• Northumbria University Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of Oxford Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • University of Southampton Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
University of Leeds Featured Masters Courses
Nottingham Trent University Featured Masters Courses
Southampton Solent University Featured Masters Courses
Imperial College London Featured Masters Courses
Coventry University Featured Masters Courses
"quantum" AND "technology…×
0 miles

Masters Degrees (Quantum Technology)

We have 63 Masters Degrees (Quantum Technology)

  • "quantum" AND "technology" ×
  • clear all
Showing 1 to 15 of 63
Order by 
Exploration of quantum phenomena has recently led to extraordinary applications of quantum entanglement. The degree of control exerted over these systems is reflected in the term ‘quantum technology’, describing both experimental and theoretical developments in this area. Read more
Exploration of quantum phenomena has recently led to extraordinary applications of quantum entanglement. The degree of control exerted over these systems is reflected in the term ‘quantum technology’, describing both experimental and theoretical developments in this area.

This course is for you if you’re interested in the wonders of quantum physics and have a desire to exploit its full power. We cover:
-Ion-trap quantum processors
-Ion-photon interfaces for the projected quantum internet
-Quantum simulators
-Superconducting quantum circuits
-Devices for quantum-enhanced metrology

How will I study?

Assessment is split equally between the project and modules.

Your project culminates in a dissertation (with a contribution from a research talk). The modules are assessed by problem sets, with either open-notes tests or unseen examinations. You’ll attend research seminars and contribute to your group’s discussions of the latest journal papers.

You can choose to study this course full time or part time.

Your time is split between taught modules and a research project. The project can take the form of a placement in industry, but usually our faculty supervises them. Supervisors and topics are allocated, in consultation with you, at the start of the autumn term. You work on the project throughout the year. Often the projects form the basis of research papers that are later published in journals. Most projects are theoretical but there is an opportunity for you to become involved in the reduction and analysis of data acquired by faculty members.

In the autumn and spring terms, you take core modules and choose options. You start work on your project and give an assessed talk on this towards the end of the spring term. In the summer term, you focus on examinations and project work.

In the part-time structure, you take the core modules in the autumn and spring terms of your first year. After the examinations in the summer term, you begin work on your project. Project work continues during the second year when you also take options.

Distribution of modules between the two years is relatively flexible and agreed between you, your supervisor and the module conveners. Most of your project work naturally falls into the second year.

Scholarships

Our aim is to ensure that every student who wants to study with us is able to despite financial barriers, so that we continue to attract talented and unique individuals.

Chancellor's International Scholarship (2017)
-25 scholarships of a 50% tuition fee waiver
-Application deadline: 1 May 2017

HESPAL Scholarship (Higher Education Scholarships Scheme for the Palestinian Territories) (2017)
-Two full fee waivers in conjuction with maintenance support from the British Council
-Application deadline: 1 January 2017

USA Friends Scholarships (2017)
-A scholarship of an amount equivalent to $10,000 for nationals or residents of the USA on a one year taught Masters degree course.
-Application deadline: 3 April 2017

Careers

This course may be attractive to you if you aim to:
-Go on to doctoral study (theory or experiment)
-Work in a high-technology company exploiting cutting-edge technologies related to our research (this could involve development of quantum information technology, high-precision measurements and quantum metrology, and photonics/optical communications)
-Work in business/data analysis, research, computer programming, software development, or teaching

Read less
The Masters in Physics. Nuclear Technology provides an understanding of the application of nuclear processes and technology to energy generation, medical physics and environmental monitoring, and at a level appropriate for a professional physicist. Read more
The Masters in Physics: Nuclear Technology provides an understanding of the application of nuclear processes and technology to energy generation, medical physics and environmental monitoring, and at a level appropriate for a professional physicist.

Why this programme

◾Physics and Astronomy at the University of Glasgow is ranked 3rd in Scotland (Complete University Guide 2017).
◾You will gain theoretical, experimental and computational skills necessary to analyse and solve advanced physics problems relevant to the theme of Nuclear Technology, providing an excellent foundation for a career of scientific leadership.
◾You will benefit from direct contact with our group of international experts who will teach you cutting-edge physics and supervise your projects.
◾With a 93% overall student satisfaction in the National Student Survey 2016, Physics and Astronomy at Glasgow continues to meet student expectations combining both teaching excellence and a supportive learning environment.
◾This programme has a September and January intake*.

*For suitably qualified candidates

Programme structure

Modes of delivery of the MSc Physics: Nuclear Technology include lectures, seminars and tutorials and allow students the opportunity to take part in lab, project and team work.

Core courses include
◾Advanced data analysis
◾Detection and analysis of ionising radiation
◾Environmental radioactivity
◾Imaging and detectors
◾Nuclear power reactors
◾Research skills
◾Extended project

Optional courses include
◾Advanced electromagnetic theory
◾Advanced nuclear physics
◾Computational physics laboratory
◾Dynamics, electrodynamics and relativity
◾Energy and environment
◾Medical imaging
◾Nuclear and particle physics
◾Relativistic quantum fields
◾Statistical mechanics

The programme in Physics: Nuclear technology lasts 1 year and contains a minimum of 180 credits. You will undertake a minimum of 120 credits in Semesters 1 and 2 and be assessed on these courses either via continuous assessment, or unseen examination in the May/June examination diet, or a combination thereof. The remaining 60 credits will take the form of an extended MSc project, carried out on a specific aspect of theoretical, computational or experimental physics which has current or potential application in the areas of nuclear technology, nuclear energy, radiation detection or environmental monitoring. You will conduct this project while embedded within a particular research group – under the direct supervision of a member of academic staff.

Your curriculum will be flexible and tailored to your prior experience and expertise, particular research interests and specific nature of the extended research project topic provisionally identified at the beginning of the MSc programme. Generally, however, courses taken in Semester 1 will focus on building core theoretical and experimental/computational skills relevant to the global challenge theme, while courses taken in Semester 2 will build key research skills (in preparation for the extended project).

For further information on the content of individual courses please see Honours and Masters level courses.

Career prospects

Career opportunities in academic research, based in universities, research institutes, observatories and laboratory facilities; industrial research in a wide range of fields including energy and the environmental sector, IT and semiconductors, optics and lasers, materials science, telecommunications, engineering; banking and commerce; higher education.

Read less
This one-year research degree is a chance for you to develop your skills in one of the most exciting areas of modern science. It’s a unique opportunity to gain hi-tech skills that are central to the latest advances in electronics, IT and computing. Read more
This one-year research degree is a chance for you to develop your skills in one of the most exciting areas of modern science. It’s a unique opportunity to gain hi-tech skills that are central to the latest advances in electronics, IT and computing.

This course brings together our expertise in quantum photonics and nanomaterials. There is a particular focus on the study of novel fundamental phenomena in condensed matter systems as well as applications in quantum information processing, photovoltaics and optoelectronics.

Our staff are at the forefront of technological advances. We work with support from the UK Engineering and Physical Sciences Research Council, European Research Council and the Horizon 2020 programme, the Royal Society, the Leverhulme Trust and the British Council as well as CONACyT, the National Council of Science and Technology in Mexico.

Our department attracts postgraduate students from around the world.

Core modules

Optical Properties of Solids
Semiconductor Physics and Technology
Advanced Electromagnetism
Solid State Physics
Research Skills in Physics
Research Project in Physics

Examples of optional modules

Magnetic Resonance: Principles and Applications
Physics in an Enterprise Culture
The Physics of Soft Condensed Matter
Statistical Physics
Advanced Quantum Mechanics
Further Quantum Mechanics
Biological Physics

Teaching

Teaching is through lectures, research seminars, small group tutorials and oral presentation.

Your supervisor will help you develop your research skills and support you as you work on your research project.

Assessment

Assessment includes: a project report, literature review, oral presentations, including a viva, formal examinations and short reports and essays.

Read less
Summary. This programme outlines the micro and nanotechnology aspects of electronic engineering, with a focus on microelectromechanical systems and nanoelectronics. Read more

Summary

This programme outlines the micro and nanotechnology aspects of electronic engineering, with a focus on microelectromechanical systems and nanoelectronics. These technologies underpin research and development of miniaturised sensors, for example mobile phone motion and position detectors, and of nanoscale logic and memory devices for next-generation consumer electronics and future quantum devices. The programme also addresses microfluidic technology for biodevices such as point-of-care diagnostics, and covers the fundamentals of photonic circuits and devices. The modules cover state-of-the-art design, fabrication and characterisation methodologies, utilising industry-standard tools and involve our extensive cleanroom complex.

Modules

Semester one: Microfabrication; Microsensor Technologies; Nanoelectronic Devices; Advanced Memory and Storage; Microfluidics and Lab-on-a-Chip; Bionanotechnology; Introduction to Silicon Photonics.

Semester two: Bio/Micro/Nano Systems; Green Electronics; Nanofabrication and Microscopy; Quantum Devices and Technology; Medical and Electrical Technologies; Photonic Materials.

Plus three-month independent research project culminating in a dissertation.

Visit our website for more information.



Read less
The Quantum Technologies MSc will take students to the cutting-edge of research in the emerging area of quantum technologies, giving them not only an advanced training in the relevant physics but also the chance to acquire key skills in the engineering and information sciences. Read more
The Quantum Technologies MSc will take students to the cutting-edge of research in the emerging area of quantum technologies, giving them not only an advanced training in the relevant physics but also the chance to acquire key skills in the engineering and information sciences.

Degree information

Students learn the language and techniques of advanced quantum mechanics, quantum information and quantum computation, as well as state-of-the-art implementation with condensed matter and quantum optical systems.

Students undertake modules to the value of 180 credits.

The programme consists of five core modules (75 credits), three optional modules (45 credits) and a research project with a dissertation/report (60 credits).

Core modules
-Advanced Quantum Theory
-Atom and Photon Physics
-Quantum Communication and Computation
-Research Case Studies for Quantum Technologies
-Transferable Skills in Research Case Studies for Quantum Technologies

Optional modules - students choose three of the following optional modules:
-Advanced Photonic Devices
-Introduction to Cryptography
-Nanoelectronic Devices
-Nanoscale Processing for Advanced Devices
-Optical Transmission and Networks
-Order and Excitations in Condensed Matter
-Physics and Optics of Nano-Structures
-Research Computing with C++
-Research Software Engineering with Python

Dissertation/report
All students undertake an independent research project (experimental or theoretical) related to quantum technologies, which culminates in a presentation and a dissertation of 10,000 words.

Teaching and learning
The programme is delivered through a combination of lectures and seminars, with self-study on two modules devoted to the critical assessment of current research topics and the corresponding research skills. Assessment is through a combination of problem sheets, written examinations, case study reports and presentations, as well as the MSc project dissertation.

Careers

The programme prepares graduates for careers in the emerging quantum technology industries which play an increasingly important role in: secure communication; sensing and metrology; the simulation of other quantum systems; and ultimately in general-purpose quantum computation. Graduates will also be well prepared for research at the highest level in the numerous groups now developing quantum technologies and for work in government laboratories.

Employability
Graduates will possess the skills needed to work in the emerging quantum industries as they develop in response to technological advances.

Why study this degree at UCL?

UCL offers one of the leading research programmes in quantum technologies anywhere in the world, as well as outstanding taught programmes in the subjects contributing to the field (including physics, computer science, and engineering). It also hosts the EPSRC Centre for Doctoral Training in Delivering Quantum Technologies.

The programme provides a rigorous grounding across the disciplines underlying quantum technologies, as well as the chance to work with some of the world's leading groups in research projects. The new Quantum Science and Technology Institute ('UCLQ') provides an umbrella where all those working in the field can meet and share ideas, including regular seminars, networking events and opportunities to interact with commercial and government partners.

Read less
Our Physics MSc is highly flexible, giving you the opportunity to structure your course to meet your individual career aspirations. Read more

Our Physics MSc is highly flexible, giving you the opportunity to structure your course to meet your individual career aspirations.

The course gives you the opportunity to broaden and deepen your knowledge and skills in physics, at the forefront of research in the area. This will help to prepare you to progress to PhD study, or to work in an industrial or other business related area.

A key feature of the course is that you can choose to study a wide range of optional modules or focus on a particular area of research expertise according to your interests and future career aspirations.

Under the umbrella of an MSc in physics, you can specialise in astrophysics, bionanophysics, soft matter physics, condensed matter physics, quantum technology, optical materials or medical imaging. Or you can take a diverse range of modules to suit your interests and keep their options open.




Read less
This programme for graduates in electronic engineering or similar subjects will prepare you to become a senior manager or entrepreneur in global companies, where understanding technology and managing innovation in business are key to success. Read more

This programme for graduates in electronic engineering or similar subjects will prepare you to become a senior manager or entrepreneur in global companies, where understanding technology and managing innovation in business are key to success.

Jointly delivered by the School of Electronic and Electrical Engineering and Leeds University Business School, the course allows you to tailor the programme of studies to your needs, selecting optional modules from three engineering themes and four business themes. A set of core modules provides the foundation of your knowledge and skills.

You’ll be taught by leading experts in technology and in business management, with practical lab classes and project work allowing you to gain hands-on experience investigating and applying topics from your lectures and tutorials to real-life engineering and business situations.

This joint programme offers a unique opportunity to enhance both your technical and managerial skills.

The School of Electronic and Electrical Engineering is an exciting and stimulating environment where you’ll learn from leading researchers in areas pertinent to emerging and developing technologies. These technologies include future wireless and optical communications systems, renewable energy systems, ultrasound and bioelectronics systems, as well as nano, terahertz, and quantum technologies.

Leeds University Business School is also a leading international business school, globally, in the top 1%. It has world ranked programmes and internationally recognised teaching. You'll leave as a graduate of one of the top ten universities targeted by key employers such as Google, HSBC, Rolls-Royce and the Civil Services.



Read less
The aim of this programme is to train new professionals in the field of nanotechnology, materials and chemical engineering. Read more
The aim of this programme is to train new professionals in the field of nanotechnology, materials and chemical engineering. It is of particular interest for graduates in any of the branches of the experimental sciences and technologies (chemistry, chemical engineering, biochemistry, biotechnology, physics, quantum chemistry, biological chemistry, microbiology, etc.) and it clearly prepares them for future research.

The students will acquire the skills required for them to join universities, research institutes, industry and services with a strong sense of innovation, development and entrepreneurial vision.

Student Profile

The Master’s Degree is designed for candidates holding a bachelor’s degree in any of the branches of the experimental sciences and technologies: chemistry, chemical engineering, biochemistry, biotechnology, physics, materials, quantum chemistry, biological chemistry, microbiology, etc.). It clearly prepares students for future careers in research.

Career Opportunities

Graduates in the University Master's Degree in Nanoscience, Materials and Processes: Chemical Technology at the Frontier are capable of working in:
-Research at universities and research institutes. The master's degree is a requirement for being admitted to a PhD programme and the key to a future career as a researcher.
-Research, development and innovation in industries based on new scientific and technical knowledge (biotechnology, microelectronics, telecommunications, energy storage, new materials, etc.) and traditional industries (chemical, pharmaceutical, biomedical, ceramics, textiles, etc.) interested in innovation.
-Management, control and strategic planning of nanotechnological techniques, products and processes in the electronics industry, telecommunications, biomedicine, biotechnology, pharmacology, etc.

Read less
OUTLINE OF THE PROGRAM. The proposed master program aims at training students in fundamental, both theoretical and experimental, physics with applications in photonics, nanotechnology, and quantum technologies. Read more

OUTLINE OF THE PROGRAM

The proposed master program aims at training students in fundamental, both theoretical and experimental, physics with applications in photonics, nanotechnology, and quantum technologies. This combination, innovative at the level of a master program, is well aligned with priority investments in research at the European and international level, with thematic areas of growing demand for highly trained students, able to embark in a doctoral programme. This two-year master programme, fully taught in English for international students, is part of the Graduate School of Sciences of the University Bourgogne Franche-Comté (UBFC). It consists in both lessons and research project (3 month during the first year) / internship (5 months during the second year). This training program will be based on the internationally highly recognised research activities of the underlying laboratories ICB, Dijon and FEMTO-ST, Besançon.

OUR MASTER PROGRAM

This two-year master programme, fully taught in English for international students, combines macroscopic with nano- and quantum-scale topics. The programme aims at developing and improving students’ skills in fundamental optical physics, optical fibre communications, optoelectronics, laser technologies, ultrafast femtosecond optics, quantum information science, nanophotonics, nano-microscopy and nano-biosciences. This combination, innovative at the level of a master program, is well aligned with priority investments in research at the European and international level, and with thematic areas of growing demand for highly trained students.

The master programme is part of the Graduate School of Sciences of the University Bourgogne Franche-Comté (UBFC), Engineering and Innovation through Physical Sciences and High-technologies (EIPHI), which also includes a doctoral programme in the same topics.

Almost half of the programme is devoted to research project (3 month during the first year) & internship (5 months during the second year) in an international research team, leading to a master thesis aiming at the standards of a research article. This training program will be based on the internationally highly recognised research activities of the underlying laboratories ICB, Dijon and FEMTO-ST, Besançon, both having high international visibility in photonics, quantum technologies, nanotechnology and Engineering Sciences with researchers of high reputation.

TEACHING

Teaching consists of lectures, seminars by international researchers (both from the ICB & FEMTO-ST laboratories and from international partner universities), class tutorials, practical training & research work in laboratory, soft skills by professional coaches, technology and entrepreneurial courses by industrial partners, and French culture and language.

FUTURE CAREER PROSPECTS

Photonics is a very dynamic industrial sector in Europe and holds the potential for huge market growth. It has a substantial leverage effect on the European economy and workforce: 20-30% of the economy and 10% of the workforce depend on photonics, directly impacting around 30 million jobs. The master program offers intensive educational activities based on research activities of photonics, including nanophotonics and quantum technologies. It focuses on fundamental & applied research mainly targetting PhD programs, which will lead to recruitment in academia or in industry. A need of master degree students in the field of photonics & nanotechnologies, including specialties in quantum technologies boosted by the European flagship in Quantum Technologies (launched in 2018), able to embark on a PhD program both in academia & industry will strongly increase in a near future.

The master's Alumni Office helps alumni keep in touch with each other and organises alumni events.

LIFE IN DIJON, CAPITAL CITY OF BURGUNDY (FRANCE)

The two-year master program takes place at the University of Burgundy-Franche Comté, located in the scenic cities of Dijon & Besançon. The former capital city of the Duchy of Burgundy, Dijon is a medium-size French city, where you can enjoy a vibrant and active cultural life, as well as quick getaways to the countryside and the world famous neighbouring vineyards of the so-called “Golden coast” (city center, climates of the Burgundy vineyard, and gastronomy listed as world heritage sites in Dijon by Unesco). Life in Dijon is very affordable and accommodation easily accessible. The city is well-equipped with modern tramway and bus lines, making commuting between any place in Dijon and the University easy and convenient. Dijon is also host of several top-level professional sports teams (football, basketball, handball, rugby…), while also offering a large diversity of sports facilities.

STUDENT PROFILE

Students eligible to the master program PPN must have obtained a degree equivalent to or higher than a Bachelor of Science. Background knowledge in general physics, optics, electromagnetism and quantum physics is mandatory. Candidates must have very good academic qualifications and a very good practice of English.

GRANTS

Many scholarships will be awarded each year to high quality foreign students.

APPLICATIONS

During the first year, students have to pass the examinations associated with the Master 1 (60 ECTS credits) in order to proceed to the second year, Master 2 (60 ECTS), including research project and master thesis (33 ECTS).

For further information about how to apply, please directly contact the head of the master program, Professor Stéphane Guérin () and visit the webpage (http://www.ubfc.fr/formationen/).

Please also visit our dedicated webpage (http://blog.u-bourgogne.fr/master-ppn/).



Read less
Working at a frontier of mathematics that intersects with cutting edge research in physics. Mathematicians can benefit from discoveries in physics and conversely mathematics is essential to further excel in the field of physics. Read more
Working at a frontier of mathematics that intersects with cutting edge research in physics.

Mathematicians can benefit from discoveries in physics and conversely mathematics is essential to further excel in the field of physics. History shows us as much. Mathematical physics began with Christiaan Huygens, who is honoured at Radboud University by naming the main building of the Faculty of Science after him. By combining Euclidean geometry and preliminary versions of calculus, he brought major advances to these areas of mathematics as well as to mechanics and optics. The second and greatest mathematical physicist in history, Isaac Newton, invented both the calculus and what we now call Newtonian mechanics and, from his law of gravity, was the first to understand planetary motion on a mathematical basis.

Of course, in the Master’s specialisation in Mathematical Physics we look at modern mathematical physics. The specialisation combines expertise in areas like functional analysis, geometry, and representation theory with research in, for example, quantum physics and integrable systems. You’ll learn how the field is far more than creating mathematics in the service of physicists. It’s also about being inspired by physical phenomena and delving into pure mathematics.

At Radboud University, we have such faith in a multidisciplinary approach between these fields that we created a joint research institute: Institute for Mathematics, Astrophysics and Particle Physics (IMAPP). This unique collaboration has lead to exciting new insights into, for example, quantum gravity and noncommutative geometry. Students thinking of enrolling in this specialisation should be excellent mathematicians as well as have a true passion for physics.

See the website http://www.ru.nl/masters/mathematics/physics

Why study Mathematical Physics at Radboud University?

- This specialisation is one of the few Master’s in the world that lies in the heart of where mathematics and physics intersect and that examines their cross-fertilization.
- You’ll benefit from the closely related Mathematics Master’s specialisations at Radboud University in Algebra and Topology (and, if you like, also from the one in Applied Stochastics).
- Teaching takes place in a stimulating, collegial setting with small groups. This ensures that at Radboud University you’ll get plenty of one-on-one time with your thesis supervisor.
- You partake in the Mastermath programme, meaning you can follow the best mathematics courses, regardless of the university in the Netherlands that offers them. It also allows you to interact with fellow mathematic students all over the country.
- As a Master’s student you’ll get the opportunity to work closely with the mathematicians and physicists of the entire IMAPP research institute.
- More than 85% of our graduates find a job or a gain a PhD position within a few months of graduating. About half of our PhD’s continue their academic careers.

Career prospects

Mathematicians are needed in all industries, including the industrial, banking, technology and service industry and also within management, consultancy and education. A Master’s in Mathematics will show prospective employers that you have perseverance, patience and an eye for detail as well as a high level of analytical and problem-solving skills.

Job positions

The skills learned during your Master’s will help you find jobs even in areas where your specialised mathematical knowledge may initially not seem very relevant. This makes your job opportunities very broad indeed and is why many graduates of a Master’s in Mathematics find work very quickly.
Possible careers for mathematicians include:
- Researcher (at research centres or within corporations)
- Teacher (at all levels from middle school to university)
- Risk model validator
- Consultant
- ICT developer / software developer
- Policy maker
- Analyst

PhD positions

Radboud University annually has a few PhD positions for graduates of a Master’s in Mathematics. A substantial part of our students attain PhD positions, not just at Radboud University, but at universities all over the world.

Our research in this field

The research of members of the Mathematical Physics Department, emphasise operator algebras and noncommutative geometry, Lie theory and representation theory, integrable systems, and quantum field theory. Below, a small sample of the research our members pursue.

Gert Heckman's research concerns algebraic geometry, group theory and symplectic geometry. His work in algebraic geometry and group theory concerns the study of particular ball quotients for complex hyperbolic reflection groups. Basic questions are an interpretation of these ball quotients as images of period maps on certain algebraic geometric moduli spaces. Partial steps have been taken towards a conjecture of Daniel Allcock, linking these ball quotients to certain finite almost simple groups, some even sporadic like the bimonster group.

Erik Koelink's research is focused on the theory of quantum groups, especially at the level of operator algebras, its representation theory and its connections with special functions and integrable systems. Many aspects of the representation theory of quantum groups are motivated by related questions and problems of a group representation theoretical nature.

Klaas Landsman's previous research programme in noncommutative geometry, groupoids, quantisation theory, and the foundations of quantum mechanics (supported from 2002-2008 by a Pioneer grant from NWO), led to two major new research lines:
1. The use of topos theory in clarifying the logical structure of quantum theory, with potential applications to quantum computation as well as to foundational questions.
2. Emergence with applications to the Higgs mechanism and to Schroedinger's Cat (aka as the measurement problem). A first paper in this direction with third year Honours student Robin Reuvers (2013) generated worldwide attention and led to a new collaboration with experimental physicists Andrew Briggs and Andrew Steane at Oxford and philosopher Hans Halvorson at Princeton.

See the website http://www.ru.nl/masters/mathematics/physics

Read less
This MSc course will appeal if you wish to explore materials science from a multidisciplinary and collaborative perspective. The programme covers classical and quantum physics, with an emphasis on diamond and application-driven themes. Read more
This MSc course will appeal if you wish to explore materials science from a multidisciplinary and collaborative perspective. The programme covers classical and quantum physics, with an emphasis on diamond and application-driven themes. In addition to comprehensive transferable skills training, our CDT cultivates all the skills you will need to work with any high-performance and advanced material in a variety of settings.

During your course, you’ll have the opportunity to make full use of our excellent research facilities, which include state-of-the-art suites for magnetic resonance, electrochemical analysis, abrasion imaging and spectroscopy.

The skills you gain will leave you well placed to enter a number of academic and industrial sectors, including materials, instrumentation, defence and security, aerospace, telecommunications, electronics and manufacturing.

Structure

The course spans 1 year, with the first 20 weeks being lecture-based, providing you with a diverse toolbox in diamond science to complete a successful 20 week research project.
Terms 1 and 2 (20 weeks):
-Methods of Material Synthesis
-Properties and Characterisation of Materials
-Defects and Dopants
-Theory and Modelling of Materials
-Manufacturing the Future
-Surfaces, Interfaces and Coatings
-Devices and Fabrication
-Diamond Photonics and Quantum Devices
-Applications of High Performance Materials
-Electrochemistry and Sensors (Optional)
-Biomedical Optics and Applications (Optional)

Research Project (20 weeks):
Undertake a project in our world-leading research groups either for one 20-week or two 10-week research projects.

Read less
High-level training in statistics and the modelling of random processes for applications in science, business or health care. Read more
High-level training in statistics and the modelling of random processes for applications in science, business or health care.

For many complex systems in nature and society, stochastics can be used to efficiently describe the randomness present in all these systems, thereby giving the data greater explanatory and predictive power. Examples include statistical mechanics, financial markets, mobile phone networks, and operations research problems. The Master’s specialisation in Applied Stochastics will train you to become a mathematician that can help both scientists and businessmen make better decisions, conclusions and predictions. You’ll be able to bring clarity to the accumulating information overload they receive.

The members of the Applied Stochastics group have ample experience with the pure mathematical side of stochastics. This area provides powerful techniques in functional analysis, partial differential equations, geometry of metric spaces and number theory, for example. The group also often gives advice to both their academic colleagues, and organisations outside of academia. They will therefore not only be able to teach you the theoretical basis you need to solve real world stochastics problems, but also to help you develop the communications skills and professional expertise to cooperate with people from outside of mathematics.

See the website http://www.ru.nl/masters/mathematics/stochastics

Why study Applied Stochastics at Radboud University?

- This specialisation focuses both on theoretical and applied topics. It’s your choice whether you want to specialise in pure theoretical research or perform an internship in a company setting.
- Mathematicians at Radboud University are expanding their knowledge of random graphs and networks, which can be applied in the ever-growing fields of distribution systems, mobile phone networks and social networks.
- In a unique and interesting collaboration with Radboudumc, stochastics students can help researchers at the hospital with very challenging statistical questions.
- Because the Netherlands is known for its expertise in the field of stochastics, it offers a great atmosphere to study this field. And with the existence of the Mastermath programme, you can follow the best mathematics courses in the country, regardless of the university that offers them.
- Teaching takes place in a stimulating, collegial setting with small groups. This ensures that you’ll get plenty of one-on-one time with your thesis supervisor at Radboud University .
- More than 85% of our graduates find a job or a gain a PhD position within a few months of graduating.

Career prospects

Master's programme in Mathematics

Mathematicians are needed in all industries, including the banking, technology and service industries, to name a few. A Master’s in Mathematics will show prospective employers that you have perseverance, patience and an eye for detail as well as a high level of analytical and problem-solving skills.

Job positions

The skills learned during your Master’s will help you find jobs even in areas where your specialised mathematical knowledge may initially not seem very relevant. This makes your job opportunities very broad and is the reason why many graduates of a Master’s in Mathematics find work very quickly.
Possible careers for mathematicians include:
- Researcher (at research centres or within corporations)
- Teacher (at all levels from middle school to university)
- Risk model validator
- Consultant
- ICT developer / software developer
- Policy maker
- Analyst

PhD positions

Radboud University annually has a few PhD positions for graduates of a Master’s in Mathematics. A substantial part of our students attain PhD positions, not just at Radboud University, but at universities all over the world.

Our research in this field

The research of members of the Applied Stochastics Department, focuses on combinatorics, (quantum) probability and mathematical statistics. Below, a small sample of the research our members pursue.

Eric Cator’s research has two main themes, probability and statistics.
1. In probability, he works on interacting particles systems, random polymers and last passage percolation. He has also recently begun working on epidemic models on finite graphs.
2. In statistics, he works on problems arising in mathematical statistics, for example in deconvolution problems, the CAR assumption and more recently on the local minimax property of least squares estimators.

Cator also works on more applied problems, usually in collaboration with people from outside statistics, for example on case reserving for insurance companies or airplane maintenance. He has a history of changing subjects: “I like to work on any problem that takes my fancy, so this description might be outdated very quickly!”

Hans Maassen researches quantum probability or non-commutative probability, which concerns a generalisation of probability theory that is broad enough to contain quantum mechanics. He takes part in the Geometry and Quantum Theory (GQT) research cluster of connected universities in the Netherlands. In collaboration with Burkhard Kümmerer he is also developing the theory of quantum Markov chains, their asymptotic completeness and ergodic theory, with applications to quantum optics. Their focal point is shifting towards quantum information and control theory, an area which is rapidly becoming relevant to experimental physicists.

Ross Kang conducts research in probabilistic and extremal combinatorics, with emphasis on graphs (which abstractly represent networks). He works in random graph theory (the study of stochastic models of networks) and often uses the probabilistic method. This involves applying probabilistic tools to shed light on extremes of large-scale behaviour in graphs and other combinatorial structures. He has focused a lot on graph colouring, an old and popular subject made famous by the Four Colour Theorem (erstwhile Conjecture).

See the website http://www.ru.nl/masters/mathematics/stochastics

Read less
The environmental impact from the use of fossil fuels and the uncertainties in their sources of supply has led to many alternative energy sources being proposed and investigated. Read more
The environmental impact from the use of fossil fuels and the uncertainties in their sources of supply has led to many alternative energy sources being proposed and investigated. However, of the non-fossil fuel sources, only nuclear fission power is at present sufficiently developed to provide an economically viable alternative to fossil fuels.

The aim of this programme – which began in 1956 – is to provide the necessary background, both in breadth and in depth, for anyone wishing to enter the nuclear industry. The areas of study and degree of specialisation involved have changed considerably to reflect the increasing sophistication of the field, and yet the overall breadth of the course has been maintained, because we feel that only in this way can new entrants to the field obtain a perspective which will be of continuous help in future careers.

Studentships are sponsored by the nuclear industry in the UK, and these provide excellent and effective entry routes into careers in this stimulating field for physicists, mathematicians, metallurgists or engineers.

A taught element from September to May is followed by a 14-week project, usually undertaken within the industry.

About the School of Physics and Astronomy

We are one of the largest physics departments in the country with a high profile for research both in the UK and internationally, covering a wide range of topics offering exciting challenges at the leading edge of physics and astronomy. Our student satisfaction rating of 96% in 2016 demonstrates the quality of our teaching.
The School of Physics and Astronomy’s performance in the Research Excellence Framework (REF), the system for assessing the quality of research in the UK higher education institutions, has highlighted that 90% of research outputs in the School were rated as world-leading or internationally excellent.
Our research portfolio is wide-ranging, and covers three principal themes: Particle and Nuclear Physics; Quantum Matter and Nanoscale Science; and Astronomy and Experimental Gravity. We have over 120 academic and research staff together with 120 graduate students with around 50 technical and clerical support staff. Our annual research income is over £8 million and more than 250 research publications are produced each year.

Funding and Scholarships

There are many ways to finance your postgraduate study at the University of Birmingham. To see what funding and scholarships are available, please visit: http://www.birmingham.ac.uk/postgraduate/funding

Open Days

Explore postgraduate study at Birmingham at our on-campus open days.
Register to attend at: http://www.birmingham.ac.uk/postgraduate/visit

Virtual Open Days

If you can’t make it to one of our on-campus open days, our virtual open days run regularly throughout the year. For more information, please visit: http://www.pg.bham.ac.uk

Read less
This is a vocational course in applied physics for anyone with a background in the physical sciences or engineering. You can choose classes relevant to your career interests from a wide range of topics including. Read more

Why this course?

This is a vocational course in applied physics for anyone with a background in the physical sciences or engineering.

You can choose classes relevant to your career interests from a wide range of topics including:
- high-power microwave technology
- laser-based particle acceleration and enabled applications
- physics and the life sciences
- materials and solid state physics
- photonics
- quantum optics and quantum information technology

You‘ll put the knowledge gained in the taught classes to use on a research project. You can design the project to fit in with your interests and career plans.

The course gives you the opportunity to explore and master a wide range of applied physics skills. It teaches you transferable, problem-solving and numeracy skills that are widely sought after across the commercial sector.

See the website https://www.strath.ac.uk/courses/postgraduatetaught/appliedphysics/

You’ll study

You’ll have two semesters of taught classes made up of compulsory and optional modules. This is followed by a three-month research project.

Facilities

This course is run by our Department of Physics. The department’s facilities include:
- cutting-edge high-power laser and particle acceleration research with SCAPA, enabling generation of radiation from the terahertz to - the X-ray region, and biomedical applications
- the Ultrafast Chemical Physics lab with state-of-the-art femtosecond laser systems for multi-dimensional IR spectroscopy
- a scanning electron microscopy suite for analysis of hard and soft matter
- access to top-of-the-range high-performance and parallel computer facilities
- state-of-the-art high-power microwave research facility in the Technology & Innovation Centre
- advanced quantum optics and quantum information labs
- several labs researching optical spectroscopy and sensing

Pre-Masters preparation course

The Pre-Masters Programme is a preparation course for international students (non EU/UK) who do not meet the entry requirements for a Masters degree at the University of Strathclyde. The Pre-Masters programme provides progression to a number of degree options

To find out more about the courses and opportunities on offer visit isc.strath.ac.uk or call today on +44 (0) 1273 339333 and discuss your education future. You can also complete the online application form. To ask a question please fill in the enquiry form and talk to one of our multi-lingual Student Enrolment Advisers today.

Learning & teaching

Our teaching is based on lectures, tutorials, workshops, laboratory experiments and research projects.

Assessment

The final assessment will be based on your performance in examinations, coursework, a research project and, if required, in an oral exam.

What kind of jobs do Strathclyde Physics graduates get?

To answer this question we contacted some of our Physics graduates from all courses to find out what jobs they have. They are working across the world in a number of different roles including:
- Medical Physicist
- Senior Engineer
- Professor
- Systems Engineer
- Treasury Analyst
- Patent Attorney
- Software Engineer
- Teacher
- Spacecraft Project Manager
- Defence Scientist
- Procurement Manager
- Oscar winner

- Success story: Iain Neil
Iain Neil graduated from Strathclyde in Applied Physics in 1977 and is an optical consultant, specialising in the design of zoom lenses for the film industry. He has received a record 12 Scientific and Technical Academy Awards, the most for any living person.

Find information on Scholarships here http://www.strath.ac.uk/search/scholarships/index.jsp

Read less
The Department gives MSc students an opportunity to study and perform a research project under the supervision of recognized experts and to acquire specialist knowledge of one or a few topics at the cutting edge of contemporary physics. Read more
The Department gives MSc students an opportunity to study and perform a research project under the supervision of recognized experts and to acquire specialist knowledge of one or a few topics at the cutting edge of contemporary physics.

The project will be devoted to one of several topical areas of modern physics including high-temperature superconductivity, terahertz semiconductor and superconductor electronics, quantum computing and quantum metamaterials, physics of extreme conditions and astrophysics.

Core study areas currently include mathematical methods for interdisciplinary sciences, research methods in physics, superconductivity and nanoscience and a research project.

Optional study areas currently include characterisation techniques in solid state physics, quantum information, advanced characterisation techniques, quantum computing, and physics of complex systems.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/physics/advanced-physics/

Programme modules

Compulsory Modules:
- Mathematical Methods for Interdisciplinary Sciences
- Research Methods in Physics
- Superconductivity and Nanoscience
- Research Project Part 1
- Research Project Part 2

Optional Modules:
- Characterisation Techniques in Solid State Physics
- Fundamentals of Quantum Information
- Matlab as a Scientific Programming Language
- Advanced Characterisation Techniques
- Quantum Computing
- Physics of Complex systems

Learning and teaching

Knowledge and understanding are acquired through lectures, tutorials, problem classes and guided independent study. Assessment in taught modules is by a combination of examination and coursework. The MSc includes a significant research project completed through guided independent study with a research supervisor.

Careers and further study

The aim of the course is to equip students with key skills they need for employment in industry, public service or academic research.

Why choose physics at Loughborough?

We are a community of approximately 170 undergraduates, 30 postgraduates, 16 full-time academic staff, seven support staff, and several visiting and part-time academic staff.

Our large research student population and wide international links make the Department a great place to work.

- Research
Our research strengths are in the areas of condensed matter and materials, with a good balance between theory and experiment.
The quality of our researchers is recognised internationally and we publish in highly ranked physics journals; one of our former Visiting Professors, Alexei Abrikosov, was awarded the 2003 Nobel Prize in Physics.

- Career Prospects
100% of our graduates were in employment and/or further study six months after graduating. They have gone on to work with companies such as BT, Nikon Metrology, Prysmian Group, Rutherford Appleton Laboratory ISIS and Smart Manufacturing Technology.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/physics/advanced-physics/

Read less

Show 10 15 30 per page



Cookie Policy    X