• University of Edinburgh Featured Masters Courses
  • University of Leeds Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Leeds Beckett University Featured Masters Courses
  • Imperial College London Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Regent’s University London Featured Masters Courses
De Montfort University Featured Masters Courses
University of Bedfordshire Featured Masters Courses
University of Hertfordshire Featured Masters Courses
University of Birmingham Featured Masters Courses
Aberdeen University Featured Masters Courses
"radar"×
0 miles

Masters Degrees (Radar)

  • "radar" ×
  • clear all
Showing 1 to 15 of 30
Order by 
This course provides education and training in selected military electronic systems. The course is intended for officers of the armed forces and for scientists and technical officers in government defence establishments and the defence industry. Read more

Course Description

This course provides education and training in selected military electronic systems. The course is intended for officers of the armed forces and for scientists and technical officers in government defence establishments and the defence industry. It is particularly suitable for those who, in their subsequent careers, will be involved with the specification, analysis, development, technical management or operation of military radar, electro-optics, communications, sonar or information systems, where the emphasis will be on an Electronic Warfare environment.

Students taking the Postgraduate Certificate (PgCert) course variant are able to choose to study, and will be awarded, either the Communications Electronic Warfare PgCert or Sensors Electronic Warfare PgCert.

Overview

A Military Electronic Systems Engineering graduate achieves a high level of understanding and detailed knowledge of military communications and sensor systems with particular regard to electronic warfare. In addition, the MSc course enables the student to carry out an in-depth investigation into an area of electronic warfare to further enhance their analytical capability. Successful graduates of this course should be fully equipped for roles in defence intelligence, systems development and acquisition, involving the specification and analysis of such systems, working individually or as part of a team.

A typical course cohort comprises 10-15 full time students and up to 4 part time.

Duration: Full-time MSc - one year, Part-time MSc - up to three years, Full-time PgCert - one year, Part-time PgCert - two years, Full-time PgDip - one year, Part-time PgDip - two years

Course overview

- MSc students must complete a taught phase consisting of twelve modules, followed by an individual dissertation in a relevant topic.
- PgDip students must complete a taught phase consisting of twelve modules.
- PgCert students must complete a taught phase consisting of six specified modules.

Core Modules

The MSc/PGDip taught phase comprises 10 compulsory modules and a choice of either Information Networks and Advanced Radar, or, Aeronautical Engineering Parts 1 and 2.

Core:
- Electromagnetic Propagation and Devices
- MES-CP - Communications Principles
- Communications Systems 1 and 2
- Radar Principles
- Radar Electronic Warfare
- Electro-Optics and Infrared Systems 1
- Electro-Optics and Infrared Systems 2
- Information Networks

Elective:
- MES-AR - Advanced Radar
- MES-ASDP - Advanced Sensor Data Processing
- Aeronautical Engineering 1
- Aeronautical Engineering 2

Individual Project

The project aim is for the student to undertake an extensive analytical research project using appropriate research methodology, involving simulation and modelling, measurements, experimentation, data collection and analysis. This will enable students to develop and demonstrate their technical expertise, independent learning abilities and critical research skills in a specialist subject area relevant to the field of study of the course.

Assessment

By examination, assignments and thesis.

Career opportunities

This course is typically a requirement for progression for certain engineering and technical posts within UK MOD.

Successful graduates of this course should be fully equipped for roles in defence intelligence, systems development and acquisition, involving the specification and analysis of such systems, working individually or as part of a team either in the military or in the defence industry.

For further information

On this course, please visit our course webpage - http://www.cranfield.ac.uk/courses/masters/military-electronic-systems-engineering.html

Read less
This MSc covers the key technologies required for the physical layer of broadband communications systems. Read more
This MSc covers the key technologies required for the physical layer of broadband communications systems. The programme unites concepts across both radio and optical communication to give students a better understanding of the technical challenges they will face in engineering the rapid development of the broadband communications infrastructure. There is exceptionally strong industry demand for engineers with this skill base.

Degree information

This MSc provides training in the key technologies required for the physical layer of photonic, wireless and wired communications systems and other applications of this technology, ranging from THz imaging to Radar systems. The programme encompasses the complete system design from device fabrication and properties through to architectural and functional aspects of the subsystems that are required to design and build complete communication systems.

Students undertake modules to the value of 180 credits.

The programme consists of five core modules (75 credits), three optional modules (45 credits) and a research dissertation (60 credits).

Core modules
-Introduction to Telecommunications Networks
-Wireless Communications Principles
-Broadband Communications Laboratory
-Communications Systems Modelling
-Broadband Technologies and Components
-Professional Development Module: Transferable Skills (not credit bearing)

Optional modules
-Advanced Photonic Devices
-Antennas and Propagation
-Photonic Sub-systems
-Optical Transmission and Networks
-Radar Systems
-RF Circuits and Sub-systems
-Internet of Things
-Mobile Communications Systems

Dissertation/report
All students undertake an independent research project which culminates in a dissertation of approximately 12,000 words.

Teaching and learning
The programme is delivered through a combination of formal lectures, laboratory and workshop sessions, seminars, tutorials and project work. All of the programme lecturers carry out leading research in the subjects they are teaching. Student performance is assessed through unseen written examination, coursework, design exercises and the dissertation.

Careers

Rapid growth of the internet and multimedia communications has led to an unprecedented demand for broadband communication systems. There is exceptionally strong industry demand for engineers with this skills base and a clear shortage of supply. First destinations of recent graduates include electrical and technical engineers at companies including Société Générale and Ericsson

Employability
The programme provides a broad package of knowledge in the areas of wireless and optical communications networks, from devices to signal processing theory and techniques, network architecture, and planning and optimisation. Students are expertly equipped to pursue careers as engineers, consultants and system architects in wireless and optical communications. A considerable number of graduates also stay in the education sector undertaking research and teaching.

Why study this degree at UCL?

UCL Electronic & Electrical Engineering is one of the most highly rated electronic engineering research departments in the UK. It is the oldest in England, founded in 1885 with Professor Sir Ambrose Fleming (the inventor of the thermionic valve and the left-hand and right-hand rules) as the first head of department.

Our research and teaching ethos is based on understanding the fundamentals and working at the forefront of technology development. We cover a wide range of areas from materials and devices to photonics, radar, optical and wireless systems, electronics and medical electronics, and communications networks.

Read less
Aerospace systems are the future of the aerospace industry and constitute the major component of all modern aircraft. They are the essential onboard systems that ensure the safe and accurate operation of all aerospace vehicles, from civil passenger planes to sophisticated unmanned aerial vehicles. Read more
Aerospace systems are the future of the aerospace industry and constitute the major component of all modern aircraft. They are the essential onboard systems that ensure the safe and accurate operation of all aerospace vehicles, from civil passenger planes to sophisticated unmanned aerial vehicles.

Why this programme

◾The University of Glasgow has been the home of Aerospace Research for over 60 years. This long-standing activity has culminated in the Division of Aerospace Sciences having internationally recognised expertise in all areas of Aeronautics and Aerospace Systems.
◾The University of Glasgow is one of the few institutions in the UK, and the only University in Scotland, to offer an Aerospace Systems MSc.
◾Aeronautical engineering at the University of Glasgow is consistently highly ranked recently achieving 10th in the UK and 1st in Scotland (Complete University Guide 2017).
◾If you are an aeronautical engineering or avionics graduate wanting to improve your skills and knowledge; a graduate of another engineering discipline, mathematics or physics and you want to change field; looking for a well-rounded postgraduate qualification in electronics & electrical engineering to enhance your career prospects; this programme is designed for you.
◾Students in this programme can benefit from access to our outstanding facilities: including several wind tunnels, a flight simulation lab, an autonomous unmanned vehicle (UAV) laboratory, helicopter test rig laboratories and computer labs for modelling and simulation.

Programme structure

Modes of delivery of the MSc in Aerospace Systems include lectures, seminars and tutorials and allow students the opportunity to take part in lab, project and team work.

The summer period is dedicated to project work, with either academic or industrial placements providing the context for your project.

Semester 1 core courses
◾Aircraft flight dynamics
◾Control M
◾Navigation systems
◾Simulation of aerospace systems
◾Space flight dynamics 1.

Semester 2 core courses
◾Autonomous vehicle guidance systems
◾Fault detection, isolation and reconfiguration
◾Radar and electro-optic systems
◾Robust control 5.
◾Aerospace systems team design project.

Projects

◾To complete the MSc degree you must undertake a project worth 60 credits.
◾The project will integrate subject knowledge and skills that you acquire during the MSc programme
◾The project is an important part of your MSc where you can apply your newly learned skills and show to future employers that you have been working on cutting edge projects relevant to the industry.
◾You can choose a topic from a list of MSc projects in Aerospace Systems. Alternatively, should you have your own idea for a project, department members are always open to discussion of topics

Example projects

Examples of projects can be found online

*Posters shown are for illustrative purposes

Accreditation

MSc Aerospace Systems is accredited by the Royal Aeronautical Society (RAeS)

Industry links and employability

◾You will be introduced to this exciting multi-disciplinary area of technology, gaining expertise in autonomous guidance and navigation, advanced aerospace control, simulation and simulators, fault detection and isolation, electro-optic and radar systems, and space systems.
◾The School of Engineering has extensive contacts with industrial partners who contribute to several of their taught courses, through active teaching, advising on projects, curriculum development, and panel discussion.
◾During the programme students have an opportunity to develop and practice relevant professional and transferrable skills, and to meet and learn from employers about working in the aerospace industry.

Career prospects

Career opportunities include aerospace, defence, laser targeting systems, radar development, electro-optics, autonomous systems and systems modelling.

Graduates of this programme have gone on to positions such as:
Software Engineer at Hewlett-Packard
Avionic and Mission System Engineer at Qinetiq
Engineering Corporal & Driver at Hellenic Army.

Read less
The Sensors Electronic Warfare PgCert has been designed for officers of the Armed Forces and for scientists and technical officers in government defence establishments and the defence industry. Read more

Course Description

The Sensors Electronic Warfare PgCert has been designed for officers of the Armed Forces and for scientists and technical officers in government defence establishments and the defence industry.

The programme covers a selection of Electronic Warfare (EW) topics relevant to military systems, covering the specification, analysis, development, procurement, and technical management of military radar, electro-optics and infrared sensor systems.

The main focus of the programme being EW in relation to sensor systems, requires a good understanding of these systems before going on to consider how to defend them from electronic attack or intercept.

Course overview

PgCert students must complete a taught phase consisting of six specified modules.

Graduates achieve a high level of understanding and detailed knowledge of military communications and sensor systems with particular regard to electronic warfare. Successful graduates of this course should be fully equipped for roles in defence intelligence, systems development and acquisition, involving the specification and analysis of such systems, working individually or as part of a team.

Modules

Core -

Electromagnetic Propagation and Devices
Signal Processing, Statistics and Analysis
Radar Principles
Radar Electronic Warfare
Electro-Optics and Infrared Systems 1
Electro-Optics and Infrared Systems 2

Facilities and resources

The course is delivered via lectures, laboratory demonstrations and tutorials. The teaching of the modules is reinforced by visits to relevant outside organisations and scheduled outside of teaching periods.

Funding

Please contact for more information on funding.

Career opportunities

Successful graduates of this course should be fully equipped for roles in defence intelligence, systems development and acquisition, involving the specification and analysis of such systems, working individually or as part of a team either in the military or in the defence industry.

Further Information

For further information on this course, please visit our course webpage - http://www.cranfield.ac.uk/Courses/Masters/Sensors-Electronic-Warfare

Read less
The Guided Weapon Systems MSc is a flagship Cranfield course and has an outstanding reputation within the Guided Weapons community. Read more

Course Description

The Guided Weapon Systems MSc is a flagship Cranfield course and has an outstanding reputation within the Guided Weapons community. The course meets the requirements of all three UK armed services and is also open to students from NATO countries, Commonwealth forces, selected non-NATO countries, the scientific civil service and industry. The course structure is modular in nature with each module conducted at a postgraduate level; the interactions between modules are emphasised throughout. A comprehensive suite of visits to industrial and services establishments consolidates the learning process, ensuring the taught subject matter is directly relevant and current.

Overview

This course is an essential pre-requisite for many specific weapons postings in the UK and overseas forces. It also offers an ideal opportunity for anyone working in the Guided Weapons industry to get a comprehensive overall understanding of all the main elements of guided weapons systems.

It typically attracts 12 students per year, mainly from UK, Canadian, Australian, Chilean, Brazilian and other European forces.

English Language Requirements

If you are an international student you will need to provide evidence that you have achieved a satisfactory test result in an English qualification. The minimum standard expected from a number of accepted courses are as follows:

IELTS - 6.5
TOEFL - 92
Pearson PTE Academic - 65
Cambridge English Scale - 180
Cambridge English: Advanced - C
Cambridge English: Proficiency - C

In addition to these minimum scores you are also expected to achieve a balanced score across all elements of the test. We reserve the right to reject any test score if any one element of the test score is too low.

We can only accept tests taken within two years of your registration date (with the exception of Cambridge English tests which have no expiry date).

Course overview

The course comprises a taught phase and an individual project. The taught phase is split into three main phases:
- Part One (Theory)
- Part Two (Applications)
- Part Three (Systems).

Core Modules

- Introductory and Foundation Studies
- Electro-Optics and Infrared Systems 1
- Radar Principles
- GW Propulsion & Aerodynamics Theory
- GW Control Theory
- Signal Processing, Statistics and Analysis
- GW Applications – Control & Guidance
- GW Applications – Propulsion & Aerodynamics
- Radar Electronic Warfare
- Electro-Optics and Infrared Systems 2
- GW Warheads, Explosives and Materials
- GW Structures, Aeroelasticity and Power Supplies
- Parametric Study
- GW Systems
- Research Project

Individual Project

Each student has to undertake an research project on a subject related to an aspect of guided weapon systems technology. It will usually commence around January and finish with a dissertation submission and oral presentation in mid-July.

Assessment

This varies from module to module but comprises a mixture of oral examinations, written examinations, informal tests, assignments, syndicate presentations and an individual thesis.

Career opportunities

Successful students will have a detailed understanding of Guided Weapons system design and will be highly suited to any role or position with a requirement for specific knowledge of such systems. Many students go on to positions within the services which have specific needs for such skills.

For further information

On this course, please visit our course webpage - http://www.cranfield.ac.uk/Courses/Masters/Guided-Weapon-Systems

Read less
The Aberystwyth MSc in Remote Sensing and Geographical Information Systems (GIS) is designed to provide you with a range of key skills and expertise required to understand, analyse and interpret remote sensing and other spatial datasets. Read more
The Aberystwyth MSc in Remote Sensing and Geographical Information Systems (GIS) is designed to provide you with a range of key skills and expertise required to understand, analyse and interpret remote sensing and other spatial datasets. In this highly interdisciplinary Masters course, you will be exposed to the cutting edge of understanding from a range of subject areas, taught by world-class experts.

All the Remote Sensing Masters are offered through the collaboration of the Institutes of Biological, Environmental and Rural Sciences (IBERS), of Mathematics, Physics and Computer Science (IMPACS), of Computer Sciences, and of Geography, History, Politics and Psychology (IGHPP).

You will have access to these three world-class institutes. The superb teaching staff members maintain active national and international research programmes in their specialist subjects and ensure that every exciting development is brought into the course material. Their collective expertise and experience, and the superb departmental facilities available at Aberystwyth, ensure that your Remote Sensing course has a rigorous academic core with strong practical relevance.

The Aberystwyth MSc in Remote Sensing and GIS has a strong vocational dimension, with field-based and work experience modules that link the latest theoretical concepts with real applications. You will develop a cache of practical, technical and analytical skills which will stand you in excellent stead for entry into further study, public sector organisations and private companies.

Our lecturers are active researchers working at the cutting edge of their disciplines, and you will benefit from being taught the latest geographical theories and techniques. In the most recent Research Excellence Framework assessment (REF 2014) DGES retained its crown of the best Geography department in Wales, with 78% of the research being undertaken classified as either "world leading" or "internationally excellent”. DGES is also in the top ten of UK Geography departments with regard to research power, which provides a measure of the quality of research, as well as of the number of staff undertaking research within the department.

See the website http://courses.aber.ac.uk/postgraduate/gis-remote-sensing-masters/

Suitable for

This degree will suit you:

- If you wish to obtain a Master’s degree with leading input from four internationally-renowned research departments;
- If you have a 2:1 degree or higher in a related discipline;
- If you wish to gain academic expertise, field skills and technical experience in a remote sensing discipline;
- If you wish to enter one of a diverse range of careers requiring research, analysis and practical excellence.

Course detail

The Master’s in Remote Sensing and Geographical Information Systems (GIS) combines the fields of GIS and Remote Sensing to provide students with a strong theoretical and conceptual background and vocational training in these inter-related topics. Having completed your undergraduate degree in a related field, this MSc will enable you to bring your skills and knowledge up to date with a mastery of the latest technological tools and contemporary theoretical understanding. The course particularly focuses on conveying new approaches to data processing, analysis and interpretation as well as the use of innovative technologies, such as unmanned airborne vehicles.

The Remote Sensing component will introduce you to a range of technologies (including radar, optical/hyperspectral sensing and lidar) in a breadth of application contexts (including climate change, human impacts on terrestrial ecosystems, glaciology, hydrology, forestry, coastal change, carbon cycle science to biodiversity). Within GIS, you will encounter fundamental concepts and software functionality.

Whatever your own previous experience or future aspiration, you will benefit from the marvellous integration of cutting-edge theory and practical application, across four world-class departments. In addition to this input, you will be encouraged to conduct your own reading of up-to-date articles on key aspects of GIS and remote sensing, and also to participate in relevant meetings and conferences, such as the Remote Sensing and Photogrammetry Society Annual Conference.

As a graduate of the Aberystwyth MSc in Remote Sensing and GIS, you will possess the latest technological, theoretical and practical understanding of the subject. Recent graduates in remote sensing have been highly successful in continuing within academia and finding employment within private enterprises and in UK and international government agencies. You can be fully confident that this MSc, as a statement of contemporary academic expertise proved in practice, will make you highly desirable to employers, academic institutions and recruiting government bodies.

Format

The course is a full-time programme, taught over one year, and is divided into two parts over three semesters. In part one, you will establish a breadth of necessary skills in a number of core modules whilst directing your own study by choosing specialist modules, worth a total of 120 credits. In part two, you will apply your learning in the individual dissertation worth an additional 60 credits.

Contact time approximately 8-10 hours a week in the first two semesters. During semester three you will arrange your level of contact time with your assigned supervisor.

Assessment

The taught part of the course (Part 1) is delivered and assessed through lectures, student seminars, practical exercises, case studies, course work and formal examinations. The subsequent successful submission of your research dissertation (Part 2) leads to the award of MSc.

Employability

Every aspect of the Aberystwyth Master’s in Remote Sensing and GIS programme is designed to enhance your employability: indeed, successful completion of this degree is in itself certain to do so by building your CV; but more significant is the hugely enhanced array of knowledge, abilities and skills with which you will graduate. We know from past graduates’ success that prospective employers take a similar view, as our alumni have taken positions with UK and international government bodies, private enterprises and leading research establishments.

By completing the Aberystwyth Master’s in Remote Sensing and GIS, you will have strengthened your employability in both specialist and more general areas of work. As a specialist, you will be a highly competent contributor to any work relating to climate change, human impacts on terrestrial ecosystems, glaciology, hydrology, forestry, coastal change, carbon cycle science and biodiversity. In more generic employment situations, your strengths will be broad and deep because you can demonstrate your mastery of any planning, research, analysis and reporting skills that your employer will require.

All employers, whether subject-related specialists or more general corporate bodies and consultancies, place a high value on first-rate technical aptitude, clarity in research and analysis and fluency in communication. You will gain these skills, and much more, as you progress through your studies at Aberystwyth to become an engaging candidate for areas of work relating to remote sensing and beyond.

- Field Expertise in Practise
As a highly practical Master’s course, the MSc in Remote Sensing and GIS includes field trips which will take you into the Cambrian Mountains. This will provide you with hands-on experience in the use of field equipment and the collection of ground truth data to support the interpretation and analysis of remote sensing and GIS datasets.

Such activities convert the purely academic theory of research and data collection into the proven know-how of experience and, importantly, the necessary repertoire of presentation skills to communicate your findings successfully. This experience gained by this approach, which begins at the concept stage and ends in written and live presentation, is a rare advantage in the competitive jobs market. The MSc in Remote Sensing and GIS is set up to help you pursue this edge throughout your studies, securing your theoretical learning with practical knowledge.

- Advanced Skills in Research and Technology
As you would expect, the content of this MSc is strongly weighted in favour of understanding all the scientific processes and advanced technical tools at your disposal. A number of modules, such as the Advanced Research Skills, are designed to develop your thinking to the point that critical analysis and evaluation becomes second-nature. The benefits of practising such skills go beyond the Master’s course and into further study and any professional employment you choose.

Masters students have access to a dedicated computer laboratory (located within the Llandinam Tower) for research in GIS and remote sensing which is fully equipped with the latest software. You will get to grips with an impressive array of GIS and remote sensing software systems, technologies and programming languages including IDL ENVI, ARCGIS, ArcInfo, Erdas Imagine, Cyclone (LiDAR processing), Gamma (radar processing) and python. This highly specific and technical experience will more than satisfy employers within related employment sectors and impress those in other, unrelated areas of work.

- Project Management in the Dissertation
The Master’s dissertation requires you to work independently and to pursue your own individual dissertation topic. You will access to the support and expertise of any of the four departments relevant to remote sensing, but you are required to cultivate a professional work ethic to deliver the combination of research, analysis, communication and presentation demanded by your dissertation. This rigorous part of the MSc will require you to employ project management skills which are entirely transferrable to almost any work context that Master’s graduates apply for.

Studying for this Master’s degree will allow you to sharpen up all your core scientific disciplines, your professional work ethos and your presentation and communication skills. Once secured by obtaining your Masters Degree, you will have gained confidence in the level of your academic expertise and practical field skills, which in turn will enhance your employability in both highly specialised related professions and also on broader, unrelated professional paths.

Find out how to apply here https://www.aber.ac.uk/en/postgrad/howtoapply/

Read less
The Telecommunications MRes is a one-year research degree dealing with areas of technology and systems related to telecommunications, communications technology and the next generation of IP support networks. Read more
The Telecommunications MRes is a one-year research degree dealing with areas of technology and systems related to telecommunications, communications technology and the next generation of IP support networks. This prestigious programme offers significant research content alongside taught courses strongly linked to industrial requirements.

Degree information

Students develop an advanced understanding of the architecture and components that are used to construct a broadband network. The programme offers an overview of the network structures used to build telecommunications networks, enables students to specialise in a specific area of telecommunications, and includes a substantial research project.

Students undertake modules to the value of 180 credits.

The programme consists of two core modules (30 credits), three optional modules (45 credits) and a research project (105 credits).

Core modules
-Introduction to Telecommunications Networks
-Professional Development Module: Transferable Skills

Optional modules
-Broadband Technologies and Components
-Communications Systems Modelling
-Introduction to IP Networks
-Mobile Communications Systems
-Wireless Communications Principles
-Network and Services Management
-Optical Transmission and Networks
-Software for Network Services and Design
-Telecommunications Business Environment
-Antennas and Propagation
-RF Circuits and Devices
-Photonic Sub-systems
-Radar Systems
-Network Planning and Operations
-Advanced Photonic Devices
-Internet of Things

Dissertation/report
All students undertake a substantial research project working in association with one of the research groups at UCL or a collaborating industrial research laboratory.

Teaching and learning
The programme is delivered through a combination of lectures, seminars, tutorials and workshops. Student performance is assessed through unseen written examination, coursework (written and design assignments) and the substantial research project, which is assessed by dissertation and presentations.

Careers

Recent graduates have gone on to become university researchers, and senior software engineers and research scientists at companies including Nokia UK Ltd and QinetiQ.

Employability
The Telecommunications MRes programme provides a broad and comprehensive coverage of the technological and scientific foundations of telecommunications networks and services, from the physical layer to the application layer. A strong emphasis is given to mobile and wireless communications and the latest standards in these areas (LTE, WiMAX, IEEE 802 family of standards). Students study both the theoretical foundations of all related technologies but also carry out extensive practical assignments in several related areas.

Why study this degree at UCL?

UCL Electronic & Electrical Engineering is one of the most highly rated electronic engineering research departments in the UK. It is the oldest in England, founded in 1885. The department has more than a century of tradition of internationally leading research, from Professor Sir Ambrose Fleming, the inventor of the thermionic valve and the left-hand and right-hand rules, to Professor Charles Kao, PhD alumnus and 2009 Nobel Prize in Physics recipient for his research in communication with optical fibres that began whilst studying at UCL.

Our research and teaching ethos is based on understanding the fundamentals and working at the forefront of technology development.

We cover a wide range of areas from materials and devices to photonics, radar, optical and wireless systems, electronics and medical electronics, and communications networks.

Read less
This programme offers expert understanding of the latest developments in geographical information science (GIS), mixing practical training, theoretical knowledge and an ability to apply learned skills in any software environment. Read more

Programme description

This programme offers expert understanding of the latest developments in geographical information science (GIS), mixing practical training, theoretical knowledge and an ability to apply learned skills in any software environment.

This programme can be tailored to your interests and career goals, offering hands-on experience in geographical problem solving. A field trip to Perthshire focuses on techniques for capturing geospatial information.

Programme structure

Courses reflecting the industry’s needs prepare you for employment.

Compulsory courses tpyically include*:
•Introduction To Spatial Analysis
•Spatial Modelling
•Research Practice and Project Planning
•Distributed GIS
•GeoVisualisation
•Dissertation

Option courses:

In consultation with the Programme Director, you will choose from a range of option courses*. We particularly recommend:
•Atmospheric Quality and Global Change
•Fundamentals for Remote Sensing
•Object Oriented Software Engineering Principles
•Object Orientated Software Engineering: Spatial Algorithms
•Principles of GIS
•Principles of GIS for Archaeologists
•Principles of Environmental Sustainability
•Sustainable Energy Technologies
•Marine Systems and Policies
•Technologies for Sustainable Energy
•Introduction to 3D Climate Modelling
•Geology for Earth Resources
•Encountering Cities
•Soil Protection and Management
•Understanding Environment and Development
•Advanced Spatial Database Methods
•Data Integration and Exchange
•Data Mining and Exploration
•Environmental Impact Assessment
•Forests and Environment
•Further Spatial Analysis
•Hyperspectral Remote Sensing
•ICT for Development
•Integrated Resource Planning
•Introduction to Radar Remote Sensing
•Land Use/Environmental Interactions
•Querying and Storing XML
•Water Resource Management
•Participation in Policy and Planning
•Introduction to Environmental Modelling
•Management of Sustainable Development
•GIS and Society
•Communicable Disease Control and Environmental Health
•Political Ecology
•Epidemiology for Public Health

*Please note: courses are offered subject to timetabling and availability and are subject to change each year.

Career opportunities

Demand for GIS expertise is growing at an unprecedented rate. The proven ability of our graduates means our internationally recognised programme is held in high regard by employers.

Graduates work worldwide in public and private sector organisations, such as Microsoft, Google, General Electric Aerospace, The World Bank, British Antarctic Survey, The World Conservation Monitoring Centre, Unisys, British Airways, the Forestry Commission, DEFRA and Registers of Scotland.

The programme is accredited by the Royal Institution of Chartered Surveyors.

Read less
The course is based on an MBA style curriculum and is academically rigorous without neglecting the applied, practical aspects of management education. Read more
The course is based on an MBA style curriculum and is academically rigorous without neglecting the applied, practical aspects of management education. Students come from a variety of backgrounds to experience the unique Cass environment of learning, teamwork and collaboration.

The course equips you with both the foundations of business management and the most advanced tools and theories. These often come directly from the research carried out by Cass's world renowned faculty.

In 2013/14 the course features students from over 32 different countries from four continents. Course content reflects this international mobility, equipping students with the skills necessary to perform in the global business community.

Visit the website: http://www.cass.city.ac.uk/courses/masters/courses/management/2017

Course detail

The course commences in September with a Foundations of Management workshop which prepares students with some of the concepts necessary to complete the course, and includes careers and professional skills development workshops.

Format

To satisfy the requirements of the degree course students must complete:

• eight core courses (15 credits each)
and
• A Business Research Project (40 credits)
and
• Three electives (10 credits each)

Assessment

Assessment of modules on the MSc in Management, in most cases, is by means of coursework and unseen examination. Coursework may consist of standard essays, individual and group presentations, group reports, classwork, unseen tests and problem sets. Please note that any group work may include an element of peer assessment.

Career opportunities

Graduates from the MSc in Management move into a diverse range of careers: consulting, marketing, advertising, luxury goods, wealth management, working for a family business or even setting up their own business.

Some examples of where graduates from the MSc in Management class of 2014 are working are:

• Amazon - Investigation Specialist
• Applied Value - Analyst
• CI Radar - Research Analyst

How to apply

Apply here: http://www.city.ac.uk/study/postgraduate/applying-to-city

Funding

For information on funding, please follow this link: http://www.city.ac.uk/study/postgraduate/funding-and-financial-support

Read less
This course is one of the premier international applied petroleum geoscience courses. Since the inception of the course in 1985 its graduates have an unparalleled employment record in the petroleum industry both in the UK and worldwide. Read more
This course is one of the premier international applied petroleum geoscience courses. Since the inception of the course in 1985 its graduates have an unparalleled employment record in the petroleum industry both in the UK and worldwide. In addition our graduates are highly sought after for further PhD research in the petroleum geosciences.

● Recognised by NERC - 5 MSc studentships each year covering fees, fieldwork and maintenance.
● Recognised by Industry - Industry scholarships
● We offer highly focused teaching and training by internationally recognised academic experts as well as by visiting staff from the petroleum industry.

The course covers the applications of basin dynamics and evolution to hydrocarbon exploration and production. The course is modular in form providing intensive learning and training in geophysics, tectonics and structural geology, sequence stratigraphy and sedimentology, hydrocarbon systems, reservoir geology, remote sensing and applied geological fieldwork.

The MSc course provides ‘state of the art’ training in -
● 3D seismic interpretation and 3D visualization;
● Fault analysis and fault-sealing;
● Seismic sequence stratigraphy;
● Applied sedimentology;
● Well log analysis;
● Remote sensing analysis of satellite and radar imagery;
● Analysis of gravity and magnetic data;
● Numerical modelling of sedimentation and tectonics;
● Applied structural geology;
● Geological Fieldwork.

● Transferable skills learned during the course include
project planning, presentation techniques, report writing and compilation, team working skills, spreadsheet and statistical analyses, GIS methods as well as graphics and visualization techniques.

● The full time MSc course runs for 50 weeks. The first half comprises one and two week course modules as well as group projects and fieldwork. The second half of the MSc course consists of an individual research project usually carried out in conjunction with the petroleum industry or related institutions such as international geological surveys.

● Part time study over 24 months is also available


● Each year independent projects are arranged with new data sets from industry – some students work in the offices of the company whereas other may use our excellent in-house facilities. All independent projects are supervised by faculty members with additional industry supervision where appropriate.

Facilities include –
● Dedicated Modern Teaching Laboratories
● 14 Dual Screen Unix Seismic Workstations
● PC and Macintosh Workstations
● Internationally Recognised Structural Modelling Laboratories
● Advanced Sedimentological Laboratories

The MSc course also greatly benefits from dynamic interaction with internationally recognised research groups within the Geology Department including –

● Project EAGLE – Evolution of the African and Arabian rift system – Professor Cindy Ebinger
● Southeast Asia Research Group – Tectonic Evolution and Basin Development in SE Asia – Professor Robert Hall
● Numerical Modelling Research Group – Numerical Modelling of Tectonics and Sedimentation – Dr Dave Waltham
● Fault Dynamics Research Group – Dynamics of Fault Systems in Sedimentary Basins – Professor Ken McClay

The 2005 MSc graduates went on to employment with Shell, BP, Amerada Hess, Gaz de France, OMV (Austria), Star Energy, First Africa Oil, Badley Ashton, ECL, PGS, Robertsons, PGL, Aceca, and to PhD research at Royal Holloway and Barcelona.
Since 2001, 85% of our graduates have gone in to work in the oil industry, 10% into geological research and 5% into environmental/engineering jobs.

Accommodation is available on campus in en-suite study bedrooms grouped in flats of eight, each with a communal kitchen and dining space.

Subsistence Costs ~£9,000 pa (including Hall of Residence fees of c. £4,500 for a full year)

APPLICATIONS can be made on line at http://www.rhul.ac.uk/Registry/Admissions/applyonline.html

Read less
This is one of the premier international applied MSc courses with a focus on petroleum exploration and production. It is run in parallel with the Basin Evolution and Dynamics MSc in Petroleum Geocsience but with a greater emphasis on tectonics and structural geology. Read more
This is one of the premier international applied MSc courses with a focus on petroleum exploration and production. It is run in parallel with the Basin Evolution and Dynamics MSc in Petroleum Geocsience but with a greater emphasis on tectonics and structural geology. In addition to successful employment in the international petroleum industry graduates from this course are employed in the international mining industry as well as being highly sought after for further PhD research in the geosciences.

● Recognised by Industry - Industry scholarships

● We offer highly focused teaching and training by internationally recognised academic experts as well as by visiting staff from the petroleum and remote sensing industries.

The course covers the applications of tectonics and structural geology to hydrocarbon exploration and production as well as to applied structural geology research in different terranes. The course is modular in form providing intensive learning and training in tectonics, applied structural geology, seismic interpretation of structural styles, tectonostratigraphic analysis, section balancing and reconstruction, remote sensing, crustal fluids and hydrocarbon systems, reservoir geology, and applied geological fieldwork.

The MSc course provides ‘state of the art’ training in –
● Plate tectonics and terrane analysis;
● Applied structural analysis;
● 3D seismic interpretation and 3D visualization of structural styles;
● Fault analysis and fault-sealing;
● Tectonostratigraphic analysis;
● Scaled analogue modelling;
● Numerical modelling of structures;
● Remote sensing analysis of satellite and radar imagery;
● Analysis of gravity and magnetic data;
● Section balancing and reconstruction;
● Applied structural fieldwork.

● Transferable skills learned during the course include
project planning, presentation techniques, report writing and compilation, team working skills, spreadsheet and statistical analyses, GIS methods as well as graphics and visualization techniques.

● The full time MSc course runs for 50 weeks. The first half comprises one and two week course modules as well as group projects and fieldwork. The second half of the MSc course consists of an individual research project usually carried out in conjunction with the petroleum industry or related institutions such as international geological surveys.

● Part time study over 24 months is also available

● Each year independent projects are arranged with new data sets from industry – some students work in the offices of the company whereas other may use our excellent in-house facilities. All independent projects are supervised by faculty members with additional industry supervision where appropriate.

Facilities include –
● Dedicated Modern Teaching Laboratories
● Internationally Recognised Structural Modelling Laboratories
● 14 Dual Screen Unix Seismic Workstations
● PC and Macintosh Workstations
● Advanced Sedimentological Laboratories

The MSc course also greatly benefits from dynamic interaction with internationally recognised research groups within the Geology Department including –

● Project EAGLE – Evolution of the African and Arabian rift system – Professor Cindy Ebinger
● Southeast Asia Research Group – tectonic evolution and basin development in SE Asia – Professor Robert Hall
● Numerical Modelling Research Group – Numerical modelling of tectonics and sedimentation – Dr Dave Waltham
● Fault Dynamics Research Group – Dynamics of Fault Systems in Sedimentary Basins – Professor Ken McClay

Our Tectonics MSc graduates have gained employment with Shell, BP, ECL, PGS, Sipetrol, PGL, Codelco, and to PhD research in a range of universities including Trieste, Barcelona, and Ulster universities.
Since 2001, 85% of our Petroleum Geosciences MSc graduates have gone in to work in the oil industry, 10% into geological research and 5% into environmental/engineering jobs.

Accommodation is available on campus in en-suite study bedrooms grouped in flats of eight, each with a communal kitchen and dining space.

Subsistence Costs ~£9,000 pa (including Hall of Residence fees of c. £4,500 for a full year)

APPLICATIONS can be made on line at http://www.rhul.ac.uk/Registry/Admissions/applyonline.html

Read less
Geographical Information Systems (GIS) has grown rapidly to become a major component of information technology, creating distinctive methods of data analysis, algorithms and software tools. Read more

Why take this course?

Geographical Information Systems (GIS) has grown rapidly to become a major component of information technology, creating distinctive methods of data analysis, algorithms and software tools.

This course emphasises the acquisition of practical GIS skills. We use a wide range of industry-standard software tools and a structured approach to the analysis of spatial data through project work.

What will I experience?

On this course you can:

Get hands-on experience of using instruments such as GPS, Total Stations and 3D laser scanners
Be taught by experts, who have extensive industrial and consultancy experience and strong research portfolios
Practise your GIS data collection skills in a range of environments

What opportunities might it lead to?

The wide range of career opportunities across public and private sectors and in university-based research, coupled with the rapid rate of technological change, mean that major organisations and industrial firms are finding it essential to update their skills through advanced study. We therefore aim to meet this demand by tailoring our course to the needs of both regional and national markets.

Here are some routes our graduates have pursued:

Environmental consultancies
Geographical information science specialists
Working for the Environmental Agency
Working for the Ordnance Survey

Module Details

The academic year is divided into two parts. The first part comprises the lecture, workshop, practical and field work elements of the course, followed by a dissertation which will take approximately five months to complete.

Here are the units you will study:

Principles of Geographic Information Science: Beginning with an overview of the development of GIS, the first part of this unit examines data sources and data capture, as well as hardware and software tools. The second part deals with vector-based data structures and data management, followed by vector GIS operations, such as overlay and buffering. You will undertake a project to create a GIS of your own, which may be presented as a seminar session. Practical exercises are undertaken using MapInfo. You will then go on to develop an understanding of raster-based approaches to GIS, cartographic modelling and related areas of image processing which are often applied in remote sensing. Topics include raster data models and data compression techniques, raster GIS and cartographic modelling, imaging systems and image processing, geometric correction techniques and GIS/remote sensing integration in the raster domain. Practical work uses MapInfo, ArcGIS - ArcMap and ERDAS Imagine.

GIS and Database Management Systems: Your major focus on this unit will be the use of industry-standard methods and tools to develop competence in the successive stages of database design, development and implementation. You will have an introduction to data analysis techniques, followed by an examination of alternative types of database system and the rules of relational database design. There is extensive treatment of the SQL query language in standard databases and for attribute query within a GIS. You will be introduced to advanced topics including database programming and computer-aided database design. You will also consider the Object-Relational databases and spatial data types, explore the use of spatial queries using the ORACLE relational database management system and examine procedural database programming and web database connectivity. Practical work for this unit uses the ORACLE relational database management system, running in full client-server mode.

Applied Geographic Information Systems: On this unit you will develop a general, inferential, model-based approach to the analysis of quantitative data within a geographical framework. You will examine a range of underlying concepts including model specification, bias, linearity, robustness and spatial autocorrelation. You will subsequently develop these in the context of a unified framework for analysis. Practical work is based on ArcGIS - ArcMap.

Research Methods and Design: This unit will introduce you to the basic principles of research design and methodology, enabling you to develop a critical approach to the selection and evaluation of appropriate methods for different types of research problem.

Modelling and Analysis and the Web: This unit gives you the chance to consider the use of GIS technology for creating terrain models and explore the basics of photogrammetry, as well as analytical and digital techniques for photogrammetric data capture. You will also look at Orthophotography, LiDAR and RADAR systems. ArcGIS is used for spatial analysis, such as buffering and overlay techniques. You will also explore and exemplify data transfer between GIS software systems and technologies for internet-based GIS.

Dissertation: This provides an opportunity for you to pursue a particular topic to a greater depth than is possible within the taught syllabus. It can take a variety of forms, for example GIS-based analysis of original data sources and digital datasets, case studies of GIS adoption in public or private sector organisations, the development of new software tools/applications or the design of GIS algorithms. The final submission takes the form of an extended written report or dissertation of a maximum of 15,000 words.

Programme Assessment

The course provides a balanced structure of lectures, seminars, tutorials and workshops. You will learn through hands-on practical sessions designed to give you the skills in laboratory, computer and field techniques. The course also includes extensive field work designed to provide field mapping and data collection skills.

The majority of assessment takes the form of practical exercises and project-based activity. This enables you to become familiar with industry-standard software systems and develop your skills by applying your newfound expertise in areas that particularly interest you.

Student Destinations

GIS technology is now very widely deployed in many organisations ranging from utility companies, telecommunications networks, civil engineering, retailing, local and national government, international charities and NGOs, the National Health Service, environmental organisations, banking and finance, and insurance. GIS has become an essential part of the world's information infrastructure.

You can expect to go on to find work in organisations such as local authorities, health authorities, conservation organisations, banks and insurance companies, amongst others. Many of our previous graduates are now employed all over the world, working on a whole variety of GIS-related projects in a very wide range of different organisations and industries.

Read less
This programme provides graduates and working professionals with a broad training in signal processing and communications. Read more

Programme description

This programme provides graduates and working professionals with a broad training in signal processing and communications. It is suitable for recent graduates who wish to develop the specialist knowledge and skills relevant to this industry and is also suitable as advanced study in preparation for research work in an academic or industrial environment or in a specialist consultancy organisation.

Engineers or other professionals wishing to participate in the MSc programme may do so on a part-time basis.

Our students gain a thorough understanding of theoretical foundations as well as advanced topics at the cutting edge of research in signal processing and communications, including compressive sensing, deep neural networks, wireless communication theory, and numerical Bayesian methods.

The MSc project provides a good opportunity for students to work on state-of-the-art research problems in signal processing and communications.

Programme structure

This programme is run over 12 months, with two semesters of taught courses followed by a research project leading to a masters thesis.

Semester 1 courses
Discrete-Time Signal Analysis
Digital Communication Fundamentals
Probability, Random Variables and Estimation Theory
Statistical Signal Processing
Image Processing
Signal Processing Laboratory
Semester 2 courses
Adaptive Signal Processing
Advanced Coding Techniques
Advanced Wireless Communication
Array Processing Methods
Advanced Concepts in Signal Processing
Pre-dissertation project preparation and report

Career opportunities

With our excellent employability record and internationally respected reputation, the University of Edinburgh is a reliable choice for developing your engineering career.

This programme will appeal to graduates who wish to pursue a career in an industry such as communications, radar, medical imaging or anywhere else signal processing is applied.

Read less
This is the only programme of its kind in the UK, giving you high-level skills and training across the rapidly developing area of carbon capture and storage (CCS). Read more

Programme description

This is the only programme of its kind in the UK, giving you high-level skills and training across the rapidly developing area of carbon capture and storage (CCS).

Global energy demands are still rising, and fossil fuels remain central to meeting those demands in the medium term. CCS is a recognised solution to reducing CO2 emissions until fossil fuels are entirely replaced by renewable energy technologies.

With commercial trials under way, countries and industries are investing in this new technology. In the UK, all existing power stations must have a full-scale retrofit of CCS within five years of the technology being independently judged as technically and commercially proven.

This MSc draws on our world-class interdisciplinary academic research and the insights we have gained from projects involving our industrial stakeholders.

This programme is affiliated with the University's Global Environment & Society Academy.

Programme structure

The MSc has two semesters of lectures and practical classes, followed by a research dissertation of up to 15,000 words. The programme includes industry guest lectures as well as opportunities for fieldwork and industry site visits to a range of locations.

Designed for graduates of engineering or geoscience-related subjects, the programme provides high-level skills and training in the entire value chain of CCS, including combustion, transport, geoscience and legal aspects.

Compulsory courses typically include*:
•Carbon Economics
•Carbon Capture and Transport
•Hydrocarbons (compulsory for students without a geoscience background)
•Carbon Storage and Monitoring
•Dissertation
•Geology for Earth Resources (compulsory for students without a geoscience background)

Option courses:

In consultation with the Programme Director, you will choose from a range of option courses*. We particularly recommend:
•Fundamentals for Remote Sensing
•Novel Strategies for Carbon Storage in Soil
•SeismicReflection Interpretation
•Energy & Society
•Geology for Earth Resources
•Principles of Geographical Information Science
•Spatial Modelling
•Understanding Environment and Development
•Climate Change and Corporate Strategy
•Energy Policy and Politics
•Hydrocarbon Reservoir Quality
•Introduction to Radar Remote Sensing
•Political Ecology
•Separation Processes For Carbon Capture
•Technology and Innovation Management

*Please note that courses are offered subject to timetabling and availability and are subject to change each year.

Career opportunities

Graduates can enter into all manner of jobs due to the transferable and highly desirable nature of the skills gained. However, typically our graduates pursue careers in business, industry, government and non-governmental organisations in the field of low-carbon energy production.

Read less
This MSc provides students with the skills, knowledge and research ability for a career in physics. The programme is designed to satisfy the need, both nationally and internationally, for well-qualified postgraduates who will be able to respond to the challenges that arise from future developments in this field. Read more
This MSc provides students with the skills, knowledge and research ability for a career in physics. The programme is designed to satisfy the need, both nationally and internationally, for well-qualified postgraduates who will be able to respond to the challenges that arise from future developments in this field.

Degree information

Students develop insights into the techniques used in current projects, and gain in-depth experience of a particular specialised research area, through project work as a member of a research team. The programme provides the professional skills necessary to play a meaningful role in industrial or academic life.

Students undertake modules to the value of 180 credits. The programme consists of a choice of three core modules (45 credits), three optional modules (45 credits), a research essay (30 credits) and a dissertation (60 credits). A Postgraduate Diploma (120 credits, full-time nine months, part-time two years) is offered.

Core modules
-Advanced Quantum Theory
-Particle Physics
-Atom and Photon Physics
-Order and Excitations in Condensed Matter
-Mathematics for General Relativity
-Climate and Energy
-Molecular Physics

Please note: students choose three of the above.

Optional modules
-Astrophysics MSc Core Modules
-Space and Climate Science MSc Core Modules
-Medical Physics MSc Core Modules
-Intercollegiate fourth-year courses
-Physics and Astrophysics MSci fourth-year courses
-Physics and Astrophysics MSci third-year courses
-Plastic and Molecular (Opto)electronics

Dissertation/report
All students submit a critical research essay and MSc students undertake an independent research project which culminates in a substantial dissertation and oral presentation.

Teaching and learning
The programme is delivered through a combination of lectures, seminars, tutorials and practical, laboratory and computer-based classes. Student performance is assessed through coursework and written examination. The research project is assessed by literature survey, oral presentation and the dissertation.

Careers

Physics-based careers embrace a broad range of areas e.g. information technology, engineering, finance, research and development, medicine, nanotechnology and photonics.

Employability
A Master's degree in Physics is highly regarded by employers. Students gain a deep understanding of both basic phenomena underpinning a range of technologies with huge potential for future development, e.g. quantum information, as well as direct knowledge of cutting-edge technologies likely to play a major role in short to medium term industrial development while addressing key societal challenges such as energy supply or water sanitisation.

Why study this degree at UCL?

UCL Physics & Astronomy is among the top departments in the UK for graduate study.

The department's participation in many international collaborations means we provide exceptional opportunities to work as part of an international team. Examples include work at the Large Hadron Collider in Geneva, and at the EISCAT radar instruments in Scandinavia for studying the Earth's upper atmosphere.

For students whose interests tend towards the theoretical, the department is involved in many international projects, some aimed at the development of future quantum technologies, others at fundamental atomic and molecular physics. In some cases, opportunities exist for students to broaden their experience by spending part of their time overseas.

Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X