is run over 12 months, with two semesters of taught courses followed by a research project leading to a masters thesis.

Semester 1 courses

  • Discrete-Time Signal Analysis
  • Digital Communication Fundamentals
  • Probability, Estimation Theory and Random Signals (PETARS)
  • Image Processing
  • Digital Signal Processing Laboratory

Semester 2 courses

  • Adaptive Signal Processing
  • Advanced Coding Techniques
  • Advanced Wireless Communication
  • Array Processing Methods and MIMO Systems
  • Advanced Concepts in Signal Processing
  • Pre-dissertation project preparation and report

Career opportunities

With our excellent employability record and internationally respected reputation, the University of Edinburgh is a reliable choice for developing your engineering career.

This programme will appeal to graduates who wish to pursue a career in an industry such as communications, radar, medical imaging or anywhere else signal processing is applied.



Read less
This MSc provides students with the skills, knowledge and research ability for a career in physics. The programme is designed to satisfy the need, both nationally and internationally, for well-qualified postgraduates who will be able to respond to the challenges that arise from future developments in this field. Read more

This MSc provides students with the skills, knowledge and research ability for a career in physics. The programme is designed to satisfy the need, both nationally and internationally, for well-qualified postgraduates who will be able to respond to the challenges that arise from future developments in this field.

About this degree

Students develop insights into the techniques used in current projects, and gain in-depth experience of a particular specialised research area, through project work as a member of a research team. The programme provides the professional skills necessary to play a meaningful role in industrial or academic life.

Students undertake modules to the value of 180 credits.

The programme consists of a choice of three core modules (45 credits), three optional modules (45 credits), a research essay (30 credits) and a dissertation (60 credits).

A Postgraduate Diploma (120 credits, full-time nine months, part-time two years) is offered.

Core modules

  • Advanced Quantum Theory
  • Particle Physics
  • Atom and Photon Physics
  • Order and Excitations in Condensed Matter
  • Mathematics for General Relativity
  • Climate and Energy
  • Molecular Physics
  • Please note: students choose three of the above.

Optional modules

Students choose three from the following:

  • Astrophysics MSc Core Modules
  • Space and Climate Science MSc Core Modules
  • Medical Physics MSc Core Modules
  • Intercollegiate fourth-year courses
  • Physics and Astrophysics MSci fourth-year courses
  • Selected Physics and Astrophysics MSci third-year courses
  • Plastic and Molecular (Opto)electronics
  • Biophysics MSc Core Modules

Dissertation/report

All students submit a critical research essay and MSc students undertake an independent research project which culminates in a substantial dissertation and oral presentation.

Teaching and learning

The programme is delivered through a combination of lectures, seminars, tutorials and practical, laboratory and computer-based classes. Student performance is assessed through coursework and written examination. The research project is assessed by literature survey, oral presentation and the dissertation.

Further information on modules and degree structure is available on the department website: Physics MSc

Funding

Candidates may be eligible for a Santander scholarship.

For a comprehensive list of the funding opportunities available at UCL, including funding relevant to your nationality, please visit the Scholarships and Funding website.

Careers

Physics-based careers embrace a broad range of areas e.g. information technology, engineering, finance, research and development, medicine, nanotechnology and photonics.

Recent career destinations for this degree

  • Management Consultant, OpenSymmetry
  • Management Consultant, PwC

Employability

A Master's degree in Physics is highly regarded by employers. Students gain a deep understanding of both basic phenomena underpinning a range of technologies with huge potential for future development, e.g. quantum information, as well as direct knowledge of cutting-edge technologies likely to play a major role in short to medium term industrial development while addressing key societal challenges such as energy supply or water sanitisation.

Careers data is taken from the ‘Destinations of Leavers from Higher Education’ survey undertaken by HESA looking at the destinations of UK and EU students in the 2013–2015 graduating cohorts six months after graduation.

Why study this degree at UCL?

UCL Physics & Astronomy is among the top departments in the UK for this subject area.

The department's participation in many international collaborations means we provide exceptional opportunities to work as part of an international team. Examples include work at the Large Hadron Collider in Geneva, and at the EISCAT radar instruments in Scandinavia for studying the Earth's upper atmosphere.

For students whose interests tend towards the theoretical, the department is involved in many international projects, some aimed at the development of future quantum technologies, others at fundamental atomic and molecular physics. In some cases, opportunities exist for students to broaden their experience by spending part of their time overseas.



Read less
Taught jointly by UCL’s Space & Climate Physics and UCL’s Electronic & Electrical Engineering Departments by expert researchers and engineers in… Read more

Taught jointly by UCL’s Space & Climate Physics and UCL’s Electronic & Electrical Engineering Departments by expert researchers and engineers in the field, this MSc programme aims to provide a broad understanding of the basic principles of space technology and satellite communications together with specialised training in research methods and transferable skills, directly applicable to a career in the public and private space sectors.

About this degree

The Space Technology pathway is focussed on the application of space technology in industrial settings, and therefore has as its main objective to provide a sound knowledge of the underlying principles which form a thorough basis for careers in space technology, satellite communications and related fields. Students develop a thorough understanding of the fundamentals of:

  • spacecraft, satellite communications, the space environment, space operations and space project management
  • the electromagnetics of optical and microwave transmission, and of communication systems modelling
  • a range of subjects relating to spacecraft technology and satellite communications.

Students undertake modules to the value of 180 credits.

The programme consists of three core modules (45 credits), four optional modules (60 credits), a Group Project (15 credits) and an Individual research Project (60 credits).

Core modules

  • Space Science, Environment and Satellite Missions
  • Space Systems Engineering
  • Communications Systems Modelling Type
  • Group Project

Optional modules

  • At least one module from the following:
  • Spacecraft Design – Electronic Sub-systems
  • Mechanical Design of Spacecraft
  • Antennas and Propagation
  • Radar Systems
  • Space-based Communication Systems

  • At least one module from:
  • Space Instrumentation and Applications
  • Space Plasma and Magnetospheric Physics
  • Principles and Practice of Remote Sensing
  • Global Monitoring and Security
  • Space Data Systems and Processing

Dissertation/report

All MSc students undertake an Individual research Project, which normally involves attachment to a research group, and culminates in a report of 10,000–12,000 words.

Teaching and learning

The programme is delivered through a combination of lectures, coursework problem tasks, team-based coursework exercises, presentations and tutorials. Student performance is assessed through unseen written examinations, coursework, and the individual and group projects.

Further information on modules and degree structure is available on the department website: Space Science and Engineering: Space Technology MSc

Funding

STFC and NERC studentships may be available.

For a comprehensive list of the funding opportunities available at UCL, including funding relevant to your nationality, please visit the Scholarships and Funding website.

Careers

The programme aims to prepare students for careers in space research or the space industry, or further research degrees.

Recent career destinations for this degree

  • Chief Executive Officer (CEO), Pushtribe
  • Signal Processing Engineer, Thales UK
  • Junior Consultant, BearingPoint
  • Satellite Communication Engineer, National Space Agency of Kazakhstan

Careers data is taken from the ‘Destinations of Leavers from Higher Education’ survey undertaken by HESA looking at the destinations of UK and EU students in the 2013–2015 graduating cohorts six months after graduation.

Why study this degree at UCL?

UCL Space & Climate Physics, located at the Mullard Space Science Laboratory, is a world-leading research organisation and is the largest university space science group in the UK.

It offers a unique environment at the forefront of space science research, where scientists and research students work alongside top engineers building and testing instruments for space as well as studying the data from these and other spaceborne and ground-based instruments.

The close contact that the laboratory enjoys with space agencies such as ESA and NASA and with industrial research teams encourages the development of transferable skills which enhance job prospects in industrial and research centres in the public and private space sectors.



Read less
The Masters in Aerospace Engineering is a multi-disciplinary programme that covers all aspects of modern aircraft design. This involves developing essential knowledge and skills in advanced aerodynamics and aerospace systems. Read more

The Masters in Aerospace Engineering is a multi-disciplinary programme that covers all aspects of modern aircraft design. This involves developing essential knowledge and skills in advanced aerodynamics and aerospace systems. By choosing specific options in the second semester the degree programme can be tailored to provide specialisms in either Aeronautics or Systems.

Why this programme

  • The University of Glasgow has been the home of Aerospace Research for over 60 years. This long-standing activity has culminated in the Division of Aerospace Sciences having been internationally recognised expertise in all areas of Aeronautics and Aerospace Systems
  • The School of Engineering’s aeronautical engineering is consistently highly ranked among the top 10 in the UK and recently achieved 1st in Scotland (Complete University Guide 2017).

Programme structure

Modes of delivery of the MSc in Aerospace Engineering include lectures, seminars and tutorials and allow students the opportunity to take part in lab, project and team work. 

The summer period is dedicated to project work, with either academic or industrial placements providing the context for your project. 

Semester 1 core courses 

  • Aircraft flight dynamics 
  • Aerospace Control 1 
  • Navigation systems 
  • Simulation of aerospace systems 
  • Space flight dynamics 1 

Semester 2 optional courses

Select a team project from:

  • Aerospace Design Project M *
  • Aerospace Systems Team Design Project M 

Select five courses from the following:

  • Aeroelasticity 5 or Aircraft Vibration & Aeroelasticity 4 *
  • Autonomous vehicle guidance systems **
  • CFD 5 or CFD 4 *
  • Composite Airframe Structures *
  • Fault detection, isolation and reconfiguration **
  • High Speed Aerodynamics 4 *
  • Intro to Wind Engineering *
  • Radar and electro-optic systems **
  • Robust control 5 **
  • Rotorcraft Aeromechanics 5 *
  • Spacecraft Systems II **
  • Turbulent Flows 5 *
  • Aircraft Handling Qualities & Control 5 * (Enrolment on this course is subject to available numbers on flight test course and may require an additional charge)

* signifies courses that constitute the specialism in Aeronautics

** signifies courses that constitute the specialism in Systems



Read less
The Masters in Aerospace Engineering & Management introduces you to contemporary business and management issues while increasing your depth of knowledge in your chosen aerospace engineering speciality. Read more

The Masters in Aerospace Engineering & Management introduces you to contemporary business and management issues while increasing your depth of knowledge in your chosen aerospace engineering speciality.

Why this programme

  • The University of Glasgow has been the home of Aerospace Research for over 60 years. This long-standing activity has culminated in the Division of Aerospace Sciences having internationally recognised expertise in all areas of Aeronautics and Aerospace Systems.
  • You will be taught jointly by staff from the School of Engineering and the Adam Smith Business School. You will benefit from their combined resources and expertise and from an industry-focused curriculum.
  • The University of Glasgow is one of the few institutions in the UK, and the only University in Scotland, to offer an Aerospace System MSc.
  • Aeronautical engineering at the University of Glasgow is consistently highly ranked recently achieving 10th in the UK and 1st in Scotland (Complete University Guide 2017).
  • If you have an engineering background, but with little management experience and you are looking to broaden your knowledge of management while also furthering your knowledge of aerospace engineering, this programme is designed for you.
  • Students in this programme can benefit from access to our outstanding facilities: including several wind tunnels, a flight simulation lab, an autonomous unmanned vehicle (UAV) laboratory, helicopter test rig laboratories, structural testing apparatus and computer labs for modelling and simulation.
  • This programme has a September and January intake

Programme structure

There are two semesters of taught material and a summer session working on a project or dissertation. September entry students start with management courses and January entry students with engineering courses.

Semester 1

You will be based in the Adam Smith Business School, developing knowledge and skills in management principles and techniques. We offer an applied approach, with an emphasis on an informed critical evaluation of information, and the subsequent application of concepts and tools to the core areas of business and management.

Core courses

  • Contemporary issues in human resource management 
  • Managing creativity and innovation 
  • Managing innovative change 
  • Marketing management 
  • Operations management 
  • Project management.

Semester 2

You will study engineering courses, which aim to enhance your group working and project management capability at the same time as improving your depth of knowledge in chosen aerospace engineering subjects.

Core courses

  • Integrated systems design project.

Optional courses (four chosen)

  • Autonomous vehicle guidance systems
  • Composite airframe structures
  • Fault detection, isolation and reconfiguration
  • Introduction to aeroelasticity
  • Introduction to computational fluid dynamics
  • Introduction to wind engineering
  • Radar and electro-optic systems
  • Robust control 5
  • Spacecraft systems 2.

Project or dissertation

You will undertake an individual project or dissertation work in the summer period (May–August). This will give you an opportunity to apply and consolidate the course material and enhance your ability to do independent work, as well as present results in the most appropriate format. Project and dissertation options are closely linked to staff research interests. September entry students have a choice of management dissertation topics in addition to aerospace engineering projects, and January entry students have a choice of aerospace engineering projects. 

Career prospects

Career opportunities include positions in aerospace, defence, renewable energy, nuclear energy and management. You can also continue studying, for a research Masters or a PhD.



Read less
This course encourages students to develop in-depth knowledge and critical awareness of theoretical, as well as practical, solutions to problems at the forefront of the communication and processing of signals. Read more
This course encourages students to develop in-depth knowledge and critical awareness of theoretical, as well as practical, solutions to problems at the forefront of the communication and processing of signals.

Communications and signal processing are closely intertwined, and together provide the basis of modern information engineering. Areas of application include:

3G/4G/LTE wireless networks
broadcast and computer communication
robotic vision
audio and video recording
radar and sonar detection
biomedical signal processing
computer vision
medical imaging
remote sensing

Read less
PLEASE NOTE. This course is not currently open for new applications. If you'd like to be kept up to date, let us know using the Register Interest button. Read more
PLEASE NOTE: This course is not currently open for new applications. If you'd like to be kept up to date, let us know using the Register Interest button.

Water is a key resource globally, nationally and regionally. As the world's population increases governments are increasingly forced to act to protect and manage water resources more effectively, creating demand for scientists and managers to understand, monitor and manage natural and regulated water systems.

Why study Catchment Hydrology and Management at Dundee?

We offer an authoritative source of training for national and international students seeking to pursue careers within environmental and regulatory industries. Through a mixture of theory and practice this programme will provide you with training in aspects of applied hydrology, catchment management, environmental modelling (including risks such as flooding and water scarcity) and water law.

Facilities

The School of the Environment has recently completed a major investment in upgrading its hydrometric field equipment for use by SCM students. In addition to our already strong resource base in flow measurement equipment, covering ADCP, ADV, radar and more traditional impeller based instruments, we have now expanded our water level monitoring equipment to 25 instruments.

Fieldwork and problem-solving aspects of the course are being extended in 2012, with students being responsible for selecting, installing and operating their own sites and analysing the data from them. We have three experimental catchment facilites in Scotland, in the Cairngorms and the Scottish Borders, and students will gain valuable insights and experience through becoming directly involved in these projects.

Research-led teaching

Our experienced team of staff all engage in contemporary research and have considerable expertise in the science and regulatory frameworks affecting water management. Many of the academic staff on the programme are involved in the UNESCO Centre for Water Law, Policy & Science - the UK's only UNESCO Centre, based at the University of Dundee. The Centre is an exciting interdisciplinary centre providing many opportunities for water-related research in projects worldwide.

Field trips

We also provide you with many opportunities to put theory into practice with field trips to local catchments.

Aims of the Programme

This postgraduate degree programme will provide you with understanding and hands-on training in applied hydrology and catchment management. You will develop skills appropriate to a career within the water and environmental sectors, including technical skills in the use of hydrological and environmental modelling software, field skills in acquiring and subsequent analysis of hydrological data. You will also gain an awareness of the linkages between hydrology, ecology, legal and planning practice.

The programme will encourage you to think critically about the ways in which river catchments are managed. You will be trained in legal and regulatory aspects and management approaches balancing multiple stakeholders using case studies from around the world, part of a global network of basins built up by the IHP-UNESCO Centre for Water law, Policy and Science HELP programme. This management knowledge will be underpinned by an understanding of catchment hydrology, monitoring and modelling.

The course starts in September each year. The MSc lasts for 12 months on a full time basis and the PGDip for 9 months on a full time basis.

How you will be taught

Teaching on the course is delivered through a combination of lecture material and informal seminar-style discussion, which will encourage you to explore taught materials and interpret ideas individually.

Field classes are held in order to study monitoring and management strategies in realistic situations, with opportunities to meet the people involved in these activities.

What you will study

There are core modules (all 20 credits) in:

Research Training (Semesters 1 and 2)
Hydrological Monitoring and Modelling (Semester 1)
Catchment Management principlies (Semester 1)
Hydrological applications (Semester 2)


Plus you can choose two of the following option modules (20 credits):

Research in Practice (work placement) (Semester 2)
Applied GIS and Geospatial Data Analysis (Semester 2)
Fieldcourse (Semester 2)


Students enrolled on the MSc programme also complete a Dissertation (worth 60 credits) over the summer period. The research project may be completed in partnership with external environmental agencies.


All modules aim to provide you with as much application and hands-on practice as possible, both within the field and laboratory environments, as well as encouraging you to develop a wider range of research methods and skills.

How you will be assessed

Learning is assessed through a mixture of oral and written presentations, problem-solving assignments, feedback and a major research based project or dissertation.

Careers

Career prospects are good, due to a current shortage reported by environmental recruiters. A rising workload has been noted within Europe stemming from increased regulation in the water sector.

Globally, catchment hydrological management for meeting food security and water quality needs in the face of climate change is a major and growing issue. These drivers will increase substantially increase employment opportunities both nationally and internationally.

This course builds upon a previous course (MSc in Sustainable Catchment Management), which had an excellent record of students entering work in environmental agencies, consultancies and policy related areas upon graduation. The course also provides an excellent platform for further postgraduate study.

Contacts with employers

Dissertations may be organised using contacts within organisations employing graduate water specialists, and participants will have other opportunities during the year to make direct contact with employers. Staff are able to provide advice on many organisations within which graduates of other Dundee programmes are already employed, in conjunction with the University's Careers Service.

Read less
Postgraduate degree programme. Electrical Power Systems Masters/MSc. The 3rd energy industry revolution is taking place where the key is the development of electrical power systems in the contexts of smart grids. Read more

Postgraduate degree programme: Electrical Power Systems Masters/MSc:

The 3rd energy industry revolution is taking place where the key is the development of electrical power systems in the contexts of smart grids. Electrical power systems are playing a pivotal role in the development of a sustainable energy supply, enabling renewable energy generation. Globally there is a big shortage of skilled engineers for designing, operating, controlling and the economic analysis of future electricity networks – smart grids

The MSc Electrical Power Systems will give you the timely skills and specialist knowledge required to significantly enhance your career prospects in the electrical power industry. This programme will develop your power engineering skills through expert teaching and extensive research work undertaken in collaboration with power industry partners.

Some modules will be taught by leading industry experts, offering exciting opportunities to understand the real challenges that the power industry is facing and will work with you to develop and provide innovative solutions. In addition, students working on relevant MSc projects may have the opportunity to work with leading industry experts directly.

Course details

This MSc programme meets the industrial demand for the training and education of both existing and future engineers in the advanced concepts of electrical power systems and renewable energy. It aims to produce graduates of the highest calibre with the right skills and knowledge who will be capable of leading in teams involved in the operation, control, design, and economic analysis of the electrical power systems and networks of the future – smart grids.

It will meet the demand for the research and development of sustainable electrical power systems and the demand for training and education of existing and future power engineers in the advanced concepts and understanding of sustainable electrical power systems and renewable energy.

This programme also aims to provide graduates with the ability to critically evaluate methodologies, analytical procedures and research methods in:

  • Control concepts and methods
  • Advanced energy conversion systems and power electronic applications
  • Advanced power electronic technologies for electrical power networks – HVDC and FACTS
  • Electrical power system engineering - using state-of-the-art computational tools and methods, and design of sustainable electrical power systems and networks
  • Economic analysis of electrical power systems and electricity markets.

Related links

Learning and teaching

Patterns of study

The majority of students study our taught Masters programmes full time. Our programmes are also suitable for practising engineers who wish to study part-time or take a single module to earn Continuing Professional Development (CPD) points. Many modules are completed in three-day sessions allowing you to focus one topic at a time. Following each session of lectures there is an opportunity for you to deepen your understanding through private study and in most cases there is also an assessed assignment.

Overview module

There is a shared introduction to topics from communications engineering, requirements analysis and object-oriented design, and an introduction to and recap of C programming. For the communications engineering programmes there is an introduction to key issues in the design of antennas, radio frequency circuits and link budgets. For the computing programmes there is an introduction to object-oriented programming.

Core modules

These modules cover the advanced specialist topics required for your specific degree programme, such as statistical signal processing and coding and advanced digital design. These technologies are at the heart of many current developments in modern electronic systems. 

Cross-programme option modules

These options specialize in topics relevant to each degree programme and give you the opportunity to adapt the programme that you have chosen to study. The prior knowledge needed for each module is specified in the student handbook to help you make the most appropriate choice. This allows you the greatest possible freedom to customise your study package appropriately.

Individual project

This is an opportunity for you to develop specialist knowledge. Some projects are undertaken in collaboration with companies and, in some cases, you may work on company premises investigating issues of direct concern to future product development. Typical projects include the development of hardware for automotive radar signal processing and the detection of leaks in landfill sites, wireless access systems, 3G mobile radio for light aircraft, the creation of 3D worlds for surgery simulation and wearable computing.

Assessment and awards

Assessment is by a combination of written examination and course work. There is a strong emphasis on course work to deepen understanding. The pass mark is 50%. A merit is awarded to students with an average of 60% or more and a distinction is awarded to students with an average of 70% or more, in both taught and project modules. There are prizes for students who perform especially well overall and for those who complete exceptionally good individual projects.

Employability

This course meets the industrial demand for the training and education of both existing and future engineers in the advanced concepts of electrical power systems and renewable energy. It aims to produce graduates of the highest calibre who will be much in demand due to their skills, knowledge and ability to lead in teams involved in the operation, control, design, and economic analysis of the electrical power systems and networks of the future – smart grids.



Read less

Show 10 15 30 per page



Cookie Policy    X