• University of Derby Online Learning Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Birmingham City University Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • University of Surrey Featured Masters Courses
University of Nottingham in China Featured Masters Courses
Nottingham Trent University Featured Masters Courses
Buckinghamshire New University Featured Masters Courses
Nottingham Trent University Featured Masters Courses
University of the West of England, Bristol Featured Masters Courses
"racing"×
0 miles

Masters Degrees (Racing)

We have 22 Masters Degrees (Racing)

  • "racing" ×
  • clear all
Showing 1 to 15 of 22
Order by 
The MSc in Racing Engine Design is the only programme of its kind in the world - it has been developed with the needs and requirements of the race engine manufacturers in mind. Read more
The MSc in Racing Engine Design is the only programme of its kind in the world - it has been developed with the needs and requirements of the race engine manufacturers in mind. The programme is designed to produce highly-skilled graduates who are ready to undertake advanced design roles with major engine manufacturers and their supply chain.

The UK is a world leader in motorsport and high performance engines industry - many of the world's most advanced high-performance engines are designed not far from our location in the UK motorsport valley. The department’s unrivalled access to motorsport industry informs and directs development and delivery of the programme.

In addition to the strong theory-based modules, graduates gain a comprehensive understanding of how winning engines are created. Our teaching is centred around our state-of-the-art laboratories in a purpose-designed engineering building.

Why choose this course?

We are known as a premier institution for Motorsport education - our motorsport legacy is recognised worldwide and many of our graduates progress to work for most advanced high-performance engine manufacturers, such as Ferrari and Mercedes HPP, all of F1 teams and major suppliers to motorsport industry, such as Riccardo, Xtrac, Prodrive, and Hewland. Our programme has been developed with and delivered in collaboration with the automotive and motorsport industry: you will be taught by staff with many years of racing engine experience, from performance road cars, Rally, IRL, Kart and F3 right up to F1 and equipped with state-of-the-art equipment, that include four engine test cells, analytical and mechanical test equipment and the latest 3D printing technology, in addition to a range of racing cars. Industrial aspect of delivery is enhanced by our visiting speakers from business and industry, providing professional perspectives, preparing you for an exciting career, for more information see our industrial lecture series schedule.

Our close industry links can also be seen through research projects and consultancies that enable us to feed the latest technology and developments into our teaching as well as providing opportunities for students to undertake projects with neighbouring companies, also based in the UK Motorsport Valley, whilst our well-funded research programmes in areas of current concern such as vehicle end-of-life issues, modern composite materials and electric vehicles offer. In REF 2014 57% of the department's research was judged to be of world leading quality or internationally excellent with 96% being internationally recognised. Our research incorporates the latest developments within the sector with high profile visiting speakers contributing to our invited research lectures. You will have the opportunity to join our acclaimed Formula Student team (OBR), mentored by our alumni and visiting lecturers from motorsport industry. You can put theory into practice by competing with the best universities from around the world. Find out more about Formula Student at Brookes by visiting the Oxford Brookes Racing website. You will have an opportunity to work on our novel V-twin engine design and also select this as your dissertation topic, which may lead to the possibility of furthering their studies towards a PhD research degree.

Regular visits to F1 teams, Formula E teams and major suppliers to the motorsport industry provide students with opportunities to explore technical challenges and the latest technology -- to get a flavour of the activities within our department see our 2015 highlights.

Professional accreditation

Accredited by the Institution of Mechanical Engineers (IMechE) and Institute of Engineering and Technology (The IET) as meeting the academic requirements for full Chartered Engineer status.

This course in detail

The course is structured around three time periods: Semester 1 runs from September to December, Semester 2 from January to May, and the summer period completes the year until the beginning of September.

To qualify for a master's degree you must pass the compulsory modules, two optional modules and the dissertation.

Compulsory modules:
-Racing Engine Design
-Advanced Strength of Components
-Advanced Engineering Management

Optional modules:
-Advanced Powertrain Engineering
-Computation and Modelling
-CAD/CAM
-Data Acquisition Systems

The Dissertation (core, triple credit) is an individual project on a topic from race engineering, offering an opportunity to specialise in a particular area related to high performance engines. In addition to developing your expertise in a highly specialised field, including use of industry-standard software and/or experimental work, the module will also provide you with research skills, planning techniques, project management. Whilst a wide range of industry-sponsored projects are available (e.g. McLaren, AVL, VUHL etc.), students are also able undertake their own projects in the UK and abroad, to work in close co-operation with a research, industrial or commercial organisation. .

Please note: As our courses are reviewed regularly, the choice of modules available may differ from those described above.

Teaching and learning

Teaching methods include lectures and seminars to provide a sound theoretical base, and practical work to demonstrate important aspects of theory or systems operation. Visiting speakers from business and industry provide valuable insights.

Careers and professional development

Our graduates enjoy the very best employment opportunities, with hundreds of engineering students having gone onto successful careers in their chosen industry. Many of our students go on to work with leading motorsport companies, including directly into F1 teams and suppliers.

Read less
Motorsport is one of the world's most dynamic, competitive industries - and engineers that master their craft have almost unlimited career opportunities. Read more

About the course

Motorsport is one of the world's most dynamic, competitive industries - and engineers that master their craft have almost unlimited career opportunities.

This MSc in Automotive Motorsport Engineering at Brunel equips graduates with the qualities and transferable skills they need to flourish at a senior level in an exacting industry.

The comprehensive curriculum covers a wide range of specialist skills sought within the industry – including core modules in:

Research methods and sustainable engineering
Racing team management and vehicle testing
Advanced vehicle dynamics, IC engines, materials and manufacturing

You’ll gain practical experience through a team project, and complete a dissertation of your choice, typically covering a design, experimental, computing or analysis subject.

Aims

The speed of change in motorsport is relentless -and engineers need to inovate to succeed. From F1 pit lane mechanics to testing specialists, engine and aerodynamics maestros to team managers and financial controllers, graduates from this course have a host of exciting and varied career options open to them.

The MSc programme at Brunel University helps you develop imagination and creativity to follow a successful engineering career with a mix of modules covering automotive and motorsport engineering topics, which delivers an integrating layer on top of subject specific first degree or professional skills.

Its primary focus is to create Master's degree graduates who are well equipped with the knowledge and skills to work in a multi discipline subject area, typically encountered in the automotive and motorsport engineering industry.

Course Content

The course will allow students the option of specialising in automotive engineering or motorsport engineering, both in the optional modules and the dissertation.

Every student also produces a group project, usually carried out with four or five other students. The group project involves the design, manufacture, assembly, and testing of a single seater racing vehicle, that will take part in the annual Formula Student competition in July with over 70 teams competing in the event.

Compulsory modules:

Research Methods and Sustainable Engineering
Racing Team Management and Vehicle Testing
Advanced Vehicle Dynamics, IC Engines, Materials and Manufacturing
Major Group Project
Dissertation

Optional Modules
Students choose two of the four modules below:

Advanced Modelling and Design
Advanced Thermofluids
Racing Legislation, Finance and Sponsorship
Racing Vehicle Design and Performance

Special Features

Excellent facilities
We have extensive and well-equipped laboratories, particular areas of strength being in fluid and biofluid mechanics, IC engines, vibrations, building service engineering, and structural testing. Our computing facilities are diverse and are readily available to all students. The University is fully networked with both Sun workstations and PCs. Advanced software is available for finite and boundary element modelling of structures, finite volume modelling of flows, and for the simulation of varied control systems, flow machines, combustion engines, suspensions, built environment, and other systems of interest to the research groups.

Brunel Automotive Lecture Series
Brunel’s Automotive Lecture Series is a special feature of the taught programmes in the areas of automotive and motorsport engineering. The Series consists of talks on technology and careers by industry leaders, alumni and expert technologists appropriate not only for late stage undergraduate and postgraduate students but also for researchers in the these areas. Topics include themes from the broader automotive and motorsport industry and its technologies including advanced powertrains, vehicle testing and advanced components.

Women in Engineering and Computing Programme

Brunel’s Women in Engineering and Computing mentoring scheme provides our female students with invaluable help and support from their industry mentors.

Accreditation

The Automotive and Motorsport Engineering MSc at Brunel University is accredited by the Institution of Mechanical Engineers (IMechE). This will provide a route to Chartered Engineer status in the UK.

Assessment

Modules are taught over eight months (from October to May) and are assessed by a balanced combination of examination and assignment. For the final four months (June to September), students will conduct an individual project and prepare a dissertation, allowing the opportunity to undertake original research relating to the automotive and motorsport engineering fields.

The group project is conducted throughout the year and is assessed by means of project logbooks, oral presentations and final project reports.

Read less
The MSc in Motorsport Engineering course provides a unique preparation for work in the motorsport industry. Read more
The MSc in Motorsport Engineering course provides a unique preparation for work in the motorsport industry. Our location in the heart of UK motorsport valley with close proximity of the majority of Formula 1 teams and their supply chain gives our Department unrivalled access to motorsport companies.This informs and directs development and delivery of the programmes, benefiting from contribution by a range of experts with noteworthy track record in the motorsport industry. It also offers students opportunities to undertake industry-based projects, often in conjunction with our high-standing research based around state-of-the-art automotive test equipment in a purpose-designed engineering building.

Our students also have an opportunity to implement their theoretical knowledge by joining Oxford Brookes Racing, our acclaimed Formula Student team to gain an understanding of racing culture and an environment where winning race cars are built.

Why choose this course?

We are known as a premier institution for Motorsport education - our motorsport legacy is recognised worldwide and many of our graduates progress to work with leading motorsport companies, including all of F1 teams, Formula E and major suppliers to motorsport industry. Our programme has been developed with and delivered in collaboration with the motorsport industry: you will be taught in laboratories that include a four-post test rig, four state-of-the-art engine test cells, analytical and mechanical test equipment and the latest 3D printing technology, in addition to a range of racing cars. Our staff have exceptional expertise in the field of motorsport engineering and include winning F1 race car designers and world-leading sustainable vehicle engineering researchers.

Visiting speakers from business and industry provide professional perspectives, preparing you for an exciting career, for more information see our invited research lectures. You will have the opportunity to join our acclaimed Formula Student team (OBR), mentored by our alumni and visiting lecturers from motorsport industry. They put theory into practice by competing with the best universities from around the world. Find out more about Formula Student at Brookes by visiting the Oxford Brookes Racing website. Regular visits to F1 teams, Formula E teams and major suppliers to the motorsport industry provide students with opportunities to explore technical challenges and the latest technology - to get the flavour of activities at our department see 2015 highlights.

Professional accreditation

Accredited by the Institution of Mechanical Engineers (IMechE) and and The Institute of Engineering and Technology as meeting the academic requirements for full Chartered Engineer status.

This course in detail

The Motorsport Engineering MSc is structured around three time periods: Semester 1 runs from September to December, Semester 2 from January to May, and the summer period completes the year until the end of September.

To qualify for a master degree you must pass the compulsory modules, two optional modules and the dissertation.

Compulsory modules:
-Advanced Vehicle Dynamics
-Advanced Vehicle Aerodynamics
-Laptime Simulation and Race Engineering
-Advanced Engineering Management

Optional modules (choose two):
-Vehicle Crash Engineering
-Computation and Modelling
-CAD/CAM
-Advanced Strength of Components
-Advanced Materials Engineering and Joining Technology
-Data Acquisition Systems
-Engineering Reliability and Risk Management

You also take:
The Dissertation is an individual project on a topic from motorsport engineering, offering an opportunity to specialise in a particular area of motorsport. In addition to developing high level of expertise in a particular area of motorsport, including use of industry-standard software and/or experimental work, the module will also provide you with research skills, planning techniques, project management. Whilst a wide range of industry-sponsored projects are available (e.g. Dallara, VUHL, Base Performance, McLaren, AVL), students are also able undertake their own projects in the UK and abroad, to work in close co-operation with a research, industrial or commercial organisation.

Please note: As our courses are reviewed regularly as part of our quality assurance framework, the choice of modules available may differ from those described above.

Teaching and learning

Teaching methods include lectures, seminars to provide a sound theoretical base, and practical work, designed to demonstrate important aspects of theory or systems operation. Visiting speakers from business and motorsport industry provide valuable insights.

Careers and professional development

The department’s employability record is consistently above 90%, which is significantly above sector average. Graduates enjoy the very best employment opportunities, with hundreds of engineering students having gone onto successful careers in the motorsport industry.

Many of our students go on to work with leading motorsport companies, including directly into F1 teams and their suppliers. Our notable alumni include William Morris, founder of Morris cars (Lord Nuffield) and Adrian Reynard, motorsport driver and entrepreneur whilst honorary graduates include Sir John Surtees, Adrian Newey and Dr Pat Symonds.

Read less
The global market for aerial, ground, and marine Autonomous Vehicles has grown rapidly due to the advent of drones and driverless cars. Read more

The global market for aerial, ground, and marine Autonomous Vehicles has grown rapidly due to the advent of drones and driverless cars. Defence, Aerospace, Automotive, and Marine Industries seek graduates conversant in key aspects of Autonomy including: dynamics & control, guidance & navigation, decision making, sensor fusion, data & information fusion, communication & and networking. These durable and transferrable skills are the bedrock of this unique MSc course whose content has been based on advice from the Industrial Advisory Board, comprising the relevant Industrial representatives from Big Primes to Small and Medium-sized Enterprises.

Who is it for?

The Autonomous Vehicle Dynamics and Control MSc is a unique course for graduates in engineering, physics, or mathematics wishing to acquire durable and transferrable skills in Autonomous Vehicles to pursue career opportunities in Defence, Aerospace, Automotive, and Marine Industries.

Why this course?

We are unique in that we offer a combination of subjects much sought after in the Autonomous Vehicle Industry and not covered in a single MSc course anywhere else. Successful graduates of our MSc course become conversant in key aspects of Autonomy which advantageously differentiates them in today's competitive employment market

The Autonomous Vehicle Dynamics and Control MSc course begins with the fundamentals of autonomous vehicle dynamics and control, and progresses to the core subjects of guidance & navigation, decision making, sensor fusion, data & information fusion, communication & and networking. A choice of optional modules allows individual tailoring of these subjects to specialise in appropriate subject areas.

The taught part of the course is followed by Individual Research Projects (IRPs) and the topic of each of the IRPs is provided by one of the member of the Industrial Advisory Board. The real-world relevance of the IRP topics is another unique feature of our MSc course and can be another effective differentiator in the job market.

This course is also available on a part-time basis enabling you to combine studying with full-time employment. This is enhanced by a three-stage programme from a Postgraduate Certificate, to a Postgraduate Diploma through to an MSc.

Informed by Industry

The relevant, competent and pro-active Industrial Advisory Board includes:

  • BAE Systems
  • Airbus Defence & Space
  • Thales UK
  • Leonardo
  • Raytheon UK
  • Lockheed Martin UK
  • Boeing UK (Phantom Works)
  • UTC Aerospace Systems
  • QinetiQ
  • Spirent Communications
  • Tekever
  • MASS Consultants
  • Plextek
  • Stirling Dynamics
  • RaceLogic

who not only continuously advise on updating the course content but also provide topics for Individual Research Projects (IRPs). After the final oral exams in early September, all students present posters summarising their IRPs to the whole Industrial Advisory Board thus exposing their work to seasoned professionals and potential employers. The IRPs benefit from our own lab where real autonomous vehicles can be designed and tested.

Accreditation

Accreditation is being sought for the MSc in Autonomous Vehicle Dynamics and Control from the Royal Aeronautical Society, the Institution of Mechanical Engineers (IMechE) and the Institution of Engineering & Technology (IET) on behalf of the Engineering Council as meeting the requirements for Further Learning for registration as a Chartered Engineer. Candidates must hold a CEng accredited BEng/BSc (Hons) undergraduate first degree to comply with full CEng registration requirements.

Course details

The taught course element consists of lectures in three areas: dynamics, control systems, and autonomous systems and technology. The MSc consists of two equally weighted components, taught modules and an individual research project.

Individual project

Our industry partners sponsor individual research projects allowing you to choose a topic that is commercially relevant and current. Topics are chosen during the first teaching period in October and you begin work during the second half of the MSc course (May - August). The project allows you to delve deeper into an area of specific interest, taking the theory from the taught modules and joining it with practical experience.

Projects encompass various aspects of operations, not only concerned with design but including payloads, civil applications, system, sensors and other feasibility studies industry wishes to explore.

For the duration of the project, each student is assigned both a university and industry supervisor. In recent years, students have been based at sponsor companies for sections of their research and have been given access to company software/facilities.

During the thesis project all students give regular presentations to the course team and class, which provides an opportunity to improve your presentation skills and learn more about the broad range of industry sponsored projects.

Previous projects have included:

Assessment

Taught modules 50%, Individual research project 50%. Please note: Modules for this course are under review, to incorporate the latest advice from the Industrial Advisory Board.

Your career

The industry-led education makes Cranfield graduates some of the most desirable all over the world for recruitment by companies competing in the autonomous vehicle market including:

  • BAE Systems
  • Defence Science and Technology Laboratory
  • MBDA
  • Other companies from our Industrial Advisory Board.

Graduates from this course will be equipped with the advanced skills which could be applied to the security, defence, marine, environmental and aerospace industries. This approach offers you a wide range of career choices as an autonomous systems engineer, design engineer or in an operations role, at graduation and in the future. Others decide to continue their education through PhD studies available within Cranfield University or elsewhere.



Read less
Wrexham Glyndwr University has a proven track of success in Automotive Engineering and Motorsport. The course contains modules covering the essential aspects of the automotive engineering field, providing a solid background for a career in the automotive engineering and motorsport sector. Read more

Wrexham Glyndwr University has a proven track of success in Automotive Engineering and Motorsport. The course contains modules covering the essential aspects of the automotive engineering field, providing a solid background for a career in the automotive engineering and motorsport sector.

Lecturers and supporting staff have the required industrial experience and are practitioners (track racing, car building. etc.).

The laboratories at Wrexham Glyndwr University are equipped with up-to-date specialist equipment and vehicles.

The programme provides the opportunity to combine practical aspects as well as simulation based projects. The university operates a computer lab with industry relevant software, e.g. CATIA, ANSYS (Mechanical and CFD)

An open and friendly atmosphere enhances the students’ learning experience. Strong links to local, national and international companies ensure the standard of teaching is industry relevant and they provide students’ with the best possible starting point into their professional career paths.

Key course features

  • Strong links with the industries such as Toyota and Polybush.
  • Access to a specialist motorsport workshop as well as an industry standard production workshop to gain experience of using machinery.
  • You will be given an access to various projects (projects are changing at all times – subjected to changes - currently Glyndwr Racing Alfa 159, MX5 race car, Westfield amongst many others). Students are also currently running a Formula Student team.
  • Solid base for career progression in industry.

What will you study?

FULL-TIME STUDY (SEPTEMBER INTAKE)

 The taught element, Part One, of the programmes will be delivered in two 12 week trimesters and each trimester has a loading of 60 credits.

You will cover six taught modules which include lectures, tutorials and practical work on a weekly basis. The expected timetable per module will be a total of 200 hours, which includes 40 hours of scheduled learning and teaching hours and 160 independent study hours.

Part Two will then take a further 15 weeks having a notional study time of 600 hours. During this time the student will be responsible for managing his/her time in consultation with an academic supervisor.

FULL-TIME MODE (JANUARY INTAKE)

For the January intake, students will study the three specialist modules first during the second trimester from January to May. The three core modules will be studied in the first trimester of the next academic year from September to January.

On successful completion of the taught element of the programme the students will progress to Part Two, MSc dissertation to be submitted in April/May.

PART-TIME MODE

The taught element, part one, of the programmes will be delivered over two academic teaching years. 80 credits or equivalent worth of modules will be delivered in the first year and 40 credits or equivalent in the second year. The part time students would join the full time delivery with lectures and tutorials/practical work during one day on a weekly basis.

The dissertation element will start in trimester 2 taking a further 30 weeks having a total notional study time of 600 hours. During this time the student will be responsible for managing his/her time in consultation with an academic supervisor.

AREAS OF STUDY INCLUDE:

Engineering Research Methods & Postgraduate Studies

Engineering Design & Innovation

Engineering Systems Modelling & Simulation

Advanced & Composite Materials

Structural Integrity & Optimisation

Advanced Automotive Chassis, Engines, Powertrain & Control

Dissertation

The information listed in this section is an overview of the academic content of the programme that will take the form of either core or option modules. Modules are designated as core or option in accordance with professional body requirements and internal academic framework review, so may be subject to change.

Career prospects

The course equips you with a thorough knowledge and skills in engineering at the forefront of new and emerging technologies. Graduates will be well placed to become subject specialists within industry or to pursue research careers within academia.



Read less
Superb industry links and world-class research come together to make Oxford Brookes one of the best places in the UK to study Mechanical Engineering at postgraduate level. Read more
Superb industry links and world-class research come together to make Oxford Brookes one of the best places in the UK to study Mechanical Engineering at postgraduate level. Being in the heart of one of Europe’s highest concentration of high-tech businesses provides opportunities for industry-focused studies.You will take charge of your career by building on your undergraduate degree and developing your professional skills. It introduces you to research, development and practice in advanced engineering design and equips you for professional practice at senior positions of responsibility.You will gain the skills to take complex products all the way from idea to fully validated designs. Using the most advanced CAD packages, you will learn the techniques required to analyse and test your designs followed by full design implementation. Our teaching is centred around our state-of-the-art laboratories in a purpose-designed engineering building.

Why choose this course?

You will be taught by staff with exceptional knowledge and expertise in their fields, including world-leaders in research on sustainable engineering, materials and joining technology and design engineers leading development of novel products such as carbon and bamboo bike. Our research projects and consultancies are done with partners such as Siemens, Yasa Motors, Stannah Stairlifts, 3M etc. using our facilities including analytical and mechanical test equipment, scanning electron microscope and the latest 3D printing technology. Well-funded research programmes in areas of current concern such as modern composite materials, vehicle end-of-life issues and electric vehicles.

Our research incorporates the latest developments within the sector with high profile visiting speakers contributing to our invited research lectures. In REF 2014 57% of the department's research was judged to be of world leading quality or internationally excellent with 96% being internationally recognised. Visiting speakers from business and industry provide professional perspectives, preparing you for an exciting career, for more information see our industrial lecture series schedule. Our close industry links facilitate industrial visits, providing you with opportunities to explore technical challenges and the latest technology - to get a flavour of activities within our department see 2015 highlights.

You will have the opportunity to join our acclaimed Formula Student team (OBR), where you have a chance to put theory into practice by competing with the best universities from around the world. Find out more about Formula Student at Brookes by visiting the Oxford Brookes Racing website.

Professional accreditation

Accredited by the Institution of Mechanical Engineers (IMechE) and The Institute of Engineering and Technology (The IET) as meeting the academic requirements for full Chartered Engineer status.

This course in detail

The course is structured around three periods: Semester 1 runs from September to December, Semester 2 from January to May, and the summer period completes the year until the beginning of September.

To qualify for a master's degree you must pass the compulsory modules, two optional modules and the Dissertation.

Compulsory modules
-Advanced Mechanical Engineering Design
-Advanced Strength of Components
-Advanced Engineering Management

Optional modules
-Computation and Modelling
-CAD/CAM
-Advanced Materials Engineering and Joining Technology
-Sustainable Engineering Technology
-Noise, Vibration and Harshness
-Vehicle Crash Engineering
-Engineering Reliability and Risk Management

The Dissertation (core, triple credit) is an individual project on a topic from motorsport engineering, offering an opportunity to specialise in a particular area of motorsport. In addition to developing a high level of expertise in a particular area of motorsport, including use of industry-standard software and/or experimental work, the module will also provide you with research skills, planning techniques, project management. Whilst a wide range of industry-sponsored projects are available (e.g. Far-Axon, Clayex/Dymola, Tranquillity Aerospace, Norbar, etc.), students are also able undertake their own projects in the UK and abroad, to work in close co-operation with a research, industrial or commercial organisation.

Please note: As our courses are reviewed regularly as part of our quality assurance framework, the choice of modules available may differ from those described above.

Teaching and learning

Teaching methods include lectures and seminars to provide a sound theoretical base, and practical work designed to demonstrate important aspects of theory or systems operation.

Teaching staff are drawn primarily from the Department of Mechanical Engineering and Mathematical Sciences. Visiting speakers from business and industry provide further input.

Careers and professional development

Our graduates enjoy the very best employment opportunities, with hundreds of engineering students having gone onto successful careers in a wide range of industries.

Read less
Why this course?. This programme is for graduate engineers in naval architecture, offshore engineering, mechanical engineering and other related disciplines who wish to pursue a career in offshore engineering. Read more

Why this course?

This programme is for graduate engineers in naval architecture, offshore engineering, mechanical engineering and other related disciplines who wish to pursue a career in offshore engineering.

It provides you with practical knowledge of offshore floating systems. You’ll look at their conceptions, design and installation. You’ll also gain a sound basis of mathematical and engineering fundamentals.

With the world-wide search for offshore oil and gas moving into increasingly hostile areas of ocean and deep and ultra-deep water, floating systems are becoming more widely used. Floating systems must be designed and built to withstand harsh environments with innovative methods and techniques being adopted to develop robust as well as economically efficient and safe structures. In meeting these challenges, concern for the environment is of increasing importance.

The Department of Naval Architecture, Ocean & Marine Engineering (NAOME), a leading institution in Scotland, offers excellent teaching and research facilities in Naval Architecture, Ocean and Marine engineering, which expands your career opportunities in naval architecture, marine, offshore oil and gas industry.

You’ll study

The programme consists of three components:

  • instructional modules
  • group project
  • individual project (MSc only)

Group project

You’ll be part of a group of three to five people in ‘consultant teams’ for 10 weeks addressing a practical engineering problem. You’ll then have the opportunity to present the report to a panel of industrial experts.

This project will enhance your team working and communication skills. It also provides valuable access to industrial contacts.

It will give you a good understanding of all aspects of research work. In addition, the technological study must be accompanied by survey of the relevance and applicability of the findings to the maritime industries at large.

You'll learn efficient ways to gather information, to distribute workload and to delegate amongst the group, to analyse their results and to appreciate the broader implications of the whole project. In-depth technological studies will be accompanied by increasingly important competence in managerial skills, quality assurance and a sound appreciation of the economic, political, social and environmental issues crucial to professional success.

Individual project (MSc only)

MSc students will take on an individual dissertation on a topic of their own interest. The aim of the individual project is to develop your research skills and to combine many of aspects learned from other modules within a specific topic. This will be achieved by you carrying out work into a particular topic relating to your chosen theme and preparing a dissertation.

Facilities

We have excellent teaching facilities including:

  • Catalina - our departmental racing yacht
  • Kelvin Hydrodynamics Lab - the largest ship-model experiment tank in any UK university
  • towing/wave tank exclusively for teaching purposes
  • marine engine laboratory
  • hydrogen fuel cell laboratory
  • cutting-edge computer facilities
  • industry standard software

Accreditation

This course is accredited by the Royal Institution of Naval Architects (RINA) and the Institute of Marine Engineering, Science and Technology (IMarEST).

Learning & teaching

There are two teaching semesters of 11 weeks each.

Course modules are delivered in form of formal lectures supported with tutorials and laboratory experiment.

Guest lectures

During term time, we arrange weekly seminars in which leaders and pioneers of the maritime, oil and gas and marine renewables industries visit the department and present to students. This is a great way of supplementing your education with the latest developments and gaining industry contacts for your future career.

Industrial visits are also made to a variety of companies.

Assessment

There are two types of method for module assessment. One is course work assessment only, the other is examination assessment. For examined modules the final assessment mark consists of 30-40% course work marks and 60-70 examination marks.

Careers

Graduates will be well-prepared for a challenging career in all sectors of offshore engineering dealing not only with offshore floating systems but also fixed marine structures.



Read less
Why this course?. This programme allows graduate engineers or those from related disciplines to specialise in, or convert to, marine engineering. Read more

Why this course?

This programme allows graduate engineers or those from related disciplines to specialise in, or convert to, marine engineering.

Marine engineering involves the systems and equipment onboard marine vehicles including:

  • design
  • construction
  • installation
  • support

There’s a particular emphasis on propulsion and control systems.

High efficiency and low environmental impact of marine engines are the key factors in assuring economical operation and environmental protection in maritime transportation. This has important implications for both economic success and environmental impact.

The Department of Naval Architecture, Ocean & Marine Engineering (NAOME), a leading institution in Scotland, offers excellent teaching and research facilities in naval architecture, ocean and marine engineering, which expands your career opportunities in naval architecture, marine, offshore oil and gas industry.

You’ll study

The programme consists of three components:

  • instructional modules
  • group project
  • individual project (MSc only)

Group project

You’ll be part of a group of three to five people in ‘consultant teams’ for 10 weeks addressing a practical engineering problem. You’ll then have the opportunity to present the report to a panel of industrial experts.

This project will enhance your team working and communication skills. It also provides valuable access to industrial contacts.

It'll give you a good understanding of all aspects of research work. In addition, the technological study must be accompanied by a survey of the relevance and applicability of the findings to the maritime industries at large.

You'll learn efficient ways to gather information, to distribute workload and to delegate amongst the group, to analyse their results and to appreciate the broader implications of the whole project. In-depth technological studies will be accompanied by increasingly important competence in managerial skills, quality assurance and a sound appreciation of the economic, political, social and environmental issues crucial to professional success.

Individual project (MSc only)

MSc students will take on an individual dissertation on a topic of their own interest. The aim of the individual project is to develop your research skills and to combine many of the aspects learned from other modules within a specific topic. This'll be achieved by you carrying out work into a particular topic relating to your chosen theme and preparing a dissertation.

Facilities

We have excellent teaching facilities including:

  • Catalina - our departmental racing yacht
  • Kelvin Hydrodynamics Lab - the largest ship-model experiment tank in any UK university
  • Towing/wave tank exclusively for teaching purposes
  • Marine engine laboratory
  • Hydrogen fuel cell laboratory
  • Cutting-edge computer facilities
  • Industry standard software

Accreditation

This course is accredited by the Royal Institution of Naval Architects (RINA) and The Institute of Marine Engineering, Science and Technology, (IMarEST) on behalf of the UK Engineering Council.

Learning & teaching

There are two teaching semesters of 11 weeks each.

Course modules are delivered in the form of formal lectures supported with tutorials and laboratory experiments.

Assessment

There are two types of method for module assessment. One is course work assessment only, the other is exam assessment. For examined modules the final assessment mark consists of 30-40% course work marks and 60-70% exam marks.

Careers

As a graduate you’ll be prepared for a wide range of challenging and rewarding careers in the marine and related industries.

These include:

  • marine engineering machinery & system design
  • surveying
  • technical superintendence
  • project management
  • safety management
  • support services
  • classification societies
  • consultancy services


Read less
Why this course?. This course was developed in response to the demand for design engineers who can design and assess new ships and offshore structures. Read more

Why this course?

This course was developed in response to the demand for design engineers who can design and assess new ships and offshore structures.

This programme is designed for graduate engineers in naval architecture, offshore engineering, mechanical engineering and other related disciplines.

You'll be introduced to ultimate strength, fatigue and design concepts for structural components of ships and offshore floating systems. You'll also gain the knowledge of material behaviour together with factors influencing the dynamic behaviour of offshore installations.

The Department of Naval Architecture, Ocean & Marine Engineering (NAOME), a leading institution in Scotland, offers excellent teaching and research facilities, which will expand your career opportunities in naval architecture, marine, offshore oil and gas industries.

You'll study

Your course is made up of three components:

  • instructional modules
  • group project
  • individual project (MSc only)

Group project

You’ll be part of a group of three to five people in ‘consultant teams’ for 10 weeks addressing a practical engineering problem. You’ll then have the opportunity to present the report to a panel of industrial experts.

This project will enhance your team working and communication skills. It also provides valuable access to industrial contacts.

It will give you a good understanding of all aspects of research work. In addition, the technological study must be accompanied by survey of the relevance and applicability of the findings to the maritime industries at large.

You'll learn efficient ways to gather information, to distribute workload and to delegate amongst the group, to analyse their results and to appreciate the broader implications of the whole project. In-depth technological studies will be accompanied by increasingly important competence in managerial skills, quality assurance and a sound appreciation of the economic, political, social and environmental issues crucial to professional success.

Individual project (MSc only)

MSc students will take on an individual dissertation on a topic of their own interest. The aim of the individual project is to develop your research skills and to combine many of aspects learned from other modules within a specific topic. This will be achieved by you carrying out work into a particular topic relating to your chosen theme and preparing a dissertation.

Facilities

We have excellent teaching facilities including:

  • Catalina - our departmental racing yacht
  • Kelvin Hydrodynamics Lab - the largest ship-model experiment tank in any UK university
  • Towing/wave tank exclusively for teaching purposes
  • Marine engine laboratory
  • Hydrogen fuel cell laboratory
  • Cutting-edge computer facilities
  • Industry standard software

Teaching staff

You’re taught by dedicated staff with diverse expertise and research activities.

Accreditation

This course is accredited by the Royal Institution of Naval Architects (RINA) and The Institute of Marine Engineering, Science and Technology, (IMarEST) on behalf of the UK Engineering Council.

Learning & teaching

There are two teaching semesters of 11 weeks each.

Course modules are delivered in form of formal lectures supported with tutorials and laboratory experiment.

Guest lectures

During term time, we arrange weekly seminars in which leaders and pioneers of the maritime, oil and gas and marine renewables industries visit the department and present to students. This is a great way of supplementing your education with the latest developments and gaining industry contacts for your future career.

Industrial visits are also made to a variety of companies.

Assessment

There are two types of method for module assessment. One is course work assessment only, the other is examination assessment. For examined modules the final assessment mark consists of 30-40% course work and 60-70% examination.

Careers

Career destinations include:

  • Naval Architect
  • Marine Engineer
  • Graduate Engineer
  • Marine Surveyor
  • Offshore Renewables Engineer
  • Project Engineer


Read less
Why this course?. The Faculty of Engineering runs a multidisciplinary postgraduate course entitled Sustainable Engineering with a number of different themes, one of which is offshore renewable energy. Read more

Why this course?

The Faculty of Engineering runs a multidisciplinary postgraduate course entitled Sustainable Engineering with a number of different themes, one of which is offshore renewable energy.

This flexible programme combines study in specialist, advanced engineering technologies underpinned with training in sustainability. The programme has been developed with direct industrial involvement to provide you with a solid understanding of modern, sustainable engineering. As well as gaining an understanding of how sustainable engineering applies to offshore renewable energy, this programme will also provide you with key transferable skills to aid your employability.

The course is designed for experienced or newly qualified engineers in:

  • Naval Architecture
  • Marine Engineering
  • Mechanical Engineering
  • Civil Engineering
  • Electrical Engineering or related disciplines

The Department of Naval Architecture, Ocean & Marine Engineering, a leading institution in Scotland, offers excellent teaching and research facilities in naval architecture, ocean and marine engineering, which expands your career opportunities in naval architecture, marine, offshore oil and gas industry.

You’ll study

Studying at least three generic classes will meet the key requirements to attain Chartered Engineer status.

You must take three specialist classes if you are studying for the Postgraduate Certificate and up to five if you are studying for a Postgraduate Diploma or MSc.

Successful completion of six classes leads to the award of a Postgraduate Certificate.

Group project

You’ll work with a group of students from different pathways of the Sustainable Engineering programme. You’ll produce sustainable solutions to real-life industry problems. This project will include site visits, field trips and progress reports to industry partners.

Successful completion of eight modules and the group project leads to the award of a Postgraduate Diploma.

Individual project

MSc students will study a selected topic in depth and submit a thesis.

Successful completion of eight classes, the group project and an individual project leads to the award of an MSc.

Facilities

We have excellent teaching facilities including:

  • Catalina - our departmental racing yacht
  • Kelvin Hydrodynamics Lab - the largest ship-model experiment tank in any UK university
  • Towing/wave tank exclusively for teaching purposes
  • Marine engine laboratory
  • Hydrogen fuel cell laboratory
  • Cutting-edge computer facilities
  • Industry standard software

Studying at least three generic modules will meet the key requirements to attain Chartered Engineer status.

Accreditation

This course is accredited by the Royal Institute of Naval Architects (RINA) and the Institute of Marine Engineering, Science and Technology (IMarEST) on behalf of the UK Engineering Council.

Student competitions

Naval Architecture, Ocean & Marine Engineering supports and promotes students in various competitions and awards, from cash bursaries for top performing students to the highest of awards from international organisations.

In recent years our students have been triumphant in the following high profile competitions:

  • Science, Engineering & Technology Student of the Year (SET Awards)
  • Best Maritime Technology Student (SET Awards)
  • Double winner of BP’s Ultimate Field Trip Competition
  • Strathclyder of the Year

Learning & teaching

There are two teaching semesters of 11 weeks each.

Each year about 15 experts from the industry give talks and seminars on wide-ranging topics. Industrial visits are made to a variety of companies.

You’re required to attend an induction prior to the start of the course.

Assessment

There are two types of method for module assessment. One is course work assessment only, the other is examination assessment. For examined modules the final assessment mark consists of 30-40% course work and 60-70% examination.

Careers

Job titles include:

  • Graduate Design Engineer
  • Project Engineer
  • Renewable Energy Consultant
  • Thermal Performance Engineer

Employers include:

  • Arup
  • Eaton
  • Esteyco Energua
  • Granite Services International
  • Moorfield International
  • Mott Macdonald


Read less
Automotive industry design is undergoing a very swift and radical change and this course prepares automotive engineers to deal with this complex and fast development. Read more
Automotive industry design is undergoing a very swift and radical change and this course prepares automotive engineers to deal with this complex and fast development. Our applied approach to design, manufacture and testing of automotive products ensures that our graduates are ready for automotive industry, with excellent employability prospects. In addition, our location is in the heart of one of Europe's biggest concentrations of high-tech businesses and the UK motorsport valley. This offers unrivalled opportunities for students to collaborate with automotive industry and their supply chain. It keeps students abreast with the current developments in automotive technologies, production methods, processes and management techniques. Our teaching is centred around our state-of-the-art laboratories in a purpose-designed engineering building.

Why choose this course?

You will be taught in a purpose-designed engineering building, by staff with exceptional knowledge and expertise in their fields. Lecturers include world-leaders in research on sustainable vehicle engineering, and those with experience of designing and working with major automotive manufacturers such as TATA, MAN and BMW. Our visiting speakers from business and industry provide professional perspective, preparing you for an exciting career; for more information see our industrial lecture series schedule. We have close links with industry including the BMW MINI plant in Oxford, Porsche, Ford, MAN, MIRA and other national and international partners. Our research incorporates the latest developments within the sector with high profile visiting speakers contributing to our invited research lectures.

In REF 2014 57% of the department's research was judged to be of world leading quality or internationally excellent with 96% being internationally recognised. Regular visits to automotive industry and their supply chain provide students with opportunities to explore technical challenges and the latest technology - to get a flavour of the activities within our department see 2015 highlights. You will have the opportunity to join our acclaimed Formula Student team (OBR), mentored by our alumni and visiting lecturers from automotive and motorsport industry. You will put theory into practice by competing with the best universities from around the world. Find out more about Formula Student at Brookes by visiting the Oxford Brookes Racing website: https://obr.brookes.ac.uk/

Professional accreditation

Accredited by the Institution of Mechanical Engineers (IMechE) and The Institute of Engineering and Technology meeting the academic requirements for full Chartered Engineer status.

This course in detail

The course is structured around three periods: Semester 1 runs from September to December, Semester 2 from January to May, and the summer period completes the year until the beginning of September.

To qualify for a master's degree you must pass the compulsory modules, one of two alternative-compulsory modules and one optional module, along with the dissertation.

Compulsory modules
-Advanced Vehicle Dynamics
-Sustainable Engineering Technology.
-Advanced Engineering Management

Alternative-compulsory modules (you must pass at least one of these):
-Noise, Vibration and Harshness
-Vehicle Crash Engineering

Optional modules (you take one of these, unless you take both alternative-compulsory modules above):
-Advanced Vehicle Aerodynamics
-Engineering Reliability and Risk Management
-CAD/CAM
-Advanced Powertrain Engineering

The Dissertation (core, triple credit) is an individual project on a topic from automotive engineering, offering an opportunity to develop a high level of expertise in a particular area of automotive engineering, including use of industry-standard software and/or experimental work, the module will also provide you with research skills, planning techniques, project management. Whilst a wide range of industry-sponsored projects are available (e.g. MAN (Germany), VUHL (Mexico), McLaren (UK), AVL (Austria), Arctic Truck (Iceland) etc.), students are also able undertake their own projects in the UK and abroad, to work in close co-operation with a research, or commercial organisation.

Please note: As our courses are reviewed regularly as part of our quality assurance framework, the choice of modules available may differ from those described above.

Teaching and learning

Teaching staff are drawn primarily from the Department of Mechanical Engineering and Mathematical Sciences. Visiting speakers from business and industry provide further input.

Careers and professional development

Our graduates enjoy the very best employment opportunities, with hundreds of engineering students having gone onto successful careers in their chosen industry. Many of our students go on to work with leading automotive or motorsport companies in the UK and worldwide.

Read less
Why this course?. This programme is designed for graduate engineers in naval architecture, offshore engineering, mechanical engineering and other related disciplines who wish to acquire advanced knowledge in a broad range of subjects of ship and offshore technologies. Read more

Why this course?

This programme is designed for graduate engineers in naval architecture, offshore engineering, mechanical engineering and other related disciplines who wish to acquire advanced knowledge in a broad range of subjects of ship and offshore technologies.

This two-year course is offered jointly with Hamburg University of Technology (TUHH) in Germany. Year 1 is completed at Strathclyde and Year 2 in Hamburg. The award is made in the name of both universities.

Facilities

We have excellent teaching facilities at the University of Strathclyde including:

  • Catalina - our departmental racing yacht
  • Kelvin Hydrodynamics Lab - the largest ship-model experiment tank in any UK university
  • Towing/wave tank exclusively for teaching purposes
  • Marine engine laboratory
  • Hydrogen fuel cell laboratory
  • Cutting-edge computer facilities
  • Industry standard software

TUHH is one of Germany’s newest and most successful universities.

Teaching staff

You’re taught by dedicated staff with diverse expertise and research activities.

Accreditation

This course is accredited by the Royal Institution of Naval Architects (RINA) and The Institute of Marine Engineering, Science and Technology, (IMarEST) on behalf of the UK Engineering Council.

Learning & teaching

You’ll study at the University of Strathclyde in Year 1.

You'll study at Hamburg University in Year 2.

You can choose the moving date which may depend on your research project. This can be supervised in conjunction with a TUHH professor.

Lectures in Hamburg are held in English. You’ll attend lectures between October and February and then complete exams between February and March.

Following March, you’ll complete your dissertation.

Assessment

Assessment is through written examinations, coursework assignments and an individual project thesis. There are teamwork exercises assessed on a continuous basis.

Careers

There are opportunities for you to work in:

  • Oil & gas companies
  • Shipbuilding companies
  • Classification societies
  • Firms specialising in riser & mooring analysis
  • Marine consultancies


Read less
Why this course?. As oil is required to be extracted in deeper and rougher seas, new demands continue to be imposed on design development as well as new installation and inspection techniques. Read more

Why this course?

As oil is required to be extracted in deeper and rougher seas, new demands continue to be imposed on design development as well as new installation and inspection techniques.

This course is for graduates in naval architecture, offshore engineering, mechanical engineering and related disciplines who want to gain advanced knowledge of subsea systems, designs and installation. This includes systems and equipment such as:

  • pipelines
  • wellheads
  • drilling rigs
  • riser & mooring systems

You’ll study

Your course will be made up of three components:

  • Instructional modules
  • Group project
  • Individual project (MSc only)

Group project

You’ll be part of a group of three to five people in ‘consultant teams’ for 10 weeks addressing a practical engineering problem. You’ll then have the opportunity to present the report to a panel of industrial experts.

This project will enhance your team working and communication skills. It also provides valuable access to industrial contacts.

It will give you a good understanding of all aspects of research work. In addition, the technological study must be accompanied by survey of the relevance and applicability of the findings to the maritime industries at large.

You'll learn efficient ways to gather information, to distribute workload and to delegate amongst the group, to analyse their results and to appreciate the broader implications of the whole project. In-depth technological studies will be accompanied by increasingly important competence in managerial skills, quality assurance and a sound appreciation of the economic, political, social and environmental issues crucial to professional success.

Individual project (MSc only)

MSc students will take on an individual dissertation on a topic of their own interest. The aim of the individual project is to develop your research skills and to combine many of aspects learned from other modules within a specific topic. This will be achieved by you carrying out work into a particular topic relating to your chosen theme and preparing a dissertation.

Facilities

We have excellent teaching facilities including:

  • Catalina - our departmental racing yacht
  • Kelvin Hydrodynamics Lab - the largest ship-model experiment tank in any UK university
  • Towing/wave tank exclusively for teaching purposes
  • Marine engine laboratory
  • Hydrogen fuel cell laboratory
  • Cutting-edge computer facilities
  • Industry standard software

Accreditation

This course is accredited by the Royal Institution of Naval Architects (RINA) and The Institute of Marine Engineering, Science and Technology, (IMarEST) on behalf of the UK Engineering Council.

Learning & teaching

There are two teaching semesters of 11 weeks each.

Course modules are delivered in form of formal lectures supported with tutorials and laboratory experiment.

You’re required to attend an induction prior to the start of the course.

Guest lectures

During term time, we arrange weekly seminars in which leaders and pioneers of the maritime, oil and gas and marine renewables industries visit the department and present to students. This is a great way of supplementing your education with the latest developments and gaining industry contacts for your future career.

Industrial visits are also made to a variety of companies.

Assessment

There are two types of method for module assessment. One is course work assessment only, the other is examination assessment. For examined modules the final assessment mark consists of 30 to 40% course work and 60 to 70% examination.

Careers

Offshore hydrocarbon activities are moving into area of water depths exceeding 2000m. Subsea drilling, production and control systems are becoming much more important. Therefore, subsea engineers are in great demand world-wide.

Job titles include:*

  • Drilling Fuel specialist
  • I-Drill Engineer
  • Junior Riser Engineer
  • Subsea Engineer
  • Well Engineer
  • Project Engineer

Employers include:*

  • 2H Offshore
  • Aker Solutions
  • BP
  • ENI Saipem
  • Subsea7
  • Talisman Energy
  • Technip
  • Schlumberger

*Based on the results of the national Destinations of Leavers from Higher Education Survey (2010/11 and 2011/12).



Read less
Could you see yourself designing high performance bikes, working with racing car teams or producing ground breaking medical components? You could follow in the footsteps of some of our graduates and begin shaping your own exciting career in mechanical engineering. Read more
Could you see yourself designing high performance bikes, working with racing car teams or producing ground breaking medical components? You could follow in the footsteps of some of our graduates and begin shaping your own exciting career in mechanical engineering.

You will distinguish yourself professionally with a degree accredited by the Institution of Mechanical Engineers (IMechE) and the Institute of Materials, Minerals and Mining (IoM3) for Chartered Engineer status. You can apply to either of these institutions for membership as a Chartered Engineer.

Key features

-Open the door to a successful future. Our graduates have gone on to work for Ferrari, Honda, British Cycling, Rolls-Royce, Williams Grand Prix Engineering, Activa, Babcock Marine, Princess Yachts and more.
-Primed for your career: 82 per cent of our students are in a professional or managerial job six months after graduation. (Source: unistats)
-Benefit from an optional 48 week paid work placement.
-Distinguish yourself professionally with a degree accredited by the Institution of Mechanical Engineers (IMechE) and the Institute of Materials, Minerals and Mining (IoM3) for Chartered Engineer status. You can apply to either of these institutions for membership as a Chartered Engineer.
-Develop a strong foundation in mechanical engineering principles and materials science.
-Choose from specialist modules in composites engineering, design and manufacture.
-Experience modern laboratory facilities for practical work which is a core part of the degree.
-Benefit from working on industrially relevant problems within composite materials and design of composite structures.

Course details

Year 1
In Year 1, you’ll acquire a sound foundation in design, mechanics, materials, electrical principles, thermo-fluids, mathematics and business, learning by active involvement in real engineering problems. You‘ll undertake a popular hands-on module in manufacturing methods. Modules are shared with the MEng and BEng (Hons) in Mechanical Engineering and the MEng and BEng (Hons) Marine Technology.

Core modules
-MECH120 Skills for Design and Engineering (Mechanical)
-THER104 Introduction to Thermal Principles
-BPIE115 Stage 1 Mechanical Placement Preparation
-MECH117 Mechanics
-MECH118 Basic Electrical Principles
-A5MFT1 Mech BEng 1 MFT Session
-MATH187 Engineering Mathematics
-MATS122 Manufacturing and Materials
-MECH121PP Team Engineering (Engineering Design in Action)

Year 2
In Year 2, you’ll build your knowledge of composite materials in preparation for specialist modules in the final year. The central role of design integrates with other modules like structures and materials. You'll also study modules on thermodynamics, fluid mechanics, business dynamics, mathematics and control and quality management.

Core modules
-BPIE215 Stage 2 Mechanical Placement Preparation
-CONT221 Engineering Mathematics and Control
-HYFM230 Fluid Mechanics 1
-STRC203 Engineering Structures
-MECH232 Engineering Design
-MFRG208 Quality Management l
-MATS234 Materials
-THER207 Applied Thermodynamics
-STO208 Business for Engineers

Optional placement year
In Year 3, you're strongly encouraged to do a year’s work placement to gain valuable paid professional experience. We will support you to find a placement that is right for you. Our students have worked for a variety of companies from BMW Mini, Bentley, Babcock Marine to NASA. A successful placement could lead to sponsorship in your final year, an industrially relevant final year project, and opportunities for future employment.

Optional modules
-BPIE335 Mechanical Engineering Related Placement

Year 4
In Year 4, you’ll specialise in composites design, engineering and manufacture. You’ll undertake an group design project. Additional modules of study include statistics and quality management. You'll also develop your knowledge and skills through an in-depth project on a topic of your choice.

Core modules
-HYFM322 Computational Fluid Dynamics
-MFRG311 Quality Management II
-MATS347 Composites Design and Manufacture
-PRME307 Honours Project
-MATS348 Composites Engineering
-MECH340 Engineering Design

Final year
In your final year, you'll extend your existing skills in engineering design, analysis and control theory. Broaden your knowledge by studying subjects such as entrepreneurship, advanced information technology, robotics and marine renewable energy. You’ll also work in a design team with students from other engineering disciplines working on projects such as design, materials and environmental issues related to bioenergy production, gas/nuclear power stations, energy from the sea and eco villages.

Core modules
-MECH532 Applied Computer Aided Engineering
-MECH533 Robotics and Control
-MECH534 Product Development and Evaluation
-MAR528 Mechanics of MRE Structures
-PRCE513 Interdisciplinary Design
-MECH544 Data Processing, Simulation and Optimisation of Engineering Systems

Every undergraduate taught course has a detailed programme specification document describing the course aims, the course structure, the teaching and learning methods, the learning outcomes and the rules of assessment.

Read less
This unique diploma course delivered in partnership with IMG, the world’s largest independent sports producers, will equip students with the editorial skills required to produce state-of-the-art sports and live events coverage, highlights content and other material. Read more
This unique diploma course delivered in partnership with IMG, the world’s largest independent sports producers, will equip students with the editorial skills required to produce state-of-the-art sports and live events coverage, highlights content and other material.
Unique course.

-Job at IMG for one student on graduation.
-Intensely practical and hands on.
-Four week work placement at IMG .
-Unlike other schools, all production costs are met by the School.

We welcome EU/EEA Students. Course fees charged at UK rate.

COURSE OVERVIEW

IMG is the world's largest independent producer. It has major relationships with broadcasters including the BBC for the Football League show, snooker and darts, Channel Four for its exclusive horse racing coverage, and ESPN in the US for the Open Championship. It also enjoys a string of other important client relationships, most notably with Wimbledon, the R&A for the Open Golf Championship, the BCCI for IPL Cricket, FIFA, UEFA and the New York Road Runners (NY Marathon).

IMG produces Sport 24, the first ever-live global premium 24-hour sports channel for the airline and cruise industries, as well as other in-flight programming for over 50 airlines, and is also a partner with Associated Press for the sports news agency SNTV, and with the European Tour for European Tour Productions, the world's most prolific producer of golf programming.

The diploma course is 12 months full-time and is delivered at the NFTS and at IMGs' state-of-the-art facility IMG Studios.

Specifically students will learn about:
-Outside broadcast production
-Studio production
-Highlights production
-Planning and pre-production
-Storytelling in sports
-Chasing stories and ideas
-Shooting and editing effective pieces
-Scripting and Running Orders
-Logging and IPD Director
-Basic self-shooting and editing
-Casting and working with Talent
-Leading production teams
-Budgets & Scheduling
-Rights and Distribution

Students graduate with:
-The know-how to produce live and pre-recorded sports content
-A practical working knowledge of current television and digital production methods
-The ability to generate sports programme ideas and formats
-The confidence and know-how to pitch those ideas to commissioning editors and/or rights holders
-Work experience on high profile sports content
-Brilliant Industry contacts

Read less

Show 10 15 30 per page



Cookie Policy    X