• University of Bristol Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • Birmingham City University Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Northumbria University Featured Masters Courses
De Montfort University Featured Masters Courses
Imperial College London Featured Masters Courses
Cass Business School Featured Masters Courses
University of Leicester Featured Masters Courses
University of Portsmouth Featured Masters Courses
"quantum" AND "technology…×
0 miles

Masters Degrees (Quantum Technology)

We have 75 Masters Degrees (Quantum Technology)

  • "quantum" AND "technology" ×
  • clear all
Showing 1 to 15 of 75
Order by 
Quantum technology has been selected by the UK Government as a key area of innovation, moving science into real-world applications. Read more

Quantum technology has been selected by the UK Government as a key area of innovation, moving science into real-world applications. The first phase of the UK National Quantum Technology initiative has received £350 million of government funding to create a flourishing industry in this area in the UK.

Four Quantum Technology Hubs have been established as flagship projects in this program. This postgraduate training programme is aligned with the UK National Quantum Technology Hub in Sensors and Metrology, an £80 million collaborative effort led by the University of Birmingham in partnership with the Universities of Glasgow, Nottingham, Southampton, Strathclyde and Sussex, the National Physical Laboratory and over 70 companies.

Course details

The MRes programme offers a unique opportunity for students to undertake a research-based Masters degree in a multi-disciplinary environment between science, engineering and industry. Students benefit from participating in both the technology translation and applied research activities carried out within the UK National Quantum Technology Hub in Sensors and Metrology, and from the educational programmes offered by the College of Engineering and Physical Sciences. The programme comprises classroom taught quantum physics-oriented modules for students with engineering backgrounds; technology-orientated modules for students with physics backgrounds; and an independent research project that is documented in a substantial thesis.

The research project consists of a team element; all students will organise themselves to present a technical demonstration at a national or international conference. There is also an individual research element, which takes place in industry or in relation to a participating company.

It will include 70 credits of classroom taught modules and a research project worth 110 credits, consisting of team and individual elements.

The team element of the research project teaches technical, team working, project management, communication and presentation skills with an emphasis on responsible research and innovation. The individual element of the research project focuses on problems relevant to industry and will be carried out in close collaboration with industry partners.

Related links

Learning and teaching

The Birmingham led UK National Quantum Technology Hub in Sensors and Metrology is a cross-disciplinary centre, involving staff from the Schools of Physics, Civil, Electrical and Materials Engineering, as well as staff from a number of other Schools across the University. It will translate fundamental science and applied research in quantum sensors and metrology based on atomic probe particles, providing high level educational opportunities in these fields.

The Hub’s research activities include research in the development of sensors for gravity, magnetic fields, rotation, electromagnetic fields and time. It also researches their applications in a diverse range of sectors including aviation, communication, construction, defense, energy, finance, healthcare, oil and mineral exploration, transport and space.

The Translational Quantum Technology programme aims at preparing students for the challenges in translating quantum sensors and metrology devices based on atoms as probe particles into real-world applications. After the programme, students should understand the underpinning science and technology; the needs of end-user applicants; and the impact of these quantum technology devices on society. They should be able to move seamlessly between academia and industry, and translate scientific outcomes into technology.

The programme will create a strongly networked cohort of students with practical experience in academia and industry. It aims:

  • to develop students' research and technological skills, and their knowledge of research methods applicable to the specific issues arising in quantum technology-related research;
  • to ensure that students are aware of state-of-the-art developments in quantum technology in specific technical and operational topic areas;
  • to allow students to develop the understanding necessary to identify new and emerging research needs in the emerging quantum technology industry;
  • to enable students to develop the knowledge and skills required to independently undertake a significant research project of relevance to the quantum technology industry including users of quantum technology.

Employability

This programme is a unique opportunity to acquire translational skills, including specific skills of relevance to the emerging quantum technology industry. The UK National Quantum Technology Hub in Sensors is actively engaged with a growing number of industry partners, currently standing at 70 companies from various sectors of the economy. Industry secondments to our partners will foster career prospects.



Read less
Exploration of quantum phenomena has recently led to extraordinary applications of quantum entanglement. The degree of control exerted over these systems is reflected in the term ‘quantum technology’, describing both experimental and theoretical developments in this area. Read more

Exploration of quantum phenomena has recently led to extraordinary applications of quantum entanglement. The degree of control exerted over these systems is reflected in the term ‘quantum technology’, describing both experimental and theoretical developments in this area.

This course is for you if you’re interested in the wonders of quantum physics and have a desire to exploit its full power.

We cover:

  • ion-trap quantum processors
  • ion-photon interfaces for the projected quantum internet
  • quantum simulators
  • superconducting quantum circuits
  • devices for quantum-enhanced metrology.

How will I study?

You’ll study in a Physics department ranked amongst the top 15 in the UK (Guardian University Guide 2018) where researchers are leading the way on the development of the world’s first quantum computer. We’re also a founder member of SEPnet, the South East Physics Network which supports vital research, teaching and development.

The course is split between taught modules and your individual project and you can choose to study full time or part time.

The taught part of the course comprises core modules plus a choice of options, allowing you to tailor the course towards your own particular interests. You’ll also attend research seminars and contribute to your group’s discussions of the latest journal papers.

Your project can take the form of a placement in industry, but is usually supervised by our faculty. Supervisors and topics are allocated, in consultation with you, at the start of the autumn term. Often the projects form the basis of research papers that are later published in journals.

Assessment is split equally between the project and modules. Modules are assessed with either open-notes tests or unseen examinations. Your project culminates in a dissertation (with a contribution from a research talk).

Careers

This course may be attractive to you if you aim to:

  • go on to doctoral study (theory or experiment)
  • work in a high-technology company exploiting cutting-edge technologies related to our research (this could involve development of quantum information technology, high-precision measurements and quantum metrology, and photonics/optical communications)
  • work in business/data analysis, research, computer programming, software development, or teaching


Read less
The Quantum Technologies MSc will take students to the cutting-edge of research in the emerging area of quantum technologies, giving them not only an advanced training in the relevant physics but also the chance to acquire key skills in the engineering and information sciences. Read more

The Quantum Technologies MSc will take students to the cutting-edge of research in the emerging area of quantum technologies, giving them not only an advanced training in the relevant physics but also the chance to acquire key skills in the engineering and information sciences.

About this degree

Students learn the language and techniques of advanced quantum mechanics, quantum information and quantum computation, as well as state-of-the-art implementation with condensed matter and quantum optical systems.

Students undertake modules to the value of 180 credits.

The programme consists of three core modules (45 credits), three optional modules (45 credits) and a research project (90 credits).

Core modules

All students take the following core modules:

  • Atom and Photon Physics
  • Advanced Quantum Theory
  • Quantum Communication and Computation

Optional modules

Students choose one optional module from any of the Physics MSc degrees as well as two of the following optional modules:

  • Advanced Photonic Devices
  • Nanoelectronic Devices
  • Nanoscale Processing for Advanced Devices
  • Optical Transmission and Networks
  • Order and Excitations in Condensed Matter
  • Physics and Optics of Nano-Structures
  • Research Computing with C++
  • Research Software Engineering with Python

Research project and case studies

The MSc programme culminates in the quantum technologies project and attached case studies. All students undertake two case studies related to quantum technologies as well as an independent research project (experimental or theoretical), which will be the subject of a presentation and a dissertation of 10,000-15,000 words. Research-active supervisors will provide topics which will enable the students to make contributions to research in the field.

Teaching and learning

The programme is delivered through a combination of lectures and seminars, with self-study on two modules devoted to the critical assessment of current research topics and the corresponding research skills. Assessment is through a combination of problem sheets, written examinations, case study reports and presentations, as well as the MSc project dissertation.

Further information on modules and degree structure is available on the department website: Quantum Technologies MSc

Funding

For a comprehensive list of the funding opportunities available at UCL, including funding relevant to your nationality, please visit the Scholarships and Funding website.

Careers

The programme prepares graduates for careers in the emerging quantum technology industries which play an increasingly important role in: secure communication; sensing and metrology; the simulation of other quantum systems; and ultimately in general-purpose quantum computation. Graduates will also be well prepared for research at the highest level in the numerous groups now developing quantum technologies and for work in government laboratories.

Employability

Graduates will possess the skills needed to work in the emerging quantum industries as they develop in response to technological advances.

Why study this degree at UCL?

UCL offers one of the leading research programmes in quantum technologies anywhere in the world, as well as outstanding taught programmes in the subjects contributing to the field (including physics, computer science, and engineering). It also hosts the EPSRC Centre for Doctoral Training in Delivering Quantum Technologies.

The programme provides a rigorous grounding across the disciplines underlying quantum technologies, as well as the chance to work with some of the world's leading groups in research projects. The new Quantum Science and Technology Institute ('UCLQ') provides an umbrella where all those working in the field can meet and share ideas, including regular seminars, networking events and opportunities to interact with commercial and government partners.



Read less
The Theoretical Physics track introduces the student to the intriguing diversity of physical theories and gives means to understand the world. Read more

The Theoretical Physics track introduces the student to the intriguing diversity of physical theories and gives means to understand the world. Topics from quantum physics to the theories of gravity are incorporated into the track. Problems of fundamental quantum physics, quantum information, quantum field theory and theoretical cosmology are at the heart of the studies in Theoretical Physics.

Upon graduation, you will be able to use the diverse set of skills acquired as part of this track, including theoretical and numerical techniques to produce and analyse new physical projects.

Programme structure 

The structure is modular. All modules have 20 ECTS. Each specialisation track has two obligatory modules that contain the core material of the field. In addition, there is one thematic module that may be chosen from the other modules offered within this programme or other programmes at the University of Turku. The fourth module consists of freely chosen courses and an obligatory Finnish language and culture course (5 ECTS). An MSc thesis (30 ECTS) in addition to seminar, internship, and project work (10 ECTS) are also required, details of which depend on the specialisation.

Academic excellence and experience

The aim of the Master’s education is to support you to become an independent expert who can evaluate information critically, plan and execute research projects to find new knowledge, and to solve scientific and technological problems independently and as a part of a group.

In the University of Turku the research in Theoretical physics has the emphasis on various fields at the forefront of European and international research such as quantum technologies, fundamentals of quantum physics, quantum information and optics, quantum field theory and cosmology. You will learn rigorous mathematical and numerical methods to model physical phenomena and solve physical problems with several possible interdisciplinary applications also outside physics. Examples are the studies of complex systems, data science, and machine learning.

Master's thesis and topics

The Master’s degree programme includes a compulsory thesis component (30 ECTS), which corresponds to six months of full time work. The thesis is to be written up as a report based on a combination of a literature review and an original research project that forms the bulk of the thesis.

The thesis is an independently made research project but the project will be carried out under the guidance of leading researchers in the field at the University of Turku. It is expected that the student will be embedded within an active research group or experimental team, thereby providing ample opportunity to discuss results and exchange ideas in a group setting.

Specialisation tracks

The Master’s Degree Programme of Physical and Chemical Sciences has four tracks. A short description of each specialisation track is given below. You can find more detailed information of tracks from the specific site of each track in this portal (UTU Masters).

In Theoretical physics you can specialise in various fields at the forefront of European and international research such as quantum technologies, fundamentals of quantum physics, quantum information and optics, quantum field theory and cosmology. You will learn rigorous mathematical and numerical methods to model physical phenomena and solve physical problems with several possible interdisciplinary applications also outside physics. Examples are the studies of complex systems, data science, and machine learning.

Students specialising in Astronomy and Space Physics can choose among three lines of studies: theoretical astrophysics, observational astronomy and space physics. You will acquire knowledge of various astrophysical phenomena and plasma physics, from Solar system to neutron stars and onto galaxies and cosmology. You will also get hands-on experience with observational techniques, space instrumentation, numerical methods and analysis of large data sets.

The studies of Materials Physics and Materials Chemistry give you an ability to understand and to develop the properties of materials from molecules and nanoparticles via metals, magnetic and semiconducting compounds for pharmaceutical and biomaterial applications. After graduation, you will be familiar with the current methodologies, research equipment and modern numerical methods needed to model properties of materials used in research and technology. Note that there is a sister programme (Master’s Degree Programme in Biomedical Sciences) with a specialisation in medicinal chemistry.

Job options

The prospects for employment at relatively senior levels is excellent for those trained in the physical and chemical sciences. Thanks to the broad scope of the programme, the skills and knowledge developed as part of this education at the University of Turku provide many employment opportunities in different areas.

Our MSc graduates have been employed to wide range of professions, in addition to academic career, such that finance sector, medical imagining, quantum technology, game development, and data mining.

Career in research

The Master’s Degree provides eligibility for scientific postgraduate degree studies. Postgraduate degrees are doctoral and licentiate degrees. The University of Turku Graduate School – UTUGS has a Doctoral Programme in Physical and Chemical Sciences, and covers all of the disciplines of this Master Degree programme. Postgraduate degrees can be completed at the University of Turku. Note that in Finland the doctoral studies incur no tuition fees, and PhD students often receive either a salary, or a grant to cover their living expenses. The Master’s programme is a stepping stone for PhD studies.



Read less
The Masters in Physics. Nuclear Technology provides an understanding of the application of nuclear processes and technology to energy generation, medical physics and environmental monitoring, and at a level appropriate for a professional physicist. Read more

The Masters in Physics: Nuclear Technology provides an understanding of the application of nuclear processes and technology to energy generation, medical physics and environmental monitoring, and at a level appropriate for a professional physicist.

Why this programme

  • Physics and Astronomy at the University of Glasgow is ranked 3rd in Scotland (Complete University Guide 2017).
  • You will gain theoretical, experimental and computational skills necessary to analyse and solve advanced physics problems relevant to the theme of Nuclear Technology, providing an excellent foundation for a career of scientific leadership.
  • You will benefit from direct contact with our group of international experts who will teach you cutting-edge physics and supervise your projects.
  • With a 93% overall student satisfaction in the National Student Survey 2016, Physics and Astronomy at Glasgow continues to meet student expectations combining both teaching excellence and a supportive learning environment.
  • This programme has a September and January intake*. 

*For suitably qualified candidates

Programme structure

Modes of delivery of the MSc Physics: Nuclear Technology include lectures, seminars and tutorials and allow students the opportunity to take part in lab, project and team work.

Core courses include

  • Advanced data analysis
  • Detection and analysis of ionising radiation
  • Environmental radioactivity
  • Imaging and detectors
  • Nuclear power reactors
  • Research skills
  • Extended project

Optional courses include

  • Advanced electromagnetic theory
  • Computational physics laboratory
  • Dynamics, electrodynamics and relativity
  • Energy and environment
  • Medical imaging
  • Nuclear and particle physics
  • Nuclear physics
  • Relativistic quantum fields
  • Statistical mechanics

The programme in Physics: Nuclear technology lasts 1 year and contains a minimum of 180 credits. You will undertake a minimum of 120 credits in Semesters 1 and 2 and be assessed on these courses either via continuous assessment, or unseen examination in the May/June examination diet, or a combination thereof. The remaining 60 credits will take the form of an extended MSc project, carried out on a specific aspect of theoretical, computational or experimental physics which has current or potential application in the areas of nuclear technology, nuclear energy, radiation detection or environmental monitoring. You will conduct this project while embedded within a particular research group – under the direct supervision of a member of academic staff.

Your curriculum will be flexible and tailored to your prior experience and expertise, particular research interests and specific nature of the extended research project topic provisionally identified at the beginning of the MSc programme. Generally, however, courses taken in Semester 1 will focus on building core theoretical and experimental/computational skills relevant to the global challenge theme, while courses taken in Semester 2 will build key research skills (in preparation for the extended project).

Career prospects

Career opportunities in academic research, based in universities, research institutes, observatories and laboratory facilities; industrial research in a wide range of fields including energy and the environmental sector, IT and semiconductors, optics and lasers, materials science, telecommunications, engineering; banking and commerce; higher education.



Read less
Our Physics MSc is highly flexible, giving you the opportunity to structure your course to meet your individual career aspirations. Read more

Our Physics MSc is highly flexible, giving you the opportunity to structure your course to meet your individual career aspirations.

The course gives you the opportunity to broaden and deepen your knowledge and skills in physics, at the forefront of research in the area. This will help to prepare you to progress to PhD study, or to work in an industrial or other business related area.

A key feature of the course is that you can choose to study a wide range of optional modules or focus on a particular area of research expertise according to your interests and future career aspirations.

Under the umbrella of an MSc in physics, you can specialise in astrophysics, bionanophysics, soft matter physics, condensed matter physics, quantum technology, optical materials or medical imaging. Or you can take a diverse range of modules to suit your interests and keep their options open.




Read less
Course description. This masters by research course brings together the University of Sheffield’s expertise in quantum photonics and nanomaterials. Read more

Course description

This masters by research course brings together the University of Sheffield’s expertise in quantum photonics and nanomaterials.

There is a particular focus on the study of novel fundamental phenomena in condensed matter systems as well as applications in quantum information processing, photovoltaics and optoelectronics.

Core modules

  • Optical Properties of Solids
  • Advanced Electromagnetism
  • Semiconductor Physics and Technology
  • Research Skills in Physics
  • Solid State Physics
  • Research Project in Physics

Examples of optional modules

Choose from a range including:

  • Biological Physics
  • Magnetic Resonance: Principles and Applications
  • Physics in an Enterprise Culture
  • Further Quantum Mechanics
  • Advanced Quantum Mechanics
  • The Physics of Soft Condensed Matter
  • Statistical Physics

Teaching and assessment

One-year individual programme of research.

Taught material is complemented by a 12-month research project in one of our world-leading research groups.

Your training will cover optical experiments and fabrication of devices in our state-of-the-art laboratories as well as numerical methods and more.



Read less
This two-year MSc is offered by Royal Holloway as part of its South East Physics Network Partnership (SEPnet). SEPnet is a consortium of six universities. Read more

This two-year MSc is offered by Royal Holloway as part of its South East Physics Network Partnership (SEPnet). SEPnet is a consortium of six universities: University of Kent, Queen Mary University of London, Royal Holloway University of London, University of Southampton, University of Surrey, and University of Sussex. This consortium consists of around 160 academics, with an exceptionally wide range of expertise linked with world-leading research.

The first year consists mainly of taught courses in the University of London; the second research year can be at Royal Holloway or one of the other consortium members. This is a unique opportunity to collaborate with physics research groups and partner institutions in both the UK and Europe. You will benefit from consortium led events as well as state of the art video conferencing. 

The Department of Physics at Royal Holloway is known internationally for its top-class research. Our staff carry out research at the cutting edge of Nanoscience and Nanotechnology, Experimental Quantum Computing, Quantum Matter at Low Temperatures, Theoretical Physics, and Biophysics, as well as other areas.

With access to some of the leading physics departments in the world, there is a wide choice of accommodation options, sporting facilities, international student organisations and careers services. South East England, with its close connections to continental Europe by air, Eurotunnel, and cross channel ferries, is an ideal environment for international students.

  • The course offers an incomparably wide range of options.
  • Royal Holloway's Physics Department has strong links with leading international facilities, including Rutherford Appleton and National Physical Laboratory, Oxford Instruments, CERN, ISIS and Diamond. 
  • We hold a regular series of colloquia and seminars on important research topics and host a number of guest lectures from external organisations.

Course structure

Year 1

All modules are optional

Year 2

  • Major Project

Optional modules

In addition to these mandatory course units there are a number of optional course units available during your degree studies. The following is a selection of optional course units that are likely to be available. Please note that although the College will keep changes to a minimum, new units may be offered or existing units may be withdrawn, for example, in response to a change in staff. Applicants will be informed if any significant changes need to be made.

Year 1

You will take six from the following:

  • Lie Groups and Lie Algebras
  • Quantum Theory
  • Statistical Mechanics
  • Phase Transitions
  • Advanced Quantum Theory
  • Advanced Topics in Statistical Mechanics
  • Relativistic Waves and Quantum Fields
  • Advanced Quantum Field Theory
  • Functional Methods in Quantum Field Theory
  • Advanced Topics in Classical Field Theory
  • Formation and Evolution of Stellar Clusters
  • Advanced Physical Cosmology
  • Atom and Photon Physics
  • Advanced Photonics
  • Quantum Computation and Communication
  • Quantum Electronics of Nanostructures
  • Molecular Physics
  • Particle Physics
  • Particle Accelerator Physics
  • Modelling Quantum Many-Body Systems
  • Order and Excitations in Condensed Matter
  • Theoretical Treatments of Nano-Systems
  • Physics at the Nanoscale
  • Electronic Structure Methods
  • Computer Simulation in Condensed Matter
  • Superfluids, Condensates and Superconductors
  • Advanced Condensed Matter
  • Standard Model Physics and Beyond
  • Nuclear Magnetic Resonance
  • Statistical Data Analysis
  • String Theory and Branes
  • Supersymmetry
  • Stellar Structure and Evolution
  • Cosmology
  • Relativity and Gravitation
  • Astroparticle Cosmology
  • Electromagnetic Radiation in Astrophysics
  • Planetary Atmospheres
  • Solar Physics
  • Solar System
  • The Galaxy
  • Astrophysical Plasmas
  • Space Plasma and Magnetospheric Physics
  • Extrasolar Planets and Astrophysical Discs
  • Environmental Remote Sensing
  • Molecular Biophysics
  • Cellular Biophysics
  • Theory of Complex Networks
  • Equilibrium Analysis of Complex Systems
  • Dynamical Analysis of Complex Systems
  • Mathematical Biology
  • Elements of Statistical Learning

Year 2

Only core modules are taken.

Teaching & assessment

This high quality European Masters programme follows the European method of study and involves a year of research working on pioneering projects.

Assessment is carried out by a variety of methods including coursework, examinations and a dissertation.

Your future career

This course equips you with the subject knowledge and a solid foundation for continued studies in physics, and many of our graduates have gone on to study for a PhD. 

On completion of the course graduates will have a systematic understanding of knowledge, and a critical awareness of current problems and/or new insights at the forefront of the discipline a comprehensive understanding of techniques applicable to their own research or advanced scholarship originality in the application of knowledge, together with a practical understanding of how established techniques of research and enquiry are used to create and interpret knowledge in the discipline.

Our graduates are highly employable and, in recent years, have entered many different physics-related areas, including careers in industry, information technology and finance.



Read less
Why this course?. This is a vocational course in applied physics for anyone with a background in the physical sciences or engineering. Read more

Why this course?

This is a vocational course in applied physics for anyone with a background in the physical sciences or engineering.

You can choose classes relevant to your career interests from a wide range of topics including:

  • high-power microwave technology
  • laser-based particle acceleration and enabled applications
  • physics and the life sciences
  • materials and solid state physics
  • photonics
  • quantum optics and quantum information technology

On the programme you'll acquire:

  • in-depth knowledge of current and emerging theories, techniques and practices within the field of physics and the life sciences and the ability to apply these theories in a professional setting
  • problem-solving and high numeracy skills that are widely sought-after across the commercial sector skills required to use high-power microwave technology in an industrial environment
  • professional abilities in applying laser-based particle acceleration and enabled applications
  • in-depth knowledge of materials and solid state physics, photonics & quantum optics and quantum information technology

You‘ll put the knowledge gained in the taught classes to use on a research project. You can design the project to fit in with your interests and career plans.

The course gives you the opportunity to explore and master a wide range of applied physics skills. It teaches you transferable, problem-solving and numeracy skills that are widely sought after across the commercial sector.

You’ll study

You’ll have two semesters of taught classes made up of compulsory and optional modules. This is followed by a three-month research project.

Facilities

This course is run by our Department of Physics. The department’s facilities include:

  • cutting-edge high-power laser and particle acceleration research with SCAPA, enabling generation of radiation from the terahertz to the X-ray region, and biomedical applications
  • the Ultrafast Chemical Physics lab with state-of-the-art femtosecond laser systems for multi-dimensional IR spectroscopy
  • a scanning electron microscopy suite for analysis of hard and soft matter
  • access to top-of-the-range high-performance and parallel computer facilities
  • state-of-the-art high-power microwave research facility in the Technology & Innovation Centre
  • advanced quantum optics and quantum information labs
  • several labs researching optical spectroscopy and sensing

Learning & teaching

Our teaching is based on lectures, tutorials, workshops, laboratory experiments and research projects.

Assessment

The final assessment will be based on your performance in examinations, coursework, a research project and, if required, in an oral exam.

Careers

What kind of jobs do Strathclyde Physics graduates get?

To answer this question we contacted some of our Physics graduates from all courses to find out what jobs they have. They are working across the world in a number of different roles including:

  • Medical Physicist
  • Senior Engineer
  • Professor
  • Systems Engineer
  • Treasury Analyst
  • Patent Attorney
  • Software Engineer
  • Teacher
  • Spacecraft Project Manager
  • Defence Scientist
  • Procurement Manager
  • Oscar winner

Success story: Iain Neil

Iain Neil graduated from Strathclyde in Applied Physics in 1977 and is an optical consultant, specialising in the design of zoom lenses for the film industry. He has received a record 12 Scientific and Technical Academy Awards, the most for any living person.



Read less
This programme for graduates in electronic engineering or similar subjects will prepare you to become a senior manager or entrepreneur in global companies, where understanding technology and managing innovation in business are key to success. Read more

This programme for graduates in electronic engineering or similar subjects will prepare you to become a senior manager or entrepreneur in global companies, where understanding technology and managing innovation in business are key to success.

Jointly delivered by the School of Electronic and Electrical Engineering and Leeds University Business School, the course allows you to tailor the programme of studies to your needs, selecting optional modules from three engineering themes and four business themes. A set of core modules provides the foundation of your knowledge and skills.

You’ll be taught by leading experts in technology and in business management, with practical lab classes and project work allowing you to gain hands-on experience investigating and applying topics from your lectures and tutorials to real-life engineering and business situations.

This joint programme offers a unique opportunity to enhance both your technical and managerial skills.

The School of Electronic and Electrical Engineering is an exciting and stimulating environment where you’ll learn from leading researchers in areas pertinent to emerging and developing technologies. These technologies include future wireless and optical communications systems, renewable energy systems, ultrasound and bioelectronics systems, as well as nano, terahertz, and quantum technologies.

Leeds University Business School is also a leading international business school, globally, in the top 1%. It has world ranked programmes and internationally recognised teaching. You'll leave as a graduate of one of the top ten universities targeted by key employers such as Google, HSBC, Rolls-Royce and the Civil Services.



Read less
OUTLINE OF THE PROGRAM. The proposed master program aims at training students in fundamental, both theoretical and experimental, physics with applications in photonics, nanotechnology, and quantum technologies. Read more

OUTLINE OF THE PROGRAM

The proposed master program aims at training students in fundamental, both theoretical and experimental, physics with applications in photonics, nanotechnology, and quantum technologies. This combination, innovative at the level of a master program, is well aligned with priority investments in research at the European and international level, with thematic areas of growing demand for highly trained students, able to embark in a doctoral programme. This two-year master programme, fully taught in English for international students, is part of the Graduate School of Sciences of the University Bourgogne Franche-Comté (UBFC). It consists in both lessons and research project (3 month during the first year) / internship (5 months during the second year). This training program will be based on the internationally highly recognised research activities of the underlying laboratories ICB, Dijon and FEMTO-ST, Besançon.

OUR MASTER PROGRAM

This two-year master programme, fully taught in English for international students, combines macroscopic with nano- and quantum-scale topics. The programme aims at developing and improving students’ skills in fundamental optical physics, optical fibre communications, optoelectronics, laser technologies, ultrafast femtosecond optics, quantum information science, nanophotonics, nano-microscopy and nano-biosciences. This combination, innovative at the level of a master program, is well aligned with priority investments in research at the European and international level, and with thematic areas of growing demand for highly trained students.

The master programme is part of the Graduate School of Sciences of the University Bourgogne Franche-Comté (UBFC), Engineering and Innovation through Physical Sciences and High-technologies (EIPHI), which also includes a doctoral programme in the same topics.

Almost half of the programme is devoted to research project (3 month during the first year) & internship (5 months during the second year) in an international research team, leading to a master thesis aiming at the standards of a research article. This training program will be based on the internationally highly recognised research activities of the underlying laboratories ICB, Dijon and FEMTO-ST, Besançon, both having high international visibility in photonics, quantum technologies, nanotechnology and Engineering Sciences with researchers of high reputation.

TEACHING

Teaching consists of lectures, seminars by international researchers (both from the ICB & FEMTO-ST laboratories and from international partner universities), class tutorials, practical training & research work in laboratory, soft skills by professional coaches, technology and entrepreneurial courses by industrial partners, and French culture and language.

FUTURE CAREER PROSPECTS

Photonics is a very dynamic industrial sector in Europe and holds the potential for huge market growth. It has a substantial leverage effect on the European economy and workforce: 20-30% of the economy and 10% of the workforce depend on photonics, directly impacting around 30 million jobs. The master program offers intensive educational activities based on research activities of photonics, including nanophotonics and quantum technologies. It focuses on fundamental & applied research mainly targetting PhD programs, which will lead to recruitment in academia or in industry. A need of master degree students in the field of photonics & nanotechnologies, including specialties in quantum technologies boosted by the European flagship in Quantum Technologies (launched in 2018), able to embark on a PhD program both in academia & industry will strongly increase in a near future.

The master's Alumni Office helps alumni keep in touch with each other and organises alumni events.

LIFE IN DIJON, CAPITAL CITY OF BURGUNDY (FRANCE)

The two-year master program takes place at the University of Burgundy-Franche Comté, located in the scenic cities of Dijon & Besançon. The former capital city of the Duchy of Burgundy, Dijon is a medium-size French city, where you can enjoy a vibrant and active cultural life, as well as quick getaways to the countryside and the world famous neighbouring vineyards of the so-called “Golden coast” (city center, climates of the Burgundy vineyard, and gastronomy listed as world heritage sites in Dijon by Unesco). Life in Dijon is very affordable and accommodation easily accessible. The city is well-equipped with modern tramway and bus lines, making commuting between any place in Dijon and the University easy and convenient. Dijon is also host of several top-level professional sports teams (football, basketball, handball, rugby…), while also offering a large diversity of sports facilities.

STUDENT PROFILE

Students eligible to the master program PPN must have obtained a degree equivalent to or higher than a Bachelor of Science. Background knowledge in general physics, optics, electromagnetism and quantum physics is mandatory. Candidates must have very good academic qualifications and a very good practice of English.

GRANTS

Many scholarships will be awarded each year to high quality foreign students.

APPLICATIONS

During the first year, students have to pass the examinations associated with the Master 1 (60 ECTS credits) in order to proceed to the second year, Master 2 (60 ECTS), including research project and master thesis (33 ECTS).

For further information about how to apply, please directly contact the head of the master program, Professor Stéphane Guérin () and visit the webpage (http://www.ubfc.fr/formationen/).

Please also visit our dedicated webpage (http://blog.u-bourgogne.fr/master-ppn/).



Read less
Working at a frontier of mathematics that intersects with cutting edge research in physics. Mathematicians can benefit from discoveries in physics and conversely mathematics is essential to further excel in the field of physics. Read more

Working at a frontier of mathematics that intersects with cutting edge research in physics.

Mathematicians can benefit from discoveries in physics and conversely mathematics is essential to further excel in the field of physics. History shows us as much. Mathematical physics began with Christiaan Huygens, who is honoured at Radboud University by naming the main building of the Faculty of Science after him. By combining Euclidean geometry and preliminary versions of calculus, he brought major advances to these areas of mathematics as well as to mechanics and optics. The second and greatest mathematical physicist in history, Isaac Newton, invented both the calculus and what we now call Newtonian mechanics and, from his law of gravity, was the first to understand planetary motion on a mathematical basis.

Of course, in the Master’s specialisation in Mathematical Physics we look at modern mathematical physics. The specialisation combines expertise in areas like functional analysis, geometry, and representation theory with research in, for example, quantum physics and integrable systems. You’ll learn how the field is far more than creating mathematics in the service of physicists. It’s also about being inspired by physical phenomena and delving into pure mathematics.

At Radboud University, we have such faith in a multidisciplinary approach between these fields that we created a joint research institute: Institute for Mathematics, Astrophysics and Particle Physics (IMAPP). This unique collaboration has lead to exciting new insights into, for example, quantum gravity and noncommutative geometry. Students thinking of enrolling in this specialisation should be excellent mathematicians as well as have a true passion for physics.

See the website http://www.ru.nl/masters/mathematics/physics

Why study Mathematical Physics at Radboud University?

- This specialisation is one of the few Master’s in the world that lies in the heart of where mathematics and physics intersect and that examines their cross-fertilization.

- You’ll benefit from the closely related Mathematics Master’s specialisations at Radboud University in Algebra and Topology (and, if you like, also from the one in Applied Stochastics).

- Teaching takes place in a stimulating, collegial setting with small groups. This ensures that at Radboud University you’ll get plenty of one-on-one time with your thesis supervisor.

- You partake in the Mastermath programme, meaning you can follow the best mathematics courses, regardless of the university in the Netherlands that offers them. It also allows you to interact with fellow mathematic students all over the country.

- As a Master’s student you’ll get the opportunity to work closely with the mathematicians and physicists of the entire IMAPP research institute.

- More than 85% of our graduates find a job or a gain a PhD position within a few months of graduating. About half of our PhD’s continue their academic careers.

Career prospects

Mathematicians are needed in all industries, including the industrial, banking, technology and service industry and also within management, consultancy and education. A Master’s in Mathematics will show prospective employers that you have perseverance, patience and an eye for detail as well as a high level of analytical and problem-solving skills.

Job positions

The skills learned during your Master’s will help you find jobs even in areas where your specialised mathematical knowledge may initially not seem very relevant. This makes your job opportunities very broad indeed and is why many graduates of a Master’s in Mathematics find work very quickly.

Possible careers for mathematicians include:

- Researcher (at research centres or within corporations)

- Teacher (at all levels from middle school to university)

- Risk model validator

- Consultant

- ICT developer / software developer

- Policy maker

- Analyst

PhD positions

Radboud University annually has a few PhD positions for graduates of a Master’s in Mathematics. A substantial part of our students attain PhD positions, not just at Radboud University, but at universities all over the world.

Our research in this field

The research of members of the Mathematical Physics Department, emphasise operator algebras and noncommutative geometry, Lie theory and representation theory, integrable systems, and quantum field theory. Below, a small sample of the research our members pursue.

Gert Heckman's research concerns algebraic geometry, group theory and symplectic geometry. His work in algebraic geometry and group theory concerns the study of particular ball quotients for complex hyperbolic reflection groups. Basic questions are an interpretation of these ball quotients as images of period maps on certain algebraic geometric moduli spaces. Partial steps have been taken towards a conjecture of Daniel Allcock, linking these ball quotients to certain finite almost simple groups, some even sporadic like the bimonster group.

Erik Koelink's research is focused on the theory of quantum groups, especially at the level of operator algebras, its representation theory and its connections with special functions and integrable systems. Many aspects of the representation theory of quantum groups are motivated by related questions and problems of a group representation theoretical nature.

Klaas Landsman's previous research programme in noncommutative geometry, groupoids, quantisation theory, and the foundations of quantum mechanics (supported from 2002-2008 by a Pioneer grant from NWO), led to two major new research lines:

1. The use of topos theory in clarifying the logical structure of quantum theory, with potential applications to quantum computation as well as to foundational questions.

2. Emergence with applications to the Higgs mechanism and to Schroedinger's Cat (aka as the measurement problem). A first paper in this direction with third year Honours student Robin Reuvers (2013) generated worldwide attention and led to a new collaboration with experimental physicists Andrew Briggs and Andrew Steane at Oxford and philosopher Hans Halvorson at Princeton.

See the website http://www.ru.nl/masters/mathematics/physics



Read less
This MSc course will appeal if you wish to explore materials science from a multidisciplinary and collaborative perspective. The programme covers classical and quantum physics, with an emphasis on diamond and application-driven themes. Read more
This MSc course will appeal if you wish to explore materials science from a multidisciplinary and collaborative perspective. The programme covers classical and quantum physics, with an emphasis on diamond and application-driven themes. In addition to comprehensive transferable skills training, our CDT cultivates all the skills you will need to work with any high-performance and advanced material in a variety of settings.

During your course, you’ll have the opportunity to make full use of our excellent research facilities, which include state-of-the-art suites for magnetic resonance, electrochemical analysis, abrasion imaging and spectroscopy.

The skills you gain will leave you well placed to enter a number of academic and industrial sectors, including materials, instrumentation, defence and security, aerospace, telecommunications, electronics and manufacturing.

Structure

The course spans 1 year, with the first 20 weeks being lecture-based, providing you with a diverse toolbox in diamond science to complete a successful 20 week research project.
Terms 1 and 2 (20 weeks):
-Methods of Material Synthesis
-Properties and Characterisation of Materials
-Defects and Dopants
-Theory and Modelling of Materials
-Manufacturing the Future
-Surfaces, Interfaces and Coatings
-Devices and Fabrication
-Diamond Photonics and Quantum Devices
-Applications of High Performance Materials
-Electrochemistry and Sensors (Optional)
-Biomedical Optics and Applications (Optional)

Research Project (20 weeks):
Undertake a project in our world-leading research groups either for one 20-week or two 10-week research projects.

Read less
High-level training in statistics and the modelling of random processes for applications in science, business or health care. Read more

High-level training in statistics and the modelling of random processes for applications in science, business or health care.

For many complex systems in nature and society, stochastics can be used to efficiently describe the randomness present in all these systems, thereby giving the data greater explanatory and predictive power. Examples include statistical mechanics, financial markets, mobile phone networks, and operations research problems. The Master’s specialisation in Applied Stochastics will train you to become a mathematician that can help both scientists and businessmen make better decisions, conclusions and predictions. You’ll be able to bring clarity to the accumulating information overload they receive.

The members of the Applied Stochastics group have ample experience with the pure mathematical side of stochastics. This area provides powerful techniques in functional analysis, partial differential equations, geometry of metric spaces and number theory, for example. The group also often gives advice to both their academic colleagues, and organisations outside of academia. They will therefore not only be able to teach you the theoretical basis you need to solve real world stochastics problems, but also to help you develop the communications skills and professional expertise to cooperate with people from outside of mathematics.

See the website http://www.ru.nl/masters/mathematics/stochastics

Why study Applied Stochastics at Radboud University?

- This specialisation focuses both on theoretical and applied topics. It’s your choice whether you want to specialise in pure theoretical research or perform an internship in a company setting.

- Mathematicians at Radboud University are expanding their knowledge of random graphs and networks, which can be applied in the ever-growing fields of distribution systems, mobile phone networks and social networks.

- In a unique and interesting collaboration with Radboudumc, stochastics students can help researchers at the hospital with very challenging statistical questions.

- Because the Netherlands is known for its expertise in the field of stochastics, it offers a great atmosphere to study this field. And with the existence of the Mastermath programme, you can follow the best mathematics courses in the country, regardless of the university that offers them.

- Teaching takes place in a stimulating, collegial setting with small groups. This ensures that you’ll get plenty of one-on-one time with your thesis supervisor at Radboud University .

- More than 85% of our graduates find a job or a gain a PhD position within a few months of graduating.

Career prospects

Master's programme in Mathematics

Mathematicians are needed in all industries, including the banking, technology and service industries, to name a few. A Master’s in Mathematics will show prospective employers that you have perseverance, patience and an eye for detail as well as a high level of analytical and problem-solving skills.

Job positions

The skills learned during your Master’s will help you find jobs even in areas where your specialised mathematical knowledge may initially not seem very relevant. This makes your job opportunities very broad and is the reason why many graduates of a Master’s in Mathematics find work very quickly.

Possible careers for mathematicians include:

- Researcher (at research centres or within corporations)

- Teacher (at all levels from middle school to university)

- Risk model validator

- Consultant

- ICT developer / software developer

- Policy maker

- Analyst

PhD positions

Radboud University annually has a few PhD positions for graduates of a Master’s in Mathematics. A substantial part of our students attain PhD positions, not just at Radboud University, but at universities all over the world.

Our research in this field

The research of members of the Applied Stochastics Department, focuses on combinatorics, (quantum) probability and mathematical statistics. Below, a small sample of the research our members pursue.

Eric Cator’s research has two main themes, probability and statistics.

1. In probability, he works on interacting particles systems, random polymers and last passage percolation. He has also recently begun working on epidemic models on finite graphs.

2. In statistics, he works on problems arising in mathematical statistics, for example in deconvolution problems, the CAR assumption and more recently on the local minimax property of least squares estimators.

Cator also works on more applied problems, usually in collaboration with people from outside statistics, for example on case reserving for insurance companies or airplane maintenance. He has a history of changing subjects: “I like to work on any problem that takes my fancy, so this description might be outdated very quickly!”

Hans Maassen researches quantum probability or non-commutative probability, which concerns a generalisation of probability theory that is broad enough to contain quantum mechanics. He takes part in the Geometry and Quantum Theory (GQT) research cluster of connected universities in the Netherlands. In collaboration with Burkhard Kümmerer he is also developing the theory of quantum Markov chains, their asymptotic completeness and ergodic theory, with applications to quantum optics. Their focal point is shifting towards quantum information and control theory, an area which is rapidly becoming relevant to experimental physicists.

Ross Kang conducts research in probabilistic and extremal combinatorics, with emphasis on graphs (which abstractly represent networks). He works in random graph theory (the study of stochastic models of networks) and often uses the probabilistic method. This involves applying probabilistic tools to shed light on extremes of large-scale behaviour in graphs and other combinatorial structures. He has focused a lot on graph colouring, an old and popular subject made famous by the Four Colour Theorem (erstwhile Conjecture).

See the website http://www.ru.nl/masters/mathematics/stochastics



Read less
Why study Cyber Security?. "There are over one million unfilled cyber security jobs in the world!!" (Forbes). At EIT Digital we see cybersecurity as one of the cornerstones of creating a safe and inclusive digital society. Read more

Why study Cyber Security?

"There are over one million unfilled cyber security jobs in the world!!" (Forbes)

At EIT Digital we see cybersecurity as one of the cornerstones of creating a safe and inclusive digital society. The omnipresence of digital technology has made that cybersecurity has even become an essential ingredient in defending our democratic values, as this recent article in politico.eu illustrates nicely.

Our Master School Programme Cyber Security has been developed to equip responsible cybersecurity specialists with the right knowledge and skills to be able to contribute to make the digital world a safer place.

The programme focuses on the study of the design, development and evaluation of secure computer systems, which are also capable of ensuring privacy for future ICT systems. The aim is to provide students with an understanding of the concepts and technologies for achieving confidentiality, integrity, authenticity, and privacy protection for information processed across networks.

Students will learn the fresh hot topics of the field including blockchain technologies, crypto currencies, practical (ethical) hacking, and quantum cryptography.

What are the career opportunities?

Graduates from the Cyber Security (CSE) master’s programme will qualify for jobs in international and local organisations in both technical and business roles. Typical titles are:

  • Cyber Security consultant
  • Security Analyst
  • Information Security Architect
  • Cyber Security Specialist
  • Computer forensics expert
  • Privacy-by-design consultant
  • Security Auditor

Cyber Security is also a burgeoning field for the design and development of new products and services. Graduates will easily find jobs within companies that provide value-added products and services, such as telecom companies, game companies, e-learning, web developers, and the entertainment industry.

Through their multidisciplinary attitude graduates are valuable in open innovation settings where different aspects (market, users, social aspects, media technologies) come together.

An entrepreneurial path is also open to those who seek to start their own company to provide product or technology development, media content, business development or consultancy services.

Why choose Cyber Security at EIT Digital?

The EIT Digital Cyber Security (CSE) Master’s degree offers:

  • Cutting edge technical content within the field of Cyber Security
  • Studies at two of Europe´s foremost technical universities leading to a double degree
  • A close integration with tailored business courses in Innovation and Entrepreneurship
  • A thesis work well grounded in industrial security and privacy problems
  • Access to the competence of eight EIT Digital innovation action lines, not least through a summer school between the two years.
  • Access to the co-location centres and innovation ecosystems of the EIT Digital nodes.

How is the programme structured?

All EIT Digital Master School programmes follow the same scheme:

  • Students study one year at an ‘entry’ university and one year at an ‘exit’ university in two of EIT Digital’s hot spots around Europe.
  • Upon completion, graduates receive degrees from the two universities and a certificate awarded by the European Institute of Innovation and Technology.
  • The first year is similar at all entry points with basic courses to lay the foundation for the chosen technical programme focus. Some elective courses may also be chosen. At the same time, students are introduced to business and management. During the second semester, a design project is combined with business development exercises. These teach how to turn technology into business and how to present a convincing business plan.
  • In between the first year and the second year, a summer school addresses business opportunities within a socially relevant theme.
  • The second year offers a specialisation and a graduation project. The gradation project includes an internship at a company or a research institute and results in a Master thesis with a strong innovation and entrepreneurship dimension.

To learn more about the structure of the programme, please click here.

To learn more about the I&E minor please click here.

About EIT Digital Master School

EIT Digital Master School offers two-year, European Masters in computer science and information technology, with a focus on innovation and entrepreneurship. Students study two years in two leading European universities. They earn two Masters degrees from those universities together with a certificate awarded by the European Institute of Innovation and Technology (EIT). Students enjoy an array of benefits which includes European mobility, a three-day business challenge, a two-week Summer School, an internship and access to the EIT Digital community. Upon graduation, students are equipped with the tools to become digital innovators.

Scholarship:

·        European citizen: No tuition fees. Up to 750 Euros monthly allowance

·        Non-European citizen: tuition fee waiver of up to 50% and 750 Euros monthly allowance

Application deadline to begin studying in September 2018:

·        15 April 2018 (Open to EU/EEA/CH citizens/ Non-EU citizens*.)

*Please note that this application period is not recommended for applicants who require a visa due to time constraints. If you require a visa to study in an EU country, we recommend you delay your application to November 2018 when the application portal opens again, to start in Autumn 2019.

How should you apply?

To apply, you need to register and submit your application on the EIT Digital Application Portal. You don’t need to do your application all at once. You can access the list of required documents for your application here.

Need more information?

Master School Office: , we will be happy to help.



Read less

Show 10 15 30 per page



Cookie Policy    X